光漫射膜及包括该膜的屏幕转让专利

申请号 : CN200510113217.4

文献号 : CN1746703B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 宫木幸夫木曾弘之长浜勉

申请人 : 索尼株式会社

摘要 :

一种具有各向异性漫射角的光漫射膜,包括:透明支撑体;以及在其表面上具有不规则形状并设置在该透明支撑体上的透明树脂层。在该光漫射膜中,由该光漫射膜的动态粘弹性确定的损耗因数(tanδ)的最大值处于0℃至60℃温度范围内。

权利要求 :

1.一种具有各向异性漫射角的光漫射膜,该光漫射膜包括:透明支撑体;以及

在其表面上具有不规则形状的透明树脂层,其设置在该透明支撑体上;

其中,所述漫射角在水平和垂直方向不同;

水平方向的漫射角大于垂直方向的漫射角;

其特征在于,具有不规则形状的所述表面具有在该透明树脂层上的不规则形状的图案,该不规则形状的图案通过转印一模具表面上的不规则形状到该透明树脂层上而形成,所述模具表面上的所述不规则形状通过喷砂形成;

由该光漫射膜的动态粘弹性决定的损耗因数即tanδ的最大值处于0℃至60℃温度范围内。

2.如权利要求1所述的光漫射膜,其中,在喷砂过程中磨料的所有喷射角度都小于90度。

3.如权利要求1所述的光漫射膜,其中,其铅笔硬度大于3H。

4.一种屏幕,包括:

如权利要求1-3中任一项所述的光漫射膜;以及设置在该透明支撑体的没有附着透明树脂层的表面上的反射层。

5.如权利要求4所述的屏幕,其特征在于,所述反射层具有反射特性,该反射特性至少为50%的反射率。

6.如权利要求4所述的屏幕,其特征在于,如果多个第一波长范围包括对应于红色、蓝色和绿色的波长,而多个第二波长范围在所述多个第一波长范围以外和可见光谱内,那么所述反射层对于所述多个第二波长范围具有吸收特性,所述吸收特性为至少80%的吸收率。

7.一种屏幕,包括:

如权利要求1-3中任一项所述的光漫射膜,其中,该光漫射膜透射从该透明支撑体的没有附着透明树脂层的表面入射的光,并漫射和发射穿过该透明树脂层的光。

说明书 :

