电源供给装置、背光源组件及具有它们的液晶显示装置转让专利

申请号 : CN200380102755.2

文献号 : CN1711807B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 俞炯硕姜文拭

申请人 : 三星电子株式会社

摘要 :

本发明公开了一种电源供给装置,包括逆变控制器、电源变换部、和连接部。电源变换部将直流电变换成交流电,并变换交流电的电压,以输出第一极性电流及第二极性电流。连接部分别通过第一端子向负载的第一端部输出第一极性电流,通过第二端子向负载的第二端部输出第二极性电流,并且具有第三端子以响应第一极性电流和第二极性电流接收检测信号,以便输出该检测信号。第一端子与第二端子隔开第一绝缘距离,第三端子与相邻于第三端子的第一端子或第二端子隔开第二绝缘距离。因此,检测信号与输出电源无关,从而提高传感效率。

权利要求 :

1.一种电源供给装置,包括:

逆变控制器,响应预定控制信号将外部提供的直流电转换为交流电;

电源变换部,变换交流电的电压,以输出第一极性电流及第二极性电流,其中,所述第一极性电流和所述第二极性电流的极性交替变化;以及连接部,通过第一端子向负载的第一端部输出所述第一极性电流,通过第二端子向所述负载的第二端部输出所述第二极性电流,所述连接部具有第三端子,以便响应所述第一极性电流和所述第二极性电流接收检测信号以输出所述检测信号,其中,所述逆变控制器、所述电源变换部、及所述连接部形成在一个基片上,以及其中所述第一端子与所述第二端子隔开第一绝缘距离,所述第三端子与相邻于所述第三端子的所述第一端子或第二端子隔开第二绝缘距离。

2.根据权利要求1所述的装置,进一步包括电源传感器,相邻于所述负载的第一端部或第二端部设置,以便传感施加于所述负载的交流电电平。

3.根据权利要求1所述的装置,进一步包括检测信号发生部,将从所述第三端子输出的所述检测信号与预定的基准信号比较以产生所述控制信号,从而将所述控制信号提供给所述逆变控制器。

4.根据权利要求1所述的装置,其中,所述第一绝缘距离和所述第二绝缘距离分别是不小于3mm和不小于2mm。

5.一种背光源组件,包括:

灯驱动部,将外部提供的直流电转换为交流电,并变换交流电的电压以输出所述交流电;

发光部,包括具有施加了高压交流电的第一端部和第二端部的灯,并且响应所变换的交流电产生光;以及光控制器,提高所述光的亮度,

其中所述灯驱动部包括:

逆变控制器,响应预定控制信号将外部提供的直流电转换为交流电;

电源变换部,变换所述交流电的电压以输出第一极性电流及第二极性电流,其中,所述第一极性电流和所述第二极性电流的极性交替变化;以及连接部,通过第一端子向所述灯的所述第一端部输出所述第一极性电流,通过第二端子向所述灯的所述第二端部输出所述第二极性电流,所述连接部具有第三端子,以便响应所述第一极性电流或所述第二极性电流接收检测信号以输出所述检测信号,其中,所述逆变控制器、所述电源变换部、及所述连接部形成在一个基片上,以及其中所述第一端子与所述第二端子隔开第一绝缘距离,所述第三端子与相邻于所述第三端子的所述第一端子或第二端子隔开第二绝缘距离。

6.根据权利要求5所述的背光源组件,进一步包括电源传感器,相邻于所述灯的第一端部或第二端部设置,以便传感施加于所述灯的交流电电平。

7.根据权利要求6所述的背光源组件,其中,所述电源传感器包括线圈。

8.根据权利要求6所述的背光源组件,其中,所述灯驱动部进一步包括检测信号发生部,将来自所述电源传感器传感的信号与预定基准信号比较以产生检测信号,所述检测信号发生部向所述逆变控制器提供所述检测信号作为控制信号,以便向所述灯提供恒定电流。

9.根据权利要求8所述的背光源组件,其中,所述电源变换部进一步包括变压器,具有第一绕组和第二绕组以便变换所述交流电的电压,其中所述电源传感器根据响应流过所述第二绕组的电流产生的电场检测电压。

10.根据权利要求8所述的背光源组件,其中,所述灯驱动部包括多个检测信号发生部和多个电源传感器,而所述检测信号发生部的数量不大于所述电源传感器的数量。

11.根据权利要求6所述的背光源组件,其中,所述灯包括EEFL。

12.根据权利要求11所述的背光源组件,其中,所述灯包括多个EEFL,而将所述电源传感器与所述多个EEFL中的至少一个相邻布置。

13.根据权利要求6所述的背光源组件,其中,所述灯包括彼此并联连接的多个EEFL。

14.根据权利要求6所述的背光源组件,其中,所述电源变换部包括变压器,具有第一绕组和第二绕组以便变换所述交流电的电压,而所述电源传感器相邻于所述变压器的所述第二绕组设置。

15.根据权利要求5所述的背光源组件,其中,所述电源变换部向所述灯提供电压,其中所变换的交流电的正极性和负极性电平是基本上彼此相同的。

16.根据权利要求5所述的背光源组件,其中,所述电源变换部向所述灯提供两种电压,其中所述两种电压在正极性电平和负极性电平之间具有恒定间隔。

17.根据权利要求5所述的背光源组件,其中,所述逆变控制器包括:控制部,响应接通/断开信号和外部提供的变暗信号产生开关信号以控制施加于所述灯的恒定电流的输出;

