一种InAs基InGaAs/InAsSb超晶格材料及其生长方法和应用转让专利

申请号 : CN202211612147.7

文献号 : CN115621341B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 陈意桥于天陈超

申请人 : 苏州焜原光电有限公司

摘要 :

本发明属于半导体材料领域,具体涉及一种InAs基InGaAs/InAsSb超晶格材料及其生长方法和应用。该超晶格材料包括依次堆叠的若干InxGa1‑xAs/InAsySb1‑y超晶格原胞,其中,0<x<1,0<y<1;所述InxGa1‑xAs/InAsySb1‑y超晶格原胞包括一层InxGa1‑xAs材料和一层InAsySb1‑y材料。本发明超晶格材料可用于中波红外光电器件,通过改变超晶格原胞内各层厚度与组分可使其红外吸收截止波长在3‑7μm范围内调节,材料晶体质量优异,缺陷密度低,可获得较高光电性能。

权利要求 :

1.一种InAs基InGaAs/InAsSb超晶格材料的生长方法,其特征在于,所述InAs基InGaAs/InAsSb超晶格材料包括依次堆叠的若干InxGa1‑xAs/InAsySb1‑y超晶格原胞,其中,0<x<1,0<y<1;所述InxGa1‑xAs/InAsySb1‑y超晶格原胞包括一层InxGa1‑xAs材料和一层InAsySb1‑y材料;

包括以下步骤,

S1、标定InAs衬底脱氧及InAs缓冲层生长条件;

S2、根据步骤A标定的InAs衬底脱氧温度Td,初步确定超晶格材料的生长温度Ts;

S3、选定单层InxGa1‑xAs材料的厚度m,0nm

S4、获得InxGa1‑xAs材料在InAs衬底上的生长条件;

S5、使用步骤S1‑S4所得超晶格生长参数,以及不同的Sb束流生长InxGa1‑xAs/InAsySb1‑y超晶格材料,根据超晶格材料相对InAs衬底应变量选择Sb束流最佳值;

S6、使用步骤S1‑S5所得超晶格生长参数生长InxGa1‑xAs/InAsySb1‑y超晶格材料,根据超晶格材料表面缺陷密度,调整超晶格材料的生长温度,获取超晶格材料最佳生长温度;

S7、使用超晶格材料最佳生长温度,以及步骤S1‑S5所得其他超晶格生长参数,生长所述InAs基InGaAs/InAsSb超晶格材料;

所述步骤S3、S4和步骤S1‑S2的顺序不限。

2.如权利要求1所述的生长方法,其特征在于,所述步骤S1的具体操作如下:S11、将除气后的InAs衬底送入生长室,在As束流保护下升温至脱氧,将脱氧温度Td记为后续外延生长的基准温度;

S12、调整In炉温度获得InAs生长速率rInAs对应束流FIn,调整As炉状态以获得InAs缓冲层生长所需As束流FAs。

3.如权利要求2所述的生长方法,其特征在于,所述步骤S11中,以(Td‑30℃)±10℃作为生长InAs缓冲层的衬底温度。

4.如权利要求1所述的生长方法,其特征在于,所述步骤S2中,根据InAs衬底脱氧温度Td,初步确定超晶格材料的生长温度:。

5.如权利要求2所述的生长方法,其特征在于,所述步骤S3中,单层InxGa1‑xAs材料的厚度m和单层InAsySb1‑y的厚度n满足以下条件:,

其中aInGaAs、aInAsSb、aInAs分别代表InxGa1‑xAs、InAsySb1‑y、InAs材料的晶格常数。

6.如权利要求1所述的生长方法,其特征在于,所述步骤S4中,调整Ga炉温度获得GaAs在InAs衬底上生长速率rGaAs对应束流FGa;调整As炉状态以获得InxGa1‑xAs层在超晶格生长温度Ts下生长所需As束流。

7.如权利要求1所述的生长方法,其特征在于,所述步骤S5中,根据所生长超晶格材料的XRD图谱分析得到InAsySb1‑y生长用Sb束流与超晶格材料相对InAs衬底应变量e之间的对应关系;选取超晶格材料相对InAs衬底零应变对应的InAsySb1‑y生长用Sb束流作为Sb束流最佳值。

8.如权利要求1所述的生长方法,其特征在于,所述步骤S6中,获取超晶格材料最佳生长温度的方法如下:‑2

如果超晶格材料表面缺陷密度不高于500cm ,增加生长温度10℃,重复生长InxGa1‑‑2xAs/InAsySb1‑y超晶格材料,直到表面缺陷密度超过500cm ,此时对应的超晶格生长温度为Tc1,选取Tc1‑10℃作为超晶格材料最佳生长温度;

