集成非对称F-P腔的InSe基日盲紫外光电探测器转让专利

申请号 : CN202310387782.8

文献号 : CN116110985B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 吴春艳单龙强张宇梁江晓运胡继刚罗林保

申请人 : 合肥工业大学

摘要 :

本发明公开了集成非对称F‑P腔的InSe基日盲紫外光电探测器,是将InSe二维薄片转移至共振波长位于日盲紫外波段的金属/介质层非对称F‑P腔上方,利用腔共振,增强InSe在日盲紫外波段的吸收,从而提高InSe基光电探测器的响应度、日盲紫外/可见抑制比,实现日盲紫外光电探测。本发明利用窄禁带半导体材料实现日盲紫外光电探测,制备工艺简单,为高性能日盲紫外光电探测提供了一个新的思路。

权利要求 :

1.集成非对称F‑P腔的InSe基日盲紫外光电探测器,其特征在于:所述光电探测器是将厚度小于14 nm且大于等于7 nm的InSe二维薄片转移至共振波长位于日盲紫外波段的非对称F‑P腔上方,利用腔共振,增强日盲紫外波段的共振吸收,实现日盲紫外光电探测;所述非对称F‑P腔是由金属反射层与介质层组成的双层结构,所述介质层为HfO2、ZrO2、SiO2、Al2O3或Y2O3,所述介质层的厚度为20‑50 nm。

2. 根据权利要求1所述的集成非对称F‑P腔的InSe基日盲紫外光电探测器,其特征在于:所述InSe二维薄片的最小宽度大于1 μm。

3.根据权利要求1所述的集成非对称F‑P腔的InSe基日盲紫外光电探测器,其特征在于:所述非对称F‑P腔的金属反射层为日盲紫外波段强反射的Al。

4.根据权利要求3所述的集成非对称F‑P腔的InSe基日盲紫外光电探测器,其特征在于:所述金属反射层的厚度为30‑80 nm。

5.根据权利要求3所述的集成非对称F‑P腔的InSe基日盲紫外光电探测器,其特征在于:所述介质层是在金属反射层上通过原子层沉积设备沉积获得。

6.根据权利要求1所述的集成非对称F‑P腔的InSe基日盲紫外光电探测器,其特征在于:在所述InSe二维薄片上方还设置有与InSe呈欧姆接触的金属电极。

说明书 :