技术领域

本发明涉及在正面投影仪的屏幕、背面投影仪的屏幕或者液晶显示器的背光中使用的光漫射膜,以及包括该光漫射膜的屏幕。

背景技术

近年来,当发言者在会议等中展示文件时,广泛使用高射投影仪和幻灯机。利用液晶的视频投影仪和电影胶片投影仪也广泛使用于家庭中。在这些投影仪中,从光源输出的光受到透射液晶面板等的光学调制以形成图像光(image light)。该图像光透射诸如透镜的光学系统并投影至屏幕上。
在上述投影仪部件中,投影仪的屏幕用于观看所投影的图像。所述投影仪的屏幕广义上分为正面投影仪的屏幕和背面投影仪的屏幕。在正面投影仪中,光源从屏幕的前侧发射投影光,并且观看到在屏幕上反射的投影光。在背面投影仪中,光源从屏幕的背侧发射投影光,从屏幕的前侧观看到透射通过屏幕的光。在上述方法中使用的这两种屏幕优选地具有令人满意的清晰度和宽的视角。
为达到该目的,通常在这两种方法中提供一种在屏幕表面上用于散射光的光漫射膜。该光漫射膜允许通过在屏幕的整个有效区域上均匀地漫射而发射图像光。
现有的光漫射膜广义上分为各向同性漫射片和各向异性漫射片。由于在这两种漫射片中入射光的数量相同,可通过仅在所希望的方向漫射光而提高亮度的各向异性漫射片颇受关注。特别是,当光漫射膜用于投影屏幕时,在水平方向上视场比在垂直方向的视场更重要。因此,在水平方向上具有强的漫射性能的各向异性漫射片得到发展。
现有的用于制造这种各向异性漫射膜的方法包括:在光敏树脂上形成斑纹图案的方法,其中通过将相干光束辐射至粗糙表面来形成该斑纹图案(例如,参见日本未审查专利申请公开No.53-51755和2001-100621);利用掩模曝光光敏树脂上的图案的方法;以及通过机械加工直接切割诸如金属或树脂的模具基材的表面以制备其上具有精细的不规则图形的模具,并且利用UV可固化树脂等将该不规则图形的形状从该模具转印(transfer)出来的方法(例如,参见日本未审查专利申请公开No.2000-284106)。
此外,在透明基板上施加树脂粘合剂以及散布在该树脂粘合剂中的树脂粒的方法是已知的。
然而,在现有的各向异性光漫射膜的表面上很容易形成划痕。因而,光漫射能力丧失,从而导致成像缺陷。在制造包括树脂粘合剂和散布在其中的树脂粒的混合物的各向异性光漫射膜的方法中,使用软粒(例如,参见日本未审查专利申请公开No.2000-275410)可以提高抗划伤性。但是,即使在这种方法中,由于划痕,这些粒被分离。此外,在这种情况下,尽管在涂层中使用了呈各向异性形状的粒以产生各向异性,这些粒的取向也是不足的,并且难以获得令人满意的光漫射各向异性。
此外,在存储和处理过程中该各向异性光漫射膜的表面受到损伤,从而导致成像缺陷。
在包括转印模具的表面上的不规则形状的制造各向异性光漫射膜的方法中,当在固化后将树脂从模具中取出时,树脂受到损伤。该损伤将导致成像缺陷。

发明内容

考虑到相关领域中的上述问题,希望提供一种在垂直方向和水平方向之间具有各向异性光漫射特性并具有极好的抗划伤性的光漫射膜,并且即使当该膜从模具中取出时以及即使在存储和处理该膜的过程中,其表面也不会受损。而且,希望提供一种包括该光漫射膜的屏幕。
根据本发明的实施例,提供了一种具有各向异性漫射角的光漫射膜,该光漫射膜包括透明支撑体和在其表面伤具有不规则图形并且设置在该透明支撑体上的透明树脂层,其中由该光漫射膜的动态粘弹性决定的损耗因数(loss tangent,tanδ)的最大值处于0℃至60℃的温度范围内。
透明树脂层上的不规则图形优选地通过转印模具表面上的不规则形状而形成。此外,模具表面上的不规则形状优选地通过喷砂形成,以使磨料的所有喷射角度都小于90度。
根据本发明的实施例,提供了一种包括根据本发明实施例的光漫射膜的屏幕,以及设置在该光漫射膜的一表面上的反射层,该表面与具有透明树脂层的另一个表面相对。
根据本发明的实施例,提供了一种包括根据本发明实施例的光漫射膜的屏幕,其中该光漫射膜透射从与具有透明树脂层的另一个表面相对的一表面入射的光,并使该光漫射并且从该透明树脂层射出。
根据本发明的实施例的光漫射膜在垂直方向和水平方向之间具有各向异性光漫射性并具有极好的抗划伤性。此外,即使当该光漫射膜从模具中取出时以及即使在存储和处理该膜的过程中,也可防止该膜表面上的损伤。
根据本发明的实施例的屏幕能够提供没有成像缺陷并且适当地受到光漫射的投影图像。

附图说明

图1为示出根据本发明一实施例的光漫射膜的结构的截面图;
图2A和2B为示出在制造在本发明一实施例中使用的用于复制透明树脂层的模具的方法中,在模具基材上进行喷砂的步骤的示意图;
图3为示出在制造在本发明一实施例中使用的用于复制透明树脂层的模具的方法中,喷枪的扫描的状态的示意图;
图4为示出根据本发明第一实施例的屏幕的结构的截面图;
图5为示出反射板的光学膜的结构的截面图;
图6为示出反射板的另一光学膜的结构的截面图;以及
图7为示出根据本发明第二实施例的屏幕的结构的截面图。

