电子电路转让专利

申请号 : CN200510065164.3

文献号 : CN1664683B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 宫崎稔A·村上崔葆春山本睦夫

申请人 : 株式会社半导体能源研究所

摘要 :

一种在绝缘基片上形成的电子电路,它具有由半导体层构成的薄膜晶体管(TFTS)。半导体层的厚度小于1500,例如在100-750之间。在半导体层上形成主要由钛和氮构成的第一层。在所说的第一层上面形成由铝构成的第二层。将此第一和第二层按一定图形刻蚀成导电互连线。此第二层的下表面实质上完全与第一层紧密接触。互连线与该半导体层有良好的接触。

权利要求 :

1.一种显示器件,它包括

在基片上的半导体区;

与所述半导体区相邻的栅电极,在它们之间插入栅绝缘膜;

阻挡层和包括铝的层,该包括铝的层位于阻挡层上并且与所述半导体区电连接,其中所述阻挡层和所述包括铝的层形成在所述半导体区上;以及包括氧化锌的像素电极,其中所述像素电极与所述阻挡层电连接,以及所述像素电极形成在所述半导体区上。

2.如权利要求1所述的显示器件,其特征在于:其中所述阻挡层具有50至300μΩcm的电阻率。

3.如权利要求1所述的显示器件,其特征在于所述半导体区包括源区和漏区。

4.如权利要求1所述的显示器件,其特征在于所述半导体区包括结晶硅。

5.如权利要求1所述的显示器件,其特征在于所述栅电极形成在所述半导体区之上。

6.如权利要求1所述的显示器件,其特征在于所述阻挡层包括钛。

7.如权利要求1所述的显示器件,其特征在于所述阻挡层含有氮。

8.如权利要求1所述的显示器件,其特征在于所述阻挡层防止所述包括铝的层中的铝以及所述半导体区中的硅的扩散。

9.如权利要求1所述的显示器件,其特征在于所述阻挡层由流过DC电流的溅射形成。

10.如权利要求1所述的显示器件,其特征在于所述包括铝的层还含有硅。

11.如权利要求1所述的显示器件,其特征在于所述阻挡层和所述包括铝的层形成在包括氧化硅的夹层绝缘膜之上。

12.如权利要求1所述的显示器件,其特征在于所述像素电极形成在包括氧化硅的夹层绝缘膜之上。

13.如权利要求1所述的显示器件,还包括另一阻挡层,所述另一阻挡层包括钛,并在所述包括铝的层之上。

14.如权利要求1所述的显示器件,其特征在于所述显示器件是液晶显示器件。

说明书 :

