引线框架及其制造方法和使用引线框架的半导体器件转让专利

申请号 : CN200410001948.5

文献号 : CN1518099B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 小林健诹合久雄

申请人 : 松下电器产业株式会社

摘要 :

本发明提供一种引线框架及其制造方法和使用引线框架的半导体器件,能够容易地制造出高可靠薄型半导体器件,引线框架包括:由金属制成的板状体构成的引线框架基体;用于形成引线的凹槽部,其是以预定深度形成在引线框架基体的表面上的引线形成区域中的;以及引线部,其被形成为使得引线部能从凹槽部伸到引线框架基体的表面上,引线部由不同于引线框架基体材料的材料形成。还提供一种薄型半导体器件,其中使用了上述引线框架,并且在安装芯片后用蚀刻方法除去引线框架基体。

权利要求 :

1.一种引线框架,包括:

由金属制成的板状体构成的引线框架基体;

用于形成引线的凹槽部,其是以预定深度形成在所述引线框架基体的表面上的引线形成区域中的;以及引线,其被形成为使得该引线能从所述凹槽部伸到所述引线框架基体的表面上,该引线由不同于该引线框架基体材料的材料形成且包括形成于所述凹槽部中的第一导体层,其中所述引线包括用于抑制所述引线框架基体和所述第一导体层之间反应的阻挡层,该阻挡层设置在该第一导体层和所述凹槽部之间。

2.根据权利要求1的引线框架,所述引线还包括:形成在该第一导体层上的第二导体层;以及形成在该第二导体层上的第三导体层,其中该第一导体层装配到装配组件上,并且

该第三导体层装配到半导体芯片的焊接垫上。

3.根据权利要求2的引线框架,其中所述第一导体层覆盖所述凹槽部的全部内壁。

4.根据权利要求2的引线框架,其中所述第一和第二导体层的界面位于所述引线框架基体的表面的上方。

5.根据权利要求2的引线框架,其中所述第一导体层由能够与焊料一起形成合金的金属制成。

6.根据权利要求2的引线框架,其中所述第一导体层的膜厚度和第三导体层的膜厚度都在0.5至2μm的范围内。

7.根据权利要求2的引线框架,其中所述第一导体层包括金层。

8.根据权利要求2的引线框架,其中所述第三导体层包括金层。

9.根据权利要求2的引线框架,其中所述第二导体层为镍层。

10.一种制造引线框架的方法,包括:

在由金属制成的板状体构成的引线框架基体的表面上形成抗蚀剂图案以便能开设引线形成区域的步骤;

当用所述抗蚀剂图案作为掩模进行蚀刻时在该引线形成区域中形成预定深度的、用于形成引线的凹槽部的步骤;以及形成引线的步骤,该引线的材料不同于所述引线框架基体的材料,使得该引线能从所述凹槽部伸到该引线框架基体的表面上,在所述凹槽部中及其周边部中形成第一导体层,其中形成引线的步骤包括在所述第一导体层和所述凹槽部之间形成用于抑制所述引线框架基体和该第一导体层反应的阻挡层。

11.根据权利要求10的制造引线框架的方法,其中形成引线的步骤包括在使用所述抗蚀剂图案作为掩模时在所述凹槽部的内壁上形成金属膜的电镀步骤。

12.根据权利要求10的制造引线框架的方法,还包括一收缩步骤,即,在将所述抗蚀剂图案用作掩模而形成所述凹槽部后使该抗蚀剂图案收缩以便能暴露出在该凹槽部周围的所述引线框架基体的表面的步骤。

13.根据权利要求12的制造引线框架的方法,其中所述第一导体层形成于从所述收缩步骤中收缩的所述抗蚀剂图案中暴露出的所述凹槽部中及其周边部中,形成引线的步骤还包括:形成第二导体层的步骤,其堆叠在所述第一导体层上以便能留出该第一导体层的端部边缘;以及在该第二导体层上形成第三导体层的步骤。

14.根据权利要求13的制造引线框架的方法,形成第二导体层的步骤包括:在所述第一导体层上形成导电性薄膜的步骤;以及

用各向异性蚀刻法对该导电性薄膜进行回刻蚀以留出该第一导体层的端部边缘的步骤。

15.根据权利要求10的制造引线框架的方法,其中形成引线的步骤包括在所述凹槽部中顺次形成第一到第三导体层的步骤,并且所述第一和第二导体层的界面位于所述引线框架基体的表面的上方。

16.根据权利要求10的制造引线框架的方法,其中形成凹槽部的步骤包括用于形成一凹槽的各向异性蚀刻步骤,该凹槽的横截面为矩形且该凹槽的深度为0.5至2.5μm。

17.一种半导体器件,其中包括引线框架,该引线框架包括由金属制成的板状体构成的引线框架基体,并且还包括用于形成引线的凹槽部,该凹槽部以预定深度形成在该引线框架基体的表面上的引线形成区域中,以及还包括引线,其被形成为使得该引线能从该凹槽部伸到该引线框架基体的表面上,该引线由不同于该引线框架基体材料的材料制成且包括形成于所述凹槽部中的第一导体层,该半导体器件包括:半导体芯片;以及

