地层评价装置和方法转让专利

申请号 : CN200510097667.9

文献号 : CN1743644B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : C·S·德尔坎波R·V·诺尔德三世N·马特苏莫托M·米尔科维施H·陶基J·W·布朗R·瓦斯克斯K·L·哈夫莱恩克

申请人 : 施卢默格海外有限公司

摘要 :

本发明提供一种减少污染的地层评价技术。所述的技术涉及将流体抽汲入井下工具内,该井下工具设置在穿透地层的井眼内,所述地层内含有原始流体和被污染的流体。所述的流体被抽汲入至少两个入口内以接收地层流体。至少一条评价管线流体地连接到至少一个入口上以使原始流体进入井下工具。至少一条清洁管线流体地连接到所述入口上以使被污染地流体进入井下工具。至少一条流体管路流体地连接到评价管线和/或清洁管线上以选择性地将流体抽汲入其内。设置至少一个流体连接器以选择性地在管线之间建立流体连通。设置至少一个传感器以测量一条管线内的井下参数。所述流体可选择性地被泵送穿过管线以降低评价管线内的污染。

权利要求 :

1.一种地层评价系统,其用于可设置在穿透地下地层的井眼内的井下工具中,所述地层内含有原始流体和被污染的流体,该地层评价系统包括:至少两个用于接收地层流体的入口;

至少一条流体地连接到至少两个入口中的至少一个入口的评价管线,以使原始流体进入所述的井下工具;

至少一条流体地连接到至少两个入口中的一个入口的清洁管线,以使被污染的流体进入所述的井下工具;

至少一条流体管路,流体地连接到至少一条评价管线和/或至少一条清洁管线,以选择性地将流体抽汲到所述至少一条流体管路内;

至少一个流体连接器,以选择性地在评价管线与清洁管线之间建立流体连通;以及至少一个传感器,以测量至少一条评价管线和/或至少一条清洁管线内的井下参数。

2.如权利要求1所述的地层评价系统,其特征在于:其还包括可从外壳伸出以与井壁密封结合的流体连通装置,至少两个入口贯穿所述的流体连通装置。

3.如权利要求1或2所述的地层评价系统,其特征在于:所述的至少一个流体连接器适于使流体从至少一条评价管线的上游部分流到至少一条清洁管线的下游部分,或使流体从至少一条清洁管线的上游部分流到至少一条评价管线的下游部分,或二者的组合。

4.如权利要求1或2所述的地层评价系统,其特征在于:所述的至少一个流体连接器连接到某一位置的管线上,该位置处于评价管线的关闭阀和/或清洁管线的关闭阀的上游。

5.如权利要求1或2所述的地层评价系统,其特征在于:所述的至少一个流体连接器连接到某一位置的管线上,该位置处于评价管线的关闭阀和/或清洁管线的关闭阀的下游。

6.如权利要求1或2所述的地层评价系统,其特征在于:其还包括至少一个平衡阀,该平衡阀从至少一条评价管线和/或至少一条清洁管线上伸出,以流体地连接到井眼。

7.如权利要求1或2所述的地层评价系统,其特征在于:所述的至少一条流体管路包括至少一个泵,至少一个取样室以及至少一个用于选择性地将流体抽汲入井下工具的阀。

8.如权利要求1或2所述的地层评价系统,其特征在于:所述的至少一个传感器适用于测量评价管线和/或清洁管线内的流体的性质。

9.如权利要求1或2所述的地层评价系统,其特征在于:其还包括至少一个预测试活塞,该活塞可操作性地连接到至少一条评价管线和/或至少一条清洁管线上。

10.如权利要求1或2所述的地层评价系统,其特征在于:其还包括至少一个隔离阀,以选择性地使流体流过至少一条评价管线和/或至少一条清洁管线。

11.一种地层评价方法,所述地层内含有原始流体和被污染流体,该方法包括:将一个井下工具布置在穿透地层的井眼内,该井下工具具有至少两个入口,所述的至少两个入口用于将流体抽汲入井下工具内的至少一条评价管线和至少一条清洁管线中;

选择性地将流体抽汲入至少一条评价管线和/或至少一条清洁管线内;