电子电路

[0001] 本发明涉及一种在绝缘基片上形成的电子电路,它有薄的硅半导体层,例如形成薄膜晶体管,此薄的半导体层要与导电的互连线连接。
[0002] 常规的薄膜器件,例如绝缘棚型场效应晶体管(FETS)用薄的硅半导体膜作为有源层。此有源层厚约1500 。因此,若在这薄的半导体膜上要形成电极,通过使金属,例如铝与膜直接紧密地接触,就能获得良好的接触,现有的IC制造技术即用这种方法。在这些接触点中,通常通过在铝和半导体部分例如硅之间的化学反应形成硅化物,例如硅化铝。由于半导体层比硅化物层厚得多,所以不会发生问题。
[0003] 然而,近来所进行的研究证明,如果有源层的厚度低于1500 ,例如在约100-750 之间,就会改善薄膜晶体管(TFTS)的性能。要在这样薄的半导体层或有源层上形成电极,用现有技术就不能得到良好的接触点,因为硅化物层的厚度生长得几乎达到半导体层的厚度,会使接触点的电特性急剧变坏。当负荷,例如电压长时间加到接触点上时,接触点就会很快变坏。
[0004] 为了提高TFTS的特性,在半导体层上形成电极之后,就需要在氢气中在低于400℃,典型地是200-350℃的温度下进行热处理。TFTS的半导体层的厚度若小于1500 ,热处理会大大促进硅化物的生长,导致TFTS特性的变坏。
[0005] 本发明的目的是提供一种可靠的电子电路,此电子电路有半导体层、导电的互连线,如半导体层与互连线之间的良好的接触点,这些接触点能耐受300℃或300℃以上的热处理。
[0006] 本发明是一种在绝缘基片上形成的电子电路,它有一主要由硅组成的半导体层,此半导体层的厚度小于1500 ,最好是100 -750 。例如,本发明适用于一种带TFTS的电子电路,每个TFT都设置有厚度小于1500 的有源层。由于半导体层的厚度减少,本发明的效果是显而易见的。
[0007] 在本发明的第一实施例中,上述薄膜形式的半导体层或者与由玻璃制成的绝缘基片的上表面紧密接触,或者经由某些绝缘膜形成在此基片上。主要由钛和氮组成的第一层部分地或整体地与半导体层紧密接触。在第一层的上表面上形成主要由铝组成的第二层。将此第一和第二层用光刻法按一定图形刻蚀成导电的互连线。第二层的下表面实质上整体地与第一层紧密接触。还可能在第二层上形成主要由钛和氮组成的第三层。
[0008] 在本发明的另一实施例中,薄膜状的上述半导体层既可与由玻璃制成的绝缘基片紧密接触,也可经由某些绝缘膜形成在此基片上。由钛和硅这两者构成的第一层部分地或整体地与半导体层紧密接触。主要由钛和氮构成的第二层与第一层的上表面紧密接触。主要由铝构成的第三层形成在第二层的上表面。此第一至第三层用光刻法按一定图形刻蚀成导电的互连线。当然,也可以在第三层上形成其它层。
[0009] 在本发明的再一个实施例中,上述薄膜状的半导体层或者与由玻璃制成的绝缘基片紧密接触,或者经由某些绝缘膜形成在此基片上。由钛和硅作为主要成分组成的第一层部分地或整体地与半导体层紧密接触。主要由钛和氮组成的第二层与第一层的上表面紧密接触。在第二层的上表面上形成主要由铝构成的第三层。将此第一至第三层用光刻法按一定图形刻蚀成导电的互连线。此实施例的特征在于,第一层中钛对氮的比率比第二层的钛/氮比率大。
[0010] 在这些实施例的任何结构中,与第一层紧密接触的薄的半导体膜部分显示出N19 20 2
型或P型导电。在这些部分中的掺杂量最好是1×10 -1×10 /cm。杂质可以用公知的离子注入法或等离子掺杂法引入。在将杂质离子加速到高能注入时,掺杂量最好在
15 17 2
0.8×10 -1×10 /cm 之间。也可以使用在掺杂气体的氛围中用激光照射的激光掺杂法。
这种方法已在1991年10月4日申请的日本专利申请NO283981/1991和1991年10月8日申请的日本专利申请NO290719/1991中披露。这些部分的表面电阻最好小于1KΩ/□。
[0011] 可以加到半导体层中的元素是磷、硼、砷和其它元素。那些与导电的互连线接触的半导体层部分可以是掺杂区的某些部分,例如TFTS的源和漏区。半导体层的表面电阻最好小于500Ω/□。
