光收发装置转让专利

申请号 : CN200310118182.4

文献号 : CN1507065B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 池田健

申请人 : 索尼公司

摘要 :

本发明公开了一种光收发装置,可以用简单的结构实现单线双向通信。在光集成芯片中,发光元件和受光元件形成于同一芯片上,和发光部和受光部紧密设置。用于插入光纤的通孔穿透电路基板。在发光和受光部被固定到通孔中的位置处,该光集成芯片安装在电路基板的背面上。从电路基板的表面,光纤插入到通孔中。于是,来自发光部的光线入射到光纤,和来自光纤的光纤入射到受光部。因此,实现了单线双向通信。

权利要求 :

1.一种光收发装置,包括用于将电信号转变为光信号的发光元件和用于将光信号转变为电信号的受光元件,该装置使用光纤来实现单线双向通信,其包括:光集成芯片,其中所述发光元件和所述受光元件被形成在同一芯片上,并且所述发光元件的发光部和所述受光元件的受光部被紧密设置而形成光收发对;和电路基板,形成有用于插入所述光纤的通孔;其中在所述光收发对被固定到同一个用于插入所述光纤的通孔中的位置,所述光集成芯片被安装在所述电路基板的一个表面上,以及从所述电路基板的另一表面,所述光纤插入到所述同一个用于插入所述光纤的通孔中并固定。

2.按照权利要求1的光收发装置,其中

待连接至所述光集成芯片的电极片被设置在所述电路基板的所述一个表面上,和所述光集成芯片以倒装的方式安装在电路基板上。

3.按照权利要求1的光收发装置,其中

所述通孔通过激光束机加工形成。

4.按照权利要求1的光收发装置,其中

用于驱动所述光集成芯片的电路被形成在所述电路基板上。

5.按照权利要求1的光收发装置,其中

所述发光部和所述受光部以一定距离设置,此时所述发光部和所述受光部的一部分位于所述光纤的芯部的直径部分中。

6.一种光收发装置,包括用于将电信号转变为光信号的发光元件和用于将光信号转变为电信号的受光元件,该装置使用光纤来实现单线双向通信,其包括:光集成芯片,其中所述发光元件和所述受光元件被形成在同一芯片上,并且所述发光元件的发光部和所述受光元件的受光部被紧密设置而形成光收发对;

电路基板,形成有用于插入所述光纤的通孔;和光学部件,用于将源于所述发光部的光路和通向所述受光部的光路分离,其中在所述光收发对被固定到同一个用于插入所述光纤的通孔中的位置,所述光集成芯片被安装在所述电路基板的一个表面上,从所述电路基板的另一表面,所述光纤插入所述同一个用于插入所述光纤的通孔中并固定,以及所述光学部件被设置在所述通孔内部并位于所述光集成芯片和所述光纤之间,和在所述发光部和所述受光部与所述光纤的端面之间形成传播发射光的第一波导和传播接收光的第二波导。

7.按照权利要求6的光收发装置,其中

所述光学部件是一光纤,其中内层部的周缘被具有不同折射率的外层部覆盖,和该外层部被全反射膜覆盖,以及所述第一波导被形成为使得所述内层部与所述发光部相对,和所述第二波导被形成为使得所述外层部与所述受光部相对。

8.按照权利要求6的光收发装置,其中

所述光学部件是一被覆全反射膜的光纤,和所述第一波导被形成为使得所述光学部件与所述发光部相对,以及一全反射膜被形成在所述通孔的内表面上,和所述第一波导被形成在所述通孔和所述光学部件之间。

9.按照权利要求6的光收发装置,其中

连接至所述光集成芯片的电极片被设置在所述电路基板的一个表面上,和所述光集成芯片以倒装的方式安装在所述电路基板上。

10.按照权利要求6的光收发装置,其中

所述通孔通过激光束机加工形成。

11.按照权利要求6的光收发装置,其中

用于驱动所述光集成芯片的电路至少被形成在所述电路基板上。

12.按照权利要求6的光收发装置,其中

所述发光部和所述受光部以一定距离设置,此时所述发光部和所述受光部的至少一部分位于所述光纤的芯部的直径部分中。

说明书 :

技术领域

本发明涉及一种光收发装置,通过采用光纤来实现单线双向通信。具体地说,本发明尤其涉及一种光收发装置,其中通过把光纤插入到形成于电路基板中的通孔而将其固定,并且光集成芯片相对于通孔安装,在同一光集成芯片上形成有发光元件和受光元件,因而在简单的结构中实现单线双向通信。