一块密封树脂,其中该引线的反向表面的一部分从该块密封树脂的主平面伸出,并且该引线是从外面侧朝内面侧形成的薄膜,其中该引线连接到所述半导体芯片,

其中所述引线包括用于抑制所述引线框架基体和所述第一导体层之间反应的阻挡层,该阻挡层设置在该第一导体层和所述凹槽部之间。

18.根据权利要求17的半导体器件,所述引线还包括:堆叠在该第一导体层内侧的第二导体层;以及形成在该第二导体层内侧的第三导体层,其中从所述密封树脂中露出的该引线的全部表面被该第一导体层覆盖。

19.根据权利要求18的半导体器件,其中所述第一和第二导体层的界面位于所述密封树脂的表面内侧。

20.根据权利要求17的半导体器件,其中所述第一导体层由能够与焊料一起形成合金的金属制成。

21.根据权利要求17的半导体器件,其中所述第一导体层的膜厚度和第三导体层的膜厚度都在0.5至2μm的范围内。

22.根据权利要求18的半导体器件,其中所述第一导体层包括金层。

23.根据权利要求18的半导体器件,其中所述第三导体层包括金层。

24.根据权利要求18的半导体器件,其中所述第二导体层为镍层。

25.一种制造半导体器件的方法,其中制备了引线框架,该引线框架包括由金属制成的板状体构成的引线框架基体,并且还包括用于形成引线的凹槽部,该凹槽部以预定深度形成在该引线框架基体的表面上的引线形成区域中,以及还包括引线,其被形成为使得该引线能从该凹槽部伸到该引线框架基体的表面上,该引线由不同于该引线框架基体材料的材料制成且包括形成于所述凹槽部中的第一导体层,所述制造半导体器件的方法包括:把半导体芯片安装在引线框架上并将该半导体芯片电连接到所述引线上的半导体芯片安装步骤;

用所述密封树脂覆盖该半导体芯片的树脂密封步骤;

用蚀刻法除去所述引线框架基体的步骤;以及

切割成单个的半导体器件的切割步骤,

其中形成引线的步骤包括在所述第一导体层和所述凹槽部之间形成用于抑制所述引线框架基体和该第一导体层反应的阻挡层。

26.根据权利要求25的制造半导体器件的方法,所述引线还包括:堆叠在该第一导体层上的第二导体层;以及形成在该第二导体层上的第三导体层,其中该第一导体层被装配到装配组件上,并且

该第三导体层被装配到该半导体芯片的焊接垫上。

27.根据权利要求26的制造半导体器件的方法,其中所述第一导体层被形成为使其覆盖所述凹槽部的全部内壁。

28.根据权利要求26的制造半导体器件的方法,其中所述第一和第二导体层的界面位于所述引线框架基体的表面的上方。

29.根据权利要求26的制造半导体器件的方法,其中所述制造半导体器件的方法还包括在树脂密封完成后用蚀刻法除去该阻挡层的步骤。

说明书 :

技术领域

本发明涉及一种引线框架、制造引线框架的方法、使用引线框架的半导体器件和制造半导体器件的方法。更具体地说,本发明涉及树脂密封型半导体器件的外部端子的形成。

背景技术

近年来,减小了像个人计算机和便携式电话的电子设备的尺寸。伴随着电子设备小型化的这种趋势,电子部件被高密度地组装。因此,在例如二极管和晶体管的半导体器件领域中,为了缩小安装面积,广泛地使用面安装型(face assembly type)半导体器件。
在这种面安装型半导体器件中,为了降低制造成本,关于封装的形式,广泛使用了树脂密封型半导体器件,因为材料成本低并且生产率高。
为了实现缩小半导体器件的尺寸的目的,提出如下的技术。使用一种引线框架,其中在一区域中形成作为引线的突起,并且把半导体芯片安装并且电连接在引线框架上。在树脂密封完成后,通过抛光从反向面将引线框架与树脂一起除去,而留下该突起,以便能降低厚度,然后进行切割以便把它划分成单个的半导体器件。
作为一个例子,提出如图11A至11C所示的半导体器件。关于这种半导体器件,参考专利文献1。如下形成这种半导体器件。把半导体芯片固定并且电连接到引线框架上,然后从引线框架的反向面(reverse side)进行树脂密封。于是,把半导体芯片72固定到引线框架上。框架包括岛状物61、61A并且还包括多个引线端62、63、62A、63A,岛状物61、61A成为用于外部连接的电极,引线端62、63、62A、63A成为用于固定到相邻岛状物的半导体芯片72的外部连接的其余电极,通过连接条把框架固定到半导体芯片72上,用导电胶将半导体芯片72粘附到在行方向上排列的多个引线框架的岛状物上并且电连接到相邻引线端上。树脂层被形成在引线框架上,以便能覆盖半导体芯片和引线端并且能暴露出岛状物和引线端的反向面。在包围电连接引线端的区域中,将固定有半导体芯片的岛状物和半导体芯片分割成单个部件。
[专利文献1]
待审日本专利特开平10-313082号公报
按照这种技术,能够减小半导体器件的尺寸。然而,在具有印刷电路板的树脂密封型半导体器件的接触面上,也就是,在半导体集成电路器件的反向侧面上,由于树脂表面和成为外部端子的引线端在同一平面上,即使当引起小的尺寸偏差时,也不能够准确地连接在印刷电路板上的电路图案,这将引起不良接触。
为了伸出引线端,有必要提供一种在切割完成后形成凸点(bump)(突起)的电镀工艺,这增加了制造工艺中的工时。
考虑到上述实际情况提出了本发明.本发明的一个目的是提供一种能够容易制造出来的高可靠薄型半导体器件.