[0012] 氧化硅层可以与该薄的半导体层的下表面紧密接触。在这种结构中,氧化硅膜可以含有与半导体层中相同的杂质。
[0013] 在上述第一实施例的第一层中,所含有的作为主要成分的钛与氮的比率可以随厚度而不同。除钛和氮外,其它元素例如硅和氧也能用作主要成分。例如,第一层的靠近半导体层的那部分可以主要包括钛和硅。第一层的靠近第二层的那部分可以主要包括钛和氮。例如氮对钛的比率可以设置得接近理想配比(大于0.8)。在中间区域,组分可以是连续变化的。
[0014] 通常,包括氮和钛的理想配比的材料(一氮化钛)有良好的阻挡层特性并能防止铝和硅的扩散。然而,此材料与硅呈现高接触电阻。所以不希望直接用其形成接触点。相反,包括钛和硅的理想配比材料(硅化钛)与主要由硅构成的半导体层呈现低的接触电阻。这对形成欧姆接触是有好处的。然而铝往往容易扩散,例如第二层的铝扩散到第一层,从而在半导体层中形成硅化铝。
[0015] 为解决这些问题制成上述的多层结构。特别是与第二层接触的那部分实质上是由理想配比的一氮化钛组成,而一氮化钛有良好的阻挡层特性。这就能防止第二层的铝扩散进第一层。与半导体层接触的部分由理想配比的硅化钛组成。因而能得到良好的欧姆接触。
[0016] 在形成硅化钛膜时,不必特意添加硅。钛与半导体层中的硅起反应。结果,自然形成硅化钛。例如,通过在靠近半导体层部分沉积含较少氮的钛,而在靠近第二层部分沉积含较多氮的钛,也能产生类似的效果。
[0017] 不管怎样,在考虑整个第一层时,它主要由钛和氮构成。在第一层中氮与钛的比率最好是0.5-1.2。这种以钛和氮作为主要组分的材料能与导电氧化物如铟锡氧化物、氧化锌和氧化镍等构成欧姆接触。若铝和这样的导电氧化物一起形成接触点,在此接触点处会形成厚氧化铝层,这就不可能有好的接触点。在现有技术中,是在铝和导电氧化物之间形成一铬层。由于铬是有毒的,所以要寻求代用材料。本发明所用的主要由钛和氮组成的材料在这方面也是很优秀的。
[0018] 本发明的其它目的和特点通过下面的讨论将得以清楚了解。
[0019] 图1(A)—图1(D)是按照本发明使用TFTS的电路的截面图,它展示出电路的加工工序;
[0020] 图2(A)是本发明的电子电路的纵截面图;
[0021] 图2(B)是本发明另一电子电路的顶视图;
[0022] 图3示出按本发明制造的TFTS的特性曲线a和用现有技术制造的TFTS的特性曲线b;
[0023] 图4(A)和图4(B)是TFTS中接触孔的照片;
[0024] 图5(A)是展示图4(A)中所示的接触孔的示意图;
[0025] 图5(B)是展示图4(B)中所示的接触孔的示意图;
[0026] 图6是按照本发明包括许多形成在基片上下的TFTS的器件的示意性截面图;
[0027] 图7(A)—图7(H)是按照本发明的TFT的截面图,它示出制造TFT的工序;和[0028] 图8(A)—图8(C)是按照本发明的TFTS的截面图,它示出源极或漏极的接触点。
[0029] 实施例1
[0030] 在图1(A)—图1(D)和图2(A)—图2(B)中示出第一实施例。图1(A)—图1(D)示出带TFTS的电子电路的制造工序。常规步骤的说明省略。首先,将氧化硅淀积成氧化硅膜2,使之在由Corning7059构成的玻璃基片1上形成一基底膜。在此氧化硅膜2上形成厚
500-1500 ,最好是500-750 的非晶硅膜3。在此非晶硅膜3上形成防护层4。此叠层片在450-600℃下退火12-48小时,以使非晶硅膜结晶化。当然,使之结晶化可使用激光退火或其它类似的手段(图1(A))。
[0031] 用光刻法将硅膜刻蚀成岛状半导体区5。在该半导体区5上形成厚500-1500 ,最好是800-1000 的氧化硅膜以形成栅氧化物膜。然后用铝加工出栅互连线和电极7。将此铝互连线和电极7阳极氧化以形成包围此互连线和电极7的氧化铝敷层。这种以这种方式使顶栅TFTS阳极氧化的技术已在1992年1日24月申请的日本专利申请NO38637/1992中讨论过。当然,栅极可用硅、钛、钽、钨、钼或其它材料制作。随后,使用栅极作掩模,用等离子掺杂或其它方法将杂质,例如磷注入,以形成与栅极7对准的掺杂的硅区8。然后,通过热退火、激光退火或其它方法使掺杂区8再结晶,以形成TFTS的源和漏区(图1(B))。