开关部,响应所述开关信号接通或断开所述直流电的输出;以及逆变部,通过所述开关部供给的所述直流电转换成第一交流电,以便将第一交流电供给所述电源变换部。

18.根据权利要求17所述的背光源组件,其中,所述逆变控制器进一步包括二极管,具有与所述开关部的输出端连接的阴极和接地的阳极,以便防止从所述逆变部输出的冲流被供给到所述开关部。

19.根据权利要求17所述的背光源组件,其中,所述逆变控制器进一步包括开关驱动部,放大用于控制从所述控制部输出的交流电电平的信号,并且向所述开关部提供所放大的信号。

20.一种液晶显示装置,包括:

背光源组件,包括:

灯驱动部,将外部提供的直流电变换为交流电,并变换交流电的电压以输出所述交流电;

发光部,包括具有施加了高压交流电的第一端部和第二端部的灯,并且响应所变换的交流电产生光;

光控制器,提高所述光的亮度;以及

显示单元,设置在所述光控制器上,以通过所述光控制器接收来自所述发光部的光,从而显示图像,并且,其中所述灯驱动部包括:

逆变控制器,响应预定控制信号将外部提供的直流电转换为交流电;

电源变换部,变换所述交流电的电压以输出第一极性电流及第二极性电流,其中,所述第一极性电流和所述第二极性电流的极性交替变化;以及连接部,通过第一端子向所述灯的所述第一端部输出所述第一极性电流,通过第二端子向所述灯的所述第二端部输出所述第二极性电流,所述连接部具有第三端子,以便响应所述第一极性电流或所述第二极性电流接收检测信号以输出所述检测信号,其中,所述逆变控制器、所述电源变换部、及所述连接部形成在一个基片上,并且,其中所述第一端子与所述第二端子隔开第一绝缘距离,所述第三端子与相邻于所述第三端子的所述第一端子或第二端子隔开第二绝缘距离。

21.根据权利要求20所述的液晶显示装置,其中,所述第一绝缘距离和所述第二绝缘距离分别是不小于3mm和不小于2mm。

22.根据权利要求20所述的液晶显示装置,进一步包括电源传感器,相邻于所述灯的第一端部或第二端部设置,以便传感施加于所述灯的交流电电平。

23.根据权利要求20所述的液晶显示装置,进一步包括检测信号发生部,将从所述第三端子输出的所述检测信号与预定基准信号比较以产生所述控制信号,从而向所述逆变控制器提供所述控制信号。

说明书 :

技术领域

本发明涉及一种电源供给装置、背光源组件及具有它们的液晶显示(以下,指的是LCD)装置,更具体而言,涉及一种能够改善输出电源的传感效率的电源供给装置、背光源组件及具有它们的液晶显示装置。

背景技术

通常,液晶显示装置是利用外部提供的光显示图像的接收型显示装置。因此,液晶显示装置需要将光提供给液晶显示装置的背光源组件。将液晶显示装置设置在背光源组件的后部。
背光源组件具有各种特性,例如,高亮度、高效率、均匀亮度、长寿命、薄厚度、轻质、以及低成本等等。例如,施加于用于笔记本电脑的LCD装置的背光源组件需要具有长寿命和低电力消耗的灯。施加于用于监控器或电视接收器的LCD装置的背光源组件需要高亮度的灯。
特别是,施加于用于笔记本电脑的LCD装置的背光源组件需要比施加于用于监控器或电视接收器的LCD装置的背光源组件更高亮度和更长寿命的灯。就诸如电视接收器这样的显示装置而言,因为传统的冷阴极荧光灯(CCFL)不能够满足用于电视接收器的LCD装置所要求的特定条件,所以已经开发了外部电极荧光灯(EEFL)。可以将用于电视接收器的LCD装置的灯分为EEFL和外部/内部电极荧光灯(EIFL),其中EEFL具有向外位于其两端的外部电极,而EIFL具有向外位于第一端部的一个外部电极以及向内位于与第一端部相对的第二端部的一个内部电极。
由此,已经开发出一种可以并联驱动多个灯的逆变器。当并联驱动多个灯时,单独反馈单元对于这些灯是必须的,以便防止这些的火灾以及显示质量变差。
如上所述,高质量的电源供给装置对于LCD装置的这些灯是必须的。

