等离子体显示板的老化方法转让专利

申请号 : CN200480000212.4

文献号 : CN1698157B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 山内成晃青木崇松田明浩秋山浩二

申请人 : 松下电器产业株式会社

摘要 :

本发明提供一种等离子体显示板的老化方法。在扫描电极和维持电极之间施加包含交变电压分量的电压从而进行老化放电的老化工序中,要点在于,在从包含交变电压分量的电压的上升起规定的时间后,将用于抑制伴随老化放电而发生的消除放电的电压施加到扫描电极、维持电极、或者数据电极中的至少一个电极上,所述包含交变电压分量的电压为在扫描电极和维持电极之间施加的电压。进而在伴随交替重复的老化放电而发生的消除放电中,仅抑制一方的消除放电。

权利要求 :

1.一种等离子体显示板的老化方法,在对于具有扫描电极、维持电极、数据电极的等离子体显示板,至少在所述扫描电极和所述维持电极之间施加包含交变电压分量的电压,从而进行老化放电的老化工序中,其特征在于:在从包含所述交变电压分量的电压的上升起规定的时间后,将抑制伴随所述老化放电而发生的消除放电的电压施加在所述扫描电极、所述维持电极中的至少一个电极上,所述包含所述交变电压分量的电压为在所述扫描电极和所述维持电极之间施加的电压。

2.一种等离子体显示板的老化方法,在对于具有扫描电极、维持电极、数据电极的等离子体显示板,至少在所述扫描电极和所述维持电极之间施加包含交变电压分量的电压,从而进行老化放电的老化工序中,其特征在于:将抑制伴随所述老化放电而发生的消除放电的电压施加在所述数据电极上。

3.如权利要求1或权利要求2所述的等离子体显示板的老化方法,其特征在于:

抑制所述消除放电的电压,是用于抑制伴随老化放电而发生的消除放电的电压,所述老化放电伴随对所述扫描电极施加的电压的增加或者对所述维持电极施加的电压的减少而产生。

4.如权利要求2所述的等离子体显示板的老化方法,其特征在于:

在产生老化放电定时中对所述数据电极施加的电压,比在伴随老化放电产生的消除放电的定时中对所述数据电极施加的电压高,所述老化放电伴随对所述扫描电极施加的电压的增加或者对所述维持电极施加的电压的减少而产生。

说明书 :

技术领域

本发明涉及AC型等离子体显示板的老化方法。

背景技术

等离子体显示板(以下简略记做PDP或显示板)是以大画面、薄型、轻巧为特征的视觉识别性优良的显示装置。作为PDP的放电方式有AC型和DC型,作为电极结构有三电极面放电型和相对放电型。但是现在,适应高精细化,而且从制造的简易出发,作为AC型且面放电型的AC型三电极PDP成为主流。
AC型三电极PDP,一般在相对配置的前面基板和背面基板之间形成多个放电单元。前面基板,在前面玻璃板上相互平行地形成多对作为显示电极的扫描电极和保持电极,并形成电介质层和保护层以便覆盖这些显示电极。背面基板,在背面玻璃板上相互平行地形成多个数据电极,并形成电介质层以便覆盖它们。而且,在该电介质层上与数据电极平行形成多个隔壁,在电介质层的表面和隔壁的侧面形成荧光层。而且,将前面基板和背面基板相对密封,以便显示电极和数据电极立体交叉,在其内部的放电空间封闭放电气体。这样,就完成了显示板的组装。
但是,刚组装的显示板一般放电开始电压高且放电自身也不稳定,所以在显示板制造工艺中进行老化(aging),使放电特性均匀化且稳定化。
作为这样的老化方法,采用作为在显示电极间,即扫描电极-保持电极间长时间施加包含交变电压分量的电压的反相的矩形波的方法,但是为了缩短老化时间,提出如下方法:例如经由电感器对显示板的电极施加矩形波的方法(例如参照特开平7-226162号公报),或在扫描电极-保持电极间施加极性不同的脉冲状的电压的面放电老化后,连续在扫描电极以及保持电极和数据电极之间施加极性不同的脉冲状的电压并相对放电的方法(例如,参照特开2002-231141号公报)等。
但是,即使在上述的老化方法中,直到使放电稳定,需要大约10小时。从而,老化工序的消耗电力增大,成为PDP制造时的运转成本增加的主要原因之一。而且,老化工序占用长时间,所以有工厂的占地面积,或者空调设备等的制造时的环境等各种问题。此外,伴随今后的PDP的大画面化、产量增大,显然该问题今后会进一步变大。