[0032] 然后,淀积氧化硅层作为中间层绝缘体9。再淀积导电的透明氧化物,例如铟锡氧化物(ITO)。将此ITO膜用光刻法按一定图形刻蚀成有源矩阵液晶显示器的象素电极10。在中间层绝缘体9中形成接触孔以露出部分掺杂区或源和漏区。通过溅射形成主要由钛和氮构成的第一层。另外,通过溅射按下面描述的方式形成由铝构成的第二层。
[0033] 一钛靶设置在溅射室。在氩气氛中加工成膜。溅射压强是1-10mtorr。首先形成厚达50-500 以钛为主要组分还包括少量氮的一层。除氩外,还将氮注入溅射室。膜在这种氛围中通过溅射形成。结果形成一层厚200-1000 的理想配比的一氮化钛。这时,在该溅射氛围中含氮的百分率超过40%。已注意到由于氮的分压强和溅射压强使溅射的淀积速率大受影响。例如,在仅由氩构成的氛围中淀积速率通常是在含高于20%的氮的氛围中的淀积速率的3-5倍。就溅射气氛来说,可用氨、醇胺、或其它物质代替氮。已知所制备的膜的电阻率随在溅射期间氮的分压强而变化。由于此膜用以形成导电的互连线,所以希望电阻率低。当然,为此要选用最佳的氮分压强。例如,在含100%氮的氛围中生产出来的比在含40%氮的氛围中生产出来的电阻率低。典型的电阻率在50-300μΩcm之间。
[0034] 在上述步骤中,如果首先形成的并包含少量氮的钛层太厚,就会与在下面的层发生反应。这就不可能获得好的接触。我们的研究已经证实,如果钛层比半导体层薄,则可获得良好的结果。
[0035] 在用这种方式形成第一层11之后,溅射铝以形成含有1%硅的第二层。第二层的厚度是2000-5000 。用光刻法按一定图形刻蚀这些层。更准确地说,此铝的第二层被用腐蚀剂腐蚀,例如用磷酸、醋酸和硝酸组成的混合酸。随后,用缓冲氢氟酸或亚硝酸刻蚀第一层。这时,由于过腐蚀,使中间层绝缘体损坏。此腐蚀工艺也可以通过用过氧化氢(H2O2)水溶液和氨水(NH3OH)的混合液来进行腐蚀,用有选择地预先留下的铝层作掩膜。在这种情况下中间层绝缘体不受影响。然而有机材料,例如光刻胶会被氧化。
[0036] 上述腐蚀步骤可以是干腐蚀工艺。如果用四氯化碳作为腐蚀气体,可连续腐蚀第二和第一层,且对氧化硅无不良影响。以这种方法形成从掺杂区延伸的导电的互连线。然后使此叠层片在氢气的氛围中在300℃下退火,从而完成TFTS。
[0037] 以这种方法加工成的电路有要与外部连接的部分。图2(A)示出该方法,用以与外部连接的导电的互连线19从集成电路18向基片周边部分延伸,该电路18集成在基片17上。此电子电路往往可用机械装置来做电接触,比如在虚线框出的区域20中的接触卡具(即插座)。
[0038] 在图2(B)所示的液晶显示器中,电路22-24激活基片21上的有源矩阵区25。为向电路22-24提供电功率和信号,在用虚线框出的区域27中加工出许多电接触点。用金属丝焊接的连接是永久性的而且十分可靠。然而加工这些引线要花费大量的劳动。特别是这种方法不适合大量端点的连接。所以使用机械接触点往往更有利。
[0039] 然而在这种情况下,在接触点处导电的互连线表面要足够牢固,其下面的层要牢固地粘接到导电的互连线。铝不能达到这些目的。主要由钛构成的材料可很好地粘接到硅、氧化硅、铝和其它类似的材料上。这种材料敷层的硬度也是高的。因此,这种材料是能满足要求的。它能完全都不用氮。也可使氮最大含量达到理想配比的比率。在本实施例中,第一层的与第二层接触的那些部分由理想配比的一氮化钛构成。接触卡具13压在一氮化钛露出部分上以形成接触点(图1(C))。
[0040] 另一方面如图1(D)所示,在第一层14上形成第二层15。在第二层15上形成由一氮化钛构成的第三层16。接触卡具可与此第三层接触。在这种情况下,如图1(C)所示,不必部分地腐蚀第二层。而且,如图1(E)所示,按照本发明主要由氮和钛构成的一层被首先用光刻法按一定图形刻蚀成导电的互连线,然后形成ITO膜。无论如何,在本实施例中,此ITO膜由主要包括钛和氮的材料构成。从而获得好的接触。膜的材料不限于ITO。也可以使用各种各样其它的导电氧化物。