背景技术

采用光纤来实现光通信的装置由一种光收发装置提供,通过发光元件将电信号转变为光信号并输出至光纤,并且通过受光元件将来自于光纤的光信号转变为电信号并输出该电信号。
传统光收发装置的典型设计方式是:发光元件和受光元件的每一个安装在独立金属管壳封装或者硅基座上,并且各元件被单独调整和固定,以便达到与光纤的良好光学耦合。
并且在一种系统中,单个光纤不仅用作传播由发光元件射出的发射光的光纤,而且用作传播外界接收光的光纤,即,所谓的单线双向通信系统,该系统除了需要发光元件和受光元件之外,还需要用于会聚光线的透镜、用于分离光路的分束镜等(例如,参见专利文件1:日本特开专利申请JP-A-Heisei,9-325245)。
图21是传统光收发装置的结构实例的平面图。从发光元件100射出的发射光被透镜101会聚,透射穿过分束镜102,并且入射到光纤103的芯部(core section),然后被传播。并且,来自于外界经光纤103射出的接收光被分束镜102反射,且其光路与发射光的光路分离。然后,接收光入射到受光元件104并转变为电信号。
然而,在传统光收发装置中,需要发光元件和受光元件的每一个相应于光纤进行单独调整和固定的操作。于是,装配步骤的数量增加,从而导致成本增加。类似地,需要大量用于调整和固定的部件,因此增加部件的数量,这导致成本大幅上升。而且,传统光收发装置需要由硅制成的、具有V形槽以支持光纤的基板,需要使用贵重材料的部件,例如由玻璃等制成的透镜,以及需要用于制造这些部件的复杂工艺。因此,部件费和加工费增加,从而导致总成本大幅上升。
而且,为了实现单线双向通信,需要光隔离器以减轻发射侧和接收侧的光串扰的影响。这导致部件数量增加并且增加了部件成本。并且,分束镜是用于分离光路的光学部件,其非常昂贵,因此这也导致光收发装置的总成本增加。
并且,在安装发光元件和受光元件时,两种元件的安装定位需要非常高的精度。于是,为了最小化它们的误差,增加了装配步骤的数量,特别是,需要用于调整的步骤的数量,从而导致成本大幅上升。
本发明正是为了解决上述问题。因此,需要提供一种光收发器,其具有简单的结构和低的成本,并且实现单线双向通信。