可选择性地在至少一条评价管线和至少一条清洁管线之间建立流体连通;以及测量至少一条评价管线和/或至少一条清洁管线内的流体的井下参数。

12.如权利要求11所述的方法,其特征在于:其还包括使流体穿过流体管路。

13.如权利要求12所述的方法,其特征在于:通过至少一个泵将流体泵入到流体管路内。

14.如权利要求11所述的方法,其特征在于:所述的选择性地建立流体连通的步骤包括使流体从至少一条评价管线的上游部分流到至少一条清洁管线的下游部分,或使流体从至少一条清洁管线的上游部分流到至少一条评价管线的下游部分,或者二者的组合。

15.如权利要求11所述的方法,其特征在于:所述的选择性地建立流体连通的步骤包括在某一位置连接所述至少一条评价管线和所述至少一条清洁管线,该位置处于评价管线的关闭阀和/或清洁管线的关闭阀的上游。

16.如权利要求11所述的方法,其特征在于:所述的选择性地建立流体连通地步骤包括在某一位置连接所述管线,该位置处于评价管线的关闭阀和/或清洁管线的关闭阀的下游。

17.如权利要求11所述的方法,其特征在于:其还包括在井眼与至少一条评价管线和/或至少一条清洁管线之间建立流体连通。

18.如权利要求11所述的方法,其特征在于:其还包括分析所测的井下参数。

19.如权利要求18所述的方法,其特征在于:比较所述至少一条评价管线和所述至少一条清洁管线的井下参数。

20.如权利要求18所述的方法,其特征在于:所测的井下参数为至少一条评价管线与至少一条清洁管线之间的压差。

21.如权利要求11所述的方法,其特征在于:所述的井下工具还包括一组连接到至少一条评价管线上的流体流路,每一流体流路具有至少一个泵,以及所述的抽汲流体的步骤包括选择性地将流体泵入到至少一条评价管线和/或至少一条清洁管线内。

22.如权利要求21所述的方法,其特征在于:所述的泵选择性地受到激励以防止被污染的流体流入到评价管线内。

23.如权利要求21所述的方法,其特征在于:其还包括将流体从评价管线泵入到至少一个取样室。

说明书 :

技术领域

本发明涉及利用布置在井眼内的井下工具进行地层评价的技术,所述的井眼穿透地下地层。尤其是,本发明涉及减少抽汲入井下工具和/或由井下工具进行评价的地层流体的污染的技术。

背景技术

钻出井眼以确定和生产烃类。其末端具有钻头的井下钻具钻进到地层中从而形成一个井眼。在钻具钻进时,将钻井液泵入,使之穿过钻具并从钻头排出,以冷却钻具并将钻屑带离。钻井液从钻头排出并返回到地面以穿过钻具进行再循环。所述的钻井液也被用于形成衬在井眼的泥饼。
在钻井作业期间,需要对井眼所穿透地层进行各种评价。在某些情况下,所述的钻具可设置有对周围地层测试和/或取样的装置。在某些情况下,可将钻具移走并将钢丝绳工具布置到井眼中以对地层进行测试和/或取样。在其它情况下,所述的钻具可用于完成测试或取样。例如,这些取样或测试可用于确定有价值的烃类。
地层评价常常需要将地层流体抽汲入井下工具以进行测试和/或取样。各种装置(如探头)从井下工具伸出以与井眼周围的地层形成流体连通并将流体抽汲入井下工具。一种典型的探头为环形元件,其从井下工具伸出并定位靠在井壁上。探头末端的橡胶封隔器用于与井壁形成密封。另一种与井壁形成密封的装置为双管封隔器。利用双管封隔器,两个弹性环相对于所述工具径向膨胀从而封隔其间一部分井眼。所述的环与井壁形成密封并允许流体进入封隔的井眼部分和进入井下工具的入口。
衬在井眼的泥饼通常有助于探头和/或双管封隔器与井壁形成密封。一旦密封形成,通过降低井下工具内的压力使地层流体穿过入口进入井下工具。用于井下工具的探头和/或封隔器的示例在美国专利US6,301959、US4,860,581、US4,936,139、US6,585,045、US6,609,568、US6,719,049和申请号为2004/0000433的美国专利中进行了描述。
通常根据抽汲入钻井工具的流体而进行地层评价。目前存在着对进入井下工具的流体进行各种测试、预测试和/或取样收集的技术。然而,人们已经发现当地层流体进入井下工具的时候,各种污染物(如井眼流体和/或钻井液)可能会随着地层流体一起进入井下工具。这些污染物会影响对地层流体的测试和/或取样的质量。此外,由于需要另外的时间来进行更多的测试和/或取样,污染物可引起井眼操作的昂贵的时间延误。另外,这些问题还可产生不正确和/或不能使用的错误结果。
因此,需要进入井下工具的地层流体足够‘清洁’或‘原始’以进行有效的测试。换句话说,地层流体应该具有很少或者没有污染物。人们一直试图消除随地层流体进入井下工具的污染物。如美国专利US4,951,749所述,将过滤器安装在探头内以阻止污染物随地层流体一起进入井下工具。此外,如授权给Hrametz的美国专利US 6,301,959所示,探头安装有护圈以在污染流体进入探头时使其转离清洁流体。
尽管存在着进行地层评价和试图消除污染物的技术,但是仍需要控制流过井下工具的流体的流动,以在污染物进入和/或穿过井下工具时减少污染物.需要有能够将污染物从清洁流体中分离的技术.还需要能够完成下述一种或多种功能的技术,其中:分析穿过管线的流体,选择性地控制流过井下工具的流体的流动,响应于探测到的污染物,去除污染物和/或灵活处理井下工具内的流体.