[0041] 用这种方法得到的TFTS的VD-ID特性如图3中的曲线a所示。为便于对照,具有常规Al/Si接触点的TFTS的VD-ID特性如图3中的曲线b所示。可看到转折点在用现有技术方法制造的TFTS的曲线b上的靠近VD=0处。它们的接触电阻不构成欧姆接触。相反,在按照本发明制作的TFTS的曲线a上看不到这种异常现象,而呈现通常的MOSFET特性。
[0042] 图4(A)和图4(B)是两张照片,此照片表明从TFTS延伸的导电互连线材料的熔合(即形成硅化物),即在源和漏区铝与N型硅的熔合在像实施例1同样条件下被压制而成的情况。图4(A)和图4(B)的照片所示的区域分别在图5(A)和图5(B)中示出。每张照片中心可见的矩形区是一接触孔。在形成接触点之后,将此叠层片在300℃下退火30分钟。若在硅和铝之间如图4(A)所示不存在一氮化钛,则在接触点处就要生成大量硅化物(瑕斑)。若像图4(B)那样有厚度1000 的一氮化钛膜,就不会产生任何瑕斑。
[0043] 实施例2
[0044] 参照图1(A)—图1(D)对本实施例进行说明,这些图概略地示出制造有TFTS的电子电路的工序。这里不涉及常规步骤。首先在玻璃基片1上淀积氧化铝作为氧化铝基底膜2。在此氧化硅膜2上形成厚100-1000 最好是100-750 的非晶硅膜3。在此非晶硅膜3上形成一保护层4。将此叠层体在450-600℃下退火12-48小时以使非晶硅膜结晶化。当然,为使其结晶化可用激光退火也可用其它类似的手段。
[0045] 将硅膜用光刻法按一定图形刻蚀成岛状半导体区5。在此半导体区5上形成厚500-1500 ,最好是800-1000 的氧化硅膜6,以形成栅氧化膜。然后用铝加工成栅互连线和电极7。此铝制互连线和电极7被阳极氧化以形成包围此互连线和电极7的氧化硅敷层。
随后,用栅极作掩模通过离子注入或其它方法注入杂质,例如磷、以形成与栅电极7对准的
15
掺杂硅区8。掺杂剂量、加速电压和栅氧化膜厚度被如此设置,使掺杂剂量是0.8-4×10 /
2 19 21 3
cm,使掺杂剂浓度为1×10 -1×10 /cm。然后通过热退火、激光退火或其它方法使掺杂区
8再结晶,以形成TFTS的源和漏区(图1(B))。
[0046] 然后,淀积氧化硅作为中间层绝缘体9,随后是淀积ITO。用光刻法将此ITO膜按一定图形刻蚀成有源矩阵液晶显示器的象素电极10。在中间层绝缘体9中形成接触孔以露出部分掺杂区或源和漏区。用溅射法形成主要由钛和氮构成的第一层。用下述方法通过溅射形成由铝构成的第二层。
[0047] 钛靶设置在溅射室中。在氩和氮的氛围中形成膜。氩分压强对氮分压强的比率小于0.3,例如是0.25。溅射压强是3m-torr。通过4.5A的DC电流。氩的流速是24SCCM。氮的流速是6SCCM。第一层具有含较少的氮的下部层。此下部层厚100 。以这种方式形成的膜与硅和ITO呈现足够小的接触电阻。
[0048] 然后使溅射室中所含气体的百分比如此增加,即,使氩分压强对氮分压强的比率超过0.3,例如是1。通过溅射在这种氛围中形成膜。溅射压强和DC电流分别是3mtorr和4.5A。氩和氮的流速设置为15SCCM。通过上述步骤形成第一层的上层(为900 )。用这种方法形成的膜与硅有大的接触电阻。所以不能用作触点。然而在本实施例中这种膜能容易地图形化形成互连线。要注意由于氮分压强和由于溅射压强,溅射的淀积速率会大受影响。例如,若氩对氮的比率是4∶1,淀积速率是100-120 /min。若氩对氮的比率是1∶1则淀积速率是30-40 /min。
