液晶光学元件和光学装置转让专利

申请号 : CN200380100165.6

文献号 : CN1685411B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 桥本信幸

申请人 : 西铁城控股株式会社

摘要 :

本发明涉及提供液晶光学元件校正波前像差(主要是彗差和球差),该液晶光学元件可以独立于物镜安装;并且涉及使用该液晶光学元件的光学装置。根据本发明的液晶光学元件包括第一透明基板,第二透明基板,密封在第一与第二透明基板之间的液晶,以及电极图案,作为提前或延迟光束相位、从而校正波前像差的区域,其中使所述区域小于物镜的视场,使该区域基本上处于物镜的视场之内,与跟踪装置的跟踪动作无关。

权利要求 :

1.一种用于光学装置的液晶光学元件,该光学装置具有光源,用于将来自所述光源的光束聚焦在介质上的物镜,和移动所述物镜以校正所述物镜的轴偏离的跟踪装置,所述液晶光学元件包括:第一透明基板;

第二透明基板;

密封在所述第一与第二透明基板之间的液晶;以及

提供在所述第一与第二透明基板上的彗差校正或者球差校正电极图案,该电极图案具有用于将所述光束的相位提前或延迟以便校正所述光束的波前像差的区域,其中所述区域被形成为小于所述物镜的视场,使所述区域基本上处于所述物镜的视场内而与所述跟踪装置的跟踪动作无关。

2.根据权利要求1所述的液晶光学元件,其中所述电极图案为彗差校正电极图案,并且所述区域具有将所述光束的相位提前的第一区域,和将所述光束的相位延迟的第二区域。

3.根据权利要求2所述的液晶光学元件,其中所述电极图案具有第三区域,所述第三区域通过应用参考电势不改变所述光束的相位。

4.根据权利要求2所述的液晶光学元件,其中所述区域仅具有一个所述第一区域和仅具有一个所述第二区域。

5.根据权利要求2所述的液晶光学元件,其中所述区域具有两个所述第一区域和两个所述第二区域。

6.根据权利要求2所述的液晶光学元件,其中当所述跟踪装置处于非操作状态时,所述第一与第二区域整体上形成得小于所述物镜的视场,且处于物镜视场内50μm至300μm。

7.根据权利要求2所述的液晶光学元件,其中当所述跟踪装置处于非操作状态时,所述第一与第二区域整体上形成得小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留彗差保持在λ/4之内,其中λ为所述光束的波长。

8.根据权利要求2所述的液晶光学元件,其中当所述跟踪装置处于非操作状态时,所述第一与第二区域整体上形成得小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留彗差保持在λ/14之内,其中λ为所述光束的波长。

9.根据权利要求2所述的液晶光学元件,其中当所述跟踪装置处于非操作状态时,所述第一与第二区域整体上形成得小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留彗差保持在33mλ之内,其中λ为所述光束的波长。

10.根据权利要求1所述的液晶光学元件,其中所述电极图案为球差校正电极图案,并且所述区域具有多个用于将所述光束的相位提前或延迟的子区域。

11.根据权利要求10所述的液晶光学元件,其中当所述跟踪装置处于非操作状态时,所述多个子区域小于所述物镜的视场,且处于物镜视场内50μm至300μm。

12.根据权利要求10所述的液晶光学元件,其中当所述跟踪装置处于非操作状态时,所述多个子区域小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留球差保持在λ/4之内,其中λ为所述光束的波长。

13.根据权利要求10所述的液晶光学元件,其中当所述跟踪装置处于非操作状态时,所述多个子区域小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留球差保持在λ/14之内,其中λ为所述光束的波长。

14.根据权利要求10所述的液晶光学元件,其中当所述跟踪装置处于非操作状态时,所述多个子区域小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留球差保持在33mλ之内,其中λ为所述光束的波长。

15.根据权利要求1所述的液晶光学元件,其中所述电极图案包括形成在第一和第二透明基板其中之一上的彗差校正电极图案,和形成在第一和第二透明基板另一个上的球差校正电极图案。

16.根据权利要求15所述的液晶光学元件,其中用于所述彗差校正电极图案的所述区域具有用于将所述光束的相位提前的第一区域,和用于将所述光束的相位延迟的第二区域。

17.根据权利要求16所述的液晶光学元件,其中所述彗差校正电极图案具有第三区域,所述第三区域通过应用参考电势不改变所述光束的相位。

18.根据权利要求16所述的液晶光学元件,其中当所述跟踪装置处于非操作状态时,所述第一与第二区域整体上形成得小于所述物镜的视场,且处于物镜视场内80μm至500μm。

19.根据权利要求16所述的液晶光学元件,其中当所述跟踪装置处于非操作状态时,所述第一与第二区域整体上形成得小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留彗差保持在λ/4之内,其中λ为所述光束的波长。

20.根据权利要求16所述的液晶光学元件,其中当所述跟踪装置处于非操作状态时,所述第一与第二区域整体上形成得小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留彗差保持在λ/14之内,其中λ为所述光束的波长。

21.根据权利要求16所述的液晶光学元件,其中当所述跟踪装置处于非操作状态时,所述第一与第二区域整体上形成得小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留彗差保持在33mλ之内,其中λ为所述光束的波长。

22.根据权利要求15所述的液晶光学元件,其中用于所述球差校正电极图案的所述区域具有多个用于将所述光束的相位提前或延迟的子区域。

23.根据权利要求22所述的液晶光学元件,其中当所述跟踪装置处于非操作状态时,所述多个子区域小于所述物镜的视场,且处于物镜视场内70μm至400μm。

24.根据权利要求22所述的液晶光学元件,其中当所述跟踪装置处于非操作状态时,所述多个子区域小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留球差保持在λ/4之内,其中λ为所述光束的波长。

25.根据权利要求22所述的液晶光学元件,其中当所述跟踪装置处于非操作状态时,所述多个子区域小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留球差保持在λ/14之内,其中λ为所述光束的波长。

26.根据权利要求22所述的液晶光学元件,其中当所述跟踪装置处于非操作状态时,所述多个子区域小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留球差保持在33mλ之内,其中λ为所述光束的波长。

27.根据权利要求22所述的液晶光学元件,其中所述彗差校正电极图案用于DVD。

28.根据权利要求22所述的液晶光学元件,其中所述球差校正电极图案用于CD。

29.根据权利要求22所述的液晶光学元件,其中所述物镜为用于DVD的物镜。

30.一种用于将光束聚焦在介质上的光学装置,包括:

光源;

用于将来自所述光源的光束聚焦在所述介质上的物镜;

跟踪装置,用于移动所述物镜以校正所述物镜的轴偏离;以及

与所述物镜分离安装的液晶光学元件,其中所述液晶光学元件包括:

第一透明基板;

第二透明基板;

密封在所述第一与第二透明基板之间的液晶;以及

提供在所述第一与第二透明基板上的彗差校正或者球差校正电极图案,该电极图案具有用于将所述光束的相位提前或延迟从而校正所述光束的波前像差的区域,其中所述区域小于所述物镜的视场,使得所述区域基本上处于所述物镜的视场内而与所述跟踪装置的跟踪动作无关。

31.根据权利要求30所述的光学装置,其中所述电极图案为彗差校正电极图案,并且所述区域具有用于将所述光束的相位提前的第一区域,和将所述光束的相位延迟的第二区域。

32.根据权利要求31所述的光学装置,其中所述电极图案具有第三区域,向所述第三区域施加参考电势。

33.根据权利要求31所述的光学装置,其中所述区域仅具有一个所述第一区域和仅具有一个所述第二区域。

34.根据权利要求31所述的光学装置,其中所述区域具有两个所述第一区域和两个所述第二区域。

35.根据权利要求31所述的光学装置,其中当所述跟踪装置处于非操作状态时,所述第一与第二区域整体上形成得小于所述物镜的视场,且处于物镜视场内50μm至300μm。

36.根据权利要求31所述的光学装置,其中当所述跟踪装置处于非操作状态时,所述第一与第二区域整体上形成得小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留彗差保持在λ/4之内,其中λ为所述光束的波长。

37.根据权利要求31所述的光学装置,其中当所述跟踪装置处于非操作状态时,所述第一与第二区域整体上形成得小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留彗差保持在λ/14之内,其中λ为所述光束的波长。

38.根据权利要求31所述的光学装置,其中当所述跟踪装置处于非操作状态时,所述第一与第二区域整体上形成得小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留彗差保持在33mλ之内,其中λ为所述光束的波长。

39.根据权利要求30所述的光学装置,其中所述电极图案为球差校正电极图案,并且所述区域具有多个用于将所述光束的相位提前或延迟的子区域。

40.根据权利要求39所述的光学装置,其中当所述跟踪装置处于非操作状态时,所述多个子区域小于所述物镜的视场,且处于物镜视场内50μm至300μm。

41.根据权利要求39所述的光学装置,其中当所述跟踪装置处于非操作状态时,所述多个子区域小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留球差保持在λ/4之内,其中λ为所述光束的波长。

42.根据权利要求39所述的光学装置,其中当所述跟踪装置处于非操作状态时,所述多个子区域小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留球差保持在λ/14之内,其中λ为所述光束的波长。

43.根据权利要求39所述的光学装置,其中当所述跟踪装置处于非操作状态时,所述多个子区域小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留球差保持在33mλ之内,其中λ为所述光束的波长。

44.根据权利要求39所述的光学装置,还包括电压施加装置,该电压施加装置根据产生的球差向所述球差校正电极图案施加电压。

45.根据权利要求39所述的光学装置,其中所述介质具有多个轨道表面,并且所述光学装置还包括电压施加装置,所述电压施加装置根据所述多个轨道表面激励所述球差校正电极图案。

46.根据权利要求30所述的光学装置,其中所述电极图案包括形成在第一和第二透明基板其中之一上的彗差校正电极图案,和形成在第一和第二透明基板另一个上的球差校正电极图案。

47.根据权利要求46所述的光学装置,其中用于所述彗差校正电极图案的所述区域具有用于将所述光束的相位提前的第一区域,和用于将所述光束的相位延迟的第二区域。

48.根据权利要求46所述的光学装置,其中所述彗差校正电极图案具有第三区域,向所述第三区域施加参考电势。

49.根据权利要求47所述的光学装置,其中当所述跟踪装置处于非操作状态时,所述第一与第二区域整体上形成得小于所述物镜的视场,且处于物镜视场内80μm至500μm。

50.根据权利要求47所述的光学装置,其中当所述跟踪装置处于非操作状态时,所述第一与第二区域整体上形成得小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留彗差保持在λ/4之内,其中λ为所述光束的波长。

51.根据权利要求47所述的光学装置,其中当所述跟踪装置处于非操作状态时,所述第一与第二区域整体上形成得小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留彗差保持在λ/14之内,其中λ为所述光束的波长。

52.根据权利要求47所述的光学装置,其中当所述跟踪装置处于非操作状态时,所述第一与第二区域整体上形成得小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留彗差保持在33mλ之内,其中λ为所述光束的波长。