发明内容

在至少一个方面,本发明涉及一种减少污染的地层评价系统,其用于设置在穿透地层的井眼内的井下工具中,所述地层内含有原始流体和被污染的流体。所述的系统包括:
至少两个用于接收地层流体的入口,至少一条流体地连接到至少两个入口中至少一个的评价管线以使原始流体进入所述的井下工具,至少一条流体地连接到至少一个入口的清洁管线,以使被污染的流体进入所述的井下工具,至少一条流体地连接到评价管线和/或清洁管线的流体管路,以选择性地将流体抽汲到其内,至少一个流体连接器,以选择性地在评价管线和/或清洁管线之间建立流体连通,以及至少一个传感器以测量评价管线和/或清洁管线内的井下参数。
另一方面,本发明涉及一种减少污染的地层评价工具,该工具设置在穿透地层的井眼内,所述地层内含有原始流体和被污染的流体。所述的工具包括:可从外壳伸出的流体连通装置以与井壁密封结合,至少两个用于接收地层流体的入口,至少一条设置在外壳内并流体地连接到至少一个入口的评价管线,以使原始流体进入所述的井下工具,至少一条流体地连接到所述入口的清洁管线,以使被污染的流体进入所述的井下工具,至少一条流体地连接到评价管线和/或清洁管线的流体管路,以选择性地将流体抽汲入其中,至少一个流体连接器,以选择性地在评价管线和/或清洁管线之间建立流体连通,以及至少一个传感器,以测量评价管线和/或清洁管线内的井下参数。
又一方面,本发明涉及一种评价含有原始流体和被污染流体的地层的方法。该方法包括一个井下工具,该井下工具具有至少两个用于将流体抽汲入井下工具内的至少一条评价管线和至少一条清洁管线的入口。所述的井下工具设置在穿透地层的井眼内,流体选择性地被抽汲入评价管线和/或清洁管线,在评价管线与清洁管线之间选择性地建立流体连通,测量评价管线和/或清洁管线内流体的井下参数。
最后,在又一方面,本发明涉及一种将流体抽汲入井下工具的方法,所述的井下工具可定位在穿透地层的井眼内,所述地层内含有原始流体和被污染的流体。所述的方法包括:定位井下工具的流体连通装置,其与井壁密封结合,在流体连通装置的至少一条评价管线与地层之间建立流体连通,在流体连通装置的至少一条清洁管线与地层之间建立流体连通,在清洁泵的泵速下将流体泵入清洁管线,在评价泵的泵速下将流体泵入评价管线,以不连续的时间间隔选择性地改变清洁泵和/或评价泵的泵速,并在时间间隔之后对评价管线和/或清洁管线内的流体进行地层评价。

附图说明

为了详细地理解本发明的上述特征和优点,结合实施例对本发明做出更详细地描述和对上面简明地总结,所述的实施例在附图中示出.然而应该指出,附图仅仅示出了本发明典型的实施例,因此不能认为其是对本发明范围的限制,本发明允许具有其它等效的实施例.
图1为示意图,其部分地示出了设置在地层附近井眼内的井下地层评价工具的剖面。
图2为图1所示的部分地层评价工具的示意图,其中示出了接收地层流体的流体流动系统。
图3为井下工具和图2所示的流体流动系统的详尽示意图。
图4A为使用不同步泵速的流过图2中井下工具的流体的流量曲线。图4B1-4为分别通过图4A中的A-D点的流过图2所示井下工具的流体的示意图。
图5A为使用同步泵速的通过图2中井下工具的流体的流量曲线。图5B1-4为分别通过图5A中的A-D点的流过图2所示井下工具的流体的示意图。
图6A为使用部分同步泵速的通过图2中井下工具的流体的流量曲线。图6B1-4为分别通过图6A中的A-D点的流过图2所示井下工具的流体的示意图。
图7A为使用偏离同步泵速的通过图2中井下工具的流体的流量曲线。图7B1-5为分别通过图7A中的A-E点的流过图2所示井下工具的流体的示意图。
图8A为使用偏离同步泵速的通过图2中井下工具的流体的流量曲线。图8B1-5为分别通过图8A中的A-E点的流过图2所示井下工具的流体的示意图。

