通风换气系统转让专利

申请号 : CN200510059558.8

文献号 : CN1677006B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 三桥太守屋宽之

申请人 : 高砂热学工业株式会社

摘要 :

本发明提供一种通风换气系统,通过向空调空间内供应低温空气(SA),并对空调空间内被加热而上升的加热空气进行排气(EA),从而进行换气,其中,在低温空气(SA)的送气口上安装有向吹出到空调空间内的低温空气赋予旋转成分的多片引导翼片(30),这些多片引导翼片(30)围绕送气口的中心轴呈放射状地配置,并且,这些引导翼片(30)以相对于与送气口的中心轴正交的平面相互为相同的角度倾斜设置,在这些多片引导翼片(30)的周围形成有以送气口的中心轴为中心轴的圆筒形状的内壁面。

权利要求 :

1.一种通风换气系统,通过向空调空间内供应低温空气,并对空调空间内被加热而上升的加热空气进行排气,从而进行换气,其特征是,在低温空气的送气口上安装有向吹出到空调空间内的低温空气赋予旋转成分的多片引导翼片,这些多片引导翼片围绕送气口的中心轴呈放射状地配置,并且,这些多片引导翼片以相对于与送气口的中心轴正交的平面相互为相同的角度倾斜地设置,在这些多片引导翼片的周围形成有以送气口的中心轴为中心轴的圆筒形状的内壁面,沿着上述送气口的中心轴方向的上述内壁面的长度为沿着上述送气口的中心轴的方向的引导翼片的宽度的一半以上。

2.如权利要求1所述的通风换气系统,其特征是,上述内壁面由吸音材料构成。

3.如权利要求1所述的通风换气系统,其特征是,

上述送气口排列地配置多个,在各送气口上安装有向低温空气中赋予旋转成分的多片引导翼片,并且,在各送气口上形成有包围这些多片引导翼片的周围的圆筒形状的内壁面,在相邻的送气口上,各引导翼片的倾斜方向为相反的关系。

4.一种通风换气系统,通过向空调空间内供应低温空气,并对空调空间内被加热而上升的加热空气进行排气,从而进行换气,其特征是,在低温空气的送气口上安装有向吹出到空调空间内的低温空气赋予旋转成分的多片引导翼片,这些多片引导翼片围绕送气口的中心轴呈放射状地配置,并且,这些多片引导翼片以相对于与送气口的中心轴正交的平面相互为相同的角度倾斜地设置,在这些多片引导翼片的周围形成有以送气口的中心轴为中心轴的圆筒形状的内壁面,在上述送气口的前方设置有多孔板,该多孔板的开口率为40%以上。

5.如权利要求4所述的通风换气系统,其特征是,上述内壁面由吸音材料构成。

6.如权利要求4所述的通风换气系统,其特征是,

上述送气口排列地配置多个,在各送气口上安装有向低温空气中赋予旋转成分的多片引导翼片,并且,在各送气口上形成有包围这些多片引导翼片的周围的圆筒形状的内壁面,在相邻的送气口上,各引导翼片的倾斜方向为相反的关系。

7.如权利要求4所述的通风换气系统,其特征是,上述送气口的开口直径D和从上述送气口到上述多孔板的间隔距离M的关系为M/D≥0.07。

说明书 :

通风换气系统

技术领域

[0001] 本发明涉及一种通风换气系统。

背景技术

[0002] 作为能够减小空调空间中居住区域的污染物浓度,即使在高的致冷送气温度下也保持舒适性的空调系统,通风换气系统是公知的。在这种通风换气系统中,将温度比室温稍低的空气以缓慢的速度向空调空间内的下部形成的居住区域供应,其空气被居住区域中存在的发热体(例如人)等加热而产生上升气流,由此将空调空间内产生的尘埃或气体等污染物输送到空调空间内的上方。根据参考文献(Yuan,X.,0,Chen and L.R.Gllcksman:Performance Evaluation and DesignGuideline for Displacement Ventilation,ASHRAE Trans.,105(1999),pp.308),关于这种通风换气系统中的送气速度,从降低气流不适感和防止居住区域产生的热上升气流搅动的观点考虑,推荐为抑制在0.2m/s以下。而且,在通风换气系统中,通过从设置在天花板等上的排气口对污染物与加热后的空气一起进行排气而进行空调空间内的换气。
[0003] 在这种通风换气系统中,虽然在空调空间内的上方,形成有高温且污染物浓度高的区域,但通过由送气到空调空间内的低温空气而被依次推出,高温且污染物浓度高的空气不会被搅动地排出,所以具有确保空调空间内下方的居住区域为清洁的环境,而且即使降低送气温度,也能够将居住区域的温度维持在舒适的范围的优点。这样一来,通风换气系统作为可节能和换气效率高的空调系统而受到期待。
[0004] 但是,在这种通风换气系统中,为了将脚下和头部的温度差抑制在例如3℃以下(国际标准,美国采暖、制冷与空调工程师协会标准舒适性基准值)而确保舒适性,要进行减小了送排气温度差的大风量运转。因此,不得不在空调空间配置多个大的送气单元,存在难以确保送气单元的设置场所的问题。而且,在污染物从伴随着发热的部位或其附近产生的情况下,由于因热上升气流而污染物从居住区域排放到天花板部,所以虽然可将居住空间的污染物浓度保持得较低,但在不伴随着发热的情况下,污染物的输送稀释作用进行,从而存在居住者暴露在高浓度的污染空气中的危险性。
[0005] 因此,为了实现送气单元的紧凑化而得到的设置场所的确保,居住区域的温度梯度的缩小,以及居住区域的污染物稀释效果的提高,提出了以下的通风换气系统,即,通过多个引导翼片对吹出的空气赋予旋转成分,使送气单元附近的诱导量增加,从而提高送气的扩散性(日本特许公开公报的特开2002-372268号公报)。