[0049] 在用这种方法形成第一层11后,溅射铝以形成含1%硅的第二层12。此第二层的厚度是2000-5000 。这些层被用光刻法按一定图形蚀刻。更准确地说,由铝构成的第二层被用腐蚀剂,例如用由磷酸、醋酸和硝酸组成的混合酸腐蚀。其后,在铝膜上留下光刻胶时用由过氧化氢(H2O2)水溶液和氨水(NH4OH)组成的混合液腐蚀第一层。由于这种腐蚀剂使有机物质氧化,下面就要同时清除有机物质。用这种方法形成从掺杂区延伸的导电的互连线。然后使此叠层片在氢气中在300℃下退火,从而完成TFTS。在本实施例中,形成第一层时仅接触点被腐蚀,从而暴露出第二层。接触卡具13压到第一层的露出部分以形成接触点(图1(C))。
[0050] 实施例3
[0051] 在图7(A)—图7(H)中示出本实施例。首先在由Corning70-59构成的玻璃基片201上淀积氧化硅作为氧化硅膜202。此氧化硅膜构成基底膜。厚度1000-3000 。此基片尺寸是300mm×400mm或100mm×100mm。为形成这种氧化物膜,在氧气氛围中进行溅射。为更有效地进行大量生产,可以使四乙基原硅酸盐(TEOS)分解并用等离子体CVD法淀积。
[0052] 然后用等离子体CVD法或LPCVD法淀积成厚300-5000 ,最好是500-1000 的非晶硅膜。将这种膜在氧化的氛围中,在550-600℃下维持24小时以使此膜结晶化。这种步骤也可以通过激光照射来进行。将此已结晶化的硅膜用光刻法按一定图形刻蚀成岛状区203。用溅射技术形成厚700-1500 的氧化硅膜104。
[0053] 然后通过电子束蒸发或溅射形成厚1000 -3μm的铝膜。这种铝膜按重量计含有1%的硅或0.1-0.3%的钪。通过旋涂形成光刻胶膜,例如由TOKYO OHKA KOGYO CO.,LTD制备的OFPR800/30CP。如果在形成光刻胶膜之前通过阳极氧化形成厚100-1000 的氧化铝膜,则铝膜完全粘附到光刻胶膜上。还可抑制电流从光刻胶层漏泄。这在下面的阳极氧化步骤中为形成多孔的阳极氧化的氧化物是有效的。随后用光刻法按一定图形刻蚀光刻胶膜和铝膜以形成栅电极205和屏蔽膜200(图7(A))。
[0054] 通过使电流通过电解液将栅极205阳极氧化形成厚3000-6000 ,例如5000 的阳极氧化膜206,此阳极氧化步骤是:使用柠檬酸、硝酸、磷酸、铬酸、硫酸或其它酸的3-20%的酸溶液,并对栅极施加10-30V的恒定电压。在本实施例中是在30℃的草酸中对栅极加20-40分钟的10V电压以进行阳极氧化。阳极氧化物膜的厚度通过阳极氧化时间来控制(图
7(B))。
[0055] 随后用干腐蚀技术腐蚀氧化硅膜104。在此腐蚀步骤中,既可使用等离体模式的各向同性腐蚀,也可使用活性离子腐蚀模式的各向异性腐蚀。通过将硅对氧化硅的选择比率调大使活性层不被深腐蚀是重要的。例如,如果用CF4作为腐蚀气体,阳极氧化物膜不被腐蚀,仅氧化硅膜104被腐蚀。位于多孔阳极氧化物膜206下面的氧化硅膜204未被腐蚀而保留下来(图7(C))。
[0056] 再次使电解液中的每个栅极流过电流。这时使用含3-10%的酒石酸、硼酸或硝酸的乙二醇溶液。当溶液温度低于室温或约10℃时,可获得好的氧化物膜。以这种方式在栅极的顶和侧表面上形成势垒型阳极氧化物膜207。此阳极氧化物膜207的厚度与所加的电压成正比。当所加电压是150V时,所形成的阳极氧化物膜的厚度是2000 。在本实施例中,将电压增加到80-150V。电压的数值按照所要求的阳极氧化物膜的厚度来确定(图7(D))。
[0057] 用势垒型阳极氧化物膜作掩模,腐蚀掉多孔阳极氧化物膜206。然后用栅极部分205和207以及栅绝缘膜204做掩模,用离子掺杂法注入杂质以形成低电阻率的掺杂区14 2
208、211和高电阻率的掺杂区209、210。掺杂量是1-5×10 /cm。加速电压是39-90KV。用磷作杂质(图7(E))。
[0058] 一种适当的金属,例如钛、镍、钼、钨、铂或钯被溅射到整个表面。例如,在整个表面上形成厚50-500 的钛膜212。结果,该金属膜,在此实施例中是钛膜212,与低电阻率掺杂区208和211紧密接触(图7(F))。
[0059] 用由KrF受激准分子激光器发射的,波长为248nm、脉宽为20nsec的激光照射,以激活所掺杂进的杂质,并使金属膜或钛膜与活性层起反应,从而形成金属硅化物或硅化钛2 2