发明内容

本发明是鉴于上述问题而完成的,提供一种大幅缩短老化时间,而且电效率高的等离子体显示板的老化方法。
为了达成这个目的,本发明的等离子体显示板的老化方法的特征在于:在对于具有扫描电极、保持电极、数据电极的等离子体显示板至少在扫描电极和保持电极之间施加包含交变电压分量的电压并进行老化放电的老化工序中,在从包含交变电压分量的电压的上升起规定的时间后,将抑制伴随老化放电产生的消除放电的电压施加到扫描电极、保持电极中的至少一个电极上,所述包含交变电压分量的电压为在扫描电极和维持电极之间施加的电压.
另外,本发明的等离子体显示板的老化方法,在对于具有扫描电极、维持电极、数据电极的等离子体显示板,至少在所述扫描电极和所述维持电极之间施加包含交变电压分量的电压,从而进行老化放电的老化工序中,其特征在于:将抑制伴随所述老化放电而发生的消除放电的电压施加在所述数据电极上。

附图说明

图1是表示在本发明的实施方式中将要被老化的等离子体显示板的结构的分解立体图。
图2是同一显示板的电极排列图。
图3是表示本发明的实施方式1的老化方法的电极的施加电压波形的图。
图4是表示现有的老化方法中的电极的施加电压波形、电极端子部的电压波形以及显示板的发光波形的图。
图5是表示本发明的实施方式2的老化方法中的电极的施加电压波形的图。
图6是用于说明产生消除放电的机理的图。
图7是表示本发明的实施方式3的老化方法中的电极的施加电压波形的图。
图8是表示基于本发明的实施方式1~3中的老化方法进行显示板的老化的老化装置的结构的方框图。
图9A是基于本发明的实施方式1~3中的老化方法进行显示板的老化的老化装置的施加电压波形设定部外观图。
图9B是以本发明的实施方式3中说明的施加电压波形为例表示相同施加电压波形设定部的设定项目的图。
图10是将实施方式3的老化方法中的老化时间于现有的老化方法比较的图。