集成非对称F‑P腔的InSe基日盲紫外光电探测器

技术领域

[0001] 本发明属于光电探测器技术领域,具体涉及一种基于窄禁带层状二维半导体材料的日盲紫外探测器。

背景技术

[0002] 由于平流臭氧层和地球大气层的强烈吸收,200‑280 nm波段的太阳辐射很难到达地球表面,因而,与可见和近红外光电探测相比,日盲紫外探测具有更高的检测精度和更低的误报率。这一显著优势,使得日盲紫外探测在军事(如导弹追踪、保密通讯)和民用(如生物检测、臭氧层监测)等领域均有着显著的应用前景。早期,商用紫外光电探测器主要为光电倍增管(PMT)和硅基探测器(如雪崩二极管)。光电倍增管具有较大的体积和重量,而且通常需要100 V以上的工作电压,高功耗和使用不便是这类器件的局限性。而硅基探测器由于固有的窄带隙对紫外‑近红外波段的光谱均具有灵敏的响应,为应用于紫外探测领域,必须严格设计滤光系统,以消除可见和近红外光谱的影响,这增加了制备工艺的复杂度,也显著降低了系统的有效面积。
[0003] 随着第三代半导体技术的发展成熟,宽禁带、超宽禁带半导体如SiC、GaN、ZnMgO、Ga2O3及其合金等在紫外探测领域的应用被广泛研究。宽禁带半导体材料的使用避免了器件在长期紫外辐照下的劣化问题,也无需冷却以降低暗电流,在高响应度、高抑制比和低噪声的深紫外探测领域取得了显著进展。但是宽禁带紫外探测具有以下几个缺点:(1)宽禁带半导体器件相关的工艺条件较为严苛,通常需要金属氧化物化学气相沉积(MOCVD)、分子束外延(MBE)和等离子体化学气相沉积(PECVD)等昂贵的设备和复杂的工艺条件;(2)材料固有的超宽带隙和费米能级钉扎效应,导致与金属接触时较难形成良好的欧姆接触;(3)宽禁带材料的高密度表面态和缺陷严重限制探测器的响应速度,需要通过栅控、刻蚀沟槽等工艺来提升。此外,为实现日盲紫外探测,AlxGa1‑xN和ZnxMg1‑xO合金需采用较高的Al或Mg组分,而这将引起晶格畸变、相变等问题,在材料内部形成大量晶格缺陷,导致器件性能下降。因而,寻求更为简单、高效的日盲紫外探测成为这一领域的研究热点。
[0004] 由于半导体材料的吸收系数通常随波长增加而显著降低,因而利用较薄的窄禁带半导体材料,抑制长波长光在材料中的吸收,有望实现日盲紫外光电探测。如浙江大学徐杨教授课题组将Si减薄至100 nm以下,首次实现了Si基高性能的紫外光电探测,365 nm光照‑1下MSM结构器件响应度为0.47 AW ,紫外/可见抑制比达100,与GaN和SiC肖特基结器件相当(Aliet al.IEDM 2017, 203)。
[0005] 与传统体相材料相比,层间通过较弱的范德华力结合的二维层状半导体材料更容易通过气相生长或剥离的方式进行厚度调控,且带隙随着层数的减少而增大,因此,随着厚度的降低,吸收光谱逐渐蓝移,有望实现日盲紫外探测。如二维过渡金属二硫属化合物(TMDCs)MoS2,体相带隙为1.2 eV,当厚度减薄到单分子层时,带隙增大到约1.8 eV,可将近红外探测波段扩展到可见波段(Daset al.Nano Lett. 2013, 13, 100)。前期工作中,本发明的发明人所在课题组通过仿真发现,当InSe纳米带的厚度从562 nm减小到165 nm时,光响应峰发生蓝移(Wuet al.J. Phys. Chem. Lett. 2022, 13, 2668),实现入射光敏感的光电探测器。实验结果也表明,当InSe厚度分别为165 nm、364 nm、562 nm时,获得了对蓝色(450 nm)、绿色(530 nm)和红色(660 nm)入射光敏感的光电探测器。但是并没有对InSe继续减薄,无法预期能否实现日盲紫外探测。