具体实施方式

本发明的优选实施例在上述的附图中示出并将在下面进行详细描述。在描述优选实施例的过程中,相似或相同的附图标记用于表示相同或相似的部件。附图没有必要按比例,并且为了清晰简明,附图特定的特征和特定的视图在比例上可能有些夸张或者是示意性的。
图1示出了与本发明一起使用的井下工具。可使用能够完成地层评价的任意井下工具,如钻井工具、挠性管或其它井下工具。图1所示的井下工具为利用电缆16从钻机12下入到井眼14中并定位在地层F附近的常规钢丝绳工具10。井下工具10具有适于与井壁密封并将流体从地层抽汲入井下工具的探头18。双管封隔器21也被示出,以便表明各种流体连通装置(如探头和/或封隔器)可用于将流体抽汲入井下工具。备用活塞19有助于将井下工具和探头推靠在井壁上。
图2为图1所示部分井下工具10的示意图,其示出了流体流动系统34。探头18优选从井下工具伸出以与井壁结合。所述探头具有封隔器20以与井壁密封。该封隔器与井壁接触并与衬在井眼的泥饼22形成密封。泥饼渗入井壁从而形成井眼的侵入带24。侵入带包含有泥浆和污染周围地层的其它井眼流体,所述周围地层包括地层F并且部分清洁地层流体26包含在其中。
探头18优选具有至少两条管线,一条评价管线28和一条清洁管线30。可以理解,在使用双管封隔器的时候,入口可设置在其间以将流体抽汲入井下工具的评价管线和清洁管线。用于将流体抽汲入单独管线的流体连通装置的示例(如探头和双管封隔器),在授权给本发明的受让人的美国专利申请6719049和公开号为20040000433的专利申请和授权给Halliburton的US 6,301,959专利中进行了描述。
评价管线伸入井下工具并用于使清洁的地层流体进入井下工具以进行测试和/或取样。评价管线伸入取样室35以对地层流体进行取样。清洁管线30伸入井下工具并用于使被污染的流体离开流入评价管线的清洁流体。被污染的流体可通过出口37排入井眼中。一个或多个泵36可用于使流体穿过管线。一个分流器或挡板优选设置在评价管线和清洁管线之间以便分离其中流过的流体。
现在参看图3,其中更加详尽地示出了图2所示的流体流动系统34。在该图中,流体通过探头18而被抽汲入评价管线和清洁管线。在流体流入井下工具时,侵入带24(如图2)内被污染的流体穿过,以便清洁流体26可进入评价管线28(如图3)。被污染的流体被抽汲入清洁管线并离开评价管线,如箭头所示。图3示出了具有清洁管线的探头,所述的清洁管线相对于探头表面形成了一个环。然而,可以理解,也可以应用其它一个或多个入口和贯穿探头的管线的其它布局。
评价管线28和清洁管线30从探头18伸出并穿过井下工具的流体流动系统34。评价管线和清洁管线可选择性地与贯穿流体流动系统的管线连通,这里将对其做详尽描述。图3所示的流体流动系统具有在流体从地层附近的上游位置流到穿过井下工具的下游位置时控制清洁和/或被污染流体流动的多个特征。所述的系统具有多种流体测试和/或控制装置,如管线(28,29,30,31,32,33,35)、泵36、预测试活塞40、取样室42、阀44、流体连接器(48,51)和传感器(38,46)。所述的系统还可具有各种附加装置,如限流器、分流器、处理器和用于控制流动和/或进行各种地层评价操作的其它装置。
评价管线28从探头18伸出并流体地连接到贯穿井下工具的管线上。评价管线28优选具有预测试活塞40a和传感器,如压力计38a和流体分析仪46a。清洁管线30从探头18伸出并流体地连接到贯穿井下工具的管线上。清洁管线30优选具有预测试活塞40b和传感器,如压力计38b和流体分析仪46b。传感器(如压力计38c)可连接到评价管线28和清洁管线30以测量它们之间的参数,如压差。这些传感器可按照需要沿着流体流动系统的任意管线设置在其它位置。