发明内容

[0006] 根据通风换气系统使送气扩散,不会增加设备成本即可降低气流的不适感,而且还能够减小居住区域内的上下温度差。本发明对这种通风换气系统进一步进行改进。即,本发明的目的在于提供一种通风换气系统,其能够比以往进一步增强送气的旋转成分,加大旋转诱导量,进一步提高气流衰减特性。
[0007] 根据本发明,提供一种通风换气系统,向空调空间内供应低温空气,并对在空调空间内被加热而上升的加热空气进行排气,从而进行换气,其特征是,在低温空气的送气口上安装有向吹出到空调空间内的低温空气赋予旋转成分的多片引导翼片,这些多片引导翼片围绕送气口的中心轴呈放射状地配置,并且,这些多片的引导翼片以相对于与送气口的中心轴正交的平面相互为相同的角度倾斜地设置,在这些多片引导翼片的周围形成有以送气口的中心轴为中心轴的圆筒形状的内壁面,沿着上述送气口的中心轴方向的上述内壁面的长度为沿着上述送气口的中心轴的方向的引导翼片的宽度的一半以上。上述内壁面可由吸音材料构成。而且,上述送气口排列配置多个,在各送气口上安装有向低温空气中赋予旋转成分的多片引导翼片,并且,在各送气口上形成有包围这些多片引导翼片的周围的圆筒形状的内壁面,在相邻的送气口上,各引导翼片的倾斜方向构成为相反的关系。而且,可在上述送气口的前方设置多孔板。此时,该多孔板的开口率适于为40%以上。而且,上述送气口的开口直径D和从上述送气口到上述多孔板的间隔距离M的关系为M/D≥0.07。
[0008] 根据本发明,通过在引导翼片的周围形成圆筒形状的内壁面,能够相对于吹出到空调空间内的低温空气赋予比没有圆筒形状的内壁面的情况相比更多的旋转成分。因此,能够使被吹出的低温空气流诱导的空调空间内的空气的诱导量(诱导比)进一步增加,使吹出到空调空间内的低温空气的速度迅速地减速、迅速地升温。因此,能够进一步减小空调空间内的上下温度差。而且,即使是未因热上升气流而从居住区域排出到天花板部的污染物也能够被稀释。根据本发明,能够制成比现有的通风换气系统更紧凑的送气单元。