发明内容

本发明提供一种光收发装置,包括用于将电信号转变为光信号的发光元件和用于将光信号转变为电信号的受光元件,该装置使用光纤来实现单线双向通信,其包括:
光集成芯片,其中所述发光元件和所述受光元件被形成在同一芯片上,并且所述发光元件的发光部和所述受光元件的受光部被紧密设置而形成光收发对;和
电路基板,形成有用于插入所述光纤的通孔;其中
在所述光收发对被固定到同一个用于插入所述光纤的通孔中的位置,所述光集成芯片被安装在所述电路基板的一个表面上,以及
从所述电路基板的另一表面,所述光纤插入到所述同一个用于插入所述光纤的通孔中并固定。
本发明提供一种光收发装置,包括用于将电信号转变为光信号的发光元件和用于将光信号转变为电信号的受光元件,该装置使用光纤来实现单线双向通信,其包括:
光集成芯片,其中所述发光元件和所述受光元件被形成在同一芯片上,并且所述发光元件的发光部和所述受光元件的受光部被紧密设置而形成光收发对;
电路基板,形成有用于插入所述光纤的通孔;和
光学部件,用于将源于所述发光部的光路和通向所述受光部的光路分离,其中
在所述光收发对被固定到同一个用于插入所述光纤的通孔中的位置,所述光集成芯片被安装在所述电路基板的一个表面上,
从所述电路基板的另一表面,所述光纤插入所述同一个用于插入所述光纤的通孔中并固定,以及
所述光学部件被设置在所述通孔内部并位于所述光集成芯片和所述光纤之间,和在所述发光部和所述受光部与所述光纤的端面之间形成传播发射光的第一波导和传播接收光的第二波导。
为了解决上述问题,根据本发明的光收发装置是下述的光收发装置,其包括将电信号转变为光信号的发光元件和将光信号转变为电信号的受光元件,该装置采用光纤来实现单线双向通信,还包括:一光集成芯片,其中发光元件和受光元件形成于同一芯片上,以及发光元件的发光部和受光元件的受光部被紧密设置;和一电路基板,一通孔穿透和形成于电路基板上,在通孔中插入光纤,其中在发光部和受光部位于通孔中的位置,光集成芯片被安装在电路基板的一个表面上,和从电路基板的另一表面,光纤被插入和固定在通孔中。
在根据本发明的光收发装置中,光集成芯片的发光部和受光部与插入和固定于通孔中的光纤的端面相对。结果,从发光部射出的发射光入射到光纤,和来自于光纤的接收光入射到受光部。于是,可以用简单的结构实现单线双向通信。
并且,根据本发明的光收发装置是下述的光收发装置,其包括将电信号转变为光信号的发光元件和将光信号转变为电信号的受光元件,以及使用光纤实现单线双向通信,包括:光集成芯片,其中发光元件和受光元件形成在同一芯片上,以及发光元件的发光部和受光元件的受光部被紧密设置;和一电路基板,一通孔穿透和形成于电路基板上,在通孔中插入光纤;和一光学部件,用于将源于发光部的光路和通向受光部的光路分离,其中在发光部和受光部位于通孔中的位置处,光集成芯片被安装在电路基板的一个表面上,和从电路基板的另一表面,光纤被插入和固定在通孔中,和该光学部件被设置在通孔内部并位于光集成芯片和光纤之间,以及使发射光通过的第一波导和使接收光通过的第二波导被形成在发光部和受光部与光纤的端面之间.
在根据本发明的光收发装置中,插入和固定在通孔中的光纤的端面通过第一波导与光集成芯片的发光部相对,和该端面通过第二波导与受光部相对。因此,从发光部射出的发射光经第一波导传播后入射到光纤,和来自于光纤的接收光经第二波导传播后入射到受光部。于是,可以达到全双工的单线双向通信,其中由于发射光和接收光分离,因此在简单的结构下串扰被抑制。

附图说明

图1A、1B显示本发明第一实施例的光收发装置的结构例的示意图;
图2显示第一实施例的光收发装置的结构例的部分破断透视图;
图3显示本发明光集成芯片的结构例的透视图;
图4A、4B显示在第一实施例的光收发装置中,光集成芯片的安装步骤例的示意图;
图5显示在第一实施例的光收发装置中,光集成芯片的安装步骤例的部分破断透视图;
图6A、6B显示在第一实施例的光收发装置中,光纤的安装步骤例的示意图;
图7显示在第一实施例的光收发装置中,光纤的安装步骤例的部分破断透视图;
图8A、8B显示本发明第二实施例的光收发装置的结构例的示意图;
图9显示第二实施例的光收发装置的结构例的部分破断透视图;
图10A、10B显示在第二实施例的光收发装置中,光集成芯片的安装步骤例的示意图;
图11显示在第二实施例的光收发装置中,光集成芯片的安装步骤例的部分破断透视图;
图12A、12B显示在第二实施例的光收发装置中,光纤的安装步骤例的示意图;
图13显示在第二实施例的光收发装置中,光纤的安装步骤例的部分破断透视图;
图14A、14B显示本发明第三实施例的光收发装置的结构例的示意图;
图15显示第三实施例的光收发装置的结构例的部分破断透视图;
图16A、16B显示在第三实施例的光收发装置中,光集成芯片的安装步骤例的示意图;
图17显示在第三实施例的光收发装置中,光集成芯片的安装步骤例的部分破断透视图;
图18A、18B显示在第三实施例的光收发装置中,光纤的安装步骤例的示意图;
图19显示在第三实施例的光收发装置中,光纤的安装步骤例的部分破断透视图;
图20是第一至第三实施例的光收发装置的应用例的结构图;
图21显示传统光收发装置的结构例的平面图。