发明内容

本发明提供了一种能够改善具有高质量输出电源的传感效率的电源供给装置。
本发明还提供了一种具有上述电源供给装置的背光源组件。
本发明还提供了一种具有上述电源供给装置的液晶显示器。
本发明的一个典型实施例的电源供给装置包括:包括逆变控制器、电源变换部、和连接部。电源变换部将直流电变换成交流电,并变换交流电的电压,以输出第一极性电流及第二极性电流。连接部分别通过第一端子向负载的第一端部输出第一极性电流,通过第二端子向负载的第二端部输出第二极性电流,并且具有第三端子,以便响应第一极性电流和第二极性电流接收检测信号以输出检测信号。第一端子与第二端子隔开第一绝缘距离,第三端子与邻接第三端子的第一端子或第二端子隔开第二绝缘距离。
本发明的一个典型实施例的背光源组件,包括灯驱动部,将外部提供的直流电变换为交流电,并变换交流电的电压以输出所述交流电;发光部,包括具有施加高压交流电的第一端部的灯,并且响应所变换的交流电产生光;以及光控制器,提高光的亮度,其中灯驱动部包括:逆变控制器,响应预定控制信号将外部提供的直流电转换为交流电;电源变换部,变换交流电的电压以输出第一极性电流及第二极性电流;以及连接部,通过第一端子向负载的第一端部输出第一极性电流,通过第二端子向负载的第二端部输出第二极性电流,连接部具有第三端子,以便响应第一极性电流或第二极性电流接收检测信号以输出所述检测信号,其中第一端子与第二端子隔开第一绝缘距离,第三端子与邻接第三端子的第一端子或第二端子隔开第二绝缘距离。
本发明的一个典型实施例的液晶显示装置包括背光源组件、逆变控制器、电源变换部、以及连接部。
背光源组件包括灯驱动部、发光部、以及光控制器。灯驱动部将外部提供的直流电变换为交流电,并变换交流电的电压以输出交流电。发光部包括具有施加高压交流电的端部的灯,并且响应所变换的交流电产生光。光控制器提高来自发光部的光的亮度。
设置在光控制器上的逆变控制器包括显示单元,并且该光控制器响应预定控制信号向电源变换部输出外部提供的直流电。该显示单元通过光控制器接收来自发光部的光,以显示图像。
电源变换部将直流电变换成交流电,并变换交流电的电压以输出第一极性电流及第二极性电流。
连接部分别通过第一端子向灯的第一端部输出第一极性电流,通过第二端子向灯的第二端部输出第二极性电流。连接部具有第三端子,以便响应第一极性电流或第二极性电流接收检测信号以输出检测信号。第一端子与第二端子隔开第一绝缘距离,第三端子与邻接第三端子的第一端子或第二端子隔开第二绝缘距离。
根据本发明的一个方面,提出了一种电源供给装置,包括:逆变控制器,响应预定控制信号将外部提供的直流电转换为交流电;电源变换部,变换交流电的电压,以输出第一极性电流及第二极性电流,其中,第一极性电流和第二极性电流的极性交替变化;以及连接部,通过第一端子向负载的第一端部输出第一极性电流,通过第二端子向负载的第二端部输出第二极性电流,连接部具有第三端子,以便响应第一极性电流和第二极性电流接收检测信号以输出检测信号,其中,逆变控制器、电源变换部、及连接部形成在一个基片上,以及其中第一端子与第二端子隔开第一绝缘距离,第三端子与相邻于第三端子的第一端子或第二端子隔开第二绝缘距离。
该装置进一步包括电源传感器,相邻于负载的第一端部或第二端部设置,以便传感施加于负载的交流电电平。
该装置进一步包括检测信号发生部,将从第三端子输出的检测信号与预定的基准信号比较以产生控制信号,从而将控制信号提供给逆变控制器。
其中,第一绝缘距离和第二绝缘距离分别是不小于3mm和不小于2mm。