附图说明

[0009] 图1为用于说明本发明实施方式所涉及的通风换气系统的示意结构图。
[0010] 图2为送气单元的主视图。
[0011] 图3为图2中的Z-Z向剖视放大图。
[0012] 图4为将从空调空间的室内一侧观察时为逆时针旋转方向的旋转成分赋予低温空气地安装了引导翼片的送气口的立体图。
[0013] 图5为将从空调空间的室内一侧观察时为顺时针旋转方向的旋转成分赋予低温空气地安装了引导翼片的送气口的立体图。
[0014] 图6为从相邻的送气口吹出的低温空气的旋转成分为交替相反的旋转方向的送气口的说明图。
[0015] 图7为从相邻的送气口吹出的低温空气的旋转成分为相同的旋转方向的送气口的说明图。
[0016] 图8为设定成在上下排列的送气口和横向配置的送气口的任一个之间均是从相邻的送气口吹出的低温空气的旋转成分为相互相反的旋转方向的关系的送气口的说明图。
[0017] 图9为表示关于由圆筒包围引导翼片的周围的本发明的通风换气系统和省略了圆筒的现有例的通风换气系统、最大风速相对于距送气单元的距离的变化的曲线图。
[0018] 图10为关于由圆筒包围引导翼片的周围的本发明的通风换气系统和省略了圆筒的现有例的通风换气系统、以相对于距送气单元的距离的送排气温度差来表示无次元化的脚下温度变化的曲线图。
[0019] 图11为表示平均气流流速相对于包围引导翼片的周围的圆筒形状的内壁面(圆3
筒)的长度的关系的曲线图,是低温空气的流量为90m/h的情况。
[0020] 图12为表示平均气流流速相对于包围引导翼片的周围的圆筒形状的内壁面(圆3
筒)的长度的关系的曲线图,是低温空气的流量为150m/h的情况。
[0021] 图13为对改变良圆筒的材质的情况下产生的噪音进行比较的曲线图。
[0022] 图14为在送气单元的前面的前方与前面平行地配置有形成了多个通气孔的多孔板的本发明实施方式的说明图。
[0023] 图15为表示多孔板的开口率(通气孔的面积)和低温空气的最大风速的关系的曲线图。
[0024] 图16为表示从送气口到多孔板的隔离距离和低温空气的最大风速的关系的曲线图。
[0025] 图17为在送气单元的前面具有充分的厚度的情况下省略了圆筒的实施方式的说明图。
[0026] 图18为将圆形的平板冲裁形成的引导翼片的立体图。
[0027] 图19为本发明的实施例和比较例1、2所涉及的空调空间的俯视图,表示各仪器等的配置。
[0028] 图20为表示将本发明的实施例和比较例1、2进行比较时的空调运转状态的表。
[0029] 图21为对本发明的实施例和比较例1、2进行比较,表示地点D的上下温度分布的曲线图。
[0030] 图22为表示地点A的风速分布的曲线图。
[0031] 图23为表示地点B的风速分布的曲线图。
[0032] 图24为表示地点C的风速分布的曲线图。
[0033] 图25为表示地点D的风速分布的曲线图。
[0034] 图26为对地点D的地板1m的PMV和SET*进行比较的曲线图。
[0035] 图27为以排气口的浓度无元次化地表示从发热仪器H3放出示踪气体的情况下地点A的浓度分布的曲线图。
[0036] 图28为以排气口的浓度无元次化地表示从发热仪器H3放出示踪气体的情况下地点C的浓度分布的曲线图。
[0037] 图29为以排气口的浓度无元次化地表示从发热仪器H3放出示踪气体的情况下地点D的浓度分布的曲线图。
[0038] 图30为以排气口的浓度无元次化地表示从没有发热的地点B的地板上1m放出示踪气体的情况下地点A的浓度分布的曲线图。
[0039] 图31为以排气口的浓度无元次化地表示从没有发热的地点B的地板上1m放出示踪气体的情况下地点C的浓度分布的曲线图。
[0040] 图32为以排气口的浓度无元次化地表示从没有发热的地点B的地板上1m放出示踪气体的情况下地点D的浓度分布的曲线图。
[0041] 图33为在外气温度为10℃的情况下,实测并比较了以送气温度为30℃、空调风量3
为4000m/h进行了暖风运转的情况下的地点D的上下温度分布的曲线图。