发明内容

[0006] 基于上述现有技术所存在的问题,本发明提供一种集成非对称法布里‑珀罗(Fabry‑Pérot,F‑P)腔的InSe基日盲紫外光电探测器,是将InSe二维薄片转移至共振波长位于日盲紫外波段的金属/介质层非对称F‑P腔上方,利用腔共振,增强InSe在日盲紫外波段的吸收,从而提高InSe基光电探测器的响应度、日盲紫外/可见抑制比,实现日盲紫外光电探测。
[0007] 本发明为解决技术问题,采用如下技术方案:
[0008] 本发明公开了集成非对称F‑P腔的InSe基日盲紫外光电探测器,其特点在于:所述光电探测器是将InSe二维薄片转移至共振波长位于日盲紫外波段的非对称F‑P腔上方,利用腔共振,增强日盲紫外波段的共振吸收,实现日盲紫外光电探测。
[0009] 进一步地,所述InSe二维薄片是通过机械剥离或化学气相沉积等方法获得的单晶结构,厚度小于14 nm,最小宽度大于1 μm。
[0010] 进一步地,所述非对称F‑P腔是由金属反射层与介质层组成的双层结构,其中金属反射层为日盲紫外波段强反射的Al,介质层为HfO2、ZrO2、SiO2、Al2O3或Y2O3。所述金属反射层的厚度为30‑80 nm,通过电子束或热蒸发以0.1‑1 Å/s的速率沉积。所述介质层是在金属反射层上通过原子层沉积设备(ALD)沉积获得,致密且表面平整。所述介质层的厚度通过有限元分析法(FEM)确定。当选用HfO2、ZrO2、SiO2、Al2O3或Y2O3作为介质层时,所述介质层的厚度为20‑50 nm。
[0011] 进一步地,在所述InSe二维薄片上方还设置有与InSe呈欧姆接触的金属电极,厚度为50‑150 nm。
[0012] 本发明所述的集成非对称F‑P腔的InSe基日盲紫外光电探测器的制备方法,包括如下步骤:
[0013] 步骤1、将衬底依次通过丙酮、乙醇、去离子水超声清洗并吹干。
[0014] 步骤2、在经步骤1处理后的衬底表面通过电子束蒸发或热蒸发,沉积金属,作为非对称F‑P腔的金属反射层。
[0015] 步骤3、在所述金属反射层上通过ALD沉积介质层,即获得非对称F‑P腔。
[0016] 步骤4、将InSe二维薄片转移到非对称F‑P腔上方
[0017] 用3M剥离胶带粘附在InSe片上,机械式制取(手撕)薄层甚至单层InSe二维薄片,然后将InSe二维薄片从胶带转移至PDMS薄膜上,并且将带有InSe二维薄片的PDMS薄膜的另一面粘附在载玻片上。
[0018] 将载玻片固定在转移用样品台的载玻片夹具上,样品放置在加热台上,打开二维转移平台的吸附泵开关,将其固定,将载玻片上的样品区域与目标衬底正对,用显微系统对PDMS上的InSe二维薄片进行定位,缓慢下降夹具,使InSe二维薄片与衬底贴合。
[0019] 加热台温度设置为70‑80 ℃,加热5‑20 min,将PDMS薄膜从目标衬底上缓慢抬起,InSe二维薄片即转移到非对称F‑P腔上方。
[0020] 步骤5、通过光刻技术,在InSe二维薄片两端形成电极对图案。
[0021] 步骤6、通过电子束蒸发或热蒸发,在样品上沉积金属电极,然后利用丙酮去除未曝光的光刻胶,最后利用快速退火炉在Ar气氛中300 ℃中退火15‑20 min,即完成集成非对称F‑P腔的InSe基日盲紫外光电探测器的制备。
[0022] 与已有技术相比,本发明的有益效果体现在:
[0023] 1. 本发明将厚度小于14 nm的InSe二维薄片转移至共振波长位于日盲紫外波段的金属/介质层非对称F‑P腔上方,利用腔共振,增强InSe在日盲紫外波段的吸收,从而提高InSe基光电探测器的响应度、日盲紫外/可见抑制比,实现日盲紫外光电探测。本发明利用窄禁带半导体材料实现日盲紫外光电探测,制备工艺较传统宽禁带材料基器件工艺简单,为高性能日盲紫外光电探测提供了一个新的思路。
[0024] 2. 非层状体相半导体材料通常需要通过机械掩膜等方式进行材料减薄或通过MOCVD、MBE等技术进行薄层材料的外延生长,设备昂贵、工艺复杂。二维层状半导体材料InSe,层间为较弱的范德华力,易于通过化学气相沉积、机械剥离等方式进行厚度调控。
[0025] 3. 二维层状半导体材料InSe由于层间的范德华力,表面不存在悬键,缺陷密度较低,容易与金属形成良好的欧姆接触,且器件的响应速度较高,无需通过栅控、刻蚀沟槽等工艺来提升响应速度。
[0026] 4. 本发明采用的非对称F‑P腔,通过电子束蒸发、原子层沉积技术进行制备,与CMOS工艺具有良好的兼容性,有利于器件与现有Si工艺电路的集成。

