基于丝网印刷碳电极表面修饰的生物免疫传感器及其制备方法转让专利

申请号 : CN202311651886.1

文献号 : CN117347460B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 夏铭辰姚政林炳然郑永旭曹健胡元成王利荣张少育

申请人 : 广州市赛特检测有限公司

摘要 :

本发明涉及一种基于丝网印刷碳电极表面修饰的生物免疫传感器及其制备方法,所述制备方法通过对丝网印刷碳电极的表面进行处理修饰,可有效地去除丝网印刷碳电极生产过程中引入的杂质,避免了表面有机碳浆粘合剂与蛋白质的非特异性结合;同时通过改进封闭液的配方可对碳电极表面的微孔空间结构进行封堵,对游离羧基进行中和,也避免了非特异性蛋白质的空间物理结合与化学健结合,从而提高了生物免疫传感器的检测准确率,减少生物免疫传感器假阳性检测结果。

权利要求 :

1.基于丝网印刷碳电极表面修饰的生物免疫传感器制备方法,其特征在于,包括如下步骤:(1)将丝网印刷碳电极浸入酸液中,进行循环伏安扫描;

(2)将步骤(1)中处理过后的丝网印刷碳电极浸入去离子水中,超声清洗,然后在氮气环境下,自然干燥;

(3)将步骤(2)中处理过后的丝网印刷碳电极在氮气或惰性气体环境中用等离子体清洗表面;

(4)将步骤(3)中处理过后的丝网印刷碳电极浸泡在1‑芘丁酸N‑羟基琥珀酰亚胺酯的甲醇溶液,取出后用PBS溶液清洗表面;

(5)将步骤(4)中处理过后的丝网印刷碳电极浸泡在抗体溶液中,取出后用PBS溶液清洗表面,使得抗体结合到碳电极表面;

(6)将步骤(5)中处理过后的丝网印刷碳电极浸泡在封闭液中进行位点封闭,然后用去离子水清洗表面,在氮气环境中自然干燥,所述封闭液中包括牛血清白蛋白和氨基化聚乙二醇;

步骤(1)中,所述酸液为硫酸溶液或盐酸溶液,pH值≤1;

步骤(1)中,在‑1.0V 1.0V电压范围下进行循环伏安扫描,扫描圈数为10‑20次,扫描速~度设置在0.05V/s‑0.2V/s;

步骤(2)中,超声清洗10‑30s,超声频率在20000Hz‑40000Hz;

步骤(3)中,等离子体清洗时间为10‑30min,功率为500W‑1000W;

步骤(4)中,1‑芘丁酸N‑羟基琥珀酰亚胺酯的甲醇溶液浓度为5‑10mmol/L;

步骤(5)中,浸泡时间≥30min;

步骤(6)中,所述封闭液由浓度为2mg/mL的牛血清白蛋白和浓度为5mg/mL的氨基化聚乙二醇溶液按照体积比1:1混合而成;

所述封闭液中还含有0.01wt%Tween‑80。

2.一种生物免疫传感器,其特征在于,采用如权利要求1中所述的生物免疫传感器制备方法制备得到。

说明书 :