根据本发明的另一个方面,提出了一种背光源组件,包括:灯驱动部,将外部提供的直流电转换为交流电,并变换交流电的电压以输出交流电;发光部,包括具有施加了高压交流电的第一端部和第二端部的灯,并且响应所变换的交流电产生光;以及光控制器,提高光的亮度,其中灯驱动部包括:逆变控制器,响应预定控制信号将外部提供的直流电转换为交流电;电源变换部,变换交流电的电压以输出第一极性电流及第二极性电流,其中,第一极性电流和第二极性电流的极性交替变化;以及连接部,通过第一端子向灯的第一端部输出第一极性电流,通过第二端子向灯的第二端部输出第二极性电流,连接部具有第三端子,以便响应第一极性电流或第二极性电流接收检测信号以输出检测信号,其中,逆变控制器、电源变换部、及连接部形成在一个基片上,以及其中第一端子与第二端子隔开第一绝缘距离,第三端子与相邻于第三端子的第一端子或第二端子隔开第二绝缘距离。
该背光源组件进一步包括电源传感器,相邻于灯的第一端部或第二端部设置,以便传感施加于灯的交流电电平。其中,电源传感器包括线圈。其中,灯驱动部进一步包括检测信号发生部,将来自电源传感器传感的信号与预定基准信号比较以产生检测信号,检测信号发生部向逆变控制器提供检测信号作为控制信号,以便向灯提供恒定电流。其中,电源变换部进一步包括变压器,具有第一绕组和第二绕组以便变换交流电的电压,其中电源传感器根据响应流过第二绕组的电流产生的电场检测电压。其中,灯驱动部包括多个检测信号发生部和多个电源传感器,而检测信号发生部的数量不大于电源传感器的数量。其中,灯包括EEFL。其中,灯包括多个EEFL,而将电源传感器与多个EEFL中的至少一个相邻布置。其中,灯包括彼此并联连接的多个EEFL。其中,电源变换部包括变压器,具有第一绕组和第二绕组以便变换交流电的电压,而电源传感器相邻于变压器的第二绕组设置。其中,电源变换部向灯提供电压,其中所变换的交流电的正极性和负极性电平是基本上彼此相同的。其中,电源变换部向灯提供两种电压,其中两种电压在正极性电平和负极性电平之间具有恒定间隔。其中,逆变控制器包括:控制部,响应接通/断开信号和外部提供的变暗信号产生开关信号以控制施加于灯的恒定电流的输出;开关部,响应开关信号接通或断开直流电的输出;以及逆变部,通过开关部供给的直流电转换成第一交流电,以便将第一交流电供给电源变换部。
其中,逆变控制器进一步包括二极管,具有与开关部的输出端连接的阴极和接地的阳极,以便防止从逆变部输出的冲流被供给到开关部。其中,逆变控制器进一步包括开关驱动部,放大用于控制从控制部输出的交流电电平的信号,并且向开关部提供所放大的信号。
根据本发明的又一个方面,提出了一种液晶显示装置,包括:背光源组件,包括:灯驱动部,将外部提供的直流电变换为交流电,并变换交流电的电压以输出交流电;发光部,包括具有施加了高压交流电的第一端部和第二端部的灯,并且响应所变换的交流电产生光;光控制器,提高光的亮度;以及显示单元,设置在光控制器上,以通过光控制器接收来自发光部的光,从而显示图像,并且,其中灯驱动部包括:逆变控制器,响应预定控制信号将外部提供的直流电转换为交流电;电源变换部,变换交流电的电压以输出第一极性电流及第二极性电流,其中,第一极性电流和第二极性电流的极性交替变化;以及连接部,通过第一端子向灯的第一端部输出第一极性电流,通过第二端子向灯的第二端部输出第二极性电流,连接部具有第三端子,以便响应第一极性电流或第二极性电流接收检测信号以输出检测信号,其中,逆变控制器、电源变换部、及连接部形成在一个基片上,并且,其中第一端子与第二端子隔开第一绝缘距离,第三端子与相邻于第三端子的第一端子或第二端子隔开第二绝缘距离。
其中,第一绝缘距离和第二绝缘距离分别是不小于3mm和不小于2mm。
该液晶显示装置进一步包括电源传感器,相邻于灯的第一端部或第二端部设置,以便传感施加于灯的交流电电平。
该液晶显示装置进一步包括检测信号发生部,将从第三端子输出的检测信号与预定基准信号比较以产生控制信号,从而向逆变控制器提供控制信号。
因此,接收由电源供给装置供给的电源供给信号的多个端子与电源供给装置形成一体,并且变压器的两个端部之间的距离以及变压器的端部与端子之间的距离大于用于绝缘的距离,从而提高根据电源供给电平的传感效率。