具体实施方式

下面将参考附图描述本发明光收发装置的实施例。图1A、1B显示第一实施例的光收发装置的结构例的示意图。图1A是侧剖面图,图1B是其主要部分的平面图。以及,图2显示第一实施例的光收发装置的结构例的部分破断透视图。
第一实施例的光收发装置1a被设计为:光集成芯片2以倒装的形式安装在电路基板3上,在光集成芯片2中,发光元件和受光元件被形成在同一芯片上,以及与光集成芯片2光学耦合的光纤4被插入和固定在通孔5中,通孔5形成于电路基板3中。
图3显示光集成芯片2的结构例的透视图。首先说明光集成芯片2的结构。在光集成芯片2中,发光元件和受光元件被形成在同一芯片上,以及发光部6和受光部7被形成在光集成芯片2的表面侧上。发光部6是VCSEL(Vertical Cavity Surface Emitting Lasers,垂直腔体表面发射激光器),即平面发光元件,和受光部7被形成在发光部6的周围。光集成芯片2的大小例如约为500×250μm。
这里,使用半导体制造工艺制作光集成芯片2。在外延生长方法中,在发光部6的周围形成死区(dead zone)8。由于死区8被形成在发光部6的偏心位置处,因此受光部7设置为靠近发光部6。在这种情况下,当发光部6的大小被制作为例如具有10μm的直径时,死区8的大小为具有约100μm的直径,以及受光部7的大小为具有120μm的内径和约170μm的外径。由于光集成芯片2通过半导体制造工艺以这种方式形成,可以高定位精度地紧密设置发光部6和受光部7。而且,由于可以使用现有半导体制造设备,因此可以低成本地制造具有高精度的光集成芯片2。
在光集成芯片2的表面上形成受光部7的阳极电极7a和阴极电极7b。发光部6的阳极电极6a也被形成在光集成芯片2的表面上。以及,发光部6的阴极电极6b被形成在光集成芯片2的背面上。顺便提一下,图3中各电极的排列是一个例子。发光部6的阴极电极6b可被形成在芯片2的表面侧上。
下面将参考图1A、1B和图2描述其上安装有光集成芯片2的电路基板3等的结构。电路基板3是典型的玻璃环氧树脂基板。图3所示的用于倒装以连接到阳极电极6a、7a和阴极电极7b的电极片9被形成在电路基板3的背面上。顺便提一下,图2显示了电极片9的一部分。
除了电极片9之外的电路图形也被形成在电路基板3上。以及,其上集成了跨阻抗放大器、限幅放大器和光学元件驱动IC,受光IC和其它无源元件被安装在其上。
于是,电路基板3具有下列功能:将来自外界的电信号转变为用于驱动发光元件的信号,然后传送到光集成芯片2。来自外界的光学信号(接收光)通过光集成芯片2的受光元件(未显示)被转变为电信号并输入到电路基板3。电路基板3的功能是:将接收光的电信号转变为与后续阶段逻辑相一致的信号。
光纤4由芯部4a和壳部4b构成,光线被芯部4a引导,壳部4b具有低于芯部4a的折射率。由于芯部4a的周缘被壳部4b所覆盖,光线被封闭在芯部4a中。这里,本实施例采用多模光纤,光纤4的芯部4a具有更大直径。于是,光集成芯片2的发光部6和受光部7以一定距离被设置,使得上述各部的一部分或其全部被包括在光纤4的芯部4a的直径部分中。
通孔5制作为穿过电路基板3。例如用激光束机加工法形成通孔5。这里,通孔5的直径约为100~250μm,取决于所采用的光纤4的直径。然而,由于通过激光束机加工法制作穿过电路基板3的穿通孔,通孔5设置为使得与光纤4的间隙具有约±20~30μm的直径(半径为10~15μm)。通过这种方式,由于激光束机加工法被用于在电路基板3中形成穿通孔,可以形成具有相对于光纤4的直径的高尺寸精度的通孔5。
在电路基板3的背面上,电极片9被设置围绕通孔5的预定位置处。结果,当光集成芯片2设置在电路基板3上时,以及当光纤4被插入通孔5中时,进行光纤4相对于光集成芯片2的发光部6和受光部7的定位调整。
下面将描述第一实施例中光收发装置1a的装配步骤。图4A、4B显示在第一实施例的光收发装置1a中,光集成芯片2的安装步骤例的示意图。图4A是侧剖面图,图4B是其主要部分的平面图。以及,图5显示在第一实施例的光收发装置1a中,光集成芯片2的安装步骤例的部分破断透视图。