‑2

所得超晶格材料表面缺陷密度超过500cm ,减小生长温度10℃,重复生长InxGa1‑xAs/‑2InAsySb1‑y超晶格材料,直到表面缺陷密度不高于500cm ,此时对应的超晶格生长温度为Tc2,则选取Tc2作为超晶格材料最佳生长温度。

说明书 :

一种InAs基InGaAs/InAsSb超晶格材料及其生长方法和应用

技术领域

[0001] 本发明属于半导体材料领域,具体涉及一种InAs基InGaAs/InAsSb超晶格材料及其生长方法和应用。

背景技术

[0002] 锑化物II类超晶格由于拥有生长技术成熟、量子效率高以及能带调控灵活等优点,成为红外光电器件的优选材料之一。现有技术中常采用InAs/InAsSb与InAs/GaSb等其他锑化物II类超晶格材料。其中InAs/InAsSb材料主要用于中波红外(3‑5μm)光电器件,一般8nm以上的超晶格周期厚度才能够达到5μm的截止波长,而根据II类超晶格光吸收特点,超晶格周期厚度越长会造成量子效率衰减,因此InAs/InAsSb材料体系一直存在量子效率较低的缺陷。另一类InAs/GaSb材料体系截止波长可以覆盖中波至长波红外波段(3‑12μm),但是超晶格中包含的GaSb材料存在本征P型缺陷,限制了该材料体系的载流子迁移率。另外由于InAs/GaSb超晶格两种组成材料均是二元化合物,调节截止波长只有改变超晶格层厚这一种手段,这在器件设计与材料生长方面造成了很大限制。

