圆形截面偏心受压构件增大截面加固的承载力计算方法转让专利

申请号 : CN202310811781.1

文献号 : CN116738753B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 赖伟贾斌

申请人 : 四川省建筑科学研究院有限公司

摘要 :

本发明公开了一种圆形截面偏心受压构件增大截面加固的承载力计算方法,包括如下步骤:步骤一、将沿圆周均匀布置的纵向钢筋等效为薄壁钢环,则增大截面加固后的圆形截面钢筋混凝土构件包括原有薄壁钢环和新增薄壁钢环;步骤二、确定 ;步骤三、计算受压区混凝土的合力及合力矩;步骤四、计算原有薄壁钢环在受压区和受拉区内的合力及合力矩;步骤五、计算新增薄壁钢环在截面受压区和受拉区的合力及合力矩;步骤六、计算增大截面加固后的圆形截面钢筋混凝土构件的截面总轴力。本发明基于纵向受力钢筋的等效钢环处理进行理论推导,并根据迭代法原理求得圆形截面偏心受压构件增大截面加固的承载力,可以准确反映新增纵筋与原有纵筋的实际受力。

权利要求 :

1.一种圆形截面偏心受压构件增大截面加固的承载力计算方法,其特征在于:包括如下步骤:步骤一、将沿圆周均匀布置的纵向钢筋等效为薄壁钢环,则增大截面加固后的圆形截面钢筋混凝土构件包括原有薄壁钢环和新增薄壁钢环;

步骤二、确定 , 为混凝土受压区相对高度;

步骤三、计算受压区混凝土的合力 及合力矩 ;

步骤四、计算原有薄壁钢环在受压区内的合力及合力矩,并计算原有薄壁钢环在截面受拉区的合力及合力矩;

步骤五、计算新增薄壁钢环在截面受压区的合力及合力矩,并计算新增薄壁钢环在截面受拉区的合力及合力矩;

步骤六、(1)根据步骤三、步骤四、步骤五的合力计算增大截面加固后的圆形截面钢筋混凝土构件的截面总轴力 ;(2)若截面总轴力满足截面内力平衡条件,则根据步骤三、步骤四、步骤五的合力矩计算总内力矩 ;(3)若截面总轴力不满足截面内力平衡条件,则重复步骤二至步骤六;

所述步骤四中,原有薄壁钢环在截面受压区的合力包括原有薄壁钢环在受压钢筋塑性区应力的合力 和原有薄壁钢环在受压钢筋弹性区应力的合力 ;所述步骤四中原有薄壁钢环在受压区内的合力矩包括原有薄壁钢环在受压钢筋塑性区应力对截面中心的力矩 原有增薄壁钢环在受压钢筋弹性区应力对截面中心的力矩 ;

所述步骤四中,原有薄壁钢环在截面受拉区的合力包括原有薄壁钢环在受拉钢筋塑性区应力的合力 和原有薄壁钢环在受拉钢筋弹性区应力的合力 ;所述步骤四中原有薄壁钢环在受拉区内的合力矩包括原有薄壁钢环在受拉钢筋塑性区应力对截面中心的力矩 原有增薄壁钢环在受拉钢筋弹性区应力对截面中心的力矩 ;

所述步骤五中,新增薄壁钢环在截面受压区的合力包括新增薄壁钢环在受压钢筋塑性区应力的合力和新增薄壁钢环在受压钢筋弹性区应力的合力 ;所述步骤五中新增薄壁钢环在受压区内的合力矩包括新增薄壁钢环在受压钢筋塑性区应力对截面中心的力矩和新增薄壁钢环在受压钢筋弹性区应力对截面中心的力矩 ;

所述步骤五中,新增薄壁钢环在截面受拉区的合力包括新增薄壁钢环在受拉钢筋塑性区应力的合力 和新增薄壁钢环在受拉钢筋弹性区应力的合力 ;所述步骤五中新增薄壁钢环在受拉区内的合力矩包括新增薄壁钢环在受拉钢筋塑性区应力对截面中心的力矩 和新增薄壁钢环在受拉钢筋弹性区应力对截面中心的力矩 ;