首先,光集成芯片2以倒装的方式安装在电路基板3上,在电路基板3中预先形成有通孔5。此时,电路基板3的表面、通孔5和光集成芯片2被CCD(Charge Coupled Device,电荷耦合器件)镜头摄像,并进行图像识别,以实现光集成芯片2的定位调整。于是,由于光集成芯片2的各电极以倒装的方式安装在电路基板3的电极片9上,在发光部6与通孔5的中心对准的位置,光集成芯片2位于电路基板3。
图6A、6B显示在第一实施例的光收发装置1a中,光纤4的安装步骤例的示意图。图6A是侧剖面图,图6B是其主要部分的平面图。以及,图7显示在第一实施例的光收发装置1a中,光纤4的安装步骤例的部分破断透视图。
在光集成芯片2以倒装的方式(flip-chip mounting)安装在电路基板3上后,从相对于光集成芯片2的表面一侧,光纤4被插入电路基板3的通孔5中。这里光纤4被插入至其端面与光集成芯片2的表面接触的位置。接着,使用树脂10等作为粘接剂将光纤4固定在电路基板3。
如上所述,以相当高的精度形成电路基板3的通孔5,使得与光纤4的间隙具有约±20~30μm的直径。由于这个原因,仅仅光纤4的插入使得通孔5具有将光纤4的芯部4a的中心与通孔5的中心对准的功能。而且,当用树脂固定光纤4时,树脂被注入光纤4的外周缘与通孔5的内周缘之间,造成均匀应力从周缘施加到光纤4上。于是,甚至粘接剂起到沿光纤4的直径方向对准位置的作用。于是,当安装光纤4时,不需要进行光纤4的调整,并且不需要附加用于定位的任何部件。而且,由于发光部6和受光部7一体形成在光集成芯片2上,也不需要调整发光和受光元件的每一个与光纤4之间的位置。
这里,由于光学透明树脂被用作树脂10,可以按照下列方式进行粘接:其中树脂10位于光纤4的端面与光集成芯片2的表面之间。
如上所述,由于光集成芯片2和光纤4被安装在电路基板3上,如图1A、1B和图2所示,在下列条件下它们被固定:光集成芯片2的发光部6的中心、通孔5的中心、和光纤4的芯部4a的中心大致重合。
因此,通过光集成芯片2的发光元件(未显示)和形成于电路基板3上的IC等,自外界输入到光收发装置1a的电信号被转变为光信号,和变为从发光部6射出的发射光。发射光入射到光纤4的芯部4a并且传播到光收发装置1a的外界。
并且,从外界经光纤4射入的接收光入射到光集成芯片2的受光部7,并通过电路基板3以电信号的形式输出。通过这种方式,第一实施例中的光收发装置1a实现半双工的单线双向通信。这里,光集成芯片2的发光部6被安装成与光纤4的芯部4a的中心大致重合。然而,死区8的偏心设置甚至造成受光部7被设置在靠近光纤4的芯部4a的位置处。因此,可以利用具有高密度的光线作为接收光。
下面描述在第二和第三实施例的光收发装置中,发射光和接收光的路径可以分离,从而实现全双工的单线双向通信。图8A、8B显示本发明第二实施例的光收发装置的结构例的示意图。图8A是侧剖面图,图8B是其主要部分的平面图。以及,图9显示第二实施例的光收发装置的结构例的部分破断透视图。顺便提一下,在下面的描述中,与第一实施例中的光收发装置1a结构相同的部件使用相同的参考标记。
第二实施例中的光收发装置1b被设计为使得用于分离发射光和接收光的路径的光学部件11被插入到光纤4和光集成芯片2之间。光学部件11例如被设计为:在具有两层结构的玻璃纤维的外表面上进行金属电镀,和使得外层部的折射率不同于内层部的折射率。结果,光线被封闭在内层部中,和该内层部形成第一波导11a。并且,外层部形成第二波导11b。于是,通过金属电镀法等在光学部件11的外表面上形成全反射膜11c,和光线被封闭。结果,光学部件11被构造为使得经第一波导11a传播的光线与经第二波导11b传播的光线分离,不会彼此互相干扰。
光集成芯片2的结构如图3所示。光集成芯片2的结构是:发光元件和受光元件形成在单个芯片上,并且发光部6和受光部7形成在光集成芯片2的表面侧上。形成于发光部6周围的死区8被形成在偏心于发光部6的位置处。因此,受光部7被设置为靠近发光部6。