具体实施方式

现在将描述根据本发明的光漫射膜的实施例。
图1为示出根据本发明一实施例的光漫射膜的结构的截面图。
如图1所示,光漫射膜10包括透明支撑体11和设在该透明支撑体11上的透明树脂层12。在透明树脂层12的表面上形成不规则图形。光漫射膜10具有各向异性漫射角。此外,由光漫射膜10的动态粘弹性决定的损耗因数(tanδ)的最大值处于0℃至60℃温度范围内。
透明支撑体11的优选实例包括:由例如聚对苯二甲酸乙二醇酯或三乙酰基纤维素的聚酯、例如聚丙烯的聚烯烃、聚碳酸酯或聚氯乙烯构成的片体或膜,但透明支撑体11并不限于此。透明支撑体11的厚度优选为20至300μm。如果透明支撑体11的厚度低于20μm,则强度不够。如果透明支撑体11的厚度超过300μm,则在生产过程中的处理能力受损。为提高透明支撑体11和透明树脂层12之间的粘接性,在透明支撑体11的表面上可设有一容易粘结的层。或者,在透明支撑体11的表面上进行电晕放电处理或者等离子处理。
透明树脂层12为一光学膜,其表面形状由具有例如圆形、矩形、多边形的不规则形状控制,从而该漫射角显示出各向异性。透明树脂层12的表面上的不规则形状可通过将在模具上形成的精细的不规则形状转印至光学材料的表面而形成。例如,可以通过利用这样的模具进行压制处理,将不规则形状压刻在热成型的塑料薄膜上。或者,可以将辐射可固化树脂施加到该模具上,固化并从模具取出,以形成具有所要求的不规则形状的透明树脂层。
尽管只要该树脂透射光并且具有预定的动态粘弹性,不特别限定所使用的树脂材料,但是并不希望所透射的光的颜色和数量由于树脂的着色和混浊而被改变。考虑到生产的容易性,优选使用可由紫外光、电子束或热固化的树脂。其中,最优选的是使用可由紫外光固化的树脂。该树脂的实例包括例如尿烷丙烯酸酯、环氧丙烯酸酯、聚酯丙烯酸酯、多元醇丙烯酸酯、聚醚丙烯酸酯和三聚氰胺丙烯酸酯的丙烯酸基树脂。
透明树脂层12可根据需要包括光稳定剂、紫外吸收剂、抗静电剂、阻燃剂、抗氧化剂等。
尽管透明树脂层12的厚度不特别限定,但是该厚度优选为20至200μm。如果透明树脂层12的厚度低于20μm,很容易产生表面形状的缺陷。如果透明树脂层12的厚度超过200μm,光漫射膜很容易破裂并且处理能力受损。
用于形成透明树脂层12的固化能量源的实例包括电子束、紫外光、可见光以及伽马射线。从生产装置的角度考虑,优选使用紫外光。此外,并不特别限于紫外光源,可以适当地使用高压汞灯、金属卤化物灯等。可以适当地选择集束辐射量以满意地固化树脂,该树脂较好地粘接至透明支撑体11,此外,树脂和透明支撑体11不会变黄。可以根据树脂的固化状态适当地选择辐射期间的气体。可在空气或例如氮气或氩气的惰性气体中进行辐射。
损耗因数(tanδ)取决于光漫射膜的动态粘弹性。通过在温度持续增长的同时,测量在恒定应变和恒定频率下处于拉伸模式下的粘弹性决定动态粘弹性。获得温度和损耗因数(tanδ)之间的关系作为测量结果。损耗因数(tanδ)具有最大值时的温度作为与材料的固化相关的标志。
当透明支撑体11具有粘弹性时,所得的结果包括得自透明支撑体11的损耗因数(tanδ)的最大值和得自透明树脂层12的损耗因数(tanδ)最大值。在这种情况下,首先,只测量透明支撑体11的粘弹性以决定得自透明支撑体11的损耗因数(tanδ)的最大值。随后,从利用光漫射膜10测量的损耗因数(tanδ)的最大值中除去得自透明支撑体11的损耗因数(tanδ)的最大值。由此,能够确定得自透明树脂层12的损耗因数(tanδ)的最大值。