发明内容

[0003] 本发明旨在解决上述问题,提供了一种InAs基InGaAs/InAsSb超晶格材料及其生长方法和应用,该大应变超晶格材料晶体质量优异,缺陷密度低,且不含有GaSb材料,可获得较高载流子迁移率与光电性能。
[0004] 按照本发明的技术方案,所述InAs基InGaAs/InAsSb超晶格材料,包括依次堆叠的若干InxGa1‑xAs/InAsySb1‑y超晶格原胞,其中,0<x<1,0<y<1;所述InxGa1‑xAs/InAsySb1‑y超晶格原胞包括一层InxGa1‑xAs材料和一层InAsySb1‑y材料。
[0005] 优选的,0.6≤x≤0.9,0.6≤y≤0.9;进一步优选为:0.7≤x≤0.8,0.7≤y≤0.8。
[0006] 本发明InAs基InGaAs/InAsSb超晶格材料中电子被限制在InxGa1‑xAs层,空穴被限制在InAsySb1‑y层,通过改变超晶格原胞内各层厚度与组分,可以独立调制电子与空穴能级,实现3‑7μm范围内的红外光吸收截止波长调节,覆盖全部中红外波段,可用于中波红外光电器件。
[0007] 对于相同截止波长的InxGa1‑xAs/InAsySb1‑y超晶格材料,减小组分x、y能够获得更高的光吸收量子效率,但会提高单层材料的应变。这导致材料生长的难度大幅增加,对于超晶格材料中的InAsySb1‑y层,其在InAs衬底上室温下理论临界厚度Hc随组分y的关系如图1所示,随衬底温度升高,临界厚度数值还会相应减小。当单层外延厚度超过临界厚度后,高应变会使InSb组分析出形成缺陷,缺陷在原子力显微镜(AFM)下形貌如图2所示,这类缺陷会对材料质量产生致命影响,目前抑制这一缺陷的有效办法是降低外延生长的温度。而对于含有GaAs组分的InxGa1‑xAs层,降低生长温度会使材料结晶度迅速下降,造成材料能带结构的破坏与载流子迁移率的衰减,从而使材料光电性能退化。
[0008] 为获得高质量InAs基InxGa1‑xAs/InAsySb1‑y超晶格材料,本发明的第二方面提供了其生长方法,包括以下步骤,
[0009] S1、标定InAs衬底脱氧及InAs缓冲层生长条件;
[0010] S2、根据步骤A标定的InAs衬底脱氧温度Td,初步确定超晶格材料的生长温度Ts;
[0011] S3、选定单层InxGa1‑xAs材料的厚度m,该厚度可在0nm
[0012] S4、获得InxGa1‑xAs材料在InAs衬底上的生长条件;
[0013] S5、使用步骤S1‑S4所得超晶格生长参数,以及不同的Sb束流生长InxGa1‑xAs/InAsySb1‑y超晶格材料,根据超晶格材料相对InAs衬底应变量选择Sb束流最佳值;
[0014] S6、使用步骤S1‑S5所得超晶格生长参数生长InxGa1‑xAs/InAsySb1‑y超晶格材料,根据超晶格材料表面缺陷密度,调整超晶格材料的生长温度,获取超晶格材料最佳生长温度;
[0015] S7、使用超晶格材料最佳生长温度,以及步骤S1‑S5所得其他超晶格生长参数,生长所述InAs基InGaAs/InAsSb超晶格材料;
[0016] 所述步骤S3、S4和步骤S1‑S2的顺序不限。
[0017] 进一步的,所述步骤S1的具体操作如下:
[0018] S11、将除气后的InAs衬底送入生长室,在As束流保护下升温至脱氧,将脱氧温度Td记为后续外延生长的基准温度;
[0019] S12、调整In炉温度获得InAs生长速率rInAs对应束流FIn,调整As炉状态以获得InAs缓冲层生长所需As束流FAs;
[0020] 进一步的,所述步骤S11中,将InAs衬底在进样室及缓冲室中进行除气。
[0021] 进一步的,所述步骤S11中,以(Td‑30℃)±10℃作为生长InAs缓冲层的衬底温度。
[0022] 进一步的,根据InAs衬底脱氧温度Td,初步确定超晶格材料的生长温度:
[0023] 。
[0024] 进一步的,所述步骤S3中,单层InxGa1‑xAs材料的厚度m和单层InAsySb1‑y的厚度n满足以下条件:
[0025] ,
[0026] 其中aInGaAs、aInAsSb、aInAs分别代表InxGa1‑xAs、InAsySb1‑y、InAs材料的晶格常数。
[0027] 优选的,InxGa1‑xAs材料的厚度m的取值范围为1‑9nm,进一步优选为2‑5nm或2.25‑4.3nm。
[0028] 进一步的,所述步骤S4中,调整Ga炉温度获得GaAs在InAs衬底上生长速率rGaAs对应束流FGa;调整As炉状态以获得InxGa1‑xAs层在超晶格生长温度Ts下生长所需As束流。
[0029] 进一步的,所述步骤S5中,根据所生长超晶格材料的XRD图谱分析得到InAsySb1‑y生长用Sb束流与超晶格材料相对InAs衬底应变量e之间的对应关系;选取超晶格材料相对InAs衬底零应变对应的InAsySb1‑y生长用Sb束流作为Sb束流最佳值。
[0030] 进一步的,所述步骤S6中,获取超晶格材料最佳生长温度的方法如下:
[0031] 如果超晶格材料表面缺陷密度不高于500cm‑2,增加生长温度10℃,重复生长‑2InxGa1‑xAs/InAsySb1‑y超晶格材料,直到表面缺陷密度超过500cm ,此时对应的超晶格生长温度为Tc1,选取Tc1‑10℃作为超晶格材料最佳生长温度;
[0032] 所得超晶格材料表面缺陷密度大于500cm‑2,减小生长温度10℃,重复生长InxGa1‑‑2xAs/InAsySb1‑y超晶格材料,直到表面缺陷密度小于500cm ,此时对应的超晶格生长温度为Tc2,则选取Tc2作为超晶格材料最佳生长温度。
[0033] 本发明的第三方面提供了一种中波红外光电器件,包括上述InAs基InGaAs/InAsSb超晶格材料。
[0034] 采用该方法得到的参数生长InxGa1‑xAs/InAsySb1‑y超晶格材料,材料晶体质量优异,缺陷密度低,可获得较高光电性能。
[0035] 本发明的技术方案相比现有技术具有以下优点:本发明超晶格材料可用于中波红外光电器件,通过改变超晶格原胞内各层厚度与组分可使其红外吸收截止波长在3‑7μm范围内调节;本发明生长方法得到的参数生长InxGa1‑xAs/InAsySb1‑y超晶格材料,材料晶体质量优异,缺陷密度低,可获得较高光电性能。