通孔5穿透和形成在电路基板3中,光纤4插入到通孔5中。并且,在电路基板3的背面上,连接于光集成芯片2的阳极电极6a等的电极片9被设置在围绕通孔5的预定位置。
下面将描述第二实施例中光收发装置1b的装配步骤。图10A、10B显示在第二实施例的光收发装置1b中,光集成芯片2的安装步骤例的示意图。图10A是侧剖面图,图10B是其主要部分的平面图。以及,图11显示在第二实施例的光收发装置1b中,光集成芯片2的安装步骤例的部分破断透视图。
首先,通过下列方式:光学部件11的一个端面靠着光集成芯片2的表面,采用光学透明树脂10作为粘接剂,将光学部件11粘接在光集成芯片2的表面。当安装光学部件11时,光学部件11的径向与光集成芯片2的位置关系很重要。它们被安装成:使得从光集成芯片2的发光部6向上射出的光线几乎全部入射到光学部件11的第一波导11a。
此时,光学部件11的直径等被设计为使得第二波导11b位于受光部7的上方。于是,来自于外界经由第二波导11b入射的光线照射到受光部7或光集成芯片2的死区8。
接着,其上安装有11的光集成芯片2以倒装的方式安装在电路基板3上,在电路基板3中预先形成有通孔5.此时,通过CCD镜头对电路基板3的表面、通孔5、光集成芯片2和光学部件11摄像,并进行图像识别,以进行光集成芯片2的定位调整.于是,由于光集成芯片2的各电极以倒装的方式安装在电路基板3的电极片9上,在发光部6与通孔5的中心重合的位置,光集成芯片2位于电路基板3上.顺便提一下,光学部件11的直径小于通孔5的直径.因此,这种设计使得光集成芯片2的定位调整可以在光学部件11插入通孔5中的情况下进行.
图12A、12B显示在第二实施例的光收发装置1b中,光纤4的安装步骤例的示意图。图12A是侧剖面图,图12B是其主要部分的平面图。以及,图13显示在第二实施例的光收发装置1b中,光纤4的安装步骤例的部分破断透视图。
在其上安装有光学部件11的光集成芯片2以倒装的方式安装在电路基板3上后,从相对于光集成芯片2的表面一侧,光纤4被插入电路基板3的通孔5中。这里光纤4被插入至其端面与光学部件11的另一端面相接触的位置。然后,使用树脂10作为粘接剂,将光纤4固定在电路基板3。
如上所述,以相当高的精度形成电路基板3的通孔5,使得与光纤4的间隙具有约±20~30μm的直径。由于这个原因,仅仅光纤4的插入使得通孔5具有将光纤4的芯部4a的中心与通孔5的中心对准的功能。而且,当用树脂固定光纤4时,树脂被注入到光纤4的外周缘与通孔5的内周缘之间,使得均匀应力从周缘施加到光纤4上。于是,甚至粘接剂起到在光纤4的直径方向上对准位置的作用。
如上所述,由于光集成芯片2和光纤4被安装在电路基板3上,如图8A、8B和图9所示,在下列条件下它们被固定:光集成芯片2的发光部6的中心、光学部件11的第一波导11a的中心、通孔5的中心、和光纤4的芯部4a的中心大致重合。
因此,通过光集成芯片2的发光元件(未显示)和形成于电路基板3上的IC等,自外界输入到光收发装置1b的电信号被转变为光信号,并变为从发光部6射出的发射光。发射光经光学部件11的第一波导11a传播,入射到光纤4的芯部4a并且出射至光收发装置1b的外界。
并且,由外界经光纤4射入的接收光入射到光学部件11的第一波导11a和第二波导11b。经第二波导11b传播的光线入射到光集成芯片2的受光部7,并通过电路基板3以电信号的方式输出。这里,发光部6的面积与第一波导11a的断面面积相比足够小。于是,在入射到第一波导11a和第二波导11b的接收光中,大多数经第一波导11a传播的光线落在死区8上,不会对发射信号和接收信号产生影响。通过这种方式,在第二实施例的光收发装置1b中,光学部件11将发射光和接收光的路径分离,从而实现全双工的单线双向通信。
图14A、14B显示本发明第三实施例的光收发装置的结构例的示意图。图14A是侧剖面图,图14B是其主要部分的平面图。以及,图15显示第三实施例的光收发装置的结构例的部分破断透视图。顺便提一下,在下面的描述中,与第一实施例中的光收发装置1a结构相同的部件使用相同的参考标记。