基于丝网印刷碳电极表面修饰的生物免疫传感器及其制备

方法

技术领域

[0001] 本发明属于电化学生物免疫传感器技术领域,具体涉及一种基于丝网印刷碳电极表面修饰的生物免疫传感器及其制备方法。

背景技术

[0002] 由于碳材料具有化学性质稳定,导电性好的特点,并且在商业应用中具有成本低,可工业化大量生产的优势,所以碳材料经常被制作成电化学反应中所需要的电极。而在生物化学的检测中,由于碳材料易于功能化,电压窗口范围宽的特性,碳电极常被进行材料表面的化学修饰,通过化学修饰的手段将一些免疫活性物质(如抗体蛋白、酶等)偶联在碳电极上。
[0003] 在生物电化学实验中,常应用修饰了免疫活性物质的丝网印刷碳电极检测免疫反应。免疫反应是蛋白质之间特异性结构的物理结合,抗原与抗体的结合并不会发生化学反应,也不会产生新的物质,所以在电化学检测中,一般通过间接的方式来反映免疫结合。
[0004] 第一种技术路线,也是常规商业化的技术路线,是引入加标记物(化学标记物、发光标记物)的二抗参与反应。当二抗与一抗或者抗原结合后,若是化学标记物,则通过电化学测试检测化学标记物自身的氧化或者还原电流变化来反映免疫结合;若标记物是发光物质,则通过给特定电压让标记物发光,通过检测光信号的强弱来反映免疫结合。这种方法的缺陷在于二抗的引入使反应体系复杂化,试剂成本增加,发光法也需要增加光学检测器件,设备成本也会增高。
[0005] 第二种技术路线是:抗原与碳电极上偶联的抗体结合后会在电极表面形成一层蛋白质复合结构,当加入电解液,并给定电压后,这层复合结构会阻碍电解液在电极表面发生氧化或还原反应的动力学过程,即影响电解液扩散电流大小,通过检测扩散电流的大小来反映免疫结合的程度。这种方法可以有效的、快速的、简单的实现对免疫反应的检测,但实际应用中,样本的组成非常复杂,除了抗原之外还存在其他的生物物质,这些生物物质虽然不能与抗体结合,但由于碳电极表面空间微结构、碳材料官能团杂化、丝网印刷碳电极生产时碳浆组分等影响因素,使得非抗原的其他生物物质与电极表面非抗体的占位部分发生非特异性结合,造成检测结果的假阳性。目前此种技术路线大多处于研究阶段,并没有大规模商业化推广使用,主要原因是没有解决非特异性结合干扰的问题。

发明内容

[0006] 基于此,本发明提供一种基于丝网印刷碳电极表面修饰的生物免疫传感器的制备方法,可解决上述第二种技术路线中非特异性结合干扰导致的假阳性问题,从而加快该技术路线产品的商业化市场应用。
[0007] 本发明一方面提供了一种基于丝网印刷碳电极表面修饰的生物免疫传感器制备方法,包括如下步骤:
[0008] (1)将丝网印刷碳电极浸入酸液中,进行循环伏安扫描;
[0009] (2)将步骤(1)中处理过后的丝网印刷碳电极浸入去离子水中,超声清洗,然后在氮气环境下,自然干燥;
[0010] (3)将步骤(2)中处理过后的丝网印刷碳电极在氮气或惰性气体环境中用等离子体清洗表面;
[0011] (4)将步骤(3)中处理过后的丝网印刷碳电极浸泡在1‑芘丁酸N‑羟基琥珀酰亚胺酯的甲醇溶液,取出后用PBS溶液清洗表面;
[0012] (5)将步骤(4)中处理过后的丝网印刷碳电极浸泡在抗体溶液中,取出后用PBS溶液清洗表面,使得抗体结合到碳电极表面;
[0013] (6)将步骤(5)中处理过后的丝网印刷碳电极浸泡在封闭液中进行位点封闭,然后用去离子水清洗表面,在氮气环境中自然干燥,所述封闭液包括牛血清白蛋白和氨基化聚乙二醇。