由于光漫射膜10用作光学元件,希望光漫射膜10有效地利用来自光源的光并具有高的透射率。总的光透射率优选为80%或更高。
根据上述的结构,光漫射膜10在垂直方向和水平方向之间具有各向异性光漫射性并具有极好的抗划伤性。此外,即使当光漫射膜10从模具中取出时以及即使在存储和处理该光漫射膜10的过程中,也能够避免该光漫射膜10表面上的损伤。
现在将描述用于制造根据本发明一实施例的光漫射膜的方法。
在用于制造根据本发明一实施例的光漫射膜的方法中,制备用于复制透明树脂层的模具。该模具包括其上具有预定不规则形状的精细刻制的表面。利用用于复制透明树脂层的模具将该模具表面上的不规则形状转印到透明树脂层12上。由此,在透明支撑体11上形成其上具有不规则图形的透明树脂层12以形成光漫射膜10。
只要从该模具的精细刻制的表面制出该透明树脂层,本发明可适用于任何方法。
例如,可以通过利用这一模具进行压制处理,将该不规则形状压制在热成型的塑料薄膜上,以形成透明树脂层。
或者,可以在该模具上施加UV可固化树脂,固化并从模具中取出,以形成所希望的透明树脂层。
现在将描述图1中所示的光漫射膜10的制作步骤。在此实例中,使用UV可固化树脂作为构成透明树脂层的光学膜的材料。
(S11)制备出用于复制透明树脂层的模具。该模具包括其上具有预定不规则形状的精细刻制的表面。透明树脂材料浇注在该模具的精细刻制的表面上。密封剂施加在该模具的四个侧部以使该透明树脂材料不泄漏。
(S12)将膜状透明支撑体11设置在该模具上的透明树脂材料的涂层膜上。
(S13)以来自透明支撑体11一侧的紫外光照射所获得的膜以固化该透明树脂材料。由此,形成透明树脂层12。
(S14)将该模具从透明树脂层12中移开以获得包括透明树脂层12和透明支撑体11的光漫射膜10。
应当在上述透明树脂材料中适当地选择透明树脂材料,以使由所得到的光漫射膜10的动态粘弹性决定的损耗因数(tanδ)的最大值处于0℃至60℃温度范围内。
为了确定光漫射膜10的漫射角,应该调节用于复制透明树脂层的模具的精细刻制表面的不规则图形的形状或大小或者调节透明树脂层12的折射率。
在本实施例中所使用的用于复制透明树脂层的模具可以由例如如下所述的喷砂法制得。
图2A和2B示出了用于复制光漫射膜的模具的生产。通过喷砂处理模具基材1的表面以生产用于复制透明树脂层的模具。该模具基材的形状不限于平板状。或者,该模具基材可以呈辊状或传送器状,适于连续形成膜。
在喷砂处理过程中,磨料3随着压缩空气从喷砂机(未示出)的喷枪2中射出,以便喷射在模具基材1的表面上。磨料3与模具基材1的表面相碰撞,从而在模具基材1的表面上形成不规则形状。
具有5至50μm的颗粒直径的多边形陶瓷用作磨料3,但磨料3不限于此。优选使用球状颗粒或有角的颗粒,例如,具有1至1000μm的平均直径并由树脂、玻璃、金属、陶瓷等组成的多边形颗粒。该颗粒的实例包括玻璃粒、氧化锆颗粒、钢格(steel grid)、氧化铝颗粒和二氧化硅颗粒。
模具基材1为由适用于喷砂处理的材料组成的板。该材料优选为树脂或诸如铝、铜或钢的金属。特别优选为铝。在批量生产中,模具基材1具有使单个模具基材1与在屏幕中使用的光漫射膜的尺寸相应的尺寸。在连续生产中,模具基材1应具有与光漫射膜的宽度相应的尺寸。
磨料3的所有喷