53.根据权利要求46所述的光学装置,用于所述球差校正电极图案的所述区域具有多个用于将所述光束的相位提前或延迟的子区域。

54.根据权利要求53所述的光学装置,其中当所述跟踪装置处于非操作状态时,所述多个子区域小于所述物镜的视场,且处于物镜视场内70μm至400μm。

55.根据权利要求53所述的光学装置,其中当所述跟踪装置处于非操作状态时,所述多个子区域小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留球差保持在λ/4之内,其中λ为所述光束的波长。

56.根据权利要求53所述的光学装置,其中当所述跟踪装置处于非操作状态时,所述多个子区域小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留球差保持在λ/14之内,其中λ为所述光束的波长。

57.根据权利要求53所述的光学装置,其中当所述跟踪装置处于非操作状态时,所述多个子区域小于所述物镜的视场,且处于物镜视场内,使所述像差校正之后所述光束的残留球差保持在33mλ之内,其中λ为所述光束的波长。

58.根据权利要求46所述的光学装置,还包括开关装置,所述开关装置根据所使用的所述介质在所述彗差校正电极图案与所述球差校正电极图案之间切换操作。

59.根据权利要求58所述的光学装置,其中所述彗差校正电极图案用于DVD。

60.根据权利要求58所述的光学装置,其中所述球差校正电极图案用于CD。

61.根据权利要求58所述的光学装置,其中所述物镜为用于DVD的物镜。

说明书 :

技术领域

本发明涉及一种调相液晶光学元件,一种使用其的光学装置,更具体而言,涉及一种用于校正高度相干光束如激光的波前象差的液晶光学元件,和使用这种液晶光学元件的光学装置。

背景技术

在诸如致密盘(CD)或数字通用光盘(DVD)的记录介质上读或写数据时所使用的光拾取装置中,如图23A所示,来自光源1的光束被准直透镜2转换成大体平行的光束,该光束通过物镜3聚焦在记录介质4上,并且通过接收记录介质4反射的光束,产生信息信号。在这种光拾取装置中,当在记录介质上读或写数据时,通过物镜3聚焦的光束必须严格地沿着记录介质4上的记录轨道。不过,由于记录介质4的驱动装置中的缺陷等原因引起记录介质4扭曲或弯曲,记录介质4的表面可发生倾斜。如果物镜3所聚焦光束的光轴相对于记录介质4上的轨道倾斜,则在记录介质4的基片中产生彗差;即,当在物镜3的入射光瞳位置(即液晶光学元件5将要插入的位置)观察时,产生如图23B中所示的彗差20,使基于记录介质4所反射的光束产生的信息信号降质。
有鉴于此,提出一种通过将液晶光学元件5设置在准直透镜2与物镜3之间的光路中来校正与记录介质4的倾斜有关的彗差,如图24中所示(例如,参照专利文献1)。也即,利用液晶分子的取向随液晶中产生的电势差而变这种性质,液晶光学元件5用于改变穿过液晶的光束的相位,从而消除彗差。
图25A表示根据施加给彗差校正液晶光学元件5的电压在液晶中产生相位分布的透明电极图案30。在图25A中,在与入射在液晶光学元件5上的光束的有效直径10具有大体相同尺寸的区域中,形成将相位提前的两个区域32和33,和将相位延迟的两个区域34和35。图中,附图标记31表示施加参考电势的区域。
当正(+)电压施加给区域32和33时,相对于相对一侧上的透明电极(未示出)产生电势差,并且电极之间的液晶分子的取向随着电势差改变。结果,在传统的p-型液晶情形中,所穿过的光束受到使其相位提前的力的作用。另一方面,当负(-)电压施加给区域34和35时,相对于相对一侧上的透明电极(未示出)产生电势差,并且电极之间的液晶分子的取向随电势差而变。结果,在传统的p-型液晶情形中,所穿过的光束受到使其相位延迟的力的作用。将参考电势(此处以0V为例)施加给区域31。这些电压通过导线6施加给透明电极图案30(参见图24)。
在图25B中,在X轴上描绘出施加给各区域的电压21。通过将适当电压施加给透明电极图案30,彗差20可以得到校正。图25C表示校正之后的彗差22。如图25C中所示,通过使用液晶光学元件5进行校正,从而抑制记录介质4的基片中产生彗差。
不过,除了与记录介质4的倾斜有关的问题以外,还会发生物镜3的光轴偏离记录介质4上的轨道的问题(光轴偏离)。为了解决这一问题,如图26中所示,物镜3固定到跟踪激励器7,通过跟踪激励器7使物镜3的光轴沿记录介质4上的轨道。激励器7具有用于电源的引线8。通过激励器7沿图中箭头A所示的方向移动物镜3,被物镜3聚焦的光束得到校正,以便严格地沿着记录介质4上的轨道(在图26中,如光束12所示光束11得到校正)。
不过,当物镜3通过激励器7移动时,液晶光学元件5与物镜3之间的位置关系发生改变。另一方面,将液晶光学元件5中形成的调相透明电极图案30(图25A)设计成与光拾取装置的有效直径10匹配。即,将液晶光学元件5设计成,仅当物镜3与液晶光学元件5沿光轴精确对准时,才能理想地校正记录介质4的基片中发生的彗差。因此,由于液晶光学元件5与物镜3之间的位置关系偏离理想条件,如果记录介质4的表面发生倾斜,则彗差不能通过液晶光学元件5得到有效校正。
由此,提出将调相液晶光学元件5与物镜3安装成一个整体,并且通过同一激励器7将它们作为一个单元移动,如图26中所示(参照例如专利文献2)。
不过,调相液晶光学元件5与物镜3整体安装,并且由同一激励器7作为一个部件移动它们,存在如下问题。
首先,当整体安装调相液晶光学元件5时,作用在激励器7上的重力增大。要求激励器7以极快的速度或者在数毫秒时间内移动物镜3,不过液晶光学元件5的附加重量会降低激励器7移动物镜3使其沿记录介质4上的轨道的能力。其次,液晶光学元件5必须设置有用于驱动液晶光学元件5的导线6,不过,由于设有导线6,弹性比(springrate)改变,这会增大构成为单个部件的物镜3与液晶光学元件5的操纵控制复杂度。尤其是,导线6可能会产生缠绕,和干扰物镜3跟踪动作的问题。
另外,在诸如DVD或下一代高密度DVD的记录介质上读或写数据所使用的光拾取装置中,如图27A所示,光源1发出的光束被准直透镜2转变成大体平行的光束,该平行光束被物镜3聚焦在记录介质4上,通过接收记录介质4所反射的光束产生信息信号。当使用这种光拾取装置在记录介质4上读或写数据时,物镜3必须将光束精确地聚焦在记录介质4上面的轨道上。
不过,由于诸如记录介质4轨道表面上形成的透光保护层(图27A中B所示)厚度的不均匀性等因素,从物镜3到轨道表面的距离不可能时刻都恒定不变,或者光斑不能时刻理想聚焦。此外,在记录介质4中形成不止一个轨道表面以便增大记录介质4的存储容量时,还需要调节物镜3与各轨道表面之间的位置关系。
通过这种方法,如果物镜3与轨道表面之间的距离发生改变,则在记录介质4的基片中产生球差,导致由记录介质4所反射的光束产生的信息信号发生降质。图27B表示在物镜3的入射光瞳位置观察时球差201的一个示例。另一方面,在记录介质中形成不止一个轨道表面时,在与第一轨道表面不同位置的第二轨道表面上读或写数据时会产生球差,其中第一轨道表面处于物镜3的焦点处,并且也会引起由记录介质4所反射的光束产生的信息信号降质。
由此,提出通过将液晶光学元件5设置在准直透镜2与物镜3之间来校正记录介质的基片中产生的球差,如图28中所示(参照例如专利文献3)。即,利用液晶分子的取向随施加给液晶的电势差而变的性质,液晶光学元件5用于改变通过液晶的光束的相位,从而消除球差。
图29A表示根据施加给球差校正液晶光学元件5的电压在液晶中产生相位分布的透明电极图案40的一个示例。在图29A中,在有效直径10范围内形成9个同心电极图案41至49。如图29B中所示的电压202施加给各区域。当图29B中所示的电压施加给图29A中所示的电极图案40时,相对于相对一侧上的透明电极产生电势差,电极之间的液晶分子的取向随电势差而变。结果,所穿过的光束受到根据该电势差使其相位提前的力的作用。因此,记录介质4的基片中产生的球差201得到校正,如图29C中的球差203所示。电压通过导线6(参见图28)施加给透明电极图案40。
不过,除了上述记录介质4的基片中产生的球差问题以外,还发生物镜3的光轴偏离记录介质4上面的轨道的问题(轴偏离)。为了解决这一问题,如图30中所示,物镜3固定于跟踪激励器7,通过跟踪激励器7使物镜3的光轴沿记录介质4上的轨道。激励器7具有用于电源的引线8。激励器7沿图中箭头A所示的方向移动物镜3,被物镜3聚焦的光束严格地沿着记录介质4上面的轨道。
不过,当物镜3通过激励器7发生移动时,液晶光学元件5与物镜3之间的位置关系发生改变。另一方面,将液晶光学元件5中形成的透明电极图案40(参见图29A)设计成与光拾取装置的有效直径10匹配。即,将液晶光学元件5设计成,仅当物镜3与液晶光学元件5沿光轴精确对准时,才能理想地校正记录介质4的基片中发生的球差。因此,当液晶光学元件5与物镜3之间的位置关系偏离理想条件时,球差不能通过液晶光学元件5得到充分校正。
此处,如果调相光学元件5与物镜3整体安装使其可以作为一个部件通过同一激励器7而移动时,如图30中所示,会发生与参照图26所述相同的问题。首先,当调相液晶光学元件5整体安装时,作用在激励器7上的重量增大。要求激励器7以极快的速度或者在数毫秒时间内移动物镜3,不过液晶光学元件5的附加重量会降低激励器7移动物镜3使其沿着记录介质4上的轨道的能力。其次,液晶光学元件5必须设置有用于驱动液晶光学元件5的导线6,不过,由于设有导线6,弹性比(spring rate)改变,这会增大构成为单个部件的物镜3与液晶光学元件5的操纵控制复杂度。尤其是,发生导线6可能会缠绕,和干扰物镜3跟踪动作的问题。
还提出一种如图31中所示的光学装置,其通过使用具有单一物镜113的光盘装置,可以播放具有0.6mm厚度透明基片的高密度光盘707如DVD,以及具有1.2mm厚度透明基片的光盘708如致密盘(CD)(参照例如专利文献4)。
在图31中,光源1为用于高密度光盘的光源,并且发射出波长为650nm的光束。光源1发射出的光束被准直透镜2转变成大体上平行的光束,该平行光束受到孔径57的限制,成为有效直径110为直径大约5mm的光束;然后,该光束穿过半反镜56,进入物镜113。物镜113为用于高密度光盘的数值孔径(NA)为0.65的物镜,并且将入射光束聚焦在具有0.6mm透明基片的高密度光盘707上。
另一方面,光源101为用于CD的光源,且发射出波长为780nm的光束。从光源101发射出的光束被准直透镜102转变成大体平行的光束,该平行光束受到孔径58的限制,成为具有大约4mm有效直径的光束120;然后,该光束被半反镜56改变方向,进入物镜113。物镜113将入射光束聚焦在具有1.2mm透明基片的光盘708上。
通过根据待播放的光盘种类在两个光源之间切换,可使用一个物镜113播放两种光盘。
不过,由于光盘707的驱动装置中的缺陷等导致光盘707扭曲或弯曲,光盘707的表面处可能会发生倾斜(盘倾斜)。由于这种盘倾斜,当在光盘707上读或写数据时,在光盘707的基片中产生波前象差(主要为彗差)。
图23B中表示出用物镜113的光瞳坐标表示出的光盘707的基片中产生的彗差20。彗差使由光盘707反射的光束产生的光强信号质量降质。同样,对于光盘708,盘也会倾斜,不过通常,由于记录密度低等原因,校正的必要性不大。
另外,这种光学装置中的物镜113用于将光斑聚焦在具有0.6mm透明基片的高密度光盘707的轨道表面上;从而,如果光斑聚焦在光盘708的轨道表面上,光盘708如具有1.2mm透明基片的CD,则即使入射光束的有效直径减小,光斑也不能精确地聚焦在轨道上。从而,当播放光盘708如具有1.2mm透明基片的CD时,在基片中产生球差。
光盘708,如具有1.2mm透明基片的CD中产生的球差201,当用物镜113的光瞳坐标表示时,如图27B中所示。球差导致由光盘708所反射的光束产生的光强信号质量降低。
(专利文献1)
日本未审专利公开No.2001-143303(第3页,图1)
(专利文献2)
日本未审专利公开No.2002-215505(第2页,图1)
(专利文献3)
日本未审专利公开No.H10-269611(第3至5页,图1至3,图5)
(专利文献4)
日本未审专利公开No.2001-101700(第5至6页,图6)