附图说明

[0036] 图1是InAsySb1‑y层在InAs衬底上室温下理论临界厚度Hc随组分y的关系示意图。
[0037] 图2是InAsySb1‑y层在高应变下InSb析出形成缺陷的AFM形貌。
[0038] 图3是本发明的InxGa1‑xAs/InAsySb1‑y超晶格材料及其原胞的结构示意图。
[0039] 图4是本发明的实施例1步骤E2中超晶格材料XRD图谱。
[0040] 图5是本发明的实施例1超晶格材料XRD图谱。
[0041] 图6是本发明的实施例1超晶格材料表面AFM扫描照片。
[0042] 图7是本发明的实施例1超晶格材料光吸收谱。
[0043] 图8是本发明的实施例2步骤E2中超晶格材料XRD图谱。
[0044] 图9是本发明的实施例2超晶格材料XRD图谱。
[0045] 图10是本发明的实施例2超晶格材料表面AFM扫描照片。
[0046] 图11是本发明的实施例2超晶格材料光吸收谱。
[0047] 附图标记说明:1‑ InxGa1‑xAs/InAsySb1‑y超晶格原胞、2‑ InxGa1‑xAs材料、3‑ InAsySb1‑y材料。

具体实施方式

[0048] 下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
[0049] 如图3所示,本发明的InAs基InGaAs/InAsSb超晶格材料,包括依次堆叠的若干InxGa1‑xAs/InAsySb1‑y超晶格原胞1,该InxGa1‑xAs/InAsySb1‑y超晶格原胞1包括一层InxGa1‑xAs材料2和一层InAsySb1‑y材料3。
[0050] 实施例1
[0051] 本实施例提供一种InAs基大应变InxGa1‑xAs/InAsySb1‑y超晶格材料及具体生长方法。
[0052] 超晶格结构中InxGa1‑xAs/InAsySb1‑y超晶格原胞内InxGa1‑xAs层厚度2.25nm,组分x4
=0.7;InAsySb1‑y层组分y=0.7,该结构对应的单层应变达到2E10ppm。
[0053] 材料采用分子束外延技术在InAs衬底上外延生长,步骤包括:
[0054] A、标定InAs衬底脱氧及InAs缓冲层生长条件
[0055] A1、将InAs衬底在进样室及缓冲室中除气;
[0056] A2、将InAs衬底送入生长室,在As束流保护下升温至脱氧,将脱氧温度610℃记为后续外延生长的基准温度;
[0057] A3、调整In炉温度获得InAs生长速率1Å/s对应束流8.7E‑8Torr,调整As炉状态以获得InAs缓冲层生长所需As束流9.2E‑7Torr;
[0058] A4、在580℃衬底温度下,生长InAs缓冲层;
[0059] B、根据InAs0.7Sb0.3层中组分y=0.7依照以下公式初步确定超晶格材料生长温度:
[0060]
[0061] 超晶格材料实际生长温度选取为520℃;
[0062] C、为达到超晶格原胞对InAs衬底的应力补偿条件,晶格原胞内In0.7Ga0.3As单层厚度m与InAs0.7Sb0.3单层厚度n应满足:
[0063] ,
[0064] 将In0.7Ga0.3As、InAs0.7Sb0.3、InAs材料的晶格常数带入公式,得出InAs0.7Sb0.3层厚度为2.25nm;
[0065] D、调整Ga炉温度获得GaAs在InAs衬底上生长速率0.43Å/s对应束流8.0E‑8Torr,调整As炉状态以获得In0.7Ga0.3As层在520℃下生长所需As束流9.6E‑7Torr;
[0066] E、获得InAsySb1‑y层y组分对应的Sb束流最佳值
[0067] E1、使用上述步骤所得超晶格生长参数,分别使用1.6E‑8Torr与2.3E‑8Torr的Sb束流生长超晶格材料中的InAs0.7Sb0.3层;
[0068] E2、根据XRD图谱分析得到:使用1.6E‑8Torr Sb束流生长InAs0.7Sb0.3层的超晶格材料相对InAs衬底应变量为256ppm,使用2.3E‑8Torr Sb束流生长InAs0.7Sb0.3层的超晶格材料相对InAs衬底应变量为2312ppm,材料XRD图谱如图4所示;
[0069] E3、根据线性拟合方法选取超晶格材料相对InAs衬底应零应变对应的InAs0.7Sb0.3生长用Sb束流1.5E‑8Torr作为最佳值;