附图说明

本发明的这些和其它优点将通过参照附图进行的以下描述而变得显而易见,其中:
图1是示出根据本发明典型实施例的光源供给装置的框图;
图2是示出如图1所示的电源供给装置的立体图;
图3是示出如图1所示的电源供给装置的示意性电路图;
图4是示出如图3所示的检测信号发生部的示意性电路图;
图5是示出根据本发明的典型实施例的背光源组件的灯驱动单元的示意性电路图;以及
图6是示出根据本发明的典型实施例的液晶显示装置的分解立体图。

具体实施方式

图1是示出根据本发明典型实施例的光源供给装置的框图,而图2是示出如图1所示的电源供给装置的立体图。在该典型实施例中,将描述安装在印刷电路板(PCB)上的电源供给装置。
参照图1和图2,电源供给装置100包括逆变控制器110、电源变换部120、连接部130、以及检测信号发生部140。将外部提供的电源提供给负载部,即灯200。电源供给装置100接收提供给灯200并通过电源传感器300传感的电源反馈。当传感的电源高于预定电平时,电源供给装置100降低向灯供给的电压电平,当传感的电源低于预定电平时,提高向灯供给的电压电平。
优选地,将电源供给装置100安装在一个PCB上,以使输出从电源变换部120供给的交流电的第一端子132与第二端子134隔开预定距离d1,而第三端子136与第一及第二端子132、134隔开预定距离d2。第三端子136接收来自传感施于灯200的输出电源的电源传感器300的反馈信号。因而,在PCB上形成第一端子、第二端子、第三端子132、134、136,从而提高电源传感效率。
逆变控制器110响应从检测信号发生部140提供的控制信号141,将来自外部的直流电(VIN)传送到电源变换部120。
电源变换部120将逆变控制器110输出的直流电(VIN)变换为交流电,并将所变换的交流电进行变压并经过连接部130第一及第二端子132、134输出到灯200。
参照图2,连接部130包括第一连接部和第二连接部130a、130b。第一连接部130a与电源供给装置100形成一体。将第二电源连接部130b与连接于灯200的热电端连接的电源供给线和与连接于灯200的冷电端连接的电源供给线并联连接。当第一连接部130a以插座形式形成时,第二连接部130b以插头形式形成。而且,第一连接部130a由连接在电源变换部120第一及第二端的第一及第二插座132a、134a和连接在检测信号发生部140的第三插座136a组成,第二连接部130b由分别插入到第一及第二插座132a、134a的第一及第二插头132b、134b和连接在电源传感器130的第三插头136b组成,且第一插座132a与第一插头132b结合组成第一端子132,第二插座134a与第二插头134b结合组成第二端子134,第三插座136a与第三插头136b结合组成第三端子136。
优选地,第一及第二端子132、134之间保持安全规格限定的第一绝缘距离d1,优选地,第二及第三端子134、136之间保持安全规规格定的第二绝缘距离d2。虽然在附图中所述插座间的外侧壁之间的距离为绝缘距离,也可以置于第一插座132a和电源变换部120之间的线和置于第二插座134a和电源变换器120之间的线之间的距离为绝缘距离,或者,还可以置于第二插座134a和电源变换部120之间的线和置于第三插座136a与检测信号发生部140之间的线(未示出)之间距离为绝缘距离。
如果上述安全规格采用UL1950,电源变换部120输出的交流电为1kV时,则第一绝缘距离d1优选不小于约2.1mm。
例如,考虑到一般EEFL所需的电源为±750伏特,电源变换部120输出的电源两端之间的电位差约为1500伏特。即,电源变换部120输出的交流电电平约为1,000伏特以上,优选地,第一绝缘距离d1约为3mm以上,第二绝缘距离d2约为2mm以上。
连接在灯200一端的电源供给线上设置传感交流电变化的电源传感器300,并传感施加于灯200的交流电变化,经过第三端子136将传感的信号131向检测信号发生部141提供。
检测信号发生部140为了灯200保持恒定电流,通过第三端子136从电源传感器300接收传感电源变换部120输出的交流电源变化的信号131,通过与预定基准信号之间的比较生成检测信号141,将生成的检测信号141作为控制信号提供给逆变控制器110。
如上所述,根据本发明在PCB上一体化形成第三端子136与电源供给装置,即第三端子136与逆变器一体化形成,从而提高传感效率。该三端子136接收来自传感器300的检测信号,该检测信号判断形成于上述电源供给装置100内以输出第一及第二极性电流的电源变换部120第一及第二端子132、134和施加于灯200的电源是否正常输出。此时,优选地,第一及第二端子132、134之间的距离保持在可以保持相互绝缘的第一绝缘距离d1,即,保持3mm以上。优选地,第三端子136与最靠近第三端子136的第一端子132或第二端子134也保持可以保持相互绝缘的第二绝缘距离d2,即保持2mm以上。
图3是示出如图1所示电源供给装置的示意性电路图。在图3中,将灯驱动装置作为电源供给装置进行描述。
参照图1至图3,灯驱动装置包括具有第一开关SW1的开关部112;具有二极管D1、逆变部114及控制部116的逆变控制器110;具有变压器的电源变换部120;连接部130;以及检测信号发生部140。其将来自外部的直流电变换及变压为交流电并提供到灯200上,而且根据电源传感器300提供的检测信号131控制施加于灯的电压电平。逆变部114包括感应器L、电容器C1、第二开关SW2、第三开关SW3、以及开关控制部114a。
将具有第一开关SW1的开关部112连接于电源(未示出)与感应器L之间。将感应器L连接到变压器的中间接头。因此,感应器L响应控制部116的切换控制,控制外部电源提供的直流电(VIN),将脉冲形状的直流电源输出到逆变部114。此时,上述直流电具有约3V至约30V的电压。第一开关SW1可以包括模拟开关、双极型结型晶体管(BJT)、场效应晶体管(FET)等。