具体实施方式

[0042] 以下,参照附图对本发明的优选实施方式加以说明。图1为用于说明本发明实施方式所涉及的通风换气系统1的示意结构图。
[0043] 空调空间10例如是事务所、计算机房、会客室、宴会厅、游艺场、印刷室、病房、厕所、厨房、机械室、锅炉房、工厂等,以天花板、地板以及侧壁区分。在该图1中所示的例子中,在空调空间10的内部下方形成的居住区域11中,作为发热体,例如存在人12。在空调空间10内的一侧面(图示中是空调空间10的右侧面)17的下部设置有送气口15,同样地,在空调空间10内的一侧面17的上部设置有排气口16。另外,对于送气口15的详细结构将在以下叙述。空调空间10一侧面17下部的背面一侧上设置有送气单元20。该送气单元20的前面21在空调空间10的一侧面17的下部露出。
[0044] 这样一来,在空调空间10的一侧面17的下部露出的送气单元20的前面21上,如图2所示,纵横排列地配置有多个圆形的送气口15。将外气0A取入空调机22中制成的低温空气SA经由送气通道23供应到送气单元20上。因此,低温空气SA从送气单元20的前面21上形成的多个送气口15向空调空间10的内部下方的居住区域11供应。空调机22具备用于冷却外气0A、制成低温空气SA的冷却器25和过滤器(未图示),而且,具备将制成的低温空气SA经由送气通道23和送气单元20供应到空调空间10内的送气风扇27等。
[0045] 如图3所示,在各送气口15上分别固定有用于向吹出到空调空间10内的低温空气SA赋予旋转成分的多片引导翼片30。在各送气口15的中心轴上配置有支承部件31,在该支承部件31上以大致相等的间隔安装有多片引导翼片30,从而多片引导翼片30呈放射状地围绕送气口15的中心轴配置。
[0046] 这些多片引导翼片30倾斜地设置成相对于与送气口15的中心轴15’垂直的平面(例如送气单元20的前面21)均为相同的倾斜角度。图4、图5为各引导翼片30的倾斜角度说明图,在图4和图5中,各引导翼片30的倾斜方向为相反的关系。即,在图4中,在相对于从送气口15吹出到空调空间10内的低温空气SA,从空调空间10的室内侧观察送气单元20的前面21的情况下,为了赋予逆时针旋转方向的旋转成分,各引导翼片30是倾斜地设置的。另一方面,在图5中,在相对于从送气口15吹出到空调空间10内的低温空气SA,从空调空间10的室内侧观察送气单元20的情况下,为了赋予顺时针旋转方向的旋转成分,各引导翼片30是倾斜地设置的。
[0047] 这样一来,通过在各送气口15放射状地安装支承部件31向中心倾斜的引导翼片30,在从送气单元20的内部向送气口15流入的低温空气SA通过送气口15时,能够强制地使其沿着各引导翼片30的表面流动。因此,能够在从送气口15向空调空间10吹出的低温空气SA分别赋予以中心轴15’为中心的顺时针旋转方向或者逆时针旋转方向的旋转成分。
[0048] 如上所述,在送气单元20的前面(形成空调空间10的室的内部一侧的面)21上,虽然纵横排列地配置有多个送气口15,但从相邻的送气口15吹出的低温空气SA的旋转成分为相互相反的旋转方向的关系。即,如图6所示,当以上下方向排列的四个送气口15a、15b、15c、15d为例进行说明时,在最上的送气口15a和上数第三个送气口15c,引导翼片30的倾斜方向为图4中说明的状态,从这些送气口15a和送气口15c,吹出在从空调空间10的室内一侧观察送气单元20的前面21的情况下赋予了逆时针旋转方向的旋转成分的低温空气SA。另一方面,在上数第二个送气口15b和第四个送气口15d,引导翼片30的倾斜方向为图5中说明的状态,从这些送气口15b和15d,吹出从空调空间10的室内一侧观察送气单元20的前面21的情况下赋予了顺时针旋转方向的旋转成分的低温空气SA。这样一来,在相邻的送气口15a和送气口15b、送气口15b和送气口15c、送气口15c和送气口15d之间,分别吹出向相反的旋转方向旋转的低温空气SA。
[0049] 即,如图7所示,在从上下方向上排列的四个送气口15a’、15b’、15c’、15d’吹出均向相同的旋转方向旋转的低温空气SA(在图7所示的例子中,均为向逆时针旋转方向旋转的低温空气SA)的情况下,在送气口15a’和送气口15b’之间,送气口15b’和送气口15c’之间,以及送气口15c’和送气口15d’之间,低温空气SA沿着相互抵消的方向吹出。这样一来,从各送气口15a’、15b’、15c’、15d’吹出的低温空气SA的旋转成分被抵消。
[0050] 另一方面,如图6中说明的那样,若使从各送气口15a、15b、15c、15d吹出的低温空气SA的旋转成分为交替相反的旋转方向的话,由于在送气口15a和送气口15b之间,送气口15b和送气口15c之间,以及送气口15c和送气口15d之间,低温空气SA也均是沿着相同的方向吹出,所以从各送气口15a、15b、15c、15d吹出的低温空气SA的旋转成分不被抵消,有助于相互旋转运动。
[0051] 另外,在图6中,虽然对上下排列的送气口15的关系进行了说明,但如先前在图2中所说明的那样,在送气单元20的前面21上纵横向排列地配置有多个送气口15。在该图示的方式中,如图8所示,设置在各送气口15上的引导翼片30的倾斜方向设定成:在上下排列的送气口15的关系中,从相邻的送气口15吹出的低温空气SA的旋转成分为相互相反的旋转方向的关系,但设置在各送气口15上的引导翼片30的倾斜方向设定成:在左右排列的送气口15的关系中,从相邻的送气口15吹出的低温空气SA的旋转成分为相互相同的旋转方向的关系。