附图说明

[0027] 图1为本发明集成非对称F‑P腔的InSe基日盲紫外光电探测器的结构示意图,图中标号:1为衬底,2为金属反射层,3为介质层,4为InSe二维薄片,5为金属电极。
[0028] 图2为InSe二维薄片吸收随厚度和波长变化的等高线图(图2(a))与不同厚度InSe二维薄片的吸收光谱(图2(b))。
[0029] 图3为实施例1中Al/HfO2非对称F‑P腔内电场分布随HfO2介质层厚度和波长变化的等高线图(图3(a))与不同波长下的电场图(图3(b))。
[0030] 图4为实施例1中单独的7 nm InSe二维薄片与集成非对称F‑P腔(7 nm InSe/27 nm HfO2/50 nm Al)的器件中InSe二维薄片的吸收光谱对比(图4(a)),以及由不同金属反射层(等厚的Al、Ag、Au、Cu)构成集成非对称F‑P腔的器件中InSe二维薄片的吸收光谱对比(图4(b))。
[0031] 图5为实施例1中265 nm光照下无集成F‑P腔时InSe二维薄片中电场分布图(图5(a))、有集成F‑P腔时InSe二维薄片中电场分布图(图5(b))以及Z轴为1 nm处的电场对比(图5(c))。
[0032] 图6为实施例2中Al/ZrO2非对称F‑P腔结构内电场分布随ZrO2介质层厚度和波长变化的等高线图(图6(a))与不同波长下的电场图(图6(b))。
[0033] 图7为实施例2中单独的8 nm InSe二维薄片与集成非对称F‑P腔(8 nm InSe/26 nm ZrO2/50 nm Al)的器件中InSe二维薄片的吸收光谱对比。
[0034] 图8为实施例2中265 nm光照下无集成F‑P腔时InSe二维薄片中电场分布图(图8(a))、有集成F‑P腔时InSe二维薄片中电场分布图(图8(b))以及Z轴为1 nm处的电场对比(图8(c))。
[0035] 图9为实施例3中Al/Al2O3非对称F‑P腔结构内电场分布随Al2O3介质层厚度和波长变化的等高线图(图9(a))与不同波长下的电场图(图9(b))。
[0036] 图10为实施例3中单独的7 nm InSe二维薄片与集成非对称F‑P腔(7 nm InSe/32 nm Al2O3/50 nm Al)的器件中InSe二维薄片的吸收光谱对比。
[0037] 图11为实施例3中265 nm光照下无集成F‑P腔时InSe二维薄片中电场分布图(图11(a))、有集成F‑P腔时InSe二维薄片中电场分布图(图11(b))以及Z轴为1 nm处的电场对比(图11(c))。