发明内容

本发明提供一种引线框架,包括:由金属制成的板状体构成的引线框架基体;用于形成引线的凹槽部,其是以预定深度形成在引线框架基体的表面上的引线形成区域中的;以及引线部,其被形成为使得引线部能从凹槽部伸出到引线框架基体的表面上,引线部由不同于引线框架基体材料的材料制成。
根据上述结构,形成从凹槽部伸出的引线部。因此,可以按照引线部从密封树脂中突出的方式进行装配。因此,当把半导体器件装配到印刷电路板上时,能够提供不会引起不良接触的半导体器件。从而,能够在树脂密封完成后形成一种稳定的外部端子结构而不用提供电镀工艺。
这种外部端子可以在经由引线框架基体进行电连接的条件下形成。因此,当形成外部端子时,能够采用电镀的方式,其中引线框架基体用作电极。从而,能高精确地控制厚度,并且能高效率地形成高可靠的外部端子。
在把半导体芯片安装在引线部上之后,使用丝焊和直接键合的方法进行电连接。然后,进行树脂密封,并且使用蚀刻法从反向面上除去引线框架基体。由于前面所述的理由,有能够提供一种高可靠的薄型半导体器件。更具体地,半导体器件的厚度能降低到常规半导体器件的厚度的大约四分之三。
在安装半导体芯片的情况下,把引线部固定到引线框架基体上。因此,不会引起位置移动,并且能准确地进行高可靠性键合。而且,由于使用树脂密封法准确地固定住器件并且从反向面除去引线框架基体,所以不会使半导体器件变形。
此外,在树脂密封完成后,进行切割,以便把半导体器件划分成单个的半导体器件。在这种情况下,可以使切割区域中不存在引线部。因此,在切割情况下,不需要用刀片切割引线部。因此,能减少切割刀片的磨损并能延长切割刀片的寿命。
由于仅从密封树脂的主平面而不从密封树脂的侧面导出引线,所以潮气不可能经由引线导出部从大气进入密封树脂中。因此,能提高可靠性。
此外,根据凹槽部的横截面轮廓能灵活地设计引线部的横截面轮廓。因此,能容易地形成高密度和高精确的引线部图案。
本发明提供一种引线框架,该引线包括:形成在凹槽部中的第一导体层;形成在第一导体层上的第二导体层;以及形成在第二导体层上的第三导体层,其中第一导体层装配到装配组件上,并且第三导体层装配到半导体芯片的焊接垫上。
根据上述结构,优选地引线包括三层结构并且由对应于待连接的组件的材料所制成。而且,优选地位于中心处的主基体由便宜的导电材料制成。
本发明提供一种引线框架,其中第一导体层覆盖凹槽部的全部内壁。
根据上述结构,可以以如下方式形成具有这种引线框架的半导体器件:从密封树脂中暴露出来的引线部仅包括第一导体层。从而,当由例如能够容易地与焊料一起形成合金的金的稳定金属形成第一导体层时,在密封完成后能形成稳定的外部端子结构而不进行电镀工艺。
在这种情况下,仅第一导体层可以由很难氧化的稳定材料制成,并且第二导体层可以由低电阻值的便宜金属制成.第一和第三导体层可以由能容易地结合焊料的材料所制成.第三导体层可以由与第二导体层相同的材料制成.
优选第一导体层覆盖凹槽部的全部内壁并且还覆盖在凹槽部的外围的平坦平面的一部分。由于前面所述的原因,能够准确地防止第二导体层暴露出来。因此,能够形成高可靠的半导体器件。
在本发明的引线框架中,第一和第二导体层的界面位于引线框架基体的表面的上方。
根据上述结构,在装配完成后,优选用密封树脂密封第二导体层,使得第二导体层不会暴露到表面上。因此,以与上述引线框架的制造方法相同的方式,能提供一种长寿命的稳定引线框架。
在本发明的引线框架中,引线包括用于抑制引线框架基体和第一导体层之间反应的阻挡层,该阻挡层设置在第一导体层和凹槽部之间。
根据上述结构,由于存在由镍或钛制成的阻挡层,在键合工艺中产生的热引起在第一导体层和引线框架基体之间的界面反应,并且能防止第一导体层性能恶化。这种阻挡层可以形成得薄。而且,最终可以除去阻挡层。
在本发明的引线框架中,由能够与焊料一起形成合金的金属制成第一导体层。
根据装配了上述引线框架的半导体器件,当把半导体器件装配到印刷电路板上时,能适合地执行键合。
在本发明的引线框架中,第三导体层由金属制成,其丝焊特性高。
根据上述结构,当第三导体层由例如金的金属形成时,其丝焊特性高,能容易地装配半导体芯片。
在本发明的引线框架中,第三导体层由金属制成,当该金属键合到半导体芯片的焊接垫上时具有高键合特性。