[0014] 丝网印刷电极制备过程中,印刷使用的碳浆由石墨粉、有机粘合剂、有机溶剂及添加剂组成,这些有机类的绝缘物质对电极性能有很大影响,如灵敏度、导电性和电子转移速率会下降等问题,所以需要对其进行预处理,以除去表面有机物、聚合物和其他杂质,从而使碳电极的碳活性点暴露在外,增强电极导电性和功能性;本发明通过酸液循环伏安法清洗,结合超声清洗、等离子清洗进行清洗处理,有效去除杂质,避免了表面有机碳浆粘合剂与蛋白质的非特异性结合;另外封闭液中大分子牛血清白蛋白和小分子的氨基化聚乙二醇互相配合,一方面,牛血清白蛋白可以封闭碳电极表面的空间结构,防止非特异性蛋白与碳电极表面多空结构发生物理吸附;另一方面,小分子氨基化聚乙二醇可以对大分子牛血清白蛋白不能覆盖的微小空间中的羧基进行中和,避免游离羧基带来的影响,也避免了非特异性蛋白质的空间物理结合与化学健结合,从而提高了生物免疫传感器的检测准确率,减少生物免疫传感器假阳性检测结果。
[0015] 在给定电压下进行循环伏安扫描可以去除碳电极生产过程中掺杂进入的金属离子,优选地,步骤(1)中,所述酸液为硫酸溶液或盐酸溶液,pH值≤1,若氢离子浓度过低,对金属离子清除效果不好,浓度过高会对碳电极中的导电粘合剂变性。
[0016] 进一步优选地,在‑1.0V 1.0V电压范围下进行循环伏安扫描,扫描圈数为10‑20~次,扫描速度设置在0.05V/s‑0.2V/s,可有效去除金属杂质,若超出该范围,可能会超过电极窗口范围,而且扫描圈数过多,也影响电极性能。为使循环伏安扫描涵盖的电压电位更精准所以扫描速度不能太大,太小时效性差,过程过长。
[0017] 超声清洗可以有效的清楚粘附在碳上的杂质颗粒,优选地,步骤(2)中,超声清洗10‑30s,超声频率在20000Hz‑40000Hz,若超出该参数范围,长时间高频率的超声会使丝网印刷电极上的本真碳颗粒脱落。
[0018] 等离子清洗可有效清除丝网印刷碳电极表面碳浆原料中的有机粘合剂,为了避免在等离子体清洗过程中,环境中的气体在高能等离子体照射下与碳材料发生官能团的杂化,选择在氮气或氩气等惰性气体进行。优选地,步骤(3)中,等离子体清洗时间为10‑30min,功率为500W‑1000W,若时间少于10分钟,功率小于500W,则表面粘合剂清理程度不够,会对后续抗体偶联以及样本检测造成非特异性吸附的影响;若时间大于30min,功率超过1000W会破坏碳电极表面结构。
[0019] 优选地,步骤(4)中,1‑芘丁酸N‑羟基琥珀酰亚胺酯的甲醇溶液浓度为5‑10mmol/L,该浓度范围内可在碳电极表面形成较多的羧基化官能团,若浓度过低,羧基化效果不好,浓度过高会形成结晶影响下一步加工。
[0020] 抗体溶液浸泡,主要是为了保证抗体蛋白与电极表面的羧基偶联,抗体可以是任何待检测的生物抗体,如CEA抗体等。优选地,步骤(5)中,浸泡时间≥30min,以保证抗体蛋白和步骤(4)中在电极表面形成的羧基充分偶联。
[0021] 优选地,步骤(6)中,所述封闭液由浓度为2mg/mL的牛血清白蛋白和浓度为5mg/mL的氨基化聚乙二醇溶液按照体积比1:1混合而成。
[0022] 进一步优选地,步骤(6)中,所述封闭液中还含有0.01wt%的Tween‑80,可以防止封闭液中牛血清白蛋白之间的团聚,使牛血清白蛋白在液体中分散的均匀,让电极表面的封闭更均匀,效果更好。
[0023] 所述本发明的另一方面,还提供了上述方法制备得到的生物免疫传感器。
[0024] 与现有技术相比,本发明具有以下有益效果:
[0025] 本发明通过对丝网印刷碳电极的表面进行处理修饰,可有效地去除丝网印刷碳电极生产过程中引入的杂质(包括金属、表面有机物颗粒),避免了表面有机碳浆粘合剂与蛋白质的非特异性结合;同时结合封闭液的配方可对碳电极表面的微孔空间结构进行封堵,对游离羧基进行中和,也避免了非特异性蛋白质的空间物理结合与化学健结合,从而提高了生物免疫传感器的检测准确率,减少生物免疫传感器假阳性检测结果。