发明内容

本发明的一个目的在于提供一种用于校正波前象差(主要是彗差和球差)的液晶光学元件,其可以与物镜分离安装;以及一种使用该液晶光学元件的光学装置。
本发明的另一目的在于提供一种液晶光学元件,无论物镜的跟踪动作如何,该液晶光学元件均能可靠地校正彗差;以及一种使用该液晶光学元件的光学装置。
本发明的又一目的在于提供一种液晶光学元件,无论物镜的跟踪动作如何,该液晶光学元件均能可靠地校正球差;以及一种使用该液晶光学元件的光学装置。
本发明的再一目的在于提供一种用于校正波前象差(主要是彗差和球差)的液晶光学元件,其可以以较低成本制造,无需降低跟踪性能;以及一种使用该液晶光学元件的光学装置。
本发明的另一目的在于提供一种用于校正波前象差(主要是彗差和球差)的液晶光学元件,其通过使用单一物镜能够在不同种类的光盘上可靠的读出或写入;以及一种使用该液晶光学元件的光学装置。
本发明的另一目的在于提供一种用于校正波前象差(主要是彗差和球差)的液晶光学元件,其通过使用单一物镜能够在不同种类的光盘上可靠的读出或写入,不会影响跟踪性能;以及一种使用该液晶光学元件的光学装置。
为了实现上述目的,根据本发明的液晶光学元件包括第一透明基板,第二透明基板,密封在第一与第二透明基板之间的液晶,以及电极图案,电极图案作为将光束相位提前或延迟的区域,从而校正波前象差,其中将所述区域形成为小于物镜的视场,无论跟踪装置的跟踪动作如何,都使该区域大体上处于物镜的视场之内。由于将光束相位提前或延迟的区域形成为大体上处于物镜的视场之内,所产生的波前象差可以得到令人满意的校正,与跟踪动作无关。
为了实现上述目的,根据本发明的用于光学装置的液晶光学元件,该光学装置具有光源,用于将来自所述光源的光束聚焦在介质上的物镜,和移动所述物镜以跟随所述介质的轨道的跟踪装置,所述液晶光学元件包括:第一透明基板;第二透明基板;密封在所述第一与第二透明基板之间的液晶;以及提供在所述第一与第二透明基板上的电极图案,该电极图案具有用于将所述光束的相位提前或延迟以便校正所述光束的波前像差的区域,其中所述区域被形成为小于所述物镜的视场,使所述区域基本上处于所述物镜的视场内而与所述跟踪装置的跟踪动作无关。
为了实现上述目的,根据本发明的光学装置包括一光源;一用于将光源发出的光聚焦在记录介质上的物镜,一跟踪装置,其移动物镜以便校正物镜的轴偏离;以及一与物镜分离安装的液晶光学元件,其中该液晶光学元件包括:第一透明基板,第二透明基板,密封在第一与第二透明基板之间的液晶,以及电极图案,电极图案作为将光束相位提前或延迟的区域,从而校正波前象差,其中将所述区域形成为小于物镜的视场,无论跟踪装置的跟踪动作如何,都使该区域大体上处于物镜的视场之内。由于将光束相位提前或延迟的区域形成为大体上处于物镜的视场之内,所产生的波前象差可以得到令人满意的校正,与跟踪动作无关。
为了实现上述目的,根据本发明的一种用于将光束聚焦在介质上的光学装置,包括:光源;用于将来自所述光源的光束聚焦在所述记录介质上的物镜;跟踪装置,用于移动所述物镜以跟随所述介质的轨道;以及与所述物镜分离安装的液晶光学元件,其中所述液晶光学元件包括:第一透明基板;第二透明基板;密封在所述第一与第二透明基板之间的液晶;以及提供在所述第一与第二透明基板上的电极图案,该电极图案具有用于将所述光束的相位提前或延迟从而校正所述光束的波前像差的区域,其中所述区域小于所述物镜的视场,使得所述区域基本上处于所述物镜的视场内而与所述跟踪装置的跟踪动作无关。
优选,将电极图案设计成根据所产生的像差量校正波前象差。
优选,所述电极图案为彗差校正电极图案。
优选,为了校正彗差,所述区域具有用于将光束相位提前的第一区域,和将光束相位延迟的第二区域,更为优选的是,具有不改变光束相位的第三区域。所述第三区域通过应用参考电势不改变所述光束的相位。
优选,该区域仅具有一个第一区域和仅具有一个第二区域用来校正彗差。
优选,该区域具有两个第一区域和两个第二区域用来校正彗差。
优选,为了校正彗差,当跟踪装置处于非操作状态时,第一和第二区域整体上形成为小于物镜视场,并且在物镜视场内50μm至300μm。
优选,为了校正彗差,当跟踪装置处于非操作状态时,第一和第二区域整体上形成为小于物镜视场,并且在物镜视场内,从而在像差校正之后,光束的残留彗差保持在λ/4以内,其中λ为光束波长。
优选,为了校正彗差,当跟踪装置处于非操作状态时,第一和第二区域整体上形成为小于物镜视场,并且在物镜视场内,从而在像差校正之后,光束的残留彗差保持在λ/14以内,其中λ为光束波长。
优选,为了校正彗差,当跟踪装置处于非操作状态时,第一和第二区域整体上形成为小于物镜视场,并且在物镜视场内,从而在像差校正之后,光束的残余彗差保持在33mλ以内,其中λ为光束波长。
优选,所述电极图案为球差校正电极图案。
优选,所述区域具有多个子区域,所述子区域用于将光束的相位提前或延迟以校正球差。
优选,为了校正球差,当跟踪装置处于非操作状态时,多个子区域小于物镜的视场,并且处于物镜的视场内50μm至300μm。
优选,为了校正球差,当跟踪装置处于非操作状态时,仅在小于物镜有效直径的内部区域中形成多个子区域,从而在像差校正之后,光束的残留球差保持在λ/4以内,其中λ为光束波长。
优选,为了校正球差,当跟踪装置处于非操作状态时,多个子区域小于物镜的视场,并且处于物镜的视场内,使像差校正之后,光束的残留球差保持在λ/14以内,其中λ为光束波长。
优选,为了校正球差,当跟踪装置处于非操作状态时,多个子区域小于物镜的视场,并且处于物镜的视场内,使像差校正之后,光束的残留球差保持在33mλ以内,其中λ为光束波长。
优选,该光学装置还包括一电压施加装置,根据所产生的球差将电压施加给球差校正电极图案。
优选,该记录介质具有多个轨道表面,并且该光学装置还包括一电压施加装置,该电压施加装置根据多个轨道表面激励球差校正电极图案。
优选,所述电极图案包括形成在第一与第二透明基板其中任何一个上的彗差校正电极图案;和形成在第一与第二透明基板中另一个之上的球差校正电极图案。
优选,当跟踪装置处于非操作状态时,将用于校正彗差的第一与第二区域整体上形成为小于物镜的视场,并处于物镜视场内80μm至500μm,此外当跟踪装置处于非操作状态时,用于校正球差的多个子区域形成为小于物镜的视场,并处于物镜视场内70μm至400μm。
优选,该光学装置还包括一开关装置,用于根据所使用的记录介质在彗差校正电极图案与球差校正电极图案之间切换。
优选,该彗差校正电极图案用于DVD,球差校正电极图案用于CD。
优选,该物镜为用于DVD的物镜。