具体实施方式

[0038] 下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
[0039] 本发明中,日盲紫外/可见比抑制比是指InSe在265 nm波段的吸收与InSe在400 nm波段的吸收的比。实施例1
[0040] 参见图1,本实施例的集成非对称F‑P腔的InSe基日盲紫外光电探测器是以轻掺杂的硅/二氧化硅晶圆作为衬底1,在衬底1上依次设置金属反射层2与介质层3,由金属反射层与介质层组成的双层结构构成非对称F‑P腔。在介质层3上转移有InSe二维薄片4,在InSe二维薄片4上方设置有与InSe呈欧姆接触的金属电极5。
[0041] 本实施例的日盲紫外光电探测器按如下步骤制得:
[0042] 步骤1、将衬底依次通过丙酮、乙醇、去离子水超声清洗15min并吹干。
[0043] 步骤2、在经步骤1处理后的衬底表面通过电子束蒸发,沉积厚度为50 nm的Al,作为非对称F‑P腔的金属反射层。
[0044] 步骤3、在金属反射层上通过ALD沉积厚度为27 nm的HfO2作为介质层,即获得非对称F‑P腔。
[0045] 步骤4、将InSe二维薄片转移到非对称F‑P腔上方
[0046] 用3M剥离胶带粘附在InSe片上,机械式制取(手撕)薄层甚至单层InSe二维薄片,然后将InSe二维薄片从胶带转移至PDMS薄膜(1 cm ×1 cm)上,并且将带有InSe二维薄片的PDMS薄膜的另一面粘附在载玻片上。
[0047] 将载玻片固定在转移用样品台的载玻片夹具上,样品放置在加热台上,打开二维转移平台的吸附泵开关,将其固定,将载玻片上的样品区域与目标衬底正对,用显微系统对PDMS上的InSe二维薄片进行定位,缓慢下降夹具,使InSe二维薄片与衬底贴合。
[0048] 加热台温度设置为80oC,加热5min,将PDMS薄膜从目标衬底上缓慢抬起,InSe二维薄片即转移到非对称F‑P腔上方。
[0049] 步骤5、通过电子束曝光光刻技术,在InSe二维薄片两端形成距离为200 nm的电极对图案。
[0050] 步骤6、通过电子束蒸发在样品上沉积厚度为50 nm的金电极,然后利用丙酮去除未曝光的光刻胶,最后利用快速退火炉在Ar气氛中300 ℃中退火15 min,即完成集成非对称F‑P腔的InSe基日盲紫外光电探测器的制备。
[0051] 图2为InSe二维薄片吸收随厚度和波长变化的等高线图(图2(a))与不同厚度InSe二维薄片的吸收光谱(图2(b)),结果表明:随着厚度减薄,吸收峰值蓝移,当厚度为14 nm时,InSe的吸收峰值为265 nm,但日盲紫外/可见比抑制比仅1.04,日盲紫外探测性能较弱。
[0052] 图3为实施例1中Al/HfO2非对称F‑P腔内电场分布随HfO2介质层厚度和波长变化的等高线图(图3(a))与不同波长下的电场图(图3(b)),表明HfO2介质层厚度20‑50 nm时,腔共振波长为240‑280 nm。
[0053] 图4为实施例1中单独的7 nm InSe二维薄片与集成非对称F‑P腔(7 nm InSe/27 nm HfO2/50 nm Al)的器件中InSe二维薄片的吸收光谱对比(图4(a)),以及由不同金属反射层(等厚的Al、Ag、Au、Cu)构成集成非对称F‑P腔的器件中InSe二维薄片的吸收光谱对比(图4(b)),结果表明:相比单独的7 nm InSe二维薄片,7 nm InSe/27 nm HfO2/50 nm Al非对称F‑P腔结构中,265 nm光照下InSe的吸收增加了134%,日盲紫外/可见比增大了43%,日盲紫外探测性能显著增加。相比Au、Ag、Cu作为反射层,Al作为反射层时,日盲紫外探测性能显著增加。
[0054] 图5为实施例1中265 nm光照下无集成F‑P腔时InSe二维薄片中电场分布图(图5(a))、有集成F‑P腔时InSe二维薄片中电场分布图(图5(b))以及Z轴为1 nm处的电场对比(图5(c)),结果表明:集成Al/HfO2非对称F‑P腔后,InSe二维薄片中电场强度显著增强,光吸收响应增强。实施例2
[0055] 本实施例的器件结构和制备步骤与实施例1相同,区别仅在于步骤3中沉积26 nm ZrO2作为介质层。
[0056] 图6为实施例2中Al/ZrO2非对称F‑P腔结构内电场分布随ZrO2介质层厚度和波长变化的等高线图(图6(a))与不同波长下的电场图(图6(b)),表明ZrO2介质层厚度20‑50 nm时,腔共振波长为240‑280 nm。
[0057] 图7为实施例2中单独的8 nm InSe二维薄片与集成非对称F‑P腔(8 nm InSe/26 nm ZrO2/50 nm Al)的器件中InSe二维薄片的吸收光谱对比,结果表明:相比单独的8 nm InSe二维薄片,8 nm InSe/26 nm ZrO2/50 nm Al非对称F‑P腔结构中,265 nm光照下InSe的吸收增加了137%,日盲紫外/可见比增大了42%,日盲紫外探测性能显著增加。
[0058] 图8为实施例2中265 nm光照下无集成F‑P腔时InSe二维薄片中电场分布图(图8(a))、有集成F‑P腔时InSe二维薄片中电场分布图(图8(b))以及Z轴为1 nm处的电场对比(图8(c)),结果表明:集成Al/ZrO2非对称F‑P腔后,InSe二维薄片中电场强度显著增强,光吸收响应增强。实施例3
[0059] 本实施例的器件结构和制备步骤与实施例1相同,区别仅在于步骤3中沉积32 nm Al2O3作为介质层。
[0060] 图9为实施例3中Al/Al2O3非对称F‑P腔结构内电场分布随Al2O3介质层厚度和波长变化的等高线图(图9(a))与不同波长下的电场图(图9(b)),表明Al2O3介质层厚度20‑50 nm时,腔共振波长为240‑280 nm。
[0061] 图10为实施例3中单独的7 nm InSe二维薄片与集成非对称F‑P腔(7 nm InSe/32 nm Al2O3/50 nm Al)的器件中InSe二维薄片的吸收光谱对比,结果表明:相比单独的7 nm InSe二维薄片,7 nm InSe/32 nm Al2O3/50 nm Al非对称F‑P腔结构中,265 nm光照下InSe的吸收增加了133%,日盲紫外/可见比增大了55%,日盲紫外探测性能显著增加。
[0062] 图11为实施例3中265 nm光照下无集成F‑P腔时InSe二维薄片中电场分布图(图11(a))、有集成F‑P腔时InSe二维薄片中电场分布图(图11(b))以及Z轴为1 nm处的电场对比(图11(c)),结果表明:集成Al/Al2O3非对称F‑P腔后,InSe二维薄片中电场强度显著增强,光吸收相应增强。
[0063] 以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。