根据上述结构,即使当使用直接键合法安装半导体芯片时,也能容易地进行装配。
在本发明的引线框架中,第一导体层的膜厚度和第二导体层的膜厚度都在0.5至2μm的范围内。
根据上述结构,能充分地降低整体厚度。而且能充分地增加第二导体层的膜厚度。因此,能够构成其整体厚度足够小并且其外部端子的电阻值低的半导体器件。
在本发明的引线框架中,第一导体层包括金层。
根据上述结构,能够构成低电阻值的稳定外部端子,其能够容易地和焊料一起形成合金。
在本发明的引线框架中,第三导体层包括金层。
根据上述结构,能够构成高可靠的外部端子,其和半导体芯片的连接特性极好。
在本发明的引线框架中,第二导体层包括金属层,其主要成分是镍。
根据上述结构,能够形成低电阻值的引线,其对金的粘附特性高。
在这种情况下,当第一导体层由例如能够容易地和焊料一起形成合金的金的稳定金属制成时,在密封完成后能形成稳定的外部端子结构而不用进行电镀工艺。
在这种情况下,仅第一导体层可以由很难氧化的稳定材料形成,并且第二导体层可以由低电阻值的便宜金属制成.第一和第三导体层可以由能容易地与焊料结合的材料制成.第三导体层可以由与第二导体层材料相同的材料制成.
本发明的一种制造引线框架的方法,包括:在引线框架基体的表面上形成抗蚀剂图案以便能开设引线形成区域的步骤,该引线框架基体由金属制成的板状体构成;形成用于形成引线的凹槽部的步骤,当抗蚀剂图案用作掩模进行蚀刻时,在引线形成区域中形成预定深度的凹槽部;以及形成引线部的步骤,该引线部的材料不同于引线框架基体的材料,使得引线部能从凹槽部伸到引线框架基体的表面上。
根据上述结构,能够容易地形成高精确、可靠的引线框架。而且,当使用光刻工艺时,能够形成精细和高精确的引线。
在本发明的制造引线框架的方法中,形成引线部的步骤包括一电镀步骤,在使用抗蚀剂图案作为掩模时,在凹槽部的内壁上形成金属膜。
根据上述结构,当引线框架基体用作电极时能进行电镀。因此,在短时间内能容易地形成低电阻值的引线框架。由于使用用于形成凹槽部的抗蚀剂图案作为掩模进行电镀,在凹槽部的内壁上能形成金属膜。由于上面所述的原因,能够形成具有层结构的外部端子,其中全部外部端子被最外部的金属膜覆盖。
本发明的制造引线框架的方法还包括一收缩步骤,即,在用抗蚀剂图案作为掩模形成凹槽部后使抗蚀剂图案收缩,使得能暴露出在凹槽部周围的引线框架基体的表面的步骤。
根据上述结构,能够暴露出凹槽部的周围边缘。因此,可以以如下方式形成导体层:该导体层从凹槽部的内壁升高到平坦部。
一种本发明的制造引线框架的方法,形成引线的步骤包括:在凹槽部中和从收缩步骤中收缩的抗蚀剂图案中暴露出的其外围中形成第一导体层的步骤;形成第二导体层的步骤,将第二导体层堆叠在第一导体层上以便能留出第一导体层的端部边缘;以及在第二导体层上形成第三导体层的步骤。
根据上述结构,以下列方式形成第一导体层:即第一导体层从凹槽部的内侧升高到平坦部,然后堆叠第二和第三层,以便能留出第一导体层的端边缘部分。从而,能容易地形成用第一导体层覆盖外部端子的全部表面的外部端子结构。
在本发明的制造引线框架的方法中,形成第二导体层的步骤包括:在第一导体层上形成导电性薄膜的步骤;以及用各向异性蚀刻的方法对导电性薄膜进行回刻蚀以留出该第一导体层的端部边缘的步骤。
在将第一导体层形成在凹槽部的内壁上之后,形成第二导体层并且进行回刻蚀的工艺。这样,能够形成用第一导体层覆盖全部第二导体层的结构。
在本发明的制造引线框架的方法中,形成引线的步骤包括在凹槽部中顺次形成第一到第三导体层的步骤,并且第一和第二导体层的界面位于引线框架基体的表面的上方。
根据上述结构,能够形成一种引线框架,其中从密封树脂中暴露出的、用作外部端子的半导体器件表面被第一导体层覆盖。
在本发明的制造引线框架的方法中,形成引线的步骤包括在第一导体层和凹槽部之间形成用于抑制引线框架基体和第一导体层的反应的阻挡层的步骤。
根据上述方法,用一系列电镀工艺能容易地形成阻挡层。因此,能容易地执行生产制作。
在本发明的制造引线框架的方法中,形成凹槽部的步骤包括用于形成一凹槽的各向异性蚀刻步骤,该凹槽的横截面为矩形且该凹槽的深度为0.5至2.5μm。