第三实施例中的光收发装置1c被设计为:用于分离发射光和接收光的路径的光学部件12插入到光纤4和光集成芯片2之间,以及在通孔5的内表面上形成全发射膜13。在光学部件12中,例如,通过金属电镀在玻璃管的周围形成全发射膜12a。于是,其中封闭有光线的第一波导12b被形成在全反射膜12a的内表面上。
光集成芯片2的结构如图3所示.同样,其中插入有光纤4的通孔5穿过并形成在电路基板3中.例如通过金属电镀将全反射膜13形成在通孔5的内表面上.光学部件12的直径小于通孔5的直径.在光学部件12的外表面和通孔5的内表面之间形成间隙,光线经该间隙传播.于是,在通孔5的内表面上的全发射膜13和在光学部件12的外表面上的全发射膜12a构成第二波导13a,其中光线被封闭在光学部件12的外表面和通孔5的内表面之间.
下面将描述第三实施例的光收发装置1c的装配步骤。图16A、16B显示在第三实施例的光收发装置1c中,光集成芯片2的安装步骤例的示意图。图16A是侧剖面图,图16B是其主要部分的平面图。以及,图17显示在第三实施例的光收发装置1c中,光集成芯片2的安装步骤例的部分破断透视图。
首先,通过下列方式:光学部件12的一个端面靠着光集成芯片2的表面,采用光学透明树脂10作为粘接剂,将光学部件12粘接在光集成芯片2的表面。当安装光学部件12时,光学部件12的径向与光集成芯片2的位置关系很重要。它们被安装成使得从光集成芯片2的发光部6向上射出的光线几乎全部入射到光学部件12的第一波导12b。
接着,其上安装有光学部件12的光集成芯片2以倒装的方式安装在电路基板3上,在电路基板3中预先形成有通孔5以及在通孔5的内表面上形成有全发射膜13。此时,通过CCD镜头对电路基板3的表面、通孔5、光集成芯片2和光学部件12摄像,并进行图像识别,以进行光集成芯片2的定置调整。于是,由于光集成芯片2的各电极以倒装的方式安装在电路基板3的电极片9上,在发光部6与通孔5的中心重合的位置,光集成芯片2位于电路基板3上。
图18A、18B显示在第三实施例的光收发装置1c中,光纤4的安装步骤例的示意图。图18A是侧剖面图,图18B是其主要部分的平面图。以及,图19显示在第三实施例的光收发装置1c中,光纤4的安装步骤例的部分破断透视图。
在其上安装有光学部件12的光集成芯片2以倒装的方式安装在电路基板3上后,从相对于光集成芯片2的表面一侧,光纤4被插入电路基板3的通孔5中。这里光纤4被插入至其端面与光学部件12的另一端面相接触的位置。然后,使用树脂10作为粘接剂,将光纤4固定在电路基板3。
如上所述,由于光集成芯片2和光纤4被安装在电路基板3上,如图14A、14B和图15所示,在下列条件下它们被固定:光集成芯片2的发光部6的中心、光学部件12的第一波导12b的中心、通孔5的中心、和光纤4的芯部4a的中心大致重合。
因此,通过光集成芯片2的发光元件(未显示)和形成于电路基板3上的IC等,自外界输入到光收发装置1c的电信号被转变为光信号,并成为从发光部6射出的发射光。发射光经光学部件12的第一波导12b传播,入射到光纤4的芯部4a并且出射到光收发装置1c的外界。
同样,从外界经由光纤4射入的接收光入射到光学部件12的第一波导12b和形成于光学部件12的外表面和通孔5的内表面之间的第二波导13a。入射到第二波导13a在传播的同时被全反射膜12a和全反射膜13反射,并且入射到光集成芯片2的受光部7,然后通过电路基板3以电信号的形式输出。这里,发光部6的面积与第一波导12b的断面面积相比足够小。于是,在入射到第一波导12b和第二波导13a的接收光中,大多数经第一波导12b传播的光线落在死区8上,不会对发射信号和接收信号产生影响。通过这种方式,在第三实施例的光收发装置1c中,发射光和接收光的路径分离,从而实现全双工的单线双向通信。
下面描述第一至第三实施例中光收发装置的具体应用例子.图20是第一至第三实施例的光收发装置的应用例的结构图.