所述步骤六中,增大截面加固后的圆形截面钢筋混凝土构件的截面总轴力及总内力矩计算方式如下:;

所述步骤六中,截面内力平衡条件为:

式中, 为轴向压力设计值; 为轴向压力对截面中心的偏心距; 为附加偏心距;

在步骤2之前,分别计算出受压区混凝土截面的圆心角参数 、原有薄壁钢环在截面中和轴以上部分的圆心角参数 ,新增薄壁钢环在截面中和轴以上部分的圆心角参数 ,原有薄壁钢环在压应力塑性区的圆心角参数 ,新增薄壁钢环在压应力塑性区的圆心角参数 ,原有薄壁钢环在拉应力塑性区的圆心角参数 ,新增薄壁钢环在拉应力塑性区的圆心角参数 ,计算方式如下:式中, 为混凝土受压区相对高度, , 为混凝土实际受压高度; 为矩形应力图高度系数, 、 、 、 , 为钢筋的弹性模量, 为混凝土极限压应变, 和 为原有纵筋的受压、受拉强度设计值,  为新增薄壁钢环的受压强度设计值, 为新增薄壁钢环的受拉强度设计值, 为新增钢筋强度利用系数,取

0.9;为加固后的截面半径。

2.根据权利要求1所述圆形截面偏心受压构件增大截面加固的承载力计算方法,其特征在于:在所述步骤三中,受压区混凝土的合力 及合力矩 分别为:式中, 为受压区混凝土的合力, 为受压区混凝土的合力矩, 为加固后构件截面面积, 为矩形应力图宽度系数, 为新旧混凝土组合截面的混凝土轴心抗压强度,为加固后截面半径。

3.根据权利要求1所述圆形截面偏心受压构件增大截面加固的承载力计算方法,其特征在于:在计算原有薄壁钢环在受压区内的合力及合力矩时,计算出原有薄壁钢环在受压钢筋塑性区应力的合力 及该应力对截面中心的力矩 ,计算原有薄壁钢环在受压钢筋弹性区的应力  ,并计算出原有薄壁钢环在受压钢筋弹性区应力的合力 及该应力对截面中心的力矩 ,具体计算方式如下:式中, 即为原有薄壁钢环受压区进入塑性阶段的相对面积, 位于 之间,为原有薄壁钢环位于弹性受压区的相对面积, 为原有薄壁钢环的面积, 为原有薄壁钢环重心所在圆周半径, 为加固后截面半径。

4.根据权利要求1所述圆形截面偏心受压构件增大截面加固的承载力计算方法,其特征在于:在计算原有薄壁钢环在截面受拉区的合力及合力矩时,计算出原有薄壁钢环在受拉钢筋塑性区应力的合力 及该应力对截面中心的力矩 ,计算出原有薄壁钢环在受拉钢筋弹性区的应力 ,计算出原有薄壁钢环在弹性区应力的合力 及应力对截面中心的力矩 ,具体计算方式如下:式中, 即为原有薄壁钢环受拉区进入塑性阶段的相对面积, 位于 之间,即为原有薄壁钢环位于弹性受拉区的相对面积。

5.根据权利要求1所述圆形截面偏心受压构件增大截面加固的承载力计算方法,其特征在于:在计算新增薄壁钢环在截面受压区的合力及合力矩时,计算新增薄壁钢环在受压钢筋塑性区应力的合力 及该应力对截面中心的力矩 ,计算新增薄壁钢环在受压钢筋弹性区的应力  ,计算新增薄壁钢环在受压钢筋弹性区应力的合力 及应力对截面中心的力矩 ,具体计算方式如下:式中, 即为新增薄壁钢环受压区进入塑性阶段的相对面积, 位于 之间,即为新增薄壁钢环位于弹性受压区的相对面积, 为新增薄壁钢环的面积。