具体实施方式

以下,参照附图说明本发明的实施方式。
(实施方式1)
图1是表示在本发明的实施方式中将要被老化的等离子体显示板的结构的分解立体图。显示板1具有相对配置的前面基板2和背面基板3。前面基板2在前面玻璃板4上相互平行成对地形成多对扫描电极5和保持电极6。而且,形成电介质层7以便覆盖这些扫描电极5和保持电极6,形成保护层8以便覆盖电介质层7的表面。背面基板3在背面玻璃板9上相互平行地形成多个数据电极10,并形成电介质层11以便覆盖该数据电极10。而且,在该电介质层11上与数据电极10平行形成多个隔壁12,并在电介质层11的表面和隔壁12的侧面形成荧光层13。进而,在夹在前面基板2和背面基板3中的放电空间14中封闭放电气体。
图2是本发明的实施方式中的显示板1的电极排列图。在列方向配置m列的数据电极101~10m(图1的数据电极10),在行方向交替配置n行扫描电极51~5n(图1的扫描电极5)和n行保持电极61~6n(图1的保持电极6)。因而,在放电空间内形成m×n个包含一对扫描电极5i、保持电极6i(i=1~n)和一个数据电极10j(j=1~m)的放电单元18.而且,各扫描电极5i连接到在显示板周围设置的各扫描电极端子部15i。同样,保持电极6i连接到保持电极端子部16i,数据电极10j连接到数据电极端子部17j。这里,将扫描电极5和保持电极6对于放电单元18形成的缝隙称作放电间隙20,将放电单元间的间隙,即扫描电极5i和属于成为一个的放电单元的保持电极6i-1形成的间隙称作相邻间隙21。
图3是表示本发明的实施方式1的老化方法的电极的施加电压波形的图。图3A、图3B、图3C分别表示对扫描电极5、保持电极6、数据电极10的施加电压波形。这样,对本实施方式的老化方法中的扫描电极5以及保持电极6的施加电压波形不是单纯的矩形波的重复,而是在电压上升之后,在延迟时间间隔td的定时具有再一次小幅度上升的波形。实验的结果,在图3中,在设定为V1=200V,V2=100V、td=3μs(重复周期为25μs恒定)时,可以在现有的老化方法的大约一半的时间内完成老化。
当然,这些电压值V1、V2、时间间隔td的最优值依存于电极的形状或尺寸,或者显示板中使用的材料,还有老化电路中的电感等,所以在变更显示板的设计等时必须重新设定。
接着,说明通过本发明的实施方式的老化方法可以缩短老化时间的理由。图4A、图4B表示现有的老化方法中的扫描电极5、保持电极6的施加电压波形。而且,图4C、图4D示意地表示此时的显示板的扫描电极端子部15以及保持电极端子部16中的电压波形。这样,作为施加电压波形形成的波形即使是矩形,在显示板的扫描电极端子部15以及保持电极端子部16中,如图4C、图4D所示阻尼振荡也重叠。如现有的技术所说明的,向老化电路中插入电感器的情况下理所当然,但即使不使用电感器也通过具有布线的寄生电感和显示板的电容的谐振产生。这样,一般无法避免在电极端部的电压波形中叠加阻尼振荡。
图4E是示意地表示通过光敏器件检测显示板的发光的发光波形的图,各个发光对应于各个放电。这里可知,在大的老化放电(1)中连续的小的放电(2)是在电压的回落的定时产生的放电,是消除表面电荷的所谓消除放电。可知该消除放电尽管消耗电力,但老化的效果小,并且由于削弱表面电荷,所以必需大电压以产生下一次放电,结果使老化效率下降。进而可知,消除放电的强度很依赖放电单元的特性,容易产生消除放电的放电单元的老化很难进行,为了对所有的放电单元进行充分的老化,有必需更长的老化时间的副作用。
本发明的实施方式1的老化方法是,在产生自消除的定时,将用于抑制伴随老化放电而产生的消除放电的电压叠加施加到扫描电极5、维持电极6的双方并抑制自消除的方法,其结果,可以进行高效的老化。实际上观测到,在通过光敏器件检测此时的显示板的发光后,伴随消除放电的发光变小。