附图说明

[0026] 图1为本发明实施例1的生物免疫传感器检测CEA电化学曲线图;
[0027] 图2为本发明实施例1的不同浓度CEA电化学测试电流变化统计图;
[0028] 图3为本发明实施例2的生物免疫传感器检测CEA电化学曲线图;
[0029] 图4为本发明对比例1的生物免疫传感器CV扫描图形;
[0030] 图5为本发明对比例2的生物免疫传感器CV扫描图形。

具体实施方式

[0031] 下面将结合本发明实施例和附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
[0032] 基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0033] 本实施例所用试剂、材料、设备如无特殊说明,均为市售来源;试验方法如无特殊说明,均为本领域的常规试验方法。
[0034] 实施例1
[0035] 一种基于丝网印刷碳电极表面化学修饰技术的癌胚抗原CEA电化学生物免疫传感器,采用以下方法制备而成:
[0036] (1)将丝网印刷碳电极浸入到浓度为1mol/L硫酸溶液中,在‑1.0V 1.0V电压范围~下进行循环伏安(CV)扫描,扫描圈数在20次之间,扫描速度设置在0.1V/s;
[0037] (2)将步骤(1)中处理过后的丝网印刷碳电极浸入去离子水中,用超声清洗30s,超声频率在30000Hz,然后在氮气环境下,自然干燥;
[0038] (3)将步骤(2)中处理过后的丝网印刷碳电极在氩气环境中用等离子体清洗表面,时间设置在30min,功率设置在500W;
[0039] (4)将步骤(3)中处理过后的丝网印刷碳电极浸泡在1‑芘丁酸N‑羟基琥珀酰亚胺酯的甲醇溶液(浓度5mmol/L)中30min,取出后用0.01M的PBS溶液清洗表面;
[0040] (5)将步骤(4)中处理过后的丝网印刷碳电极浸泡在CEA抗体溶液中30min,取出后用0.01M的PBS溶液清洗表面,使得抗体结合到碳电极表面;
[0041] (6)将步骤(5)中处理过后的丝网印刷碳电极浸泡在由2mg/mL牛血清白蛋白与5mg/mL氨基化聚乙二醇按照体积比1:1混合得到的混合溶液中进行位点封闭,混合溶液中还含有0.01wt%Tween‑80,浸泡30min,用去离子水清洗表面,在氮气环境中自然干燥。
[0042] 用以上方法制备出的丝网印刷碳电极生物免疫传感器去测试去离子水样本(0pg/mL),1pg/mL、2pg/mL、4pg/mL、8pg/mL、16pg/mL等不同浓度的癌胚抗原水溶液样本以及100pg/mLBSA、100pg/mL海藻糖、100pg/mL甘露醇按照体积比1:1:1的混合溶液,检测结果见附图1‑2。
[0043] 其中图1为DPV曲线,可以看出,去离子水样本(0pg/mL)和100pg/mLBSA、100pg/mL海藻糖、100pg/mL甘露醇按照体积比1:1:1的混合溶液测试曲线基本重合,说明本申请的电极在修饰后特异性良好,完全不受杂质干扰。图2为电流变化率与癌坯抗原浓度变化曲线,说明本发明的电极测试电流峰值和待测蛋白质浓度呈现良好的线性关系。
[0044] 实施例2
[0045] 一种基于丝网印刷碳电极表面化学修饰技术的癌胚抗原CEA电化学生物免疫传感器,采用以下方法制备而成:
[0046] (1)将丝网印刷碳电极浸入到浓度为1mol/L硫酸溶液中,在‑1.0V 1.0V电压范围~下进行循环伏安(CV)扫描,扫描圈数在20次之间,扫描速度设置在0.1V/s;
[0047] (2)将步骤(1)中处理过后的丝网印刷碳电极浸入去离子水中,用超声清洗30S,超声频率在30000Hz,然后在氮气环境下,自然干燥;
[0048] (3)将步骤(2)中处理过后的丝网印刷碳电极在氩气环境中用等离子体清洗表面,时间设置在30min,功率设置在500W;
[0049] (4)将步骤(3)中处理过后的丝网印刷碳电极浸泡在1‑芘丁酸N‑羟基琥珀酰亚胺酯的甲醇溶液(浓度5mmol/L)中30min,取出后用0.01M的PBS溶液清洗表面;
[0050] (5)将步骤(4)中处理过后的丝网印刷碳电极浸泡在CEA抗体溶液中30min,取出后用0.01M的PBS溶液清洗表面,使得抗体结合到碳电极表面;
[0051] (6)将步骤(5)中处理过后的丝网印刷碳电极浸泡在由2mg/mL牛血清白蛋白与5mg/mL氨基化聚乙二醇按照体积比1:1混合得到的混合溶液中进行位点封闭,浸泡30min,用去离子水清洗表面,在氮气环境中自然干燥。
[0052] 用以上方法制备出的丝网印刷碳电极生物免疫传感器去测试去离子水样本(空白背景),1pg/mL的癌胚抗原水溶液样本(无Tween的封堵试剂),检测结果见附图3。
[0053] 对比例1