6.根据权利要求1所述圆形截面偏心受压构件增大截面加固的承载力计算方法,其特征在于:在计算新增薄壁钢环在截面受拉区的合力及合力矩时,计算新增薄壁钢环在受拉钢筋塑性区应力的合力 及其对截面中心的力矩 ,计算新增薄壁钢环在受拉钢筋弹性区的应力 ,计算新增薄壁钢环在受拉钢筋弹性区应力的合力 及应力对截面中心的力矩 ,具体计算方式如下:式中, 即为新增薄壁钢环受拉区进入塑性阶段的相对面积, 位于 之间,即为新增薄壁钢环位于弹性受拉区的相对面积。

说明书 :

圆形截面偏心受压构件增大截面加固的承载力计算方法

技术领域

[0001] 本发明涉及土木工程技术领域,特别涉及一种圆形截面偏心受压构件增大截面加固的承载力计算方法。

背景技术

[0002] 增大截面加固是通过增大构件截面并增配普通钢筋,以提高构件承载力和刚度的结构加固方法。增大截面加固既可以提高构件承载力,又能提升偏心受压构件的延性能力,因此是一种常用的钢筋混凝土偏心受压构件加固方法。《混凝土结构加固设计规范》(GB 50367‑2013 )和《公路桥梁加固设计规范》(JTG/T J22‑2008)都采纳了该方法并做了相应规定。
[0003] 目前圆形截面钢筋混凝土偏心受压构件应用广泛,如桥梁结构中的柱式桥墩、台,房屋结构中的框架柱等。《混凝土结构加固设计规范》和《公路桥梁加固设计规范》中给出的钢筋混凝土偏心受压构件增大截面加固的计算方法仅适用于矩形截面构件,均无法用于圆形截面构件。目前,在圆形截面钢筋混凝土偏心受压构件增大截面加固后的正截面承载力计算时,一般将杆件截面同时存在的新增纵筋与原有纵筋直接叠加,采用《混凝土结构设计规范》(GB 50010‑2010)中圆形截面钢筋混凝土偏心受压构件相关方法近似计算。该简化方法假定原有纵筋与新增纵筋具有相同的受力特征,然而,当新增混凝土层厚度较大,新增纵筋与原有纵筋间距较大时,原有纵筋与新增纵筋的受力情况会有显著差异,该简化方法存在明显理论缺陷。
[0004] 因此,现急需一种能准确反映新增纵筋与原有纵筋的实际受力的圆形截面偏心受压构件增大截面加固的承载力计算方法。