另外,本实施方式的老化方法的电极施加电压波形,作为对扫描电极5、维持电极6的每一个抑制消除放电的电压,如图3A、图3B所示,为在电压上升开始时间间隔td后,具有再一次小的上升的波形。但是,如图3D、图3E所示,维持电极6侧为矩形波形,在对扫描电极5施加的电压波形的上升以及下降定时之后施加抑制消除放电的电压也可以,虽然未图示,但相反,扫描电极5侧为矩形波形,仅在维持电极6侧施加抑制消除放电的电压也可以。
(实施方式2)
图5是表示本发明的实施方式2的老化方法中的电极的施加电压波形的图.图5A、图5B表示扫描电极5、维持电极6的施加电压波形,作为包含交变电压分量的电压,施加单纯的矩形波的重复.图5C表示施加给数据电极10的电压波形.本实施方式中的老化方法与实施方式1不同之处在于抑制消除放电的电压被施加到数据电极10,而不是被施加到扫描电极5、维持电极6.数据电极10中不流过大的放电电流,所以有消耗电力小且电路简单的优点.
接着,说明可以通过将上述的电压波形施加到数据电极10而抑制消除放电的理由。图6A~图6D是用于说明产生消除放电的机理的图,是对各电极的表面电荷的动作的预测。图6A表示对扫描电极5施加正电压且大的老化放电结束之后的表面电荷的分布,在扫描电极5侧蓄积负电荷,在维持电极6侧蓄积正电荷。在接着产生由于老化而造成的电位下降时,即使其大小为不产生扫描电极5-维持电极6之间的放电的电位下降,如图6B所示,扫描电极5-数据电极10之间的放电开始电压低,所以感生扫描电极5-数据电极10之间的放电。于是,如图6C所示,由于这里产生的火花放电的效果,扫描电极5-维持电极6之间的放电开始电压实质性下降,感生扫描电极5-维持电极6之间的放电,这成为消除放电。
换言之,可知消除放电原来并不是扫描电极5-维持电极6间的直接放电,一旦扫描电极5-维持电极6间开始初始放电,则通过该火花,扫描电极5-维持电极6间产生消除放电。
图6D表示消除放电结束后的表面电荷的分布。这样,表面电荷的量由于消除放电而减少,所以为了产生下一次放电而必需大的电压。
如以上所说明的,可以通过抑制扫描电极5和数据电极10的初始放电抑制扫描电极5-维持电极6之间的消除放电。从而可知,在由于阻尼振荡而负方向的电压被施加到扫描电极5的定时,在数据电极10中也通过施加负电压而抑制初始电压,其结果,可以抑制消除放电。
另外,AC型PDP的各电极被电介质层包围并与放电空间绝缘,所以直流分量对放电自身没有贡献。从而在包含自消除的定时对数据电极施加负电压,与在自消除以外的定时对数据电极施加正电压提供相同的效果。因此,即使施加的电压为图5D所示的电压波形,也可以得到与图5C所示的电压波形相同的效果。
(实施方式3)
图7是表示本发明的实施方式3的老化方法中的电极的施加电压波形的图。图7A、图7B表示扫描电极5、维持电极6的施加电压波形,作为包含交变电压分量的电压,施加单纯的矩形波的重复。图7C表示施加给数据电极10的电压波形。本实施方式中的老化方法与实施方式2不同之处在于对数据电极10施加电压以便仅抑制消除放电中的一方。特别地,伴随对扫描电极5施加的电压的增加或者对维持电极6施加的电压的减少产生的老化放电随带产生的消除放电,即仅抑制在扫描电极5对于维持电极6成为高电压侧的定时的自消除。从而,下一次放电,即伴随对扫描电极5施加的电压的减少或者对维持电极6施加的电压的增加而产生的老化放电,或者虽然相同,但强调扫描电极5对于维持电极6成为低电压侧时的老化放电。在扫描电极5成为低电压侧的定时的放电中,进行在放电空间内面向扫描电极5侧的正离子引起的扫描电极5侧的离子飞溅(sputter)。从而,通过对数据电极10施加如图7C所示的电压波形,扫描电极5侧的老化比维持电极6侧更加速。
初始化放电、写入放电、维持放电一系列的三电极PDP的实际驱动中,与动作电压有关系的是写入放电和维持放电.一般地维持放电在扫描电极5和维持电极6间通过矩形电压脉冲产生放电,所以各自的电极部中的放电间隙20附近参与.另一方面,写入放电是扫描电极5和数据电极10之间的放电为主的放电,所以对于扫描电极5侧在与数据电极10相对的大致电极面全面上产生放电.从而,以实际驱动中的稳定动作为目而进行的老化,与扫描电极5、维持电极6同等老化相比,对于扫描电极5侧电极面全面的老化比维持电极6侧加速时有效率.实际上,发明者们发现通过对数据电极10施加图7C所示的电压波形,可以加速扫描电极5侧的老化,可以进一步提高老化效率.