第一至第三实施例的光收发装置1a~1c被用于例如在基板之间传送信号。对于电路基板3,该基板的应用方式是:其上安装有多条光纤4,和光集成芯片2被安装为与各光纤4相对应。电路基板3被安装成位于电路基板14上,电路基板14包括用于处理图像等的IC 14a,并且电路基板14通过多条光纤4连接在一起。
第一至第三实施例中的光收发装置1a~1c的每一个设置有形成于电路基板3上的通孔5、光集成芯片2等,并且均不需要用于分离光路的分束镜、用于固定光纤4的连接器等。因此,每个装置的尺寸变得很小。于是,可以实现下列方式:形成于信息处理器等内部的不同电路基板可以通过多条光纤4连接。并且,在各条光纤4中,可以实现单线双向通信。结果,可以在电路基板间高速传输大量信息。例如,当每条光纤4的传输速率假定为1Gbps时,如果电路基板14通过光纤4连接,可以获得32Gbps的传输速率。
于是,可以达到下述的方式:为了小型化而不降低处理能力,将电路基板14划分成两片。尽管未显示,可以认为通常依赖于电路图形的传输路径被采用第一至第三实施例的光收发装置1a~1c的光纤所取代。第一至第三实施例的光收发装置1a~1c的尺寸很小,这导致基板上被占用的面积很窄。相反,相应于电路图形的移除,电路基板可以小型化。并且,由于部件可以设置在光纤下面,可以增加安装密度。
如上所述,在第一至第三实施例的光收发装置1a~1c中,发光元件和受光元件集成在一个芯片上。于是,与单独安装各元件的传统方法相比,两元件之间的定位精度可以制作得非常高。即,尽管发光元件和受光元件之间的定位精度通常取决于制造设备的安装精度,通过半导体制造工艺,各实施例中所用的光集成芯片2获得了极高的精度。由于这个原因,可以提供一种光收发器,其中与传统方法相比,导体调整步骤被简化,成本被降低。
并且,由于发光元件和受光元件集成在一个芯片上,发光部6和受光部7之间的距离可以制作得比传统方法更短。于是,不需要用于分离光路的昂贵光学部件,如分束镜,以实现单线双向通信。结果,可以提供低成本的光收发装置。
而且,光学部件11或12或光纤4的端面被安装为靠着发光部6。于是,可以提供一种光纤,其中可以减少反射回去的光线并抑制串扰。
并且,制作于电路基板3中的通孔5具有对准光纤4的作用。于是,不再需要由硅、玻璃或塑料制成的传统对准部件,例如具有V形槽以支持光纤的基板。因此,可以提供一种光纤,其中部件的数量和装配步骤的数量小并且成本低。
而且,在第二和第三实施例的光收发装置1b、1c中,由于使用了光学部件11、12,发射侧的光路和接收侧的光路分离。特别地,可以降低发光部6的光线泄漏对于受光部7的影响。于是,可以提供一种光收发装置,其中抑制了全双工式双向通信中的串扰。并且,由于光学部件11或12仅通过机加工光纤和玻璃管制成,与传统所需光隔离器相比,可以获得非常低的成本,并且可以获得低成本和串扰被抑制的光收发装置。
如上所述,本发明公开了一种光收发装置,其包括用于将电信号转变为光信号的发光元件和用于将光信号转变为电信号的受光元件,并且使用光纤实现单线双向通信,其包括:光集成芯片,其中发光元件和受光元件形成在同一芯片上,以及发光元件的发光部和受光元件的受光部被紧密设置;和电路基板,其中插入有光纤的通孔穿透和制作在电路基板上,其中在发光部和受光部被固定到通孔中的位置,光集成芯片被安装在电路基板的一个表面上,以及从电路基板的另一表面,光纤被插入和固定在通孔.
因此,从发光部射出的发射光入射到光纤,并且来自于光纤的接收光入射到受光部。于是,用简单的结构可以实现单线双向通信。
并且,本发明设计为包括用于将源于发光部的光路和通向受光部的光路分离的光学部件,其中该光学部件安装在通孔内部并位于光集成芯片和光纤之间,以及在发光部和受光部与光纤的端面之间形成传播发射光的第一波导和传播接收光的第二波导。
因此,由发光部射出的发射光穿过第一波导并入射到光纤,来自于光纤的接收光穿过第二波导并入射到受光部。于是,可以提供全双工式的单线双向通信,其中由于发射光和接收光分离,所以在简单的结构中抑制了串扰。
本发明要求于2002年12月6日向日本专利局提交的日本优先权文件No.2002-355413的权利,这里将该申请文件作参照引用。