附图说明

图1所示为表示根据本发明第一实施例的光学装置的示意性平面图。
图2表示图1中所使用的液晶光学元件的剖面的一个例子。
图3A表示图1中所使用的液晶光学元件中彗差校正电极图案的一个例子,图3B表示施加给图3A中所示电极图案的电压的一个例子,图3C表示经过校正的彗差的一个例子。
图4A表示图1中所使用的液晶光学元件中彗差校正电极图案的另一个例子,图4B表示施加给图4A中所示电极图案的电压的一个例子,图4C表示经过校正的彗差的一个例子。
图5说明用于波前象差校正的现有技术液晶光学元件的操作。
图6说明根据本发明的液晶光学元件的操作。
图7用于解释,当根据本发明的液晶光学元件中发生轴偏离时,如何进行彗差校正的一个具体例子。
图8用于说明在现有技术液晶光学元件中发生轴偏离时的情形。
图9所示为表示根据本发明第二实施例的光学装置的示意平面图。
图10所示表示图9中所使用的液晶光学元件的剖面的一个例子。
图11A表示在图9中所使用的液晶光学元件中球差校正电极图案的一个例子,图11B表示施加给图11A中所示电极图案的电压的一个例子,图11C表示经过校正的球差的一个例子。
图12A表示图9中所使用的液晶光学元件中球差校正电极图案的另一个例子,图12B表示施加给图12A中所示电极图案的电压的一个例子,图12C表示经过校正的球差的一个例子。
图13所示为表示根据本发明第三实施例的光学装置的示意平面图。
图14A表示图13中所使用的液晶光学元件中彗差校正电极图案的一个例子,图14B表示施加给图14A中电极图案的电压的一个例子,图14C表示经过校正的彗差的一个例子。
图15A表示图13中所使用的液晶光学元件中彗差校正电极图案的另一个例子,图15B表示施加给图15A中所示电极图案的电压的一个例子,图15C表示经过校正的彗差的一个例子。
图16A表示用于球差校正的另一个电极图案示例,图16B表示用于彗差校正的另一个电极图案示例。
图17所示为表示根据本发明第四实施例的光学装置的概念图。
图18表示图17中所使用的液晶光学元件的剖面的一个例子。
图19A表示图17中所使用的液晶光学元件中彗差校正电极图案的一个例子,图19B表示施加给图19A中电极图案的电压的一个例子,图19C表示经过校正的彗差的一个例子。
图20A表示图17中所使用的液晶光学元件中球差校正电极图案的一个例子,图20B表示施加给图20A中所示电极图案的电压的一个例子,图20C表示经过校正的球差的一个例子。
图21A表示图17中所使用的液晶光学元件中彗差校正电极图案的另一个例子,图21B表示施加给图21A中所示电极图案的电压的一个例子,图21C表示经过校正的彗差的一个例子。
图22A表示图17中所使用的液晶光学元件中球差校正电极图案的另一个例子,图22B表示施加给图22A中所示电极图案的电压的一个例子,图22C表示经过校正的球差的一个例子。
图23A用于说明记录介质倾斜产生彗差,图23B表示所产生的彗差的一个例子。
图24所示表示具有现有技术液晶光学元件用于彗差校正的光学装置的一个例子。
图25A所示为液晶光学元件中彗差校正电极图案的一个例子,图25B表示施加给图25A中所示电极图案的电压的一个例子,图25C表示经过校正的彗差的一个例子。
图26所示表示具有现有技术液晶光学元件用于彗差校正的光学装置的另一个例子。
图27A用于说明记录介质产生的球差,图27B表示所产生的球差的一个例子。
图28表示具有现有技术液晶光学元件用于球差校正的光学装置的一个例子。
图29A表示液晶光学元件中球差校正电极图案的一个例子,图29B表示施加给图29A中电极图案的电压的一个例子,图29C表示经过校正的球差的一个例子。
图30表示具有现有技术液晶光学元件用于球差校正的光学装置的另一个例子。
图31表示根据现有技术的光学装置的一个例子。

具体实施方式

将参照附图描述根据本发明用于波前象差校正的液晶光学元件和使用其的光学装置。此处可能产生的波前象差主要是彗差和球差。在下面给出的第一实施例中,将描述主要用于校正彗差的液晶光学元件和使用其的光学装置。在下面给出的第二实施例中,将描述主要用于校正球差的液晶光学元件和使用其的光学装置。另外,在下面给出的第三和第四实施例中,将描述主要用于校正彗差和球差的液晶光学元件和使用其的光学装置。
(实施例1)
图1表示使用本发明第一实施例的液晶光学元件的光学装置1000。在图1中,从光源1如半导体激光器发射出的光束(650nm),通过准直透镜2转变成具有有效直径10的大体平行光束;然后,该光束穿过偏振分束器50,进入液晶光学元件60。从液晶光学元件60发出的光束穿过四分之一波片55,通过物镜3聚焦在记录介质700(如DVD)上。正如下面将要讨论的,液晶光学元件60具有施加校正的功能,从而抑制记录介质700的基片中产生彗差。
光束的波长,在DVD情形中(本实施例)为650nm,在CD情形中为780nm,并且在任何一种情况下都可能产生±20nm的误差。下一代蓝激光器采用的波长为405nm,主要用于DVD。本发明主要用于DVD,并在使用下一代蓝激光器的应用中产生尤为显著的效果。
此处,在几何光学设计中,假设光束位置没有偏移,或者其直径没有改变,“有效直径”指入射在液晶光学元件上,并且可以被物镜3有效利用的主光束的直径。另外,“液晶光学元件的有效直径”表示根据所产生的像差量,包含有用于提前相位的区域和用于延迟相位的区域的直径。这些定义适用于下面所述的所有实施例。
在本实施例中,选择物镜的数值孔径NA为0.65,有效直径(φ)为3mm。
物镜3固定于跟踪激励器7。可使用磁转跟踪装置取代激励器。激励器7通过沿图中箭头A所示方向移动物镜,使经过物镜聚焦的光束严格地沿着记录介质700上的轨道(例如,通过如光束12所示校正光束11)。激励器7具有用于驱动其的导线8。液晶光学元件60具有用于驱动后面所述透明电极图案的导线54。
记录介质700反射的光束再次通过物镜3,四分之一波片55和液晶光学元件60,并被偏振分束器50改变方向,朝向聚光透镜51引导,聚光透镜51将光束聚焦在光检测器52上。光束在被记录介质700反射时,振幅受到记录介质700的轨道上所记录信息(凹坑)的调制。光检测器52以光强信号的形式输出所接收的光束。从该光强信号(RF信号)恢复记录信息。
液晶光学元件控制电路53(下面简单地称做“控制电路”),利用光检测器52输出的光强信号,检测记录介质700的基片中产生的彗差。另外,控制电路53通过导线54将电压施加给液晶光学元件60中的透明电极图案,消除所检测到的彗差。通过这种控制,彗差得到校正,使光强信号的强度为适当大小。
图2表示图1中所示液晶光学元件60的剖面图。图2中箭头所示的方向为图1中光源1发射出的光束在穿过偏振分束器50后进入液晶光学元件60的方向。在图2中,在面对光源1的透明基板61一侧形成彗差校正透明电极62和取向膜63。另一方面,在面对记录介质700一侧的透明基板67上形成透明反电极66和取向膜65。液晶68密封在两透明基板61与67之间,并通过密封元件64密封。为了便于说明,夸大了图2中所示的构成元件,且其厚度比与实际比率不同。
图3A表示图1和2中所示的液晶光学元件60的透明电极62中形成的彗差校正透明电极图案300。如图3A中所示,在内部区域18中设置有用于提前相位的两个区域32和33,和用于延迟相位的两个区域34和35,其中内部区域18为入射在液晶光学元件60上的光束的有效直径10向内限定50μm的区域。在图中,附图标记31表示施加参考电势的区域。
此处,内部区域指有效直径10向内限定规定距离的区域,并在其中形成波前像差校正电极图案,并且该区域相当于前面定义的液晶光学元件60的有效直径。
当相对施加给区域31的参考电压为正(+)的电压施加给区域32和33时,相对于透明反电极66产生电势差,电极之间的液晶分子的取向随电势差而变。结果,所穿过的光束受到使其相位提前的力的作用。另一方面,当相对于施加给区域31的参考电压为负(-)的电压施加给区域34和35时,相对于透明反电极66产生电势差,电极之间的液晶分子的取向随电势差而变。结果,所穿过的光束受到使其相位延迟的力的作用。参考电势(此处以0V为例)施加给区域31。这些电压通过导线54从控制电路53施加给透明电极62的彗差校正电极图案300(参见图1)。
在图3B中,在X轴上描绘出施加给各区域的电压23。当该电压施加给内部区域18中形成的透明电极图案300中的各区域31至35时,液晶光学元件60用于消除记录介质700相对光轴倾斜时产生的彗差20。
图3C表示校正之后的彗差24。即,图3B中的彗差20校正为图3C中的彗差24。从而可知通过液晶光学元件60进行了校正,以便抑制记录介质700的基片中产生彗差。
此处,当有效直径10的中心与内部区域18中透明电极图案300的中心相同时(即,没有轴偏离),按照瑞利四分之一波长原则,优选校正之后的彗差(残留彗差)不大于光源1波长的四分之一。当满足这一条件时,根据瑞利判据,通常认为基片中产生的彗差导致的光损耗可以接受。
此外,当有效直径10的中心与内部区域18中透明电极图案300的中心相同时(即,当没有轴偏离时),按照Marechal判据,优选校正之后的彗差(残留彗差)不大于光源1波长的1/14。Marechal认为,波前与中心处于衍射焦点的参考球面之间的位移的标准偏差为λ/14或更小的条件,等效于特定系统中的像差足够小的条件。当满足这一条件时,根据Marechal判据,可以认为基片中产生的彗差足够小。
另外,当有效直径10的中心与内部区域18内透明电极图案300的中心相同时(即,当没有轴偏离时),当记录介质是DVD时,优选校正之后的彗差(残留彗差)不大于33mλrms(均方根)。这是因为其认为必须消除DVD评价器(evaluator)中的评价标准(33mλ)。
如果内部区域更小,则即使激励器7引起大的轴偏离,内部区域也将处于液晶光学元件上定义的物镜的视场之内(下面简称为“物镜的视场”);这样就能够校正彗差,与轴偏离无关。不过,如果内部区域太小,则残留彗差将会过度增大。上面三个例子对条件有限制。
图4A表示根据本发明的另一种彗差校正透明电极图案310。在图4A中,在从入射在液晶光学元件60上的光束的有效直径10向内限定300μm的内部区域18内,形成用于提前相位的单一区域32,和用于延迟相位的单一区域34。在图中,附图标记31表示施加参考电势的区域。
当正(+)电压施加给区域32时,相对于透明反电极66产生电势差,并且电极之间的液晶分子的取向随电势差而变。结果,所穿过的光束受到将其相位提前的力的作用。另一方面,当负(-)电压施加给区域34时,相对于透明反电极66产生电势差,并且电极之间的液晶分子的取向随电势差而变。结果,所穿过的光束受到使其相位延迟的力的作用。参考电势(此处,以0V为例)施加给区域31。这些电压通过导线54从控制电路53施加给透明电极图案(参见图1)。
在图4B中,在X轴上描绘出施加给各区域的电压25。当该电压施加给透明电极图案310中的各区域31,32和34时,液晶光学元件60用于消除记录介质700相对于光轴倾斜时产生的彗差20。
图4C表示校正之后的彗差260。即,图4B中的彗差20校正成图4C中的彗差260。从而可知通过液晶光学元件60进行了校正,以便抑制记录介质700的基片中产生彗差。
此处,将描述如图25A所示在有效直径10内部整个区域上形成相位提前和相位延迟区域的情形,与如图3A或4A中所示仅在有效直径10内部限定的内部区域18中形成相位提前和相位延迟区域的情形之间的差别。
图25A中所示的彗差校正等效于如图5A中所示在有效直径10的整个区域上捕获光束,并且用液晶光学元件的有效直径校正所捕获的光束的情形。不过,在此情形中,当物镜3通过激励器7而发生移动时,液晶光学元件的有效直径偏离物镜的视场(参见图5B),不能实现有效彗差校正。
相反,图3A中所示的彗差校正等效于仅入射在内部区域上的光束被捕获,并且所捕获的光束受到与液晶光学元件有效直径相应的区域18的校正的情形,如图6A中所示,其中所述内部区域为有效直径10向内定义50μm的区域。在此情形中,当物镜3在激励器7的作用下发生移动时,物镜的视场中心偏离内部区域18的中心,不过内部区域18依然处于物镜视场之内(参见图6B)。因此,可以实现令人满意的彗差校正,不过与内部区域18对准光轴中心的情形(参见图6A)相比,校正度有所降低。
如图所示,当仅在有效直径10内定义的内部区域18中形成相位提前和相位延迟区域,而非在有效直径10的整个区域上形成该区域时,即使为了跟踪激励器7移动物镜3,也能实现有效的彗差校正。
即,由于相位提前和相位延迟区域设定为大体处于物镜的视场之内时,与激励器7导致的透镜运动无关,都能实现有效的彗差校正。术语“基本上处于”表明将该区域设定成可以在预定精度内实现彗差校正。
下面的表1表示形成彗差校正电极图案的内部区域,与为了进行跟踪与由反射光束产生的RF信号的降质(简称为信号抖动)有关的物镜移动量(=轴向移动量)之间的关系。
RF信号的降质定为A到D级:A表示最好状态,B表示良好状态,C表示RF信号可以使用的状态,D表示RF信号不可使用的状态。为了构成下面所示的表1,制造仅在有效直径向内规定0μm、50μm、100μm、150μm、200μm、250μm、300μm或350μm的内部区域中包含相位提前和相位延迟区域的液晶光学元件,并且通过将各液晶光学元件偏离物镜光轴0μm、50μm、100μm、150μm和200μm,测量RF信号的抖动量。采用如图1中所示相同的光学装置结构,并且选择有效直径(φ)为3mm,物镜的数值孔径(NA)为0.65。
[表1]