发明内容

[0005] 本发明的目的在于克服现有技术的不足,提供一种圆形截面偏心受压构件增大截面加固的承载力计算方法,基于纵向受力钢筋的等效钢环处理进行理论推导,并根据迭代法原理求得圆形截面偏心受压构件增大截面加固的承载力,可以准确反映新增纵筋与原有纵筋的实际受力。
[0006] 本发明的目的是通过以下技术方案来实现的:
[0007] 一种圆形截面偏心受压构件增大截面加固的承载力计算方法,包括如下步骤:
[0008] 步骤一、将沿圆周均匀布置的纵向钢筋等效为薄壁钢环,则增大截面加固后的圆形截面钢筋混凝土构件包括原有薄壁钢环和新增薄壁钢环;
[0009] 步骤二、确定 , 为混凝土受压区相对高度;
[0010] 步骤三、计算受压区混凝土的合力 及合力矩 ;
[0011] 步骤四、计算原有薄壁钢环在受压区内的合力及合力矩,并计算原有薄壁钢环在截面受拉区的合力及合力矩;
[0012] 步骤五、计算新增薄壁钢环在截面受压区的合力及合力矩,并计算新增薄壁钢环在截面受拉区的合力及合力矩;
[0013] 步骤六、(1)根据步骤三、步骤四、步骤五的合力计算增大截面加固后的圆形截面钢筋混凝土构件的截面总轴力 ;(2)若截面总轴力满足截面内力平衡条件,则根据步骤三、步骤四、步骤五的合力矩计算总内力矩 ;(3)若截面总轴力不满足截面内力平衡条件,则重复步骤二至步骤六。
[0014] 进一步地,所述步骤四中,原有薄壁钢环在截面受压区的合力包括原有薄壁钢环在受压钢筋塑性区应力的合力 和原有薄壁钢环在受压钢筋弹性区应力的合力 ;所述步骤四中原有薄壁钢环在受压区内的合力矩包括原有薄壁钢环在受压钢筋塑性区应力对截面中心的力矩 原有增薄壁钢环在受压钢筋弹性区应力对截面中心的力矩 ;
[0015] 所述步骤四中,原有薄壁钢环在截面受拉区的合力包括原有薄壁钢环在受拉钢筋塑性区应力的合力 和原有薄壁钢环在受拉钢筋弹性区应力的合力 ;所述步骤四中原有薄壁钢环在受拉区内的合力矩包括原有薄壁钢环在受拉钢筋塑性区应力对截面中心的力矩 原有增薄壁钢环在受拉钢筋弹性区应力对截面中心的力矩 ;
[0016] 所述步骤五中,新增薄壁钢环在截面受压区的合力包括新增薄壁钢环在受压钢筋塑性区应力的合力和新增薄壁钢环在受压钢筋弹性区应力的合力 ;所述步骤五中新增薄壁钢环在受压区内的合力矩包括新增薄壁钢环在受压钢筋塑性区应力对截面中心的力矩 和新增薄壁钢环在受压钢筋弹性区应力对截面中心的力矩 ;
[0017] 所述步骤五中,新增薄壁钢环在截面受拉区的合力包括新增薄壁钢环在受拉钢筋塑性区应力的合力 和新增薄壁钢环在受拉钢筋弹性区应力的合力 ;所述步骤五中新增薄壁钢环在受拉区内的合力矩包括新增薄壁钢环在受拉钢筋塑性区应力对截面中心的力矩 和新增薄壁钢环在受拉钢筋弹性区应力对截面中心的力矩 。
[0018] 进一步地,所述步骤六中,增大截面加固后的圆形截面钢筋混凝土构件的截面总轴力及总内力矩计算方式如下:
[0019] ;
[0020] 。
[0021] 进一步地,所述步骤六中,截面内力平衡条件为:
[0022]
[0023] 式中, 为轴向压力设计值; 为轴向压力对截面中心的偏心距; 为附加偏心距。