将第一端子设置在第一开关SW1和感应器L之间。将二极管D1连接在第一端子与接地的第二端子之间。将极管D1的阴极连接到控制部112的输出端,而极管D1的阳极接地以防止由逆变部114产生的冲流被供给到开关部112。电容器C1与电源变换部120并联连接。将电容器C1的第一端子连接到第二开关SW2,而将电容器C1的第二端子连接到第三开关SW3。将第二开关和第三开关SW2、SW3的第二端子与地线连接。
电源传感器300传感提供给灯200的交流电电平,并通过连接部130的第三端子136将检测信号131提供给检测信号发生部140。电源传感器300还可以传感变压器输出端的电流变化和电阻变化。灯200可以包括冷阴极荧光灯(CCFL)、EEFL、或外部和内部电极荧光灯(EIFL)。灯200可以包括多个CCFL、多个EEFL、或多个EIFL。
当电源传感器300检测电压变化,并且将传感输出电压的电源传感器300邻接变压器的第二绕组设置时,在传感器和第二绕组(windings,线圈)之间产生电场,以使感应电流在电源传感器300中流动。因此,电源传感器300检测电压变化。邻接变压器的第二绕组的电源传感器300可以包括可屏蔽从外部提供到变压器的电噪声的噪声障或电磁干扰(EMI)屏蔽。
当使用多个灯时,对应每个灯的端部设置多个电源传感器300,从而检测电压变化。灯驱动装置包括检测信号发生部140。灯驱动装置可以包括多个检测信号发生部140。
当电源传感器300检测电流变化时,电源传感器300可以包括光电二极管。因为电压信号比电流信号易于控制,所以电源传感器300通过具有小电阻的电阻器或放大器的反馈将电流信号变换成电压信号。
检测信号发生部140通过根据电源传感器300检测的电压电平与预定电压电平之间的比较生成检测信号141。检测信号发生部140将检测信号141提供到控制部116上,以使电源供给装置通过控制部116向灯200输出恒定电流。
将控制部116连接到第一开关SW1,以响应从外部提供到控制部116的接通/断开(on/off)信号(未示出)和变暗信号(未示出)产生控制灯200的恒定电流的开关信号117。
当将第一开关SW1闭合(接通)时,将直流电源提供给逆变部(inverting part)114,以使交流电被提供到负载或灯。交流电可以是正弦波形。电流从电源(+V)通过感应器L流向变压器120的中间接头(tab)。开关控制部114a响应接通/断开(on/off)信号控制第二开关SW2及第三开关SW3。第二开关SW2及第三开关SW3以交替方式被接通和断开,以在变压器120的第二布线中产生交流波。第二开关SW2及第三开关SW3的控制频率可以是恒定的。优选地,第二开关SW2及第三开关SW3的控制频率与电抗部(为电路的变压器)的共振频率同步。
当第二开关SW2及第三开关SW3与电路电抗部的共振频率同步时,控制部116产生正弦波。第二开关SW2及第三开关SW3的预定操作频率是约10kHz至约100kHz。为变压器的电源变换部120的第一绕组,根据电源变换部120的第二绕组和变压器的绕组进行放大。该第二绕组的电压比灯200的起弧(击穿)电压大。
灯200的起弧电压与灯200的长度、直径及密封压力无关,但是与除了长度、直径及密封压力之外的多个灯参数有关。当变压器120的第二绕组的电压大于起弧电压时,电流流经灯200以接通灯。流经灯200的电流可以通过镇流感应器(未示出)进行控制。
当第一开关SW1被断开时,交流电不会供给到逆变器电路。然而,充填在感应器L中的电流已经通过感应器L和二极管D1从电源(+V)供给到变压器120的中间接头直至填充的能量完全耗尽。第一开关SW1根据控制部116的输出控制直流电,以便控制提供给灯200的交流电,从而根据从液晶显示LCD装置(未示出)的输入而控制灯的亮度。
邻接与灯的端部连接的变压器的输出绕组设置传感器,以便检测恒定电流是否通过天线检测的电压被提供给灯。该传感器可以包括天线。
当灯被关闭时,邻接变压器的输出绕组的天线不会检测到任何电压,同时逆变器通过输入绕组向灯提供交流电,从而变压器的输出绕组中无负荷。因此,电流不可能提供给灯。
当通过邻接变压器的输出绕组的天线检测的电压不大于预定电压时,多个灯中一个灯被关闭。因此,具有减低电压的交流电不可能通过开关提供给逆变部。
用于灯初始驱动的电压高于灯正常驱动的电压,以使在初始驱动时将具有较高电压的交流电提供给灯,而在正常驱动时将具有较低电压的交流电被提供给灯,从而减低电力消耗。
图4是示出如图3所示的检测信号生成部的示意图。
参照图3和图4,检测信号发生部140包括第二二极管D2、第二电容器C2、第一电阻器R1、第二电阻器R2、以及比较器142。
通过第二二极管D2、与第二二极管D2连接的第二电容器C2、第一电阻器R1、和第二电阻器R2减小通过与变压器120的第二绕组连接的电源传感器300检测的信号131的电平。将具有减低电平的信号131提供给比较器142的第一输入端部(+)以使信号131与提供给第而输入端部(-)的预定信号比较以产生检测信号141。然后,将所生成的检测信号141提供到控制部116。
具有检测信号141的控制部116控制第一开关SW1的接通/断开,第一开关SW1可控制从外部提供给控制部116的直流电。
图5是示出根据本发明典型实施例的背光源组件的灯驱动部的示意图。
参照图5,背光源组件的灯驱动装置包括逆变控制器110、电源变换器120、电源传感器300、以及检测信号发生部140。逆变控制器110具有电源晶体管Q1、二极管D1、逆变部114、和控制部116。电源变换器120具有变压器。电源传感器300邻接变压器的输出端部设置。灯驱动装置将外部提供的直流电变换成交流电,从而将交流电提供给灯阵列。灯阵列具有彼此并联连接的EEEL。
灯阵列还可以包括多个外部和内部电极荧光灯(EIFL)。可将镇流电容器与这些灯的一个端部或两个端部连接。