[0052] 如图3所示,在安装于各送气口15上的多片引导翼片30的周围安装有圆筒32。圆筒32以中心轴与送气口15的中心轴15’相一致的状态分别安装在各送气口15的每一个上。圆筒32的内径设定成与安装在各送气口15上的多片引导翼片30的外径大致相等。
因此,在各送气口15,多片引导翼片30的外周成为由圆筒32的内壁面33(以送气口15的中心轴15’为中心轴的圆筒形状的内壁面33)包围的状态。因此,如图4、图5所示,从送气单元20的内部通过送气口15吹出到空调空间10内的低温空气SA通过安装在各送气口15上的圆筒32内,此时,由于在圆筒32内沿着各引导翼片30的表面流动,所以强制地向低温空气SA赋予顺时针旋转方向或逆时针旋转方向的旋转成分。
[0053] 在此,如图3所示,在各送气口15,沿着送气口15的中心轴15’的方向上的圆筒32的长度L设定成沿着相同的送气口15的中心轴15’的方向上的引导翼片30的宽度1的一半以上。因此,在沿着送气口15的中心轴15’的方向上,引导翼片30的宽度1中至少一半以上的部分构成为由圆筒32的内壁面33包围周围。另外,在图3所示的例子中,圆筒32的长度L设定成比引导翼片30的宽度1更长,这样一来,在沿着送气口15的中心轴15’的方向上,引导翼片30的宽度1的整个部分构成为由圆筒32的内壁面33包围周围。
[0054] 如图1所示,在配置在空调空间10上部的排气口16上连接有具备排气风扇40的排气通道41。因此,空调空间10的上部滞留的空气(因存在于空调空间10中的人或办公机器等的热负荷而被加热的空气)经由排气通道41排放到外部。
[0055] 另外,在上述那样构成的通风换气系统1中,由空调机22制成的低温空气SA通过送气风扇27的工作而从送气通道23和送气单元20通过送气口15供应到空调空间10内。在通过送气口15之际,低温空气SA通过安装在各送气口15上的圆筒32内,此时,由于低温空气SA圆筒形状的内壁面33内沿着各引导翼片30的表面流动,强制地向低温空气SA赋予顺时针旋转方向或逆时针旋转方向的旋转成分。这样一来,低温空气SA从各送气口15一边旋转一边朝向空调空间10内送出。
[0056] 在这种情况下,各送气口15上,由于引导翼片30的周围由圆筒形状的内壁面33包围,所以与没有圆筒32(内壁面33)的情况相比,能够可靠地向从各送气口15送气到空调空间10内的低温空气SA赋予更强的旋转成分。
[0057] 而且,当低温空气SA从各送气口15一边旋转一边朝向空调空间10内送气时,在从各送气口15吹出的低温空气SA中作用有空调空间10的空气被诱导而一起移动的诱导作用。在这种情况下,在图示的通风换气系统1中,由于向从送气口15吹出的低温空气SA中赋予了旋转成分,所以被低温空气SA诱导的空调空间10内的空气的诱导量(诱导比)增加。与之相伴,按照运动量守恒原则,低温空气SA的速度在从各送气口15吹出后迅速地减速。
[0058] 在此,对由圆筒形状的内壁面33(圆筒32)包围了引导翼片30的周围的情况和省略圆筒32、引导翼片30的周围是开放的情况相比,获得了以下的见解。即,在送气单元20的前面21(高度为0.9m、宽度为0.3m)上设置12处直径D=94mm的圆形送气口15,在各送气口15设置了引导翼片30时,对由圆筒32包围了引导翼片30的情况和省略了圆筒32的情况下的、相对于距送气单元20的前面21的距离的气流速度(从送气单元20的前面21离开任意距离的位置上的空调空间10内的最大风速)进行了比较,结果如图9所示。而且,对于同样的情况,相对于距送气单元20的前面21的距离,以送排气温度差将最低空气温度和送气温度的差无次元化地进行了比较,结果如图10所示。另外,图10中作为纵轴的最低无次元空气温度以下式表示。
[0059] 最低无次元温度TF*=(TF-TS)/(TE-TS)
[0060] TF:脚下最低温度,TS:吹出温度,TE:吸入温度。
[0061] 通过象本发明那样由圆筒形状的内壁面33包围引导翼片30的周围,可确认从送气口15吹出的低温空气SA的气流速度迅速减小,而且,送气到居住区域11的低温空气SA的温度迅速上升。另一方面,在没有有圆筒32的情况下,由于引导翼片30的周围是开放的,所以如图3中单点划线SA’所示,引导翼片30周围的空气(送气单元20内的低温空气)从送气口15的周围流入,在该影响下,将不再向从送气口15吹出的低温空气SA中赋予充分的旋转成分,因从送气口15吹出的低温空气SA而被诱导的空调空间10内的空气的诱导量(诱导比)减小,所以不能够提高气流衰减特性。在这一点上,通过象发明那样由圆筒形状的内壁面33包围引导翼片30的周围,可阻碍这种从周围的流入,向从送气口15吹出的低温空气SA中更多地赋予旋转成分。
[0062] 而且,对包围引导翼片30周围的圆筒形状的内壁面33(圆筒32)的长度进行了研究,如图11、12所示那样。即,在直径D=160mm的圆形送气口15上按照宽度1=16mm的引导翼片30,调查了由圆筒形状的内径D=160mm的内壁面33(圆筒32)包围了引导翼片30的周围的情况下的内壁面33(圆筒32)的长度L和引导翼片30的宽度1的关系。在从引导翼片30的宽度1的一半到三倍的范围内改变内壁面33(圆筒32)的长度L,对距送气单元20的前面200mm的位置上的风速分布进行了比较。而且,也与省略了圆筒32的情况(内壁面33的长度L=0)的情况进行了比较。图11是从送气口15吹出的低温空气SA的