[0070] F、使用上述步骤所得超晶格生长参数,生长In0.7Ga0.3As/InAs0.7Sb0.3超晶格材料,4 ‑2
根据光学显微镜照片分析得到,超晶格材料表面缺陷密度超过1E10cm ;在510℃重复生长
3 ‑2
超晶格材料,根据光学显微镜照片分析得到,超晶格材料表面缺陷密度超过1E10 cm ;在
500℃重复生长超晶格材料,根据AFM图谱与光学显微镜照片分析得到:超晶格材料表面缺‑2
陷密度小于300cm ,得到超晶格生长最佳温度为500℃;
[0071] 使用以上方法所得生长参数生长得到In0.7Ga0.3As/InAs0.7Sb0.3超晶格材料,超晶格XRD图谱、材料表面AFM扫描照片和光吸收谱分别如图5‑7所示,可见材料表面光滑、具有明显的原子台阶,超晶格XRD半高宽小于20sec,150K温度下红外吸收截止波长5.26μm。
[0072] 实施例2
[0073] 本实施例提供一种InAs基大应变InxGa1‑xAs/InAsySb1‑y超晶格材料及具体生长方法。
[0074] 超晶格结构中InxGa1‑xAs/InAsySb1‑y超晶格原胞内InxGa1‑xAs层厚度4.3nm,组分x=4
0.8;InAsySb1‑y层组分y=0.8,该结构对应的单层应变约1.4E10ppm。
[0075] 材料采用分子束外延技术在InAs衬底上外延生长,步骤包括:
[0076] A、标定InAs衬底脱氧及InAs缓冲层生长条件
[0077] A1、将InAs衬底在进样室及缓冲室中除气;
[0078] A2、将InAs衬底送入生长室,在As束流保护下升温至脱氧,将脱氧温度610℃记为后续外延生长的基准温度;
[0079] A3、调整In炉温度获得InAs生长速率0.85Å/s对应束流7.4E‑8Torr,调整As炉状态以获得InAs缓冲层生长所需As束流8.0E‑7Torr;
[0080] A4、在590℃衬底温度下,生长InAs缓冲层;
[0081] B、根据InAs0.8Sb0.2层中组分y=0.8依照以下公式初步确定超晶格材料生长温度:
[0082]
[0083] 超晶格材料实际生长温度选取为550℃;
[0084] C、为达到超晶格原胞对InAs衬底的应力补偿条件,晶格原胞内In0.8Ga0.2As单层厚度m与InAs0.8Sb0.2单层厚度n应满足:
[0085] ,
[0086] 将In0.8Ga0.2As、InAs0.8Sb0.2、InAs材料的晶格常数带入公式,得出InAs0.8Sb0.2层厚度为4.3nm;
[0087] D、调整Ga炉温度获得GaAs在InAs衬底上生长速率0.37Å/s对应束流6.8E‑8Torr,调整As炉状态以获得In0.8Ga0.2As层在550℃下生长所需As束流1.0E‑6Torr;
[0088] E、获得InAsySb1‑y层y组分对应的Sb束流最佳值
[0089] E1、使用上述步骤所得超晶格生长参数,分别使用3.25E‑8Torr与2.5E‑8Torr的Sb束流生长超晶格材料中的InAs0.8Sb0.2层;
[0090] E2、根据XRD图谱分析得到:使用3.25E‑8Torr Sb束流生长InAs0.8Sb0.2层的超晶格材料相对InAs衬底应变量为144ppm,使用2.5E‑8Torr Sb束流生长InAs0.8Sb0.2层的超晶格材料相对InAs衬底应变量为‑2028ppm,材料XRD图谱如图8所示;
[0091] E3、根据线性拟合方法选取超晶格材料相对InAs衬底应零应变对应的InAs0.8Sb0.2生长用Sb束流3.2E‑8Torr作为最佳值;
[0092] F、使用上述步骤所得超晶格生长参数,生长In0.8Ga0.2As/InAs0.8Sb0.2超晶格材料,‑2根据光学显微镜照片分析得到,超晶格材料表面缺陷密度小于300cm ;在560℃重复生长超
3 ‑2
晶格材料,根据光学显微镜照片分析得到,超晶格材料表面缺陷密度超过1E10cm ;得到超晶格生长最佳温度为550℃;
[0093] 使用以上方法所得生长参数生长得到In0.8Ga0.2As/InAs0.8Sb0.2超晶格材料,超晶格XRD图谱、材料表面AFM扫描照片和光吸收谱如图9‑11所示,可见材料表面光滑、具有明显的原子台阶,超晶格XRD半高宽小于20sec,150K温度下红外吸收截止波长4.15μm。
[0094] 显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。