如从表1可以看出,即使发生0μm到200μm的轴偏离,用其中仅在有效直径向内限定50μm至300μm的内部区域内形成相位提前和相位延迟区域的任何液晶光学元件可以实现大体上令人满意的彗差校正。由于可以实现令人满意的彗差校正,RF信号的抖动量得到抑制,使光学装置可以使用。此处,仅在有效直径向内限定50μm的内部区域内形成相位提前和相位延迟区域的例子,相当于图3A中所示的例子,而仅在有效直径向内限定300μm的内部区域中形成相位提前和相位延迟区域的例子相当于图4A中所示的例子。
另一方面,在仅在有效直径向内限定0μm的内部区域中(即,在有效直径10的全部区域上)形成相位提前和相位延迟区域的液晶光学元件的情形中(即,图25A中所示现有技术液晶光学元件),如果产生100μm或者更大的轴偏离,则不能实现适当的像差校正。即,RF信号的抖动量增大,使光学装置不可用。
同样,在仅在有效直径向内限定350μm的内部区域中形成相位提前和相位延迟区域的液晶光学元件的情形中,如果发生50μm或者更大的轴偏离,则不能实现适当的像差校正。即,RF信号的抖动量增大,使光学装置不可用。推断起来这是由于相位提前和相位延迟区域太小以至于不能实现适当彗差校正的原因。
由此,通过使用仅在有效直径向内限定50μm至300μm的内部区域内形成相位提前和相位延迟区域的液晶光学元件,即使由于物镜的跟踪动作导致发生轴偏离,也能实现令人满意的彗差校正。
此处,可以将形成相位提前和相位延迟区域的内部区域设定为与光学装置的技术规格匹配。例如,如果提前已知跟踪导致的轴偏离为100μm,那么内部区域应当设定为有效直径向内50μm至100μm。如果跟踪导致的轴偏离越大,则根据技术规格内部区域应当设置得越大。
参照图7和8,将进一步描述发生轴偏离时的彗差校正。图7表示使用图4A中所透明电极图案310的情形,图8表示使用图25A中所示现有技术透明电极图案30的情形。图7A和8A表示不存在轴偏离的情形(与图4B和25B相同)。图7B和8B表示存在50μm轴偏离的情形,图7C和8C表示存在100μm轴偏离的状态。
如图7B和7C中所示,即使相对于光束有效直径10的中心和内部区域18的中心发生50μm或100μm的轴偏离,施加给在内部区域18中形成的相位提前和相位延迟区域的电压波形26和27也处于物镜视场内。即,基本上与图7A没有轴偏离的状态没有差别。因此,可以适当校正像差。也就是,由于相位提前和相位延迟区域(液晶光学元件的有效区域)设置成基本处于物镜的视场之内,与激励器7导致的透镜运动无关,可以实现有效的彗差校正。
另一方面,在图8B中,在液晶光学元件的有效直径内的整个区域上形成相位提前和相位延迟区域。结果,即使发生50μm的轴偏离,所施加的电压波形28仅稍有变化(与图8A中没有轴偏离的情形相比,发生虚线所示的降落)。因为认为像差根据施加给相位提前和相位延迟区域的整个电压波形得到校正,该波形即使发生轻微的改变,也会或多或少影响像差校正功能。因此,如表中所示,在0μm内部区域的情形中,当轴偏离为0μm时,RF信号的降质评价为“A”,不过当轴偏离为50μm时,RF信号降级到“D”,这是因为电压波形(符号)发生轻微改变(发生虚线所示的降落)。
另外,如图8C中所示,当发生100μm的轴偏离时,与图8A的情形相比,施加给相位提前和相位延迟区域的电压波形29发生明显改变。这会大大影响像差校正功能。因此,如表中所示,在0μm内部区域的情形中,当轴偏离为100μm时,RF信号降级为“C”,相比而言,0μm轴偏离时RF信号的降质评价为“A”。
由此,在本实施例的液晶光学元件和使用其的光学装置中,即使为了进行跟踪而移动物镜,记录介质基片中产生的彗差也能得到令人满意的校正,这是因为对彗差校正有作用的区域设定为大体上处于物镜的视场内。
另外,在本实施例的液晶光学元件和使用其的光学装置中,由于用于彗差校正的液晶光学元件无需与物镜组合成一个单元,可通过简单的结构实现良好的彗差校正和良好的跟踪,无需装载激励器。
(实施例2)
图9表示使用根据本发明第二实施例液晶光学元件的光学装置1100。用相同附图标记表示与图1中所示相同的部件。
在图9中,光源1发射出的光束(405nm)被准直透镜2转变成具有有效直径10的大体平行的光束;然后,该光束通过偏振分束器50,进入液晶光学元件70。从液晶光学元件70发出的光束穿过四分之一波片55,被物镜13(数值孔径NA=0.85)聚焦在记录介质703上。在本实施例中,有效直径10(φ)选择为3mm。
记录介质703反射的光束再次穿过物镜13,四分之一波片55和液晶光学元件70,并被偏振分束器50改变方向朝向聚光透镜51传播,聚光透镜51将光束聚焦在光检测器52上。光束在受到记录介质703的反射时,振幅受到记录在记录介质703轨道上的信息(凹坑)的调制。光检测器52以光强信号的形式输出所接收光束。由该光强信号(RF信号)恢复所记录的信息。
当写入记录介质703时,光源1发射出的光束的强度受到写数据信号的调制,并且记录介质受到调制光束的照射。根据光束强度使密封在盘片之间的薄膜的折射率或颜色发生改变,或者形成凹陷,将数据写入记录介质。可通过调制施加给半导体激光器装置的电流,实现光束的强度调制,其中半导体激光器用作光源1。
物镜13固定于跟踪激励器7。激励器7沿图中箭头A所示的方向移动物镜13,使经过物镜3聚焦的光束精确地沿记录介质703上的轨道。激励器7设有用于驱动它的导线8。液晶光学元件70设有用于驱动后面所述透明电极图案的导线54。
液晶光学元件70具有球差校正透明电极图案410或420,如图11A或图12A中所示,下面将对其进行描述。
记录介质703为下一代高密度DVD,该光盘直径为12cm,厚度为1.2mm。在轨道表面上形成由聚碳酸酯等材料形成的大约0.1mm厚透光保护层。轨道间距(0.32μm)大约为传统DVD的一半,使用405nm蓝激光器和数值孔径(NA)=0.85的物镜,并且焦斑尺寸缩小到传统DVD的大约五分之一,获得每面大约27GB的最大容量。
在这种记录介质703中,与传统DVD相比,轨道表面上形成的透光保护层厚度的不均匀性引起的球差,可以导致光检测器52输出的光强信号质量降低。为了解决这一问题,控制电路253根据光检测器52输出的光强信号检测球差,并且通过导线54将电压施加给球差校正电极图案,以便消除检测到的球差。此处,记录介质703的基片中产生的球差,可以通过将电压施加给球差校正电极图案而得到校正,从而使光检测器52输出的光强信号(RF信号)的幅值最大。
图10表示图9中所示液晶光学元件70的剖面图。图10中箭头所示的方向为图9中光源1发射出的光束在穿过偏振分束器50之后进入液晶光学元件70的方向。在图10中,在面对光源1一侧的透明基板71上形成球差校正透明电极72和取向膜73。另一方面,在面对记录介质703一侧的透明基板77上形成透明反电极76和取向膜75。液晶78密封在两个透明基板71与77之间,并由密封元件74密封。为了便于说明夸大了图10中所示的构成元件,其厚度比与实际比例不同。
图11A表示图9和10中所示液晶光学元件70中,球差校正透明电极图案410的一个例子。如图11A中所示,在入射在液晶光学元件70上的光束的有效直径10向内限定50μm的内部区域18中,形成用于提前相位的6个同心区域42至47。此处,参考电压施加给区域41,并且该区域不具有将入射光束的相位提前的功能。
当相对于参考电势为正(+)的电压施加给区域42至47时,相对于透明反电极76产生电势差,并且电极之间的液晶分子的取向随电势差而变。结果,所穿过的光束受到使其相位提前的力的作用。参考电势(此处以0V为例)施加给区域41。这些电压通过导线54从控制电路253施加给球差校正电极图案410(参见图9)。
在图11B中,在X轴上描绘出施加给各区域的电压波形204。当该电压施加给内部区域18中的各区域41至47时,液晶光学元件70用于消除球差201,其中球差201是由于诸如记录介质703的透光保护层厚度不均匀等缺陷造成的。
图11C表示校正之后的球差205。即,图11B中的球差201校正成图11C中的球差205。从而可知,通过液晶光学元件70进行校正,从而抑制记录介质703的基片中产生球差。
图12A表示根据本实施例另一种球差校正透明电极图案420的一个例子。在图12A中,在入射在液晶光学元件70上的光束有效直径10向内限定300μm的内部区域18中,形成用于提前相位的四个区域42至45。区域41是施加参考电势(此处以0V为例)的区域。
当相对于参考电势为正(+)的电压施加给各区域42至45时,相对于透明反电极76产生电势差,并且电极之间的液晶分子的取向随电势差而变。结果,所穿过的光束受到使其相位提前的力的作用。这些电压通过导线54从控制电路253施加给透明电极图案420(参见图9)。
在图12B中,在X轴上描绘出施加给各区域的电压206。当该电压施加给透明电极图案420中的各区域42至45时,液晶光学元件70用于消除记录介质703的基片中产生的球差201。
图12C表示校正之后的球差207。即,图12B中的球差201校正成图12C中的球差207。从而可知,进行校正以抑制记录介质703的基片中产生球差。
在图11A和12A的说明中,说明将相对于参考电势为正(+)的电压施加给球差校正透明电极图案410和420的各区域,从而执行控制,使所穿过光束的相位提前。不过,如果记录介质703的基片中产生的球差的方向与图11B和12B中所示相反,则可以执行控制,将与图11B和12B中所示极性相反的负(-)电压施加给透明电极图案410和420的各区域。在这种情况下,穿过透明电极图案410和420各区域的光束受到将其相位延迟的力的作用。
此处,如前面所述,优选校正之后的球差(残留球差)不大于光束波长的四分之一(根据瑞利四分之一波长原则)。并且,如前面所述,优选校正之后的球差不大于光束波长的1/14(根据Marechal判据)。另外,如前面所述,当记录介质为传统DVD时,优选校正之后的球差不大于33mλ(根据DVD评价器中的评价标准(33mλ))。
此处,将描述如图29A中所示在有效直径10内部整个区域上形成相位提前(或相位延迟)区域的情形,与图11A或12A中所示仅在有效直径10内部定义的内部区域18中形成相位提前(或相位延迟)区域的情形之间的区别。
图29A中所示的球差校正等效于在有效直径10的整个区域上捕获光束,并且所捕获的光束通过液晶光学元件的有效直径校正的情形,如前面图5A中所示。不过,在此情形中,当物镜13受到激励器7的作用而移动时,液晶光学元件的有效直径偏离物镜的视场(参见图5B),不能实现有效的球差校正。
相反,图11A中所示的球差校正等效于仅捕获入射在有效直径10向内限定50μm的内部区域上的光束,且所捕获的光束受到与液晶光学元件有效直径相应的内部区域18的校正这样一种情形,如前面图6A中所示。在此情形中,当物镜13受到激励器7的作用发生移动时,物镜的视场中心偏离内部区域18的中心,不过内部区域18依然处于物镜视场内(参见图6B)。从而,可以实现令人满意的球差校正,不过与光束同光轴中心对准的情形(参见图6A)相比校正程度有所降低。
如图所示,当仅在有效直径10内定义的内部区域18中形成相位提前(或相位延迟)区域,并非在有效直径10的整个区域上形成该区域时,即使为了进行跟踪激励器7移动物镜13,也能实现有效的球差校正。
即,由于相位提前(或相位延迟)区域设置成大体上处于物镜视场之内,与激励器7引起的透镜移动无关,可以实现有效的球差校正。
下面的表2表示形成球差校正电极图案的内部区域,与为了进行跟踪与基于反射光束产生的RF信号的降质(简称为信号抖动)有关的物镜移动量(=轴偏离量)之间的关系。
光强信号的降质定为A到D级:A表示最好状态,B表示良好状态,C表示光强信号可以使用的状态,D表示光强信号不可使用的状态。为了构成下面所示的表2,制造仅在有效直径向内规定0μm、50μm、100μm、150μm、200μm、250μm、300μm或350μm的内部区域中包含多个相位提前区域的液晶光学元件,并且通过将各液晶光学元件分别偏离物镜光轴0μm、50μm、100μm、150μm和200μm,测量光强信号的抖动量。采用与图9中所示相同的光学装置结构。
[表2]