3 3
流量为90m/h的情况,图12是从送气口15吹出的低温空气SA的流量为150m/h的情况。
在图11和图12中,横轴表示距送气单元20的前面21为200mm的位置上从送气口15的中心轴沿着直径方向离开的各位置,在向一侧(正侧)离开的位置和向另一侧(负侧)离开的位置上对各自的平均气流速度进行了实测和比较。
[0063] 在不安装圆筒32的情况下送气口15的中心附近的风速大于安装了圆筒32的情3 3
况下的风速。而且,在图11和图12中,使低温空气SA的流量从90m/h变化到150m/h,实施了改变吹出雷诺数后的测定,确认在气流速度相对于圆筒32的变化的分布上不产生大的差。考虑到实用状态,引导翼片30的宽度1为13mm左右,内壁面33(圆筒32)的长度L小于该宽度1的一半,设置内壁面33(圆筒32)的意义不大。可以说内壁面33(圆筒32)的长度L为引导翼片30的宽度1的一半以上即可。
[0064] 这样一来,由于通过由圆筒形状的内壁面33包围引导翼片30的周围,相对于吹出到空调空间10内的居住区域11的低温空气SA,与没有圆筒32的情况相比,能够更多地赋予旋转成分,所以能够使被吹出的低温空气流诱导的空调空间10内的空气的诱导量(诱导比)进一步增加,使吹出到空调空间10内的低温空气SA的速度迅速减速、迅速升温。而且,供应到空调空间10内的低温空气SA因温度差而向空调空间10内的下方下降地流动,以低速充满空调空间10内下方的居住区域11,能够将居住区域11保持在舒适的环境下。
[0065] 另一方面,在空调空间10内的例如居住区域11中,由于存在有作为发热体的人等,所以供应到居住区域11中、与人12或其他发热仪器类等热接触的低温空气SA被加热而缓慢地上升。通过其上升气流,能够将空调空间10内的居住区域11中人12的周围产生的尘埃或气体等污染物输送到空调空间10内的上方。
[0066] 而且,滞留在空调空间10上部的空气(被加热的空气)不会被搅动,即,不会搅乱形成在空调空间10内的下部的居住区域11的温度层,经由排气口16和排气通道41排放到排气风扇40外部。这样一来,通过将低温空气SA供应到空调空间10下部的居住区域11,并且从空调空间10的上部与加热空气一起排出尘埃或气体等污染物,进行空调空间10内的换气,空调空间10下部的居住区域11保持在清洁的低温空气SA的环境下。
[0067] 根据这种通风换气系统1,能够使空调空间10内的居住区域11中的人12不易感到气流。而且,相对于从送气口15吹出的低温空气SA,更高温的周围空气(空调空间10内的空气)被诱导的量增加,低温空气SA和周围空气的温度差迅速减小,可进一步减小空调空间10内的居住区域11中的上下温度差。这样一来,能够以尽可能小的风量高效地对空调空间10内进行空气调节,能够对节能作出贡献。
[0068] 以上,对本发明的优选实施方式的一例进行了说明,但本发明并不仅限于图示的方式。例如,在各送气口15,也可以由吸音材料构成包围引导翼片30的周围的圆筒形状的内壁面33。在这种情况下,既可以由吸音材料构成安装在各送气口15上的圆筒32自身,也可以在圆筒32的内壁面上配置吸音材料。
[0069] 图13为对改变了圆筒32的材质后的情况下的产生的噪音进行比较的附图。即,对由吸音效果好的发泡成形的聚氨酯类、和由合成板构成圆筒32的情况进行比较,表示低温空气SA的吹出风速和产生噪音的关系。能够确认若由吸音效果好的发泡成形的聚氨酯类构成圆筒32的话,则产生的噪音被抑制。
[0070] 如图14所示,也可以在送气单元20的前面21的前方与前面21平行地配置形成了多个通气孔50的多孔板51,在各送气口15的前方隔开规定的间隙M设置多孔板51。这样一来,由于从各送气口15喷出的低温空气SA进而通过形成在多孔板51上的通气孔50而供气到空调空间10内,所以能够进一步提高气流衰减特性。
[0071] 对这样将多孔板51设置在送气口15的前方上的情况研究了多孔板51的开口率(通气孔50的面积)。而且,还研究了送气口15的开口直径D和从送气口15到多孔板51的间隔距离M的关系。在具有分别安装了引导翼片30的、直径D=188mm的送气口15设3
置在四处的高度600mm×宽度600mm的前面21的送气单元20中,进行400m/h的等温送气,改变具有孔径为6mm的通气孔50的多孔板51的开口率,对低温空气S A的最大风速进行了比较。多孔板51和送气口15的间隔距离M为25mm。在距多孔板51的表面的距离X=100mm、400mm、700mm、1000mm的位置上分别调查了多孔板51的开口率(通气孔50的面积)和低温空气SA的最大风速的关系,如图15所示那样。另外,最大风速VMAX以送气口15的位置上的平均吹出速度V0无次元化,若多孔板51的开口率为40%以上,则不会损害本发明的效果,特别是在X=1m的位置上,确认多孔板51的开口率为60%左右时可使最大风速VMAX为最小。