可设置一个或多个预测试活塞以将流体抽汲入井下工具并进行预测试操作。预测试通常用于在流体通过探头而被抽汲入井下工具时产生井下压力跟踪和管线内的压力产生。当结合具有评价管线和清洁管线的探头使用时,预测试活塞可沿着每一管线设置以产生地层曲线,这些曲线可用来进行比较和分析。此外,预测试活塞可用于将流体抽汲入井下工具以打破沿着井壁的泥饼。所述的活塞可同步循环或者以不同的速度循环以便调整和/或产生穿过各自管线的压差。
在作业期间,预测试活塞还可用于诊断和/或探测问题。在所述活塞以不同的速度循环时,可确定管线之间隔离的完整性。在穿过一条管线的压力变化反映在第二管线时,则显示出管线之间存在着不完全的隔离。管线之间缺少隔离可显示出管线之间存在着不完全的密封。活塞循环期间的穿过管线的压力读数可用于帮助诊断任意问题或者确认操作的充分性。
流体流动系统可具有流体连接器,如转换器48和/或连接器51,以在评价管线和清洁管线(和/或流体地连接到其上的管线)之间传输流体.这些装置可沿着流体流动系统设置在各个位置以使流体从一条或多条管线转向流到所需的部件或井下工具部分.如图3所示,可旋转的转换器48可用于使评价管线28与管线32流体连通,并使清洁管线30与管线29流体连通.换句话说,来自管线的流体可按照需要选择性地在各条管线之间转换.作为示例,流体可从管线28转向流到管路50b,并且流体可从管线30转向流到管路50a.
连接器51在图3中示出,其包括多个阀44a,44b,44c,44d以及相关的连接器管线52和54。阀44a允许流体从管线29流到连接器管线54和/或穿过管线31流到管路50a。阀44b允许流体从管线32流到连接器管线54和/或穿过管线35流到管路50b。阀44c允许流体在阀44a和44b上游的管线29,32之间流动。阀44d允许流体在阀44a和44b下游的管线31,35之间流动。这种结构可使评价管线和清洁管线之间的流体选择性的混合。例如,这可用于选择性地使流体从管线流到一条或两条取样管路50a,50b。
阀44a和44b还可作为隔离阀使用,以便将管线29,32内的流体同阀44a,44b下游的流体流动系统内的其余流体隔离开。所述的隔离阀关闭以隔离井下工具内固定量的流体(即地层与阀44a,44b之间管线内的流体)。位于阀44a和/或44b上游固定量的流体用于进行井下测试,如压力和流动性。
在某些情况下,如在取样期间,需要维持评价管线和清洁管线之间的分离。例如,这可通过关闭阀44c和/或44b来完成,以防止流体在管线29和32之间或管线31和35之间流动。在其它情况下,管线之间的流体连通可用于进行井下测试,如地层压力测试和/或流动性测试。例如,这可通过关闭阀44a,44b,打开阀44c和/或44d来完成,以使流体分别流过管线29和32,或31和35。在流体流入管线时,沿着管线设置的压力计可用于测量压力并确定探头与井壁之间接触面上的流量和过流面积的变化。这一信息可用于产生地层流动性。
阀44c,44d还可使流体在井下工具内的管线之间穿过以防止管线之间产生压差。如果缺少这样一个阀,管线之间的压差会使流体从一条管线流出并在穿过地层之后返回进入井下工具内的另一条管线,这样可改变测试数据,如流动性和压力。
连接器51也可用于使流体流动系统下游的部分与流体流动系统上游部分相隔离。例如,连接器51(即通过关闭阀44a,44b)可用于使流体从连接器上游位置流到井下工具的其它部分,如穿过阀44j和管线25从而避免了流体管路。在另一示例中,通过关闭阀44a,44b和打开阀44d,这一结构可用于使流体在管路50之间通过和/或通过阀44k和管线39流到井下工具的其它部分。这一结构还可用于使流体在其它部件和流体管路之间通过而不与探头流体连通。这在某种情况下是有益的,如连接器的下游具有另外的部件(如另外的探头和/或流体管路模块)的情况下。
操作连接器51以便关闭阀44a和44d及打开阀44d。在这一结构中,来自两条管线的流体可从连接器51上游的位置流到管线35。可选择地是,关闭阀44b和44d并且打开阀44a和44c,以便来自两条管线的流体可从连接器51上游的位置流到管线31。