[0024] 进一步地,在步骤2之前,分别计算出受压区混凝土截面的圆心角参数 、原有薄壁钢环在截面中和轴以上部分的圆心角参数 ,新增薄壁钢环在截面中和轴以上部分的圆心角参数 ,原有薄壁钢环在压应力塑性区的圆心角参数 ,新增薄壁钢环在压应力塑性区的圆心角参数 ,原有薄壁钢环在拉应力塑性区的圆心角参数 ,新增薄壁钢环在拉应力塑性区的圆心角参数 ,计算方式如下:
[0025]
[0026]
[0027] 式中, 为混凝土受压区相对高度, , 为混凝土实际受压高度; 为矩形应力图高度系数, 、 、 、 , 为钢筋的弹性模量,为混凝土极限压应变, 和 为原有纵筋的受压、受拉强度设计值, 为新增薄壁钢环的受压强度设计值, 为新增薄壁钢环的受拉强度设计值, 为新增钢筋强度利用系数,取
0.9;为加固后的截面半径。
[0028] 进一步地,在所述步骤三中,受压区混凝土的合力 及合力矩 分别为:
[0029]
[0030]
[0031] 式中, 为受压区混凝土的合力, 为受压区混凝土的合力矩, 为加固后构件截面面积, 为矩形应力图宽度系数, 为新旧混凝土组合截面的混凝土轴心抗压强度,为加固后截面半径。
[0032] 进一步地,在计算原有薄壁钢环在受压区内的合力及合力矩时,计算出原有薄壁钢环在受压钢筋塑性区应力的合力 及该应力对截面中心的力矩 ,计算原有薄壁钢环在受压钢筋弹性区的应力 ,并计算出原有薄壁钢环在受压钢筋弹性区应力的合力及该应力对截面中心的力矩 ,具体计算方式如下:
[0033]式中, 即为原有薄壁钢环受压区进入塑性阶段的相对面积, 位于 之
间, 为原有薄壁钢环位于弹性受压区的相对面积, 为原有薄壁钢环的面积, 为原有薄壁钢环重心所在圆周半径, 为加固后截面半径。
[0034] 进一步地,在计算原有薄壁钢环在截面受拉区的合力及合力矩时,计算出原有薄壁钢环在受拉钢筋塑性区应力的合力 及该应力对截面中心的力矩 ,计算出原有薄壁钢环在受拉钢筋弹性区的应力 ,计算出原有薄壁钢环在弹性区应力的合力 及应力对截面中心的力矩 ,具体计算方式如下:
[0035]式中, 即为原有薄壁钢环受拉区进入塑性阶段的相对面积, 位于 之
间, 即为原有薄壁钢环位于弹性受拉区的相对面积。
[0036] 进一步地,在计算新增薄壁钢环在截面受压区的合力及合力矩时,计算新增薄壁钢环在受压钢筋塑性区应力的合力 及该应力对截面中心的力矩 ,计算新增薄壁钢环在受压钢筋弹性区的应力 ,计算新增薄壁钢环在受压钢筋弹性区应力的合力及应力对截面中心的力矩 ,具体计算方式如下:
[0037]
[0038]式中, 即为新增薄壁钢环受压区进入塑性阶段的相对面积, 位于 之
间, 即为新增薄壁钢环位于弹性受压区的相对面积, 为新增薄壁钢环的面积。
[0039] 进一步地,在计算新增薄壁钢环在截面受拉区的合力及合力矩时,计算新增薄壁钢环在受拉钢筋塑性区应力的合力 及其对截面中心的力矩 ,计算新增薄壁钢环在受拉钢筋弹性区的应力 ,计算新增薄壁钢环在受拉钢筋弹性区应力的合力 及应力对截面中心的力矩 ,具体计算方式如下:
[0040]
[0041]式中, 即为新增薄壁钢环受拉区进入塑性阶段的相对面积, 位于 之
间, 即为新增薄壁钢环位于弹性受拉区的相对面积。
[0042] 本发明的有益效果是:
[0043] 本发明基于纵向受力钢筋的等效钢环处理进行理论推导,并根据迭代法原理求得圆形截面偏心受压构件增大截面加固的承载力,可以准确反映新增纵筋与原有纵筋的实际受力。