电源晶体管Q1响应通过栅极从控制部116输出的开关信号117被接通,以便通过其漏极控制从其源极输出到逆变部114的直流电。
将二极管D1的阴极与电源晶体管Q1的漏极连接,而将二极管D1的阳极接地,以便防止逆变部114的冲流被提供到电源晶体管Q1。
逆变部114包括感应器L、共振电容C1、第三电阻器R3、第四电阻器R4、第二晶体管Q2、以及第三晶体管Q3。将逆变部114的端部连接于电源晶体管Q1的漏极,以便将由电源晶体管Q1提供的间歇直流电变换成第一交流电。逆变部114变换第一交流电的电压以生成第二交流电,从而将第二交流电提供给电源变换部120。逆变器包括共振Royer逆变器电路。
具体而言,将感应器L的第一端部连接到电源晶体管Q1的漏极,以除去来自直流电的脉冲信号,从而通过感应器L的第二端部输出不含脉冲信号的直流电。当将电源晶体管Q1接通时,感应器L填充能量。当断开电源晶体管Q1时,感应器L向二极管提供反向电动势。因此,感应器L作为开关调节器稳定电流。
电源变换部120的变压器包括具有第一绕组T1和第二绕组T2的多个第一绕组以及包括第三绕组T3的多个第二绕组。变压器通过电磁感应向多个第二绕组的第三绕组T3输出通过逆变部114的感应器L提供给第一绕组T1的交流电。从而生成高电压。将该高电压提供给灯阵列。将直流电通过中间接头从感应器L提供给第一绕组T1。
第二绕组T2根据提供到第一线圈T1的交流电接通第二晶体管Q2和第三晶体管Q3中的一个。
将共振电容器C1与变压器的第一绕组T1的端部连接,以形成具有第一绕组T1的感应信号的LC共振电路。与变压器输入端部连接的第二绕组T2接通第二晶体管Q2和第三晶体管Q3中的一个。
将直流电通过第三电阻器R3施加于第二晶体管Q2的基极,并且将第二晶体管Q2的集电极与共振电容器C1的第一端部和第一绕组T1并联连接以控制电源变换部120。将直流电通过第四电阻器R4施加于第三晶体管Q3的基极,并且将第三晶体管Q3的集电极与共振电容器C1的第二端部和第一绕组T1并联连接以控制电源变换部120。将第二晶体管Q2和第三晶体管Q3的发射极接地。
电源传感器300包括天线310,其与变压器120的输出端部隔开最小绝缘距离。与变压器的输出端部是一种布线,通过该布线将来自第三绕组的交流电提供给灯。最小绝缘距离是第二绝缘距离。电源传感器300检测该布线的电压以将所检测的信号提供给检测信号发生部140。当天线310邻接变压器的第二绕组设置时,在天线310和与第二绕组的输出端部连接的布线之间形成电场,从而检测电压。
当邻接第二绕组设置线圈天线310时,具有第二绕组和线圈天线的另一变压器根据感应电压产生电流。将该电流提供给检测信号发生部140以作为逆变器反馈。
控制部116包括脉冲宽度调制(PWM)控制部116a及作为开关驱动部的金属氧化物半导体场效应晶体管(MOSFET)驱动部116b。控制部116响应变暗信号和检测信号通过接通/断开信号进行控制以将开关信号117提供到电源晶体管Q1,其中变暗信号从外部被提供到控制部116,而检测信号由检测信号发生部140提供。将开关信号117用于控制交流电的电平。变暗信号控制灯的亮度,并且变暗信号是一种具有预定负载(duty)的数字信号。变暗信号可以通过人工输入而产生。将由向灯200提供具有提高电压的电流的变压器120输出端部所检测的信号与预定标准信号比较,以便形成检测信号。
MOSFET驱动部116b放大PWM控制部116b提供的控制交流电电平的信号,并将放大的电平控制信号提供给电源晶体管Q1。通常PWM控制部116a输出的信号为低电平信号,因为电平低无法直接适用于电源晶体管Q1,所以为了放大低电平信号必须利用MOSFET驱动部116b。
下面,详细说明将低电平交流电变换为高电平交流电的电源输出部,即,具体说明逆变部114和电源变换部120的结构。
通过电源晶体管Q1变换的直流电为了向晶体管供给驱动电流通过串联适用电阻与逆变部114的各输入端-第二晶体管Q2的基极连接。具有变压器120中间接头的第一绕组T1在各发射极接地的第二和第三晶体管Q2、Q3的集电极之间通过并联连接。电容器C1也与第一绕组T1并联连接。
将直流电通过具有扼流线圈的感应器L提供给变压器120的第一绕组T1的中间接头。该扼流线圈将由逆变部114提供的电流变换成恒定电流。
变压器120的第三绕组T3的数目大于第一绕组T1的数目,从而提高提供给第一绕组T1的电压。将灯阵列的多个灯与变压器120的第三绕组T3并联连接,以向各荧光灯供给恒定电压。具有恒定电压的升高交流电可以具有正电平和与正电平基本相同的负电平。具有恒定电压的升高的交流电还可以具有在最低电平与最高电平之间的恒定间隔。
将电源变换部120的变压器的第二绕组T2的第一端部与第二晶体管Q2的基极连接,而将电源变换部120的变压器的第二绕组T2的第二端部与第三晶体管Q3的基极连接。电源变换部120将由第二绕组T2供给的电压提供到第二及第三晶体管Q2、Q3的基极。
电源传感器300包括一个天线310。电源传感器300可以包括与EEFL连接的多个天线。将电源传感器300与变压器的第二绕组连接。灯驱动装置可以包括多个检测信号发生部140,并且检测信号发生部140的数目可以等于天线的数目。
下面,将说明将直流电变换成交流电的逆变器(inverter,反相器)的操作。
首先,当向逆变器提供变换的直流电时,该电流通过感应器L向变压器120的第一绕组T1提供,与此同时,脉冲电流经过第一电阻器R3施加到第二晶体管Q2的基极,经过第二电阻R4施加到第三晶体管Q3的基极。此时,根据组成电源变换部120的变压器第一绕组,即第一绕组T1的电抗与共振电容器C1形成共振。因此,变压器的第二绕组,即第三绕组T3的两个端子之间产生升压相当于变压器第一绕组T1和第三绕组T3匝数比的升压电压。同时,组成变压器的第一绕组,即在第二绕组T2形成与第一绕组T1的电流方向相反的电流。