[0072] 对于同样的情况,使多孔板51的开口率为58%(开口口径为6mm),改变从送气口15到多孔板51的间隔距离M,在距多孔板51的表面的距离X=100mm、400mm、700mm、1000mm的位置上,分别调查了从送气口15到多孔板51的间隔距离M和低温空气SA的最大风速的关系,如图16所示那样。另外,在图16中,横轴表示从送气口15到多孔板51的间隔距离M相对于送气口15的开口直径D的比值(M/D)。在使从送气口15到多孔板51的间隔距离M为送气口15的开口直径D的7%以上的情况下,可确认在距多孔板51表面的距离X=
1000mm的位置上,最大风速的差减小。
[0073] 在图3等中,对通过安装在各送气口15上的圆筒32的内壁面33包围引导翼片30的周围的离子进行了说明,但只要是具备包围引导翼片30的周围的内壁面33即可,不必一定是圆筒32。即,如果是如图17所示,送气单元20的前面21具有充分的厚度,在形成圆形的送气口15时,形成为圆筒形状的内壁面33的长度L为引导翼片30的宽度1的一半以上的情况,则能够省略圆筒32。例如,如果是由吸音效果优良的玻璃纤维等以充分的厚度构成送气单元20的前面21,则不仅能够省略圆筒32,还有望抑制图13中说明的产生噪音。
[0074] 在图4和图5中,对支承部件31上放射状地安装了多个引导翼片30的机构进行了说明,但安装在各送气口15上的吹出部件的结构并不仅限于这种方式。例如,也可以是本申请人在先申请的特开平9-250803号中公开的旋流形成板那样的结构。即,如图18所示,在圆形的平板55中央留有圆形的支承部件31,将支承部件31的周围冲裁成扇形的引导翼片30,通过使各引导翼片30折曲倾斜成规定的角度而容易地形成。无论怎样,只要是能够形成可赋予旋转成分的引导翼片30即可。
[0075] 在先前图8所示的方式中,表示了设定成在上下排列的送气口15之间,从相邻的送气口15吹出的低温空气SA的旋转成分为相互相反的旋转方向的关系,而在横向配置的送气口15之间,从相邻的送气口15吹出的低温空气SA的旋转成分为相同的旋转方向的关系的例子,但设置在各送气口15上的引导翼片30的倾斜方向并非一定要这样设定。例如,虽然未图示,但也可以设置成在横向排列的送气口15之间,从相邻的送气口15吹出的低温空气SA的旋转成分为相互相反的旋转方向的关系,而在上下配置的送气口15之间,从相邻的送气口15吹出的低温空气SA的旋转成分为相同的旋转方向的关系。而且,还可以将设置在各送气口15上的引导翼片30的倾斜方向设定成在上下左右排列的送气口15的任一个之间,从相邻的送气口15吹出的低温空气SA的旋转成分均为相互相反的旋转方向的关系。另外,还可以设定成从所有送气口15吹出的低温空气SA的旋转成分均为相同的旋转方向的关系。而且,还可以设定成从各送气口15吹出的低温空气SA的旋转成分不规则地为相同的旋转方向或相反的旋转方向。从各送气口15吹出的低温空气SA的旋转成分的旋转方向可任意设定。
[0076] 而且,可以使圆形的送气口15直接在送气通道23上开口,从其送气口15向空调空间10内吹出低温空气SA,在此安装用于向低温空气SA赋予旋转成分的多片引导翼片30和圆筒32。这样一来,能够省略送气单元20。除此之外,也可以在构筑在建筑物上的送气单元上安装引导翼片或圆筒、多孔板,向送气单元内通风送气。送气单元可利用墙壁或双层地板。
[0077] 送气单元向通道上的连接既可以从送气单元的上方或侧方进行,也可以从下方进行。而且,也可以向双层地板内通风送气,向送气单元进行送风。在这种情况下,能够省略到送气单元的送气通道。另外送气单元也可以设置在支柱的周围。
[0078] 例如,可以是通过设置图1中虚线所示返回通道45,将排气EA的一部分返回到空调机22进行再利用的结构,而且,也可以省略排气风扇40,通过供应到空调空间10内下方的低温空气SA将滞留在空调空间10的上部的加热空气依次地推出。而且,还可以将排气口16形成在空调空间10的天花板上。另外,本发明的通风换气系统并不仅限于居室,也可以适用于前述那种存在人或各种仪器类等的各种空调空间。
[0079] 另外,本发明的通风换气系统可以是作为向空调空间内供应低温空气的构成,但这种通风换气系统也可以用于向空调空间内供应高温空气而进行致热的致热空调。
[0080] 另外,在本发明的通风换气系统中,当从送气口向空调空间内供应高温空气时,空调空间内的空气被供应的高温空气诱导而一起移动的诱导作用起作用。这样,在从送气口向空调空间内的下方形成的居住区域供应高温空气时,通过引导机构向送气的高温空气中赋予旋转成分,能够增加被高温空气量诱导的空调空间内的空气的诱导量(诱导比)。而且,随着诱导量的增加,根据运动量守恒规则,高温空气的速度在向空调空间内送气后迅速地减速。因此,几乎不会发生随着向居住区域供应高温空气所带来的气流不适感。
[0081] 而且,随着诱导量的增加,能够使空调空间内的下方形成的居住区域中的低温空气与供应的高温空气混合而迅速地升温。因此,居住区域中的低温空气和从送气口供应到空调空间内的高温空气混合而升温后的空气(空气)通过升温而在送气后迅速地在空调空间内上升,到达天花板附近。这样一来,能够有效地稀释居住区域产生的污染物等,并使其移动到天花板附近。
[0082] 而且,上开到天花板附近的空气由于与空调空间的壁面热接触而被由外气冷却后成为低温的壁面所冷却,再次下降到居住区域。之后,与从送气口供应的高温空气混合而再次升温上升到天花板附近。这样一来,通过空调空间内的居住区域的空气和天花板附近的空气循环,居住区域的空气依次地被从天花板附近下降的新鲜空气置换,能够不产生气流不适感地对居住区域进行致热。