管路50a和50b(有时称作取样或流体管路)优选包括泵36、取样室42、阀44和相关管线以选择性地抽汲流体穿过井下工具。可使用一条或多条管路。为了描述的目的,描述两条不同的管路,但是可使用相同或其它各种管路。
管线31从连接器51伸至管路50a。设置阀44e以选择性地使流体流入管路50a。流体可从管线31经过阀44e转向流到管线33a 1并通过排出口56a进入井眼。可选择地是,流体可从管线31经过阀44e并穿过管线32而转向流到阀44f。可分别在管线33a 1和33a 2上设置泵36a 1和36a 2。
经过管线33a 2的流体可通过阀44f并通过管线33b1转向流到井眼,或者通过管线33b2转向流到阀44g。泵36b可设置在管线33b2上。
经过管线33b2的流体可通过阀44g流到管线33c1或管线33c 2。当转向流到管线33c 1时,流体可通过阀44h并通过管线33d1转向流到井眼,或者通过管线33d2流回。当转向流到管线33c 2时,流体在取样室42内聚积。缓冲管线33d 3伸入到井眼和/或流体地连接到管线33d 2上。泵36c设置在管线33d 3上以抽汲从中穿过的流体。
管路50b具有阀44e’以选择性地使流体从管线35流入管路50b。流体可经过阀44e’进入管线33c 1’,或者进入管线33c 2’直至进入取样室42b。穿过管线33c 1’的流体可通过阀44g’流入管线33d1’并向外流入井眼,或者流入管线33d2’。缓冲管线33d 3’从取样室42b伸入到井眼和/或流体地连接到管线33d 2’上。泵36d设置在管线33d 3’上以抽汲从中穿过的流体。
各种流动结构都可用于流动控制管路。例如可包括另外的取样室。一个或多个泵可设置在一条或多条贯穿管路的管线上。多个阀和相关的管线可用于将流体泵送至和转向流到取样室中和/或井眼中。
所述的管路可按照图3所示的一样相邻设置。可选择地是,所有或部分管路可设置在井下工具附近并通过管线流体连通。在某些情况下,部分管路(以及其它工具的其它部分,如探头)可设置在模块内,该模块可以各种结构形式连接以构成所述的井下工具。多条管路可设置在各种位置和/或结构中。一条或多条管路可用于连接到贯穿井下工具的一条或多条管路上。
平衡阀44i和相关的管线49与管线29连接。一个或多个这样的平衡阀可沿着评价和/或清洁管线设置以平衡管线与井眼之间的压力。这种平衡使得井下工具与井眼之间的压差得到平衡,以便井下工具不会粘靠在地层上。此外,平衡管线有助于在增压流体上升到地面时管线内部排出增压流体和气体。该阀可沿一条或多条管线的设置在各个位置。可设置多个平衡阀,尤其是在希望将压力限制在多个区域时。可选择地是,井下工具内的其它阀44可设置成自动打开以在多个区域平衡压力。
多种阀可用于引导和/或控制穿过管线的流体的流动。这些阀可包括单向阀、转换阀、限流阀、平衡阀、隔离阀或者旁通阀和/或能够控制流体流动的其它装置。阀44a-k可为选择性地使流体通过管线的双位阀。然而,它们还可以是允许从中通过有限量流体的阀。转换阀48可以是这样一种阀,其可用于使流体从评价管线28转向流到第一取样管路以及从清洁管线转向流到第二取样管路,并且然后将取样管线切换到第二取样管路和将清洁管线切换到第一取样管路。
一个或多个泵可穿过管线进行设置以控制穿过其中的流体的流量。泵的位置可用于协助通过井下工具的特定部分抽汲流体。所述的泵还可用于选择性地使通过一条或多条管线的流体以所需的速度和/或压力流动。对所述的泵进行操作可用于协助确定井下地层参数,如地层流体压力、地层流体的流动性等。通常设置泵是为了利用管线和阀来控制通过所述系统的流体的流动。例如,一个或多个泵可设置在特定阀、取样室、传感器、仪表或其它装置的上游和/或下游。
可选择性地对所述的泵进行激励和/或协调以按照需要将流体抽汲入每一条管线,例如,可升高连接到清洁管线的泵的泵速和/或可降低连接到评价管线上的泵的泵速,以便优化抽汲入评价管线的清洁流体的量.一个或多个这样的泵可沿着管线进行设置以选择性地增加流过管线的流体的泵送速度.