然后,提高相当于变压器第一绕组T1与第三绕组T3的匝数比的电压,从变压器第三绕组的相对端产生频率及相位同步的高压波形,其结果可以消除灯阵列的闪烁。
电源供给装置包括并联连接的多个EEFL。电源供给装置可以包括多个EIFL。电源供给装置也可以包括多个EEFL和多个EIFL。当多个EIFL并联连接时,逆变器可以包括彼此连接的多个外部电极和彼此连接的多个内部电极。然而,多个外部电极可以与多个内部电极连接。
当将多个EEFL或EIFL并联并联连接时,响应从外部提供到灯的变暗信号,将具有电流电压的交流电提供给荧光灯的两个端部,从而控制荧光灯的亮度。
当在并联的多个荧光灯中一个被破坏而不能正常操作时,耗尽电源的负荷变小。通过连接在变压器第二绕组的天线能检测到减小的电力消耗,以使直流电通过所检测的电力消耗的反馈进行控制。因此,向灯提供恒定电流。当至少一个荧光灯可以正常操作时,形成闭合回路,以使管电流流经闭合回路,从而防止火灾。
背光源组件检测由变压器的第二绕组产生的功率。下面,将具有该背光源组件的液晶显示装置进行描述。
图6是示出根据本发明典型实施例的液晶显示装置的分解立体图。该液晶显示装置具有设置在其侧面的光源。
该液晶显示器900包括液晶显示模块700、前盖810、以及后盖820。将图像信号提供给液晶显示模块700以显示图像。液晶显示模块700包括具有显示图像的LCD面板712的显示单元710。
显示单元710包括液晶显示面板712、数据印刷电路板714、栅极印刷电路板719、数据带载封装(TCP)716、以及栅极TCP718。液晶显示面板712包括薄膜晶体管基片712a、滤色器基片712b、以及液晶层(未示出),从而并显示图像。
具体而言,薄膜晶体管基片712a是形成以矩阵形状排列的薄膜晶体管的透明玻璃基片。薄膜晶体管的源极端与数据线连接,栅极端与栅极线连接。将由透明导电性材料如氧化铟锡ITO、氧化铟锌IZO灯组成的多个像素电极与漏极连接。
若向数据线及栅极线输入电信号,则各薄膜晶体管的源极端与栅极端接收电信号。根据这些电信号的输入薄膜晶体管被接通或断开,从而向漏极输出形成像素所需的电信号。
滤色器基片712b对应薄膜晶体管基片712a。滤色器基片712b是透射光时显示预定颜色的彩色像素RGB像素根据薄膜工序形成的基片。在滤色器基片712b之上形成由ITO组成的共同电极。
若向薄膜晶体管基片712a的晶体管栅极端及源极端施加电源接通薄膜晶体管,则在像素电极与滤色器基片的共同电极之间形成电场。根据这种电场,注入到薄膜晶体管基片712a与滤色器基片714b之间的液晶排列角产生变化,并随着变化的排列角变更光透射比,由此得到所需的像素。
为了控制液晶显示面板712的液晶排列角和液晶排列时期,向薄膜晶体管的栅极线和数据线施加驱动信号及同步信号。如图所示,液晶显示面板712的源极端附着决定数据驱动信号施加时期的柔性电路板的数据TCP716,栅极上附着决定栅极驱动信号施加时期的柔性电路板的栅极TCP718。
接收来自液晶显示面板712外部的图像信号分别向栅极线与数据线施加驱动信号的数据印刷电路板714及栅极印刷电路板719分别与液晶显示面板712的数据线的数据TCP716及栅极线的栅极TCP718连接。
在数据印刷电路板714形成接收来自诸如电脑这样的外部信息处理装置(未示出)的图像信号向液晶显示面板712提供数据驱动信号的源极部,栅极印刷电路板719形成向液晶显示面板712的栅极线提供栅极驱动信号的栅极部。
数据印刷电路板(PCB)714及栅极印刷电路板719产生驱动液晶显示器的信号,即驱动信号、数据信号及为了在恰当的时间施加上述信号的多个同步信号,栅极驱动信号通过栅极TCP718施加到液晶显示面板712的栅极线上,数据信号通过数据TCP716施加到液晶显示面板712的数据线上。
显示单元710具有向显示单元710提供均匀光的背光源组件720。背光源组件720包括在液晶显示模块700两端产生光的第一及第二灯单元723、725。第一及第二灯单元723、725分别由第一及第二灯723a、723b、第三及第四灯725a、725b组成,并分别由第一及第二灯罩722a、722b来保护。此时,虽然图5中未示出,液晶显示器为了驱动第一至第四灯723a、723b、725a、725b具有如所述图1至图4说明的电源供给装置。
导光板724具有对应于显示单元710的液晶面板的尺寸。导光板724位于液晶面板712的下方,并将第一及第二灯单元723、725发射的光引向显示单元710的同时改变光路径。
导光板724为厚度均匀的六面体形。导光板724可以为楔形。为了提高光效率,将第一及第二灯单元723、725彼此面对地安装在导光板724两端。第一及第二灯单元723、725可以具有多个灯。
导光板724上具有使从导光板724发射到液晶显示面板712的光灰度均匀的多个光学薄片726。而且,导光板724的下方具有将导光板724泄漏的光反射到导光板724以提高光效率的反射板728。
作为接纳箱体的模板框架730固定显示单元710和背光源组件720。模板框架730具有正六面体的形状,并且模板框架730的顶面是开口的。
将显示单元710的数据印刷电路板714和栅极印刷电路板719向外进行折叠,并被固定在模板框架730的底面以形成底盘740。底盘740防止显示单元710从其中脱离。将一部分底盘740打开以露出液晶显示面板710。将底盘740的侧壁向内并垂直地进行折叠,固定具有液晶显示装置的液晶显示面板710。
液晶显示装置包括导光板和设置该导光板侧壁上的多个灯。液晶显示装置可以具有直接照明的光源。
工业实用性
如上所述,将电源提供装置的变压器的多个端部彼此隔开一绝缘距离,并且将从传感器接收的信号的端子与电源提供装置的逆变器PCB一体形成,该传感器检测由电源提供装置所产生的功率。因此,所检测的信号与输出电源无关,从而提高传感效率。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。