如从表2可以看出,即使发生0μm到200μm的轴偏离,用其中仅在有效直径向内限定50μm至300μm的内部区域内形成多个相位提前(或相位延迟)区域的任何液晶光学元件,可以实现大体上令人满意的球差校正。由于可以实现令人满意的球差校正,RF信号的抖动量得到抑制,使光学装置可以使用。此处,仅在有效直径向内限定50μm的内部区域内形成相位提前(或相位延迟)区域的例子,相当于图11A中所示的例子,而仅在有效直径向内限定300μm的内部区域中形成相位提前(或相位延迟)区域的例子相当于图12A中所示的例子。
另一方面,在仅在有效直径向内限定0μm的内部区域中(即,在有效直径10的全部区域上)形成相位提前(或相位延迟)区域的液晶光学元件的情形中(即,图29A中所示现有技术液晶光学元件),如果产生的轴偏离为100μm或者更大,则不能实现适当的像差校正。即,RF信号的抖动量增大,使光学装置变得不可用。
同样,在仅在有效直径向内限定350μm的内部区域中形成相位提前(或相位延迟)区域的液晶光学元件的情形中,如果发生50μm或者更大的轴偏离,则不能实现适当的像差校正。即,RF信号的抖动量增大,使光学装置不可用。推断起来这是由于相位提前(或相位延迟)区域太小以至于不能实现适当球差校正的原因。
由此,通过使用仅在有效直径内限定50μm至300μm的内部区域内形成相位提前(或相位延迟)区域的液晶光学元件,即使由于物镜的跟踪动作导致发生轴偏离,也能实现令人满意的球差校正。
此处,可以将形成相位提前(或相位延迟)区域的内部区域设定为与光学装置的技术规格匹配。例如,如果预先已知跟踪导致的轴偏离为100μm,那么该内部区域应当设定为有效直径向内50μm至100μm。如果跟踪导致的轴偏离更大,则根据技术规格内部区域应当设置得越大。
由此,在本实施例的液晶光学元件和使用其的光学装置中,即使为了进行跟踪物镜发生移动,记录介质的基片中产生的球差也能得到令人满意的校正,这是因为对球差校正有贡献的区域设定成基本上处于物镜的视场之内。
另外,在本实施例的液晶光学元件和使用其的光学装置中,由于用于球差校正的液晶光学元件不需要与物镜组合成单一单元,可以通过简单的结构实现良好的球差校正和良好的跟踪,不需要装载激励器。
(实施例3)
图13表示使用根据本发明第三实施例的液晶光学元件79的光学装置1200。用相同附图标记表示与图9中所示相同的部件。
在图13中,光源101发射出的光束(650nm)被准直透镜2转变成具有有效直径10的大体平行的光束;然后,该光束通过偏振分束器50,进入液晶光学元件79。从液晶光学元件79发出的光束穿过四分之一波片55,被物镜103(数值孔径NA=0.65)聚焦在记录介质704上。在本实施例中,有效直径10(φ)选择为3mm。
记录介质704反射的光束再次穿过物镜103,四分之一波片55和液晶光学元件79,并被偏振分束器50改变方向朝向聚光透镜51传播,聚光透镜51将光束聚焦在光检测器52上。光束在受到记录介质704的反射时,振幅受到记录在记录介质704轨道上的信息(凹坑)的调制,光检测器52以光强信号的形式输出。由该光强信号(RF信号)恢复所记录的信息。
记录介质704为DVD,DVD是一种直径为12cm、厚度为1.2mm的光盘。该光盘包含第一轨道表面705(处于光入射侧)和第二轨道表面706,信息记录在这两个表面上,并且在第一轨道表面上由聚碳酸酯等材料形成厚度为大约0.6mm的透光保护层。使用两个信息层,使用650nm红激光器作为光源101,并且使用数值孔径(NA)=0.65的透镜作为物镜103,可以获得大约9.5GB的容量。
物镜103固定于跟踪激励器7。激励器7沿图中箭头A所示的方向移动物镜3,使经过物镜聚焦的光束严格地沿着记录介质704上的轨道。激励器7设有用于驱动它的导线8,液晶光学元件79设有用于驱动后面所述透明电极图案的导线54。
控制电路353根据轨道切换信号(未示出)将电压施加给液晶光学元件79的球差校正透明电极图案(图11A或12A中所示的电极图案410或420)。当电压没有施加给球差校正透明电极图案时,物镜103将光束11聚焦成适于在第一轨道表面705上读或写。另一方面,当电压施加给球差校正透明电极图案时,球差得到液晶光学元件79的校正,光束12聚焦成适于在第二轨道表面706上读或写。
另外,利用光检测器52输出的光强信号,控制电路353检测记录介质704的基片中产生的波前像差(主要为彗差),并通过导线54(参见图13)将电压施加给彗差校正透明电极图案(后面所述),以便消除所检测到的彗差。
图13的液晶光学元件79具有类似于图10中所示液晶光学元件70的结构。此处假设在液晶光学元件79的透明电极72中形成图11A或12A中所示的球差校正透明电极图案410或420。此外,在液晶光学元件79的另一透明反电极76中形成后面所述的彗差校正透明电极图案320或330。
图14A表示在液晶光学元件79的透明电极76中形成的彗差校正透明电极图案320的一个例子。图14A中所示的彗差校正透明电极图案320与图11A中所示的球差校正透明电极图案410成对。在图14A中,在入射在液晶光学元件79的光束的有效直径10向内限定50μm的内部区域18中设置有两个用于提前相位的区域32和33,和两个用于延迟相位的区域34和35。在图中,附图标记31表示施加参考电势的区域。
当将相对于参考电势为正(+)的电压施加给区域32和33时,相对于相对侧上的透明电极72产生电势差,并且电极之间的液晶分子的取向随电势差而变。结果,所穿过的光束受到使其相位提前的力的作用。另一方面,当相对于参考电势为负(-)的电压施加给区域34和35时,同样相对于相对一侧上的透明电极72产生电势差,电极之间的液晶分子的取向随电势差而变。结果,所穿过的光束受到使其相位延迟的力的作用。参考电势(此处,以0V为例)施加给区域31。
利用光检测器52输出的光强信号,控制电路353检测记录介质704的基片中产生的波前像差(主要为彗差),并通过导线54将电压施加给彗差校正透明电极图案320(参见图13),从而消除检测到的彗差。
在图14B中,在X轴上描绘出施加给各区域的电压121。当该电压施加给内部区域18中的各区域31至35时,液晶光学元件79用于消除记录介质704相对光轴倾斜时产生的彗差20。
图14C表示校正之后的彗差122。即,图14B中的彗差20校正成图14C中的彗差122。从而可知通过液晶光学元件79进行校正,从而抑制记录介质704的基片中产生彗差。
图15A表示在液晶光学元件79的透明电极76中形成的彗差校正透明电极图案330的一个例子。图15A中所示的彗差校正透明电极图案330与图12A中所示的球差校正透明电极图案420成对。在图15A中,在入射在液晶光学元件79的光束的有效直径向内限定300μm的内部区域18中设置两个用于提前相位的区域32和33,和两个用于延迟相位的区域34和35。在图中,附图标记31表示施加参考电势的区域。
当相对于参考电势为正(+)的电压施加给区域32和33时,对于相对侧上的透明电极72产生电势差,并且电极之间液晶分子的取向随电势差而变。结果,所穿过的光束受到使其相位提前的力的作用。另一方面,当相对参考电势为负(-)的电压施加给区域34和35时,相对于相对侧上的透明电极72产生电势差,并且电极之间液晶分子的取向随电势差而变。结果,所穿过的光束受到使其相位延迟的力的作用。参考电势(此处以0V为例)施加给区域31。
利用光检测器52输出的光强信号,控制电路353检测记录介质704的基片中产生的波前像差(主要为彗差),并通过导线54将电压施加给彗差校正透明电极图案330(参见图13),以便消除所检测到的彗差。
在图15B中,在X轴上描绘出施加给各区域的电压123。当该电压施加给透明反电极图案330的各区域31至35时,液晶光学元件79用于消除记录介质704相对光轴倾斜时产生的彗差20。
图15C表示校正之后的彗差124。即,图15B中的彗差20校正为图15C中的彗差124。从而可知,通过液晶光学元件79进行校正,抑制记录介质704的基片中产生彗差。
如同图11A和15A中所示球差校正透明电极图案410和420的情形,同样,在彗差校正透明电极图案320和330的情况下,当仅在有效直径向内限定50μm至300μm的内部区域中形成多个相位提前和相位延迟区域时,即使由于跟踪产生轴偏离,也能实现令人满意的彗差校正。此处,仅在有效直径向内限定50μm的内部区域中形成多个相位提前和相位延迟区域的例子相当于图14A中所示的例子,而仅在有效直径向内限定300μm的内部区域中形成多个相位提前和相位延迟区域的例子相当于图15A中所示的例子。
当如上所述在液晶光学元件79中设置图11A或12A中所示的球差校正透明电极图案410或420,以及图14A或15A中所示的彗差校正透明电极图案320或330时,可以校正在记录介质704如下一代高密度DVD上读或写数据时产生的球差和彗差。优选用于球差校正透明电极图案的内部区域与用于彗差校正透明电极图案的内部区域彼此一致。另外,可将液晶光学元件79的相应透明基板中形成的球差校正透明电极图案与彗差校正透明电极图案互换。
当物镜13与液晶光学元件79的光轴彼此精确对准地安装时,还可以设置如16A和16B中所示的左/右有限区域170。即,通过考虑最大跟踪运动量(通常为200至300μm),沿图中X轴方向的相位控制区域限于从有效直径的左侧和右侧向内定义Zμm的左/右有限区域170,而使沿图中Y轴方向的尺寸保持不变,即与有效直径相同。用这种图案也能校正球差和彗差。图16A表示这种球差校正电极图案430的一个例子,图16B表示这种彗差校正电极图案340的一个例子。
因此,可以在图13中所示光学装置1200的液晶光学元件79的相应透明电极72和76中形成图16A和16B中所示的波前像差校正电极图案。
由此,在本实施例的液晶光学元件和使用其的光学装置中,通过根据轨道切换信号将电压施加给球差校正透明电极图案,可在记录介质704包含的多个轨道表面上正确地读或写数据。
另外,在本实施例的液晶光学元件和使用其的光学装置中,球差校正透明电极图案和彗差校正透明电极图案均形成在预定的内部区域内,并且即使为了跟踪物镜发生移动,对球差校正和彗差校正有作用的区域也设定为大体上处于物镜的视场内;结果,对于球差和彗差同时进行令人满意的校正。
(实施例4)
图17表示使用根据本发明第四实施例的液晶光学元件90的光学装置1300。用相同附图标记表示与图1中所示相同的部件。结构与图1的不同之处在于使用两个光源1和101,并且液晶光学元件90与图1中使用的液晶光学元件60不同。
在使用第一光盘707(高密度光盘如DVD)时产生彗差,在使用第二光盘708时产生球差。此外,物镜113的光轴与第一光盘707或第二光盘708上的轨道之间发生偏离(轴偏离)。为解决这一问题,物镜113固定于跟踪激励器7,通过激励器7使物镜113的光轴沿着第一光盘707或第二光盘708上的轨道。激励器7设有电源导线8。通过激励器7沿图中箭头A所示的方向移动物镜113,使经由物镜113聚焦的光束严格地沿着第一光盘707或第二光盘708上的轨道。
不过,当物镜113通过激励器7移动时,液晶光学元件90与物镜113之间的位置关系发生改变。假设彗差校正透明电极图案与球差校正透明电极图案设计成分别与光学装置1300的有效直径110和120匹配。即,液晶光学元件90设计成使第一光盘707的基片中产生的彗差与第二光盘708的基片中产生的球差,仅当物镜113与液晶光学元件90沿光轴精确对准时才能得到理想的校正。因此,当由于跟踪导致液晶光学元件90与物镜113之间的位置关系偏离理想位置时,液晶光学元件90不能充分校正波前像差。
鉴于上述情形,图17中所示的光学装置1300使用能令人满意地校正彗差和球差的液晶光学元件90,与物镜113的跟踪动作无关。
在图17中,第一光源1如半导体激光器发射出的光束(650nm),被准直透镜2准直成大体平行的光束,该光束受到孔径57的限制,成为有效直径110为大约5mm的光束。然后该光束通过半反镜56和偏振分束器50,进入液晶光学元件90。液晶光学元件90发射出的光束穿过四分之一波片55,被物镜113(数值孔径NA=0.65)聚焦在第一光盘707的轨道上。
另一方面,第二光源101如半导体激光装置发射出的光束(780nm),被准直透镜102准直成大体平行的光束,该光束受到孔径58的限制,成为有效直径120为大约4mm的光束。然后该光束被半反镜56改变方向,穿过偏振分束器50,并进入液晶光学元件90。液晶光学元件90发射出的光束穿过四分之一波片55,被物镜113(数值孔径NA=0.65)聚焦在第二光盘708的轨道上。
第一光盘707为高密度光盘如DVD,即在轨道表面上具有0.6mm厚透明基片,并且一面的最大存储容量为大约4.75GB。第二光盘708为诸如CD的光盘,其轨道表面上具有1.2mm厚透明基片,并且一面的最大存储容量为大约600MB。
从第一光盘707或第二光盘708反射的光束再次穿过物镜113,四分之一波片55和液晶光学元件90,被偏振分束器50改变方向朝向聚光透镜51传播,聚光透镜51将光束聚焦在光检测器52上。光束在被第一光盘707或第二光盘708反射时,振幅受到记录在光盘轨道上的信息(凹坑)的调制,并且从光检测器52作为光强信号输出。从该光强信号(RF信号)恢复所记录的信息。
当写入第一光盘707或第二光盘708时,从光源1或101发射出的光束的强度受到写数据信号的调制,并且用经过调制的光束照射光盘。根据光束强度使薄膜的折射率或颜色改变,或者形成凹陷,将数据写入光盘。可通过调制施加给半导体激光装置的电流,实现光束的强度调制,其中该半导体激光装置用作光源1或101。
物镜113固定于跟踪激励器7,激励器7沿图中箭头A所示的方向移动物镜113,使经由物镜聚焦的光束精确地沿着第一光盘707或第二光盘708上的轨道。激励器7设有用于驱动它的导线8。
液晶光学元件90具有下面将要描述的彗差校正透明电极图案和球差校正透明电极图案。
控制电路553根据光检测器52发出的光强信号(RF信号),检测第一光盘707的倾斜引起的彗差。另外,控制电路553将与所检测到的彗差成正比的电压施加给彗差校正透明电极图案,从而施加校正来消除第一光盘707读或写期间产生的彗差。在第一光盘707的读或写期间,控制电路553将参考电压施加给球差校正透明电极图案,使液晶光学元件90的球差校正功能保持在无效状态。
控制电路553根据从第一光盘707切换到第二光盘708的操作时产生的切换信号(未示出),切换控制。具体而言,在第二光盘708的读或写期间,控制电路553将电压施加给液晶光学元件90的球差校正透明电极图案,从而施加校正以消除所产生的球差。另外,在第二光盘708的读或写期间,控制电路553将参考电压施加给彗差校正透明电极图案,使液晶光学元件90的彗差校正功能保持在无效状态。
图18表示液晶光学元件90的剖面图。图18中所示的箭头表示第一光源1或第二光源101发射出的光束进入液晶光学元件90的方向。在图18中,在光源一侧的透明基板91上形成彗差校正透明电极92和取向膜93。另一方面,在光盘一侧的透明基板97上形成球差校正透明电极96和取向膜95。液晶98密封在两透明基板91与97之间,并且由密封元件94密封。为了便于说明夸大了图18中所示的构成元件,并且其厚度比与实际比率不同。与图10的区别在于透明电极92和96分别具有彗差校正透明电极图案和球差校正透明电极图案,这与图10中所示不同。
图19A表示液晶光学元件90中形成的彗差校正透明电极图案360的一个例子。如图19A中所示,在入射在液晶光学元件90上的光束有效直径110向内限定80μm的内部区域180中,设置两个用于提前相位的区域32和33,和两个用于延迟相位的区域34和35。在图中,附图标记31表示施加参考电势的区域。
当相对于参考电势为正(+)的电压施加给区域32和33时,对于相对侧上的透明电极96产生电势差,并且电极之间的液晶分子的取向随电势差而变。当彗差校正透明电极图案360处于有效状态时,球差校正透明电极图案450保持在参考电压。结果,穿过上述区域的光束受到使其相位提前的力的作用。另一方面,当相对于参考电势为负(-)的电压施加给区域34和35时,对于相对侧上的透明电极96产生电势差,并且电极之间的液晶分子的取向随电势差而变。结果,所穿过的光束受到使其相位延迟的力的作用。参考电势(此处以0V为例)施加给区域31。这些电压通过导线54(参见图17)从控制电路553施加给彗差校正电极图案360。
在图19B中,在X轴上描绘出施加给各区域的电压127。当该电压施加给内部区域180中的各区域31至35时,液晶光学元件90用于消除第一光盘707相对光轴倾斜时产生的彗差20。
图19C表示校正之后的彗差128。即,图19B中的彗差20被校正成图19C中的彗差128。从而可知,通过液晶光学元件90进行校正,抑制第一光盘707的基片中产生彗差。
图20A表示液晶光学元件90中形成的球差校正透明电极图案450的一个例子,与图19A中所示的彗差校正透明电极图案360成对。如图20A中所示,在入射在液晶光学元件90上的光束有效直径120向内限定70μm的内部区域190中设置6个用于提前相位的同心区域42至47。此处,参考电势施加给区域41,该区域不具有使入射光束的相位提前的功能。
当相对于参考电势为正(+)的电压施加给各区域42至47时,对于相对侧上的透明电极92产生电势差,并且电极之间的液晶分子的取向随电势差而变。当球差校正透明电极图案450处于有效状态时,彗差校正透明电极图案360保持为参考电压。结果,穿过上述区域的光束受到使其相位提前的力的作用。参考电势(此处以0V为例)施加给区域41。这些电压通过导线(参见图17)从控制电路553施加给球差校正电极图案450。
在图20B中,在X轴上描绘出施加给各区域的电压波形210。当该电压施加给内部区域190中的各区域41至47时,液晶光学元件90用于消除第二光盘708的基片中产生的球差201。
图20C表示校正之后的球差211。即,图20B中的球差201被校正成图20C中的球差211。从而可知,通过液晶光学元件90进行校正,抑制第二光盘708的基片中产生球差。
图21A表示根据本实施例另一种彗差校正透明电极图案370的一个例子。在图21A中,在入射在液晶光学元件90上的光束有效直径110向内限定500μm的内部区域180中设有两个用于提前相位的区域32和33,和两个用于延迟相位的区域34和35。在图中,附图标记31表示施加参考电势的区域。
当相对于参考电势为正(+)的电压施加给区域32和33时,对于相对侧上的透明电极96产生电势差,并且电极之间的液晶分子的取向随电势差而变。结果,所穿过的光束受到使其相位提前的力的作用。另一方面,当相对于参考电势为负(-)的电压施加给区域34和35时,对于相对侧上的透明电极96产生电势差,并且电极之间的液晶分子的取向随电势差而变。结果,所穿过的光束受到使其相位延迟的力的作用。参考电势(此处以0V为例)施加给区域31。这些电压通过导线54(参见图17)从控制电路553施加给透明电极图案370。
在图21B中,在X轴上描绘出施加给各区域的电压波形129。当该电压施加给各区域31至35时,液晶光学元件90用于消除第一光盘707相对光轴倾斜时产生的彗差20。
图21C表示校正之后的彗差130。即,图21B中的彗差129被校正为图21C的彗差130。从而可知,通过液晶光学元件90进行校正,抑制在第一光盘707的基片中产生彗差。
图22A表示根据本实施例另一种球差校正透明电极图案460的一个例子。该电极图案与图21A中所示的彗差校正透明电极图案成对。在图22A中,在入射在液晶光学元件90上的光束有效直径120向内限定400μm的内部区域190中形成用于提前相位的区域42至45。区域41是施加参考电势(此处以0V为例)的区域。
当相对于参考电势为正(+)的电压施加给各区域42至45时,对于相对侧上的透明电极92产生电势差,并且电极之间的液晶分子的取向随电势差而变。结果,所穿过的光束受到使其相位提前的力的作用。这些电压通过导线54(参见图17)从控制电路553施加给透明电极图案460。
在图22B中,在X轴上描绘出施加给各区域的电压212(光瞳坐标)。当该电压施加给透明电极图案的各区域41至45时,液晶光学元件90用于消除第二光盘708的基片中产生的球差201。
图22C表示校正之后的球差213。即,图22B中的球差201被校正为图22C的球差213。从而可知,通过液晶光学元件90进行校正,抑制在第二光盘708的基片中产生球差。
在图20A和22A的说明中,指出将相对于参考电势为正(+)的电压施加给球差校正透明电极图案450和460的各区域,从而执行控制,以便将所穿过的光束的相位提前。不过,如果第二光盘708的基片中产生的球差的方向与图20B和22B中所示的极性相反,则可以进行控制,将与图20B和22B中所示极性相反的负(-)电压施加给透明电极图案450和460的各区域。在此情形中,穿过透明电极图案450和460各区域的光束受到使其相位延迟的力的作用。
此处,如前面所述,优选校正之后的彗差(残留彗差)和校正之后的球差(残留球差)不大于光束波长的四分之一(根据瑞利四分之一波长原则)。此外,如前面所述,优选校正之后的彗差和校正之后的球差不大于光束波长的1/14(根据Marechal判据)。另外,如前面所述,当记录介质为传统DVD时,优选校正之后的彗差和校正之后的球差不大于33mλ(根据DVD评价器中的评价判据(33mλ))。
此处,将描述在有效直径110或120内部的整个区域上形成相位提前或相位延迟区域的情形,如图25A或29A中所示,与仅在有效直径110或120内限定的内部区域180或190中形成相位提前或相位延迟区域的情形,如图19A,20A,21A或22A,这两种情形之间的区别。
图25A和29A中所示的波前像差校正相当于通过获取有效直径110或120整个区域上的光束而进行波前像差(主要为彗差和球差)校正的情形,如前面图5A中所示。不过,在此情形中,当激励器7移动物镜113时,液晶光学元件的有效直径偏离物镜的视场(参见图5B),不能实现有效的波前像差校正。
相反,图19A,20A,21A或22A中所示的波前像差校正相当于获取仅入射在有效直径110或120内限定的内部区域上的光束,并且用与液晶光学元件有效直径相应的内部区域校正所获取的光束这样一种情形,如前面图6A中所示。在此情形中,当激励器7移动物镜113时,物镜的视场中心偏离内部区域的中心,不过内部区域依然处于物镜的视场内(参见图6B)。因此,可以实现令人满意的波前像差校正,不过同内部区域与光轴中心对准的情形(参见图6A)相比,校正度有所下降。
如图所示,由于相位提前和相位延迟区域等仅形成在有效直径110或120内限定的内部区域180或190中,而非在有效直径110或120的整个区域上形成所述区域,即使为了跟踪激励器7移动物镜113,也能实现有效波前像差校正。
即,由于相位提前(或相位延迟)区域设置成基本处于物镜的视场内,与激励器7引起的透镜的运动无关,可以实现有效的波前像差校正。
下面的表3表示其中形成有针对第一光盘707的彗差校正电极图案的区域,与为了跟踪与由第一光盘707的反射光产生的光强信号的降质(简称为信号抖动)有关的物镜113的移动量(等于轴偏离的量)之间的关系。光强信号的降质定为A到D级:A表示最好状态,B表示良好状态,C表示光强信号可以使用的状态,D表示光强信号不可使用的状态。为了构成下面所示的表格,制造仅在有效直径向内规定0μm、80μm、100μm、200μm、300μm、400μm、500μm或600μm的内部区域中包含相位提前和相位延迟区域的液晶光学元件,并且通过将液晶光学元件分别偏离物镜113的光轴0μm、50μm、100μm、150μm和200μm,测量光强信号的抖动量。采用如图17中所示相同的光学装置结构,并且选择有效直径(φ)为5mm,物镜的数值孔径(NA)为0.65。
[表3]