[0054] 一种基于丝网印刷碳电极表面化学修饰技术的癌胚抗原CEA电化学生物免疫传感器,采用以下方法制备而成:
[0055] (1)将丝网印刷碳电极浸泡在1‑芘丁酸N‑羟基琥珀酰亚胺酯的甲醇溶液(浓度5mmol/L)中30min,取出后用0.01M的PBS溶液清洗表面;
[0056] (2)将步骤(1)中处理过后的丝网印刷碳电极浸泡在CEA抗体溶液中30min,取出后用0.01M的PBS溶液清洗表面,使得抗体结合到碳电极表面;
[0057] (3)将步骤(2)中处理过后的丝网印刷碳电极浸泡在2mg/mL牛血清白蛋白与5mg/mL氨基化聚乙二醇1:1的混合溶液中进行位点封闭,混合溶液中含有0.01%Tween‑80,浸泡30min,用去离子水清洗表面,在氮气环境中自然干燥。
[0058] 用以上方法制备出的丝网印刷碳电极生物免疫传感器在铁氰化钾/亚铁氰化钾溶液中进行循环伏安扫描,检测结果可见曲线出现了金属离子干扰电位波峰,详见附图4。
[0059] 对比例2
[0060] 一种基于丝网印刷碳电极表面化学修饰技术的癌胚抗原CEA电化学生物免疫传感器,采用以下方法制备而成:
[0061] (1)将丝网印刷碳电极浸入到浓度为1mol/L硫酸溶液中,在‑1.0V 1.0V电压范围~下进行循环伏安(CV)扫描,扫描圈数在20次之间,扫描速度设置在0.1V/s;
[0062] (2)将步骤(1)中处理过后的丝网印刷碳电极浸入去离子水中,用超声清洗30S,超声频率在30000Hz,然后在氮气环境下,自然干燥;
[0063] (3)将步骤(2)中处理过后的丝网印刷碳电极在氩气环境中用等离子体清洗表面,时间设置在30min,功率设置在500W;
[0064] (4)将步骤(3)中处理过后的丝网印刷碳电极浸泡在1‑芘丁酸N‑羟基琥珀酰亚胺酯的甲醇溶液(浓度5mmol/L)中30min,取出后用0.01M的PBS溶液清洗表面;
[0065] (5)将步骤(4)中处理过后的丝网印刷碳电极浸泡在CEA抗体溶液中30min,取出后用0.01M的PBS溶液清洗表面,使得抗体结合到碳电极表面;
[0066] (6)将步骤(5)中处理过后的丝网印刷碳电极分别浸泡在纯水(0pg/mL,control曲线)、0.5mg/mL、1mg/mL、2mg/mL、4mg/mLBAS溶液以及实施例1中的封闭液(由2mg/mL牛血清白蛋白与5mg/mL氨基化聚乙二醇按照体积比1:1混合得到,混合溶液中还含有0.01wt%Tween‑80)中进行位点封闭,浸泡30min,用去离子水清洗表面,在氮气环境中自然干燥。
[0067] 用以上方法制备出的丝网印刷碳电极生物免疫传感器分别去测试非CEA蛋白样本,本实验使用HAS(癌胚抗原)与甘露醇、海藻糖的混合样本,检测结果见附图5。
[0068] 通过上述实施例和对比例对比可发现,实施例1采用本发明技术所述方法制备得到的生物免疫传感器可有效对不同浓度CEA的阳性样本进行定量测试,并且其他非特异性的生物物质(BSA、甘露醇、海藻糖)不能引起生物免疫传感器的电信号变化;对比例1中,未采用本发明技术步骤(1)、(2)、(3)对电极进行处理,制备出的传感器CV扫描背景中出现金属离子干扰电位波峰;对比例2中,未采用本发明实施例1的碳电极表面蛋白封闭液,而使用不同浓度BSA溶液进行碳电极表面蛋白封闭后,检测结果仍然出现波峰电流下降的情况,并且BSA浓度达到2mg/mL时,波峰电流变化到达极限,说明单纯的BSA溶液对碳电极表面蛋白封闭效果并不理想,而采用本发明碳电极表面蛋白封闭液的测试(图4中EA曲线),波峰电流并未发生明显变化,说明封闭效果很好。而且实施例2中采用未添加Tween‑80的封闭液,封闭效果虽相比于实施例1略有下降,但对比对比例2中的BSA浓度为4mg/mL的测试曲线,波峰电流还是明显高于BSA,说明了本发明的实施例的封闭液封闭效果显著高于现有封闭液封闭效果。
[0069] 综上,本发明通过对丝网印刷碳电极的表面进行处理修饰,可有效地去除丝网印刷碳电极生产过程中引入的杂质,避免了表面有机碳浆粘合剂与蛋白质的非特异性结合;同时通过改进封闭液的配方可对碳电极表面的微孔空间结构进行封堵,对游离羧基进行中和,也避免了非特异性蛋白质的空间物理结合与化学健结合,从而提高了生物免疫传感器的检测准确率,减少生物免疫传感器假阳性检测结果。
[0070] 以上实施例虽然以CEA抗原和抗体为例为例说明了本发明的修饰方法,但对于本领域人员而言,其他可用于其他本领域熟知的抗体和抗原。
[0071] 上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
[0072] 以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。