附图说明

[0044] 图1为本发明实施例中圆形截面偏心受压构件增大截面加固的承载力计算涉及参数示意图。

具体实施方式

[0045] 下面将结合实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0046] 参阅图1,本发明提供一种技术方案:
[0047] 实施例:
[0048] 一种圆形截面偏心受压构件增大截面加固的承载力计算方法,包括如下步骤:
[0049] 步骤一、将沿圆周均匀布置的纵向钢筋等效为薄壁钢环,则增大截面加固后的圆形截面钢筋混凝土构件包括原有薄壁钢环和新增薄壁钢环;
[0050] 步骤二、确定 , 为混凝土受压区相对高度;
[0051] 步骤三、根据步骤二确定的 计算受压区混凝土的合力 及合力矩 ;
[0052] 步骤四、根据步骤二确定的 计算原有薄壁钢环在受压区内的合力及合力矩,并计算原有薄壁钢环在截面受拉区的合力及合力矩;
[0053] 步骤五、根据步骤二确定的 计算新增薄壁钢环在截面受压区的合力及合力矩,并计算新增薄壁钢环在截面受拉区的合力及合力矩;
[0054] 步骤六、(1)根据步骤三、步骤四、步骤五的合力计算增大截面加固后的圆形截面钢筋混凝土构件的截面总轴力 ;(2)若截面总轴力满足截面内力平衡条件,则根据步骤三、步骤四、步骤五的合力矩计算总内力矩 ;(3)若截面总轴力不满足截面内力平衡条件,则重复步骤二至步骤六。
[0055] 下面结合计算方式具体进行说明:
[0056] 在本发明中,针对圆形截面钢筋混凝土受压构件,当沿圆周均匀布置的纵向普通钢筋根数不小于6根时,可用一个假想的薄壁钢环来代替纵筋,即,圆形截面钢筋混凝土受压构件在加固前其内部沿圆周均匀布置的原有纵筋形成原有薄壁钢环,圆形截面钢筋混凝土受压构件在加固后其内部沿圆周均匀布置的新增纵筋形成新增薄壁钢环。原有薄壁钢环的面积为原有纵筋的总面积,新增薄壁钢环的面积为加固时新增纵筋的总面积,原有薄壁钢环厚度中心至截面圆心的距离为原有纵筋重心所在圆的半径,新增薄壁钢环厚度中心至截面圆心的距离为新增纵筋重心所在圆的半径。在本发明中,原有薄壁钢环的面积为 ,新增薄壁钢环的面积为 , 为加固前的截面半径, 为加后的截面半径, 为原有薄壁钢环重心所在圆周半径, 为新增薄壁钢环重心所在圆周半径。
[0057] 其中,图1中:图1a是本发明提供的圆形截面钢筋混凝土偏心受压构件增大截面加固后的圆形截面图;图1b是截面钢环应变分布图;图1c是截面钢环应力分布图;图1d是截面混凝土应力分布图。
[0058] 在本发明中,如图1a中所示,其中 为受压区混凝土截面面积的圆心角与 的比值, 为原有薄壁钢环在截面中和轴以上部分的圆心角与 的比值, 为新增薄壁钢环在截面中和轴以上部分的圆心角与 的比值, 为原有薄壁钢环压应力塑性区的圆心角与的比值, 新增薄壁钢环压应力塑性区的圆心角与 的比值, 为原有薄壁钢环拉应力塑性区的圆心角与 的比值, 新增薄壁钢环拉应力塑性区的圆心角与 的比值。
[0059] (1)根据图1c中所示的截面钢环应力分布以及图1d中所示的截面混凝土应力分布,本发明中 等圆心角参数分别为:
[0060]式中:为混凝土受压区相对高度, , 为混凝土实际受压高度; 为矩
形应力图高度系数,按《混凝土结构设计规范》确定; ; ; ;
。其中: 为钢筋的弹性模量, 为混凝土极限压应变, 和 为原有纵筋的受
压、受拉强度设计值, 和 为新增纵筋的受压、受拉强度设计值, 为新增钢筋强度利用系数,取0.9。
[0061] (2)计算受压区混凝土的合力及其合力矩。
[0062] 如图1a中所示,图1a中的阴影区为混凝土受压区,几何形状为圆冠。根据图1d中的截面混凝土应力分布,受压区混凝土的合力 及其对截面中心的力矩 为:
[0063]式中:为加固后构件截面面积; 为矩形应力图宽度系数,按《混凝土结构设计规范》确定; 为新旧混凝土组合截面的混凝土轴心抗压强度设计值,按《混凝土结构加固设计规范》确定。
[0064] (3)计算原有薄壁钢环在受压区内的合力及合力矩。
[0065] 如图1a中所示, 为原有薄壁钢环受压区进入塑性阶段的相对面积。根据图1c中所示的截面钢环应力分布,原有薄壁钢环在受压钢筋塑性区内应力的合力 及其对截面中心的力矩 分别为:
[0066]
[0067] 根据图1b中所示的钢环应变分布和图1c中的钢环应力分布,可得到原有薄壁钢环在受压钢筋弹性区的应力 为:
[0068]
[0069] 位于 之间的弹性区应力的合力 为:
[0070]