区213和214。激光辐射的能量密度是200-400mJ/cm,最好是250-300mJ/cm。当用激光照射时,如将基片加热到200-500℃,则可抑止钛膜的剥落。
[0060] 在本实施例中,像上述那样应用受激准分子激光器,当然也能使用其它激光器,最好使用脉冲激光器。如使用CW激光器,照射的时间长,以致被照射的物质受热膨胀,结果会使该物质剥离。
[0061] 可用的脉冲激光器包括:红外激光器,例如Nd:YAG激光器(最好是Q开关激光器)、可见光激光器,例如利用产生二次谐波的激光器,和各种使用受激准分子例如KrF、Xecl和ArF的UV激光器。若激光从上面照射金属膜,就必须选择激光的波长使光不从该金属膜上反射。这在金属膜很薄时几乎没有问题。激光也可以从基片侧面照射。在这种情况下要选择可通过下面的硅半导体层传输的激光。
[0062] 退火可以使用可见光或近红外光照射的灯退火。如进行灯退火,则光要以这样方式照射,即使被照射物的表面达到约600-1000℃。若温度是600℃则照射要持继几分钟。如温度是1000℃,就只需照射几十秒。使用红外光,例如波长1.2μm的红外光,由于下述的原因,是十分有利的。近红外光被硅半导体膜有选择地吸收,因此玻璃基片不会很热。通过将每次照射时间设置得较短,基片被加热的程度也较小。
[0063] 然后,用由过氧化氢、氨和水以5∶2∶2的比率组成的腐蚀剂腐蚀钛膜。暴露层和钛层的那些不接触部分(例如在栅绝缘膜204上和在阳极氧化物膜207上的钛膜)仍保持金属状态。这些部分可通过这种腐蚀除去。由于氮化钛膜213和214未被腐蚀,所以它们仍然保留(图7(G))。
[0064] 最后,如图7(H)所示,用CVD法在整个表面上形成厚2000 -1μm(例如3000)的氧化硅膜作为中间层绝缘体217。在TFTS的源极和漏极形成接触孔。加工成厚200-1μm(例如5000 )的铝互连线和电极218和219。在本实施例中,与铝互连线接触的部分由硅化钛构成。在与铝的交界面处的稳定性超过与硅交界的情况。因而可获得可靠的接触点。如果将势垒金属,例如一氮化钛淀积在铝电极218、219和硅化物区213、214之间,则可靠性能进一步提高。在本实施例中,硅化物区的表面电阻是10-50Ω/□。高电阻率区209和210的表面电阻为10至100KΩ/□。结果,可制造出有好的频率特性且在高漏极电压下受热载流子损坏的影响小的TFTS。在本实施例中,低电阻率掺杂区211可做得实质上与金属硅化物区一致。
[0065] 图6示出用图7(A)—图7(H)中的方法在基片上制造多个TFTS的实施例。在此实施例中形成三个薄膜晶体管TFT1-TFT3。TFT1和TFT2用作驱动TFTS,并且是采取CMOS型器件的形式。在本实施例中,这些TFTS用作变换器。与图7(A)—图7(H)所示的阳极氧化物膜207相应的氧化物层505和506有较小的200-1000 的厚度,例如500 。这些氧化物层与下面的层稍有重叠。TFT3用作象素TFT。阳极氧化物膜507厚达2000 并处于偏移状态,从而可扼制漏电流。TFT3的源/漏电极中的一个与ITO的象素电极508连接。为使阳极氧化物膜有不同的厚度,它们被分离开以允许单独控制加到TFTS3栅极上的电压。TFT1和TFT3是n沟道薄膜晶体管,而TFT2是P沟道薄膜晶体管。
[0066] 在本实施例中,在离子掺杂步骤之后再进行形成钛膜的步骤。这种顺序是可以改变的。在这种情况下,当离子被照射时,由于钛膜覆盖整个下层,可有效地防止在基片上发生的异常充电。作为改进的例子,在离子掺杂之后再进行激光退火步骤。然后形成钛膜,并通过激光照射或热退火形成硅化钛膜。
[0067] 新型TFTS的源或漏极的接触点可采用图8(A)—图8(C)所示的结构。在这些图中所示的是:玻璃基片1、绝缘膜6、源或漏极8、中间层绝缘膜9、硅化钛区301、一氮化钛层302、铝层303、一氮化钛层304、钛层305、和一氮化钛层306。
[0068] 在本发明中,TFTS的薄的源极、漏极或其它掺杂区可有高可靠的良好的接触点,从而能有效地提高整个电子电路的可靠性。这种方法在工业上是很有优越性的。