根据上述方法,能够形成精细的引线,其图案精确度高。当矩形凹槽的深度小于0.5μm时,不能够充分地降低电阻值。当矩形凹槽的深度超出2.5μm时,降低半导体器件的厚度变得很困难。
本发明的半导体器件包括:半导体芯片;连接到半导体芯片的引线部;以及一块密封树脂,其中引线部的反向表面的一部分从该块密封树脂的主平面伸出,并且引线部是从外表面侧朝内表面侧形成的薄膜。
根据上述结构,在膜形成的工艺中,引线部的外部表面(其成为装配表面以装配到例如印刷电路板的装配组件上)被设置在基底侧面。因此,表面能保持方向性极好并且精确度高的状态。从而,能够提供一种高可靠的连接。
在本发明的半导体器件中,引线包括:第一导体层;堆叠在第一导体层内侧的第二导体层;以及形成在第二导体层内侧的第三导体层,其中从密封树脂中露出的引线的全部表面被第一导体层覆盖。
根据上述结构,从密封树脂中露出的引线部仅仅是第一导体层。因此,能够在密封完成后形成稳定的外部端子结构而不用进行电镀工艺。
在本发明的半导体器件中,第一和第二导体层的界面位于密封树脂的表面内侧。
根据上述结构,在装配完成后,优选用密封树脂密封第二导体层,使其不能暴露到表面上。因此,按照与上述半导体器件的制造方法相同的方式,能提供一种长寿命的稳定引线框架。
在本发明的半导体器件中,第一导体层由能够和焊料一起形成合金的金属制成。
在本发明的半导体器件中,第三导体层由能使用丝焊法键合的金属制成。
在本发明的半导体器件中,第三导体层由能被键合到半导体芯片的焊接垫上的金属制成。
在本发明的半导体器件中,第一导体层的膜厚度和第二导体层的膜厚度都在0.5至2μm的范围内。
在本发明的半导体器件中,第一导体层包括金层。
在本发明的半导体器件中,第三导体层包括金层。
在本发明的半导体器件中,第二导体层包括金属层,其主要成分是镍。
本发明提供一种制造半导体器件的方法,其中制备了引线框架,引线框架包括由金属制成的板状体构成的引线框架基体,并且还包括用于形成引线的凹槽部,凹槽部以预定深度形成在引线框架基体的表面上的引线形成区域中,以及还包括引线部,其被形成为使得引线部能从凹槽部伸到引线框架基体的表面上,引线部由不同于引线框架基体材料的材料制成,制造半导体器件的方法包括:把半导体芯片安装在引线框架并使半导体芯片电连接到引线部上的半导体芯片安装步骤;用密封树脂覆盖半导体芯片的树脂密封步骤;使用蚀刻法除去引线框架基体的步骤;以及切割成单个的半导体器件的切割步骤。
根据上述结构,在安装半导体芯片的情况下,把引线部固定到引线框架基体上。因此,不会引起位置偏差并且能执行高可靠性键合。在使用树脂密封法准确地固定引线部后,从反向侧面除去引线框架基体。因此,在半导体器件中不会引起变形。
由于形成了从凹槽部中伸出的引线部,在树脂密封后从密封树脂中伸出的引线部不进行电镀工艺,并且能形成稳定的外部端子结构。因此,能把半导体器件装配到印刷电路板上而不会出现不良接触。
能容易地提供高可靠的薄型半导体器件。
在树脂密封完成后,进行切割使半导体器件可被划分成单个部件。由于能够使引线部不存在于切割区域中,所以无须在切割时用切割刀片切割引线部。因此,能减轻切割刀片的磨损并且能延长刀片寿命。
除此以外,根据凹槽部的横截面的轮廓能灵活地设计引线部的横截面的轮廓。因此,能容易地形成高密度、精确的半导体器件。
在本发明的制造半导体器件的方法中,引线包括:形成在凹槽部中的第一导体层;堆叠在第一导体层上的第二导体层;以及形成在第二导体层上的第三导体层,其中第一导体层被装配到例如印刷电路板的装配组件上,并且第三导体层被装配到半导体芯片的焊接垫上。
根据上述结构,能以低成本容易地提供高可靠的薄型半导体器件。
在本发明的制造半导体器件的方法中,引线被形成为使其能覆盖凹槽的全部内壁。
根据上述结构,不用增加工时能形成更加高可靠的薄型半导体器件。
在本发明的制造半导体器件的方法中,第一和第二导体层的界面位于引线框架基体的表面的上方。
根据上述结构,不用增加工时能形成更高可靠的薄型半导体器件。
在本发明的制造半导体器件的方法中,该制造半导体器件的方法还包括在树脂密封完成后使用蚀刻法除去阻挡层的步骤。
根据上述结构,能够阻止第一导体层因为在键合工艺中产生的热而引起的界面反应造成性能的恶化。