[0071] 式中, 为原有薄壁钢环位于弹性受压区的相对面积。相应的,原有薄壁钢环在受压钢筋弹性区应力对截面中心的力矩 为:
[0072]
[0073] 接着,计算原有薄壁钢环在截面受拉区的合力及其力矩。
[0074] 根据图1a所示,图1a中的 为原有薄壁钢环受拉区进入塑性阶段的相对面积。根据图1c中的钢环应力分布,原有薄壁钢环在受拉钢筋塑性区应力的合力 及其对截面中心的力矩 分别为:
[0075]
[0076] 根据图1b中的钢环应变力分布和图1c中的钢环应力分布,可得到原有薄壁钢环在受拉钢筋弹性区的应力 为:
[0077]
[0078] 位于 之间的弹性区应力的合力 为:
[0079]
[0080] 式中, 即为原有薄壁钢环位于弹性受拉区的相对面积。相应的,原有薄壁钢环在受拉钢筋弹性区应力对截面中心的力矩 为:
[0081]
[0082] (4)计算新增薄壁钢环在截面受压区的合力及其力矩。
[0083] 根据图1a所示,图1a中的 为新增薄壁钢环在受压区进入塑性阶段的相对面积。根据图1c中的钢环应力分布,新增薄壁钢环在受压钢筋塑性区应力的合力 及其对截面中心的力矩 分别为:
[0084]
[0085] 根据图1b中的钢环应变分布和图1c中的钢环应力分布,可得到新增薄壁钢环在受压钢筋弹性区的应力 为:
[0086]
[0087] 位于 之间的弹性区应力的合力 为:
[0088]
[0089] 式中, 即为新增薄壁钢环位于弹性受压区的相对面积。相应的,新增薄壁钢环在受压钢筋弹性区应力对截面中心的力矩 为:
[0090]接着,计算新增薄壁钢环在截面受拉区的合力及其力矩。
[0091] 如图1a中所示,图1a中的 为新增薄壁钢环受拉区进入塑性阶段的相对面积。根据图1c中的钢环应力分布,新增薄壁钢环在受拉钢筋塑性区应力的合力 及其对截面中心的力矩 分别为:
[0092]
[0093] 根据图1b中的钢环应变分布和图1c中的钢环应力分布,可得到新增薄壁钢环在受拉钢筋弹性区的应力 为:
[0094]
[0095] 位于 之间的三角形应力图的合力 为:
[0096]
[0097] 式中, 为新增薄壁钢环位于弹性受拉区的相对面积。相应的,新增薄壁钢环在受拉钢筋弹性区应力对截面中心的力矩 为:
[0098]
[0099] (5)计算增大截面加固圆形截面钢筋混凝土偏心受压构件后的截面总轴力和总内力矩。
[0100] 加固后截面总轴力 和总内力矩 为:
[0101]
[0102] 以上轴向内力以压力为正,拉力为负;内力矩以逆时针方向为正,反之为负。
[0103] 由式(8)(37)确定截面各部分轴向内力及内力矩后,故采用增大截面加固圆形截~面钢筋混凝土偏心受压构件后,截面总轴力和总内力矩为:
[0104]本发明中的截面内力平衡条件为:
[0105]
[0106] 式中: 为轴向压力设计值; 为轴向压力对截面中心的偏心距; 为附加偏心距,按《混凝土结构设计规范》确定。
[0107] 结合上面推导结果,对进行试算和迭代即可计算圆形截面钢筋混凝土偏心受压构件增大截面加固后的正截面承载力,具体计算步骤为:
[0108] (1)由选用的迭代法确定 , 。
[0109] (2)将 代入式(1)~式(7)计算 等圆心角参数;
[0110] (3)根据 和各圆心角参数分别由式(14)、式(21)、式(28)和式(35)计算,由式(40)计算由截面总轴向压力 ;
[0111] (4)若 满足平衡条件式(42),分别由式(16)、式(23)、式(30)和式(37)计算,由式(41)计算出相应的截面抗弯承载力;
[0112] (5)最后可由式(43)反算出与 对应的截面极限偏心距或截面极限弯矩;
[0113] (6)若 不满足平衡条件式(42),重复上述步骤1~5。
[0114] 在本发明中,迭代法可用黄金分割法或二分法。如采用黄金分割法,迭代十余次可达到0.01%的精度。
[0115] 此外,本发明在对圆形截面钢筋混凝土偏心受压构件增大截面加固的计算过程中,引入了下列假设条件:
[0116] (1)构件变形符合平截面假设;
[0117] (2)构件达到极限破坏时,受压区混凝土的应力采用矩形应力图;
[0118] (3)不考虑受拉区混凝土参加工作,拉力全部由钢筋承担;
[0119] (4)将钢筋视为理想弹塑性体,钢筋的应力根据其应变确定。
[0120] 以上所述仅是本发明的优选实施方式,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。