如从表中可以看出,即使发生0μm到100μm的轴偏离,用其中仅在有效直径110内限定的80μm内部区域内形成相位提前和相位延迟区域的彗差校正电极图案,可以实现大体上令人满意的球差校正。另外,即使发生0μm至150μm的轴偏离,用其中仅在有效直径110向内限定100μm的内部区域中形成相位提前和相位延迟区域的彗差校正电极图案,可以实现令人满意的彗差校正。此外,即使发生0μm至200μm的轴偏离,用其中仅在有效直径110向内限定200μm至500μm的内部区域中形成的相位提前和相位延迟区域的彗差校正电极图案,可以实现令人满意的彗差校正。由于可以实现令人满意的彗差校正,光强信号的抖动量得到抑制,使光学装置可以使用。此处,仅在有效直径向内限定80μm的内部区域内形成相位提前和相位延迟区域的例子,相当于图19A中所示的例子,而仅在有效直径向内限定500μm的内部区域中形成相位提前和相位延迟区域的例子,相当于图21A中所示的例子。
另一方面,在仅在有效直径向内限定0μm的内部区域中(即在有效直径的整个区域上)形成相位提前和相位延迟区域的液晶光学元件的情形中(即,图25A中所示液晶光学元件),如果发生100μm或更大的轴偏离,则不能实现适当的像差校正。结果,光强信号的抖动量增大。
同样,在仅在有效直径向内限定600μm的内部区域中形成相位提前和相位延迟区域的液晶光学元件中,如果发生50μm或更大轴偏离,则不能实现适当的像差校正,结果光强信号的抖动量增大。这大约是由于相位提前和相位延迟区域太小以至于不能实现适当像差校正的原因。
由此,通过使用仅在有效直径向内限定80μm至500μm的内部区域中形成相位提前和相位延迟区域的液晶光学元件中,即使由于物镜的跟踪动作发生轴偏离,也能实现令人满意的彗差校正。
此处,可以将将要形成相位提前和相位延迟区域的内部区域设置成与光学装置的技术规格匹配。例如,如果预先已知跟踪导致的轴偏离为100μm,则内部区域应当设定为有效直径向内80μm至100μm。如果跟踪导致的轴偏离增大,则根据技术规格内部区域应当设置得越大。
下面的表4表示形成有球差校正电极图案的内部区域,与用于跟踪时与第二光盘708的反射光产生的光强信号的降质(简称为信号抖动)有关的物镜113的移动量(等于轴偏离的量)之间的关系。光强信号的降质定为A到D级:A表示最好状态,B表示良好状态,C表示光强信号可以使用的状态,D表示光强信号不可使用的状态。为了构成下面所示的表格,球差校正电极图案设计成仅在有效直径120向内规定0μm、70μm、100μm、200μm、300μm、350μm、400μm或500μm的内部区域包含多个相位提前(或相位延迟)区域,并且通过将液晶光学元件分别偏离物镜113的光轴0μm、50μm、100μm、150μm和200μm,测量光强信号的抖动量。采用如图17中所示相同的光学装置结构,并且选择有效直径(φ)为4mm,物镜的数值孔径(NA)为0.65。
[表4]