附图说明

在附图中:
图1A~1D是本发明第一实施例的半导体器件的示图,图1A是俯视图,图1B是沿线A-A截取的剖面图,图1C是仰视图以及图1D是沿线B-B截取的剖面图;
图2是本发明第一实施例的引线框架的主要部分的放大剖面图;
图3是本发明第一实施例的半导体器件的理论示意图;
图4A~4C是本发明第一实施例的制造引线框架的流程图;
图5A~5D是本发明第一实施例的制造引线框架的流程图;
图6A~6C是本发明第一实施例的制造半导体器件的流程图;
图7A~7C是本发明第一实施例的制造半导体器件的流程图;
图8A~8D是本发明第二实施例的制造引线框架的流程图;
图9A~9D是本发明第二实施例的制造引线框架的流程图;
图10是本发明第二实施例中形成的半导体器件的示图;
图11A~11C是常规半导体器件的示图。

具体实施方式

下面,将参考附图详细地说明本发明的实施例。
第一实施例
图1A-1C分别示出了本发明第一实施例的半导体器件的俯视图、沿线A-A截取的剖面图、仰视图和沿线B-B截取的剖面图。如图所示,下面所形成的这种半导体器件是面安装型(face assembly type)半导体器件。由双极型晶体管构成的半导体芯片11设置在冲模垫(die pad)10a上,并且连接到集电极的垫和连接到发射极的垫分别通过焊接线12电连接到引线端10b、10c上并且用树脂密封。从密封树脂的反向面看,构成基极端的冲模垫10a与构成发射极端和集电极端的引线端10b、10c一定程度地突出,以便能形成面安装型半导体器件。
冲模垫和引线端包括三层结构,其主要部分的放大视图如图2所示,冲模垫和引线端包括:包括镍层的阻挡层3a,其膜厚度是0.0005mm;形成在该阻挡层3a上的、包括金层的第一导体层3b,其膜厚度是0.0015mm;堆叠在第一导体层上的、包括镍层的第二导体层3c,其膜厚度是0.030mm;以及形成在第二导体层上的、包括金层的第三导体层3d,其膜厚度是0.0007mm。
其主要部分的放大视图如图3所示,下文说明这种层结构的特性。在铜板(其是引线框架的主基体1)的表面上形成的、厚度为0.008mm的凹槽部2中,顺次连续地堆叠阻挡层3a、第一导体层3b、第二导体层3c和第三导体层3d,形成第一导体层是使得它经由阻挡层3a覆盖凹槽部2的内壁。该视图示出了在除去抗蚀剂R以前的状态。
接着,下面将说明安装这种半导体器件的方法。
首先,说明制造这种引线框架的方法。
按照这种方法,用光刻技术在引线框架基体的表面上形成浅凹槽部2,引线框架基体包括由金属制成的平板型基体(铜板)。然后,通过电镀的方法在该凹槽部2中形成由四层结构的金属层构成的引线部,使得引线部能从凹槽伸到引线框架基体的表面上。
如图4A所示,制备由铜板构成的引线框架基体1。
如图4B所示,涂覆抗蚀剂R。
此后,如图4C所示,用光刻技术在抗蚀剂R上进行构图。当该抗蚀剂R用作掩模时,进行各向异性蚀刻以便形成0.5至2.5μm厚度的浅凹槽2,其横截面是矩形。
此后,如图5A所示,当实际上剩余抗蚀剂R时,把引线框架基体1浸入到镍磺酸盐的水溶液的电镀溶液中,并且用电镀法形成作为阻挡层的镍层3a。
然后,如图5B所示,用电镀法连续堆叠作为第一导体层3b的金层和作为第二导体层3c的镍层。这时,作为阻挡层3a的镍层和作为第一导体层3b的金层形成在凹槽部2的整个内壁上。
然后,形成作为第三导体层3d的金层。
最后,如图5D所示,除去抗蚀剂R,并且形成本发明第一实施例的引线框架。
接着,将说明制造使用该引线框架的双极型晶体管的方法。
首先,如图6A所示,把半导体芯片11的反向面安装并固定到图4A至5D所示的引线框架的冲模垫10a上。然后,用焊接线12将半导体芯片和引线端彼此电连接。
此后,如图6B所示,用环氧树脂进行树脂密封。这样,形成用密封树脂13固定的半导体器件。
最后,如图6C所示,用蚀刻的方法除去由铜板构成的引线框架基体1。这样,能获得其中阻挡层3a和第一导体层3b从密封树脂13中暴露出来的半导体器件。
然后,如图7A所示,把胶带14粘附到引线端3(3a、3b、3c)的露出侧面上。