另外,在该情况下,在图7C所示的电压波形以外,图7D、图7E的电压波形也可以得到同样的效果。这些波形的特征在于,在伴随对扫描电极5施加的电压的增加或者对维持电极6施加的电压的减少而产生老化放电的定时(即定时(1))对数据电极10施加的电压,比在产生连续消除放电的定时(定时(2))对数据电极10施加的电压高。以下,说明可以得到这些电压波形与图7C所示的电压波形相同的效果的理由。
在老化放电(在定时(1)产生)那样的强放电中,也可以考虑在缓和放电单元内部的电场之前进行表面电荷的再分布。而且,连续消除放电(在定时(2)发生)是加上对于通过老化放电再分布的表面电荷由阻尼振荡造成的电位下降部分而产生的。从而,为了抑制消除放电而对数据电极施加的电压对于老化放电产生时的电压仅其变化部分可以有效工作。反过来说,老化放电产生时的电位和连续消除放电产生时的电位如果相同,则没有抑制消除放电的效果。在本实施方式中,因为不抑制在扫描电极5对于维持电极6成为低电压侧的定时的消除放电,所以如图7D所示,在(3)和(4)的定时的电压如果一定,则电位自身的值是什么都可以。从而,图7E的电压波形和图7C、图7D的电压波形表示相同的效果。
图8是表示基于本发明的实施方式1~3中的老化方法进行显示板的老化的老化装置的结构的方框图。老化装置110具有:提供电力的电源部120、产生对于各电极的施加电压波形的施加电压波形产生部130、用于设定对于各电极的施加电压波形的施加电压波形设定部140、装载要老化的显示板100的显示板放置台(未图示)。显示板100的多个扫描电极端子部151~15n通过短路条(bar)被短路,并被连接到施加电压波形产生部130。对于维持电极端子部161~16n、数据电极端子部171~17m同样分别通过短路条116、117被短路,并用电缆连接到施加电压波形产生部130的扫描电极用输出部。施加电压波形产生部130产生与在实施方式1~3中说明的各电极对应的规定的施加电压波形,通过对显示板100的扫描电极5、维持电极6、数据电极10的每个提供而进行老化。施加电压波形设定部140用于根据老化的显示板100将施加电压波形的重复周期、施加电压的定时、在各定时的电压值等设定为最优值。
图9A是上述老化装置的施加电压波形设定部140的外观图的一例,图9B是以在本发明的实施方式3中说明的施加电压波形为例表示施加电压波形设定部140的设定项目的图.这样,在图9中例示的施加电压波形设定部140中,可以分别独立设置老化时间T、对扫描电极以及维持电极施加的交变电压波形的电压值Vs、重复频率f、对数据电极施加的脉冲电压波形的电压值Vd、脉冲宽度tw、时间间隔tc.这里,对于脉冲电压波形的时间间隔tc没有特别提及,但事先设为可调整较理想.这在与多品种的显示板100的老化对应的情况下有用,而且与用于运送显示板100的托盘(pallet)的布线长度依存的电感等,为了调整设备上的偏差而事先设置较理想.
图10是本发明的实施方式3的老化方法中的老化时间与现有的老化方法比较的图。在图10中,横轴是老化时间,纵轴是扫描电极-维持电极间的放电开始电压,在放电开始电压降低到规定的电压时刻老化完成。在现有的老化方法中,放电开始电压的下降速度缓慢,必需大约10小时的老化,但按照本发明的实施方式3中的老化方法放电开始电压急速下降并稳定,所以可以在现有的大约1/3的时间内完成老化。
这样,按照本发明的老化方法,可以提供一种老化时间大幅缩短而且电力效率高的老化方法。
本发明的等离子体显示板的老化方法可以提供一种大幅缩短老化时间,并且电力效率高的老化方法,在AC型等离子体显示板的制造工艺的老化方法等中有用。