如从表中可以看出,即使发生0μm到100μm的轴偏离,用其中仅在有效直径120向内限定70μm的内部区域内形成多个相位提前(或相位延迟)区域的球差校正电极图案,可以实现大体上令人满意的球差校正。另外,即使发生0μm至150μm的轴偏离,用其中仅在有效直径120向内限定100μm的内部区域中形成多个相位提前区域的球差校正电极图案,可以实现令人满意的球差校正。此外,即使发生0μm至200μm的轴偏离,用其中仅在有效直径120向内限定200μm至400μm的内部区域中形成多个相位提前区域的球差校正电极图案,可以实现令人满意的球差校正。由于可以实现令人满意的球差校正,光强信号的抖动量得到抑制,使光学装置可以使用。此处,仅在有效直径120向内限定70μm的内部区域内形成多个相位提前区域的例子,相当于图20A中所示的例子,而仅在有效直径向内限定400μm的内部区域中形成多个相位提前区域的例子,相当于图22A中所示的例子。
如上所述,对于球差校正电极图案,优选仅在有效直径120向内限定70μm至400μm的内部区域中形成的多个相位提前(或相位延迟)区域。
此处,可以交换彗差校正电极图案与球差校正电极图案关于进入液晶光学元件90的光束的位置。
由此,在本实施例的液晶光学元件和使用其的光学装置中,由于彗差校正电极图案和球差校正电极图案仅形成在预定的内部区域中,可以用简单结构实现良好的彗差校正和良好的球差校正,与跟踪动作无关。
另外,在本实施例的液晶光学元件和使用其的光学装置中,由于对于彗差校正和球差校正有贡献的区域设定为,即使为了跟踪而移动物镜,也基本上处于物镜视场之内,对于各记录介质的基片中产生的彗差和球差可进行令人满意的校正。
此外,在本实施例的液晶光学元件和使用其的光学装置中,由于用于球差校正的液晶光学元件不必与物镜组合成一个单元,可用简单结构实现良好的球差校正和良好的跟踪,无需装载激励器。
另外,在本实施例的液晶光学元件和使用其的光学装置中,液晶的一个电极图案作为球差校正图案,另一个作为彗差校正图案;这不仅解决了前面所述的记录介质的盘倾斜与液晶光学元件的轴偏离问题,而且还可以处理诸如下一代高密度DVD的记录介质,以及具有多个轨道表面的记录介质如DVD。