此后,如图7B所示,用切割刀片16,从没有粘附胶带14的侧面朝粘附胶带14的另一侧面切割,从而形成切割槽15,以便可以分割半导体器件。
如图7C所示,当把半导体器件安装到印刷电路板上时,半导体器件从该胶带14上分离并被装配。
在这种连接中,在键合完成之后,在结束树脂密封后可以用蚀刻法将阻挡层和引线框架基体一起除去。
根据上述结构,由于引线部从密封树脂表面伸出,能稳定地执行装配,使得引线部能从密封树脂伸出。因此,在把半导体器件装配到印刷电路板上的情况下,能够提供一种不具有不良接触的半导体器件。如上面所描述地,根据本发明的实施例,在树脂密封完成后能够构成稳定的外部端子结构而不用进行电镀工艺。
把半导体芯片安装在引线部上,并且通过丝焊法(wire bonding)或直接键合法(direct bonding)进行电连接。然后,进行树脂密封,并通过蚀刻从反向面上除去引线框架基体。由于前面所述的理由,能提供一种薄型高可靠的半导体器件。因此,能将半导体器件的厚度降低到尽可能小的程度。就是说,半导体器件的厚度能降低到大约常规半导体器件的厚度的四分之三。
在安装半导体芯片的情况下,由于把引线部固定到引线框架基体上,所以不会引起位置移动并且能准确地进行高可靠性键合。在使用密封树脂法准确固定住半导体芯片之后,从反向面除去引线框架基体。因此,在半导体器件中不会引起变形。由于设置了阻挡层,在安装半导体元件或丝焊时,即使当连接部分被加热到高温,也能防止引线部性能恶化。实际上可以剩余该阻挡层。可选择地,最终可以通过蚀刻除去该阻挡层。在蚀刻的情况下,当在树脂密封完成后进行蚀刻时,由于其它部分被密封树脂覆盖,实际上它可以浸入到蚀刻溶液中。因此,工作特性是极好的。
在树脂密封完成后,把半导体器件切割成单个的半导体器件,使得半导体器件能被划分为单个部件。这时,由于没有引线部存在于切割区域中,因此在切割时不需要用刀片切割引线部。因此,很少引起刀片的磨损并能延长刀片的寿命。
由于仅从半导体器件的主平面导出引线部,所以空气不会从导出引线部处进入半导体器件中。因此,能够提供高可靠的半导体器件。
此外,根据凹槽部的横截面轮廓能灵活地设计引线部的横截面轮廓。因此,能够形成高精确和高密度的引线部图案。
由于从半导体器件的密封树脂中露出来的引线部包括金层,所以能形成稳定的外部端子结构而不需要在完成树脂密封后进行电镀工艺。
在这种连接中,可以用例如能够与焊料一起形成合金的金、锡和钯的金属形成第一导体层。
由于存在阻挡层,能防止第一导体层和引线框架基体由于在键合工艺中产生的热引起界面反应而造成性能的恶化.该阻挡层可以由镍、钛或钨制成.阻挡层可以形成得薄.可选择地,可最终通过蚀刻除去阻挡层.在金-硅的低共熔焊料的情况下,必须在大约400℃的高温下进行键合.另一方面,在例如金-锡或金-锗的低共熔焊料的情况下,在大约350℃的相对的低温下能键合,因此不需要设置阻挡层.
在本发明的引线框架中,当由例如能容易地与焊料形成合金的金的金属形成第一导体层时,在把半导体器件装配到印刷电路板上时,能极好地进行键合。
当第三导体层由金属形成时,其丝焊特性高,能容易地装配半导体芯片。
这种引线框架能应用于丝焊和直接键合。第三导体层可以由金属制成,其与半导体芯片的焊接垫的键合特性高。
设置第一和第三导体层用于提高键合特性和装配特性。因此,优选将第一和第三导体层形成得足够薄。
由于前面所述的理由,能充分地降低整体厚度并进一步能将第二导体层的膜厚度制作得足够厚。因此,能够构成具有低电阻值的外部端子的半导体器件,其整体厚度足够小。
在这种连接中,在上面描述的第一实施例中,设置了阻挡层。然而,能够采用没有设置阻挡层的结构和包括三层结构的引线部。
根据本实施例的制造引线框架的方法,能够通过光刻工艺形成高精确度和高可靠性的引线框架。
由于第一导体层经由阻挡层形成在引线框架基体的凹槽部的全部内壁上,所以在树脂密封完成后不会从密封树脂中露出第二导体层。如下文所描述的第二实施例中所示,优选第一和第二导体层的界面位于凹槽部的上表面的上方。换句话说,优选第一和第二导体层的界面位于引线框架基体的上表面的上方。然而,即使当第一和第二导体层的界面位于凹槽部的上表面的更低层上时,如果第二层由很难氧化的材料制成,也不会带来问题。