[0083] 另一方面,通过一边使空调空间内的居住区域的空气和天花板附近的空气循环一边从排气口排出空调空间内的空气,依次地以从送气口供应的新鲜高温空气对室内空气进行置换。这样一来,能够除去居住区域等产生的污染物等,避免室内空气的恶化。本发明的通风换气系统也可以良好地适用于以通风换气方式对空调空间内的居住区域进行致热的致热空调。
[0084] 实施例
[0085] 如图19所示,将送气单元配置在具有俯视为15m×16m的地板、其内部的一部分上2
形成有7.1m×7.2m的隔断(非空调空间)的地板面积为190m,天花板高度为10m的空调空间(机械工作室)10中,在高度为4m的位置上设置水平地吹出送气的直径为500mm的喷嘴,进行了这些送气单元和喷嘴实现的空气调节。对本发明的实施例的送气单元和以往的比较例1的送气单元进行了比较,本发明的送气单元是在宽度为0.6m、高度为2.1m的前面形成送气口,在各送气口上安装用于向低温空气SA赋予旋转成分的多片引导翼片,由圆筒包围引导翼片的周围的结构的供气单元,而比较例1的送气单元是在宽度为1m、高度为
2.1m的前面形成送气口,在各送气口上仅安装用于向低温空气SA中赋予旋转成分的多片引导翼片。而且,将从设置在高度为4m的位置上的喷嘴水平地供应低温空气SA的情况作为比较例2。
[0086] 在空调空间10内,如图19所示,配置有工作机械H1~H8,在空调空间10内产生由各工作机械H1~H8和配置在天花板上的水银灯产生的热负荷。由这些工作机械H1~2
H8和水银灯产生的热负荷大约相当于80W/m。在图19中所示的各地点A~F,对温度、风速分布、污染物的空间分布进行了实测和比较。地点A是送气单元的前方附近,地点B是比地点A更靠近送气单元前方的位置,地点C是从地点B进一步离开的送气单元的前方位置。
地点D表示不在送气单元的前方、而是环绕隔断的位置。地点E、F均是空调空间10的内侧壁的表面。而且,在地点B和工作机械H3的位置供应了作为污染物的示踪气体。
[0087] 图20(表1)表示了对本发明的实施例和比较例1、比较例2进行比较时的空调运转状态。排气从设置在天花板部上的有压风扇进行,调整成排气风量与送气风量相同。比3
较是在调整到空调风量为4000m/h、送气温度为18℃的相同条件,外气温度为30℃时进行的。模拟污染物的示踪气体使用了密度调整到与空气相同的SF6和He的混合气体,以一定的流量从发热的工作机械(H3)的正上方、或者不发热的场所(B点地板上1m)放出,对本发明的实施例和比较例1、比较例2各自的情况下的空间浓度进行实测。
[0088] 图21表示距送气口的距离远,并且由发热的工作机械H2~H6包围的地点D的上下温度分布。与作为混合方式的运转了喷嘴(比较例2)的情况相比,在本发明的实施例以及比较例1中,能够确认居住区域的空气温度低、并且非居住区域的天花板部的空气温度高。与比较例1相比,本发明的实施例的居住区域的上下温度差小,能够维持更舒适的状态。
[0089] 图22~图25分别表示各地点A~D的风速分布。比较例1虽然以比本发明的实施例慢的吹出风速(0.3m/s)实施了运转,但能够确认地点A~地点C的脚下风速比本发明的实施例快。而且,在离开送气单元的地点D,本发明的实施例的居住区域风速整体上较比较例1快。由于本发明的实施例与比较例1相比增大了送气诱导量,所以可以说预计到达远方的送气风量大。
[0090] 图26为对地点D的地板上1m的PMV和SET*进行比较的附图。比较是使代谢量为1.2met、穿衣量为0.6clo进行的。在三种方式中,判断出本发明的实施例能够提高最远处的温热舒适性。
[0091] 图27~图29以排气口的浓度无次元地表示从发热仪器H3放出示踪气体的情况下的各地点A、C、D的浓度分布。居住区域的地板上1m的浓度虽然是比较例1为最低,但能够确认本发明的实施例的居住区域浓度为喷嘴情况的一半左右。
[0092] 图30~图32以排气口的浓度无次元地表示从不发热的地点B的地板上1m放出示踪气体的情况下的各地点A、C、D的浓度分布。判断出地板上1m的居住区域平均浓度是本发明的实施例为最低。比较例1的室内空气仅在送气移流的脚下和因发热产生的热上升气流的发生场所活跃。因此,在不产生浮力的场所产生污染物的情况下,污染物未被稀释而在居住区域产生高浓度部分。通过旋流而对居住区域的空气进行诱导的本发明的实施例由于产生居住区域内的空气流动而污染物被有效地稀释。
[0093] 图33是在外气温度为10℃的情况下对以送气温度为30℃、空调风量为4000m3/h进行了致热运行时的地点D的上下温度分布进行实测和比较的附图。在进行致热的情况下,送气因浮力而上升到天花板部,被壁面冷却而下降。本发明的实施例由于通过旋流对居住区域的空气进行诱导,所以致热时促进天花板部空气和居住区域的空气混合。因此,与比较例1和比较例2的情况下居住区域内的上下温度差大相比,在本发明的实施例中,通过设置在居住区域的送气口的旋流诱导产生的混合,地板上0.1m的脚下温度提高了2℃左右,居住区域内的上下温度差减小。而且,地板上1m的居住区域的温度是本发明的实施例与比较例1、比较例2相比高1℃左右。将三者进行比较,能够确认本发明的实施例能够最有效地进行致热。