可设置一个或多个传感器,如流体分析仪46a,46b(即授权给本发明的受让人的美国专利US 4,994,671中所述的流体分析仪)和压力计38a,38b,38c。各种传感器都可用于确定井下参数,如含量、污染程度、化学物质含量(如特定化学品/物质的百分比)、流体力学参数(粘度、密度、特定相的百分比等)、电磁参数(如电阻率)、热参数(如温度)、动态参数(如体积流量或质量流量)、光学参数(吸收率或辐射率)、辐射性、压力、温度、盐度、Ph值、放射性(伽马和中子和光谱能量)、碳含量、粘土组分和含量、氧含量和/或其它关于流体的数据和/或相关的井下条件以及其它。传感器数据可被采集并被传递到地面和/或在井下进行处理。
可优选地是,一个或多个传感器为设置在评价管线38a、清洁管线38b上的压力计38,或者穿过二者用于确定它们之间压差的压力计38c。另外的压力计可设置在沿管线的各个位置。所述的压力计可用于比较各自管线上的压力大小以进行故障判定,或者用于其它的分析和/或诊断。测试数据可被收集、传递到地面和/或在井下进行处理。单独这一数据或与传感器数据结合可用于确定井下情况和/或做出决定。
一个或多个取样室可沿着管线设置在各个位置。为了简便起见,描述单独一个带有活塞的取样室。然而,可以理解,可使用一个或多个各种类型的取样室。所述的取样室可与管线相互连接,所述的管线伸入其它取样室、井下工具的其它部分、井眼和/或其它装料室。取样室的示例及相关的结构可在申请号位2003042021和专利号为6467544和6659177中见到,这些专利或专利申请受让给本发明的受让人。可优选的是,设置取样室以收集清洁流体。此外,理想的是设置取样室以便有效地和高质量地接收清洁的地层流体。从一条或多条管线中流出的流体可被收集在一个或多个取样室内和/或被排放到井眼中。不需要包括取样室,尤其是对于含有被污染流体的清洁管线。
在某些情况下,取样室和/或特定的传感器(如流体分析仪)可设置在探头附近和/或泵的上游。从靠近地层的点或流体源来感测流体参数常常是有益的。在泵的上游进行测试和/或取样同样是有益的。所述的泵对通过泵的流体进行搅拌,在获得清洁样品之前,这种搅拌能够扩散正在通过泵的流体的污染和/或增加时间。通过在泵的上游进行测试和取样,可避免这些搅拌和污染物的扩散。
计算机或者其它处理装置优选用于选择性地激励系统内的各种装置。所述的处理装置可用于采集、分析、组合、传递、响应和/或者另外的处理井下数据。井下工具可用于执行响应于处理器的指令。这些指令可用于完成井下操作。
在操作中,井下工具10(如图1)与井眼相邻设置,并且探头18从井壁的密封处伸出。备用活塞19伸出有助于驱动井下工具和探头处于结合状态。井下工具内的一个或多个泵36选择性地受到激励以将流体抽汲入一条或多条管线(如图3)。通过所述的泵将流体抽汲入管线并通过阀而直接通过所需的管线。
图4A-8B5描述了进入探头的流体的流动,该探头具有多条管线,如图2和/或图3所示的流体流动系统内的管线.这些图展示了控制进入井下工具流体的流动,以促进清洁流体流入评价管线并减少污染.在每一幅图中描述了流入探头18并通过评价管线28和清洁管线30的流体的流动.泵60,62被示意性地示出,其可操作地连接到管线28,30上,分别用于使流体穿过所述的管线.所示的泵62在高于评价泵60的速度下工作.然而,可以理解,所述的泵可以在相同的速度下工作,或者所述的清洁泵可在高于评价泵的速度下工作.为了描述的目的,在每一条管线上仅示出了一个泵.然而,每一管线上可使用任意数量的泵.这些泵可与图3中所示的泵相同.
参看图4A-4B4,其中示出了泵60,62,其在不同步模式下工作。图4A示出了穿过评价管线28和清洁管线30(分别由线66和64表示)的流体的流量Q(y轴)对时间t(x轴)的曲线。图4B1-B4示出了泵的操作和分别在图4A中的点A-D流入探头的流体的流动曲线。