根据本发明制造引线框架的方法,在形成引线部的工艺中,当抗蚀剂图案用作掩模时,在凹槽部的内壁上形成金属膜。因此,在短时间内能容易地形成低电阻值的引线。
由于当用于形成凹槽部的抗蚀剂图案用作掩模时进行蚀刻,能够沿凹槽部的内壁形成导体膜,例如金属膜。因此,能容易地形成外部端子,其层结构以下列方式形成:整个器件被最外部的导体膜覆盖。
第二实施例
接着,下面将说明本发明的第二实施例。
在本实施例的半导体器件中,如下形成外部端子结构。如图10所示,在以下列方式形成第一导体层3b后,即第一导体层3b从凹槽部的内侧升高到平坦部分上后,第二和第三导体层顺序堆叠,使得能留出第一导体层3b的端部边缘部分,并且外部端子的全部表面构成被第一导体层覆盖的外部端子结构。
在这种情况下,在第一导体层3b的最外层上设置有用作阻挡层3a的镍层。
如上所述,导体层以如下方式形成:暴露出凹槽部的周围边缘并且使其从凹槽部的内壁升高到平坦部分上。因此,在这种结构中,用第一导体层覆盖引线端的全部表面,并且包括镍层的第二导体层3c嵌入在树脂中,使得第二导体层3c不会暴露到外部空气中。
在制造用于半导体器件的引线框架的方法中,当形成引线部时,使用了电镀工艺,其中当抗蚀剂图案用作掩模时在凹槽部的内壁上形成金属膜.
根据这种方法,当用于形成凹槽部的抗蚀剂图案用作掩模时,进行电镀。因此,能够在凹槽部的内壁上形成导电膜,例如金属膜,并且形成具有层结构的外部端子,其中整个器件被最外部的导电膜覆盖。
图8和图9是本发明第二实施例的引线框架的示图,以及图10是包括这种引线框架的半导体器件的示图。
该方法包括下列步骤:在将抗蚀剂图案用作掩模形成凹槽部后,使抗蚀剂图案收缩以便能稍微暴露出环绕凹槽部的引线框架基体的表面的步骤。
如图8A至8C所示,从开始到形成凹槽部2的制造工艺与在参考图4A至4C的第一实施例中说明的制造工艺相同。如图8D所示,在500℃下加热30分钟后,抗蚀剂图案R收缩以便形成抗蚀剂图案RS,并且暴露出凹槽部2的外围部分。
此后,如图9A所示,在实际上剩余抗蚀剂图案RS时,把器件浸入到含有镍磺酸盐水溶液的电镀溶液中,并且用电镀法形成作为阻挡层3a的镍层3a。这时,将阻挡层3a形成为使得它能沿凹槽部2的内壁到达凹槽部2的外围的平坦部。
接着,如图9B所示,连续形成作为第一导体层3b的金层,并且用各向异性蚀刻法除去在平坦部分的第一导体层。
而且,如图9C所示,使用电镀法在第一导体层3b上连续堆叠作为第二导体层3c的镍层。
此外,形成作为第三导体层3d的金层。
最后,如图9D所示,除去抗蚀剂图案RS。这样,形成本发明第二实施例的引线框架。
以与第一实施例的装配相同的方式进行第二实施例的半导体器件的引线框架的装配。
如图10所示,在这样形成的半导体器件中,整个表面被由金层构成的第一导体层覆盖。因此,由镍制成的第二导体层不会暴露到表面上。由此,能够形成表面不会氧化并且寿命延长的稳定半导体器件。
由于设置了阻挡层3a,所以即使当使用高温的焊料在第三导体层上进行丝焊时,也不可能使第一导体层与引线框架基体反应。
在上述实施例中,作出了关于双极型晶体管的装配的说明。然而,应该理解,本发明不限于上述分立元件。当然,本发明能应用于IC和LSI。
如上所说明地,根据本发明的引线框架,能够形成高精确的、可靠的、薄型半导体器件。
根据本发明制造引线框架的方法,由于选择性地、轻度蚀刻一部分金属衬底并且在该凹槽部中形成引线端,所以能非常容易地形成薄型半导体器件。
根据本发明,能够提供一种高可靠的薄型半导体器件。
根据本发明的制造半导体器件的方法,不会引起位置移动并且能以高产量装配出高可靠的薄型半导体器件。
本发明根本不限于其实施例和说明书。如果本领域的技术人员能灵活想象的各种改变不脱离权利要求的范围的描述,它们都可以涵盖在本发明内。
本申请以日本专利申请第2003-008349号为基础,在这里引入其内容供参考。