在图4A中的A点,所述的泵工作并将流体抽汲入各自的评价管线和清洁管线。如图4A1所示,部分地层流体进入评价管线,部分流体进入清洁管线。可优选地是,被污染的流体24被抽汲入清洁管线以便仅有清洁流体26按照所示的方向流入评价管线。
在图4A中的B点,清洁泵被停止,但是评价泵继续工作。B点泵的相应流量示出了通过清洁管线的流量(64)已经停止,而通过评价管线的流量(66)仍在继续。如图4B2所示,被污染的流体不再被抽汲入清洁管线并离开评价管线。在这种情况下,被污染的流体和清洁的流体都被抽汲入评价管线,如箭头所示。
在图4A中的C点,两个泵正在泵送并且清洁管线的流量64增加了。如图4A 3所示,所述的泵如前述的关于点A一样重新工作。
在图4A中的D点,清洁泵在泵送,但是评价管线被停止。D点泵的相应流量示出了通过清洁管线的流量(64)仍在继续,而通过评价管线的流量(66)已经停止。如图4B4所示,所述的流体不再被抽汲入评价管线。在这种情况下,被污染的流体和清洁流体可被抽汲入清洁管线,如箭头所示。
参看图5A-5B4,其中示出了泵60,62,其在同步模式下工作。除了两个泵在B点和D点被关闭之外,这些图和图4A-4B4相同。在图5A中的B点和D点,由泵抽汲入两条管线的流量64a,66a停止。如图5B2和图4所示,在泵停止时所述的流体停止流入任一管线。
参看图6A-6B4,其中描述了泵60,62,其在部分同步的模式下工作。除了两个泵在B点被关闭之外,这些图与图4A-4B4相同。在图6A中的B点,由泵抽汲入两条管线的流量64b,66b停止。如图6B2所示,所述的流体停止流入两条管线。
参看图7A-7B5,其中描述了泵60,62,其在偏离同步的模式下工作。除了在B点清洁泵被打开而评价泵被关闭,在C点两个都被关闭以及在D点清洁泵被打开而评价泵被关闭之外,图7A-7B 5与图4A-4B4相同。此外,在另外一个点E两个泵都被打开。图7A中的结果曲线64c和66c示出了通过清洁管线的流量在C点停止,而通过评价管线的流量在从B点到D点的时间内停止。
参考图8A-8B5,其中描述了泵送和取样操作。在这个示例中,泵60,62在图7A-7B5所示的补偿同步模式下工作。然而,取样操作可在所述的任何模式下进行。在图8B1-5中除了取样室42连接到评价管线中之外,这些图与图7A-7B5相同。阀66和68沿着管线28设置以选择性地将流体转向流到取样室。
在清洁流体存在于评价管线内时,所述的阀优选受到激励和/或所述的流体在某点流入取样室。在图8A-8B 5所示的模式中,在泵循环之后进行取样以保证清洁流体流入评价管线28.如图8B1-3所示,在泵工作的A-C点阀66关闭而阀68打开.如图8B4所示,在D点阀66打开和阀68关闭以使流体开始流入取样室42.如E点和图8B5所示,流体开始流入取样室.
图8A-8B5描述了与泵送模式结合的特定取样操作。所述的取样操作还可与其它泵送模式结合使用,如图4-6中所述的那些模式。可优选地是,控制所述的泵送和取样以将清洁流体抽汲入取样室和/或使被污染的流体从中离开。检测通过管线的流体以探测污染。在污染出现的地方,流体可从取样室转向,如转向流到井眼中。
管线内的流体还可利用其它装置进行控制以增加和/或降低一条或多条管线内压力。例如,取样室内的活塞和预测试活塞可缩回以将流体抽汲入其中。装料(charging)、装阀门、静态压力和其它技术也可用于控制管线内的压力。
从前面的描述中可以理解,在不脱离本发明真实精神的情况下可以对本发明的优选和替换实施例进行各种修改和改变。这里所包含的装置可手动地和/或自动地完成所需的操作。可按照需要和/或根据产生的数据、探测的情况和/或由井下操作所获得的分析数据进行所述的操作。
这里的描述只是为了说明的目的不应该具有限制的意思。本发明的范围应该仅由后面的权利要求书的语言确定。权利要求中的术语“包括”意思为“至少包含”以便权利要求内所引用特征列表为开放组。除非进行了特定地排除“A”,“an”和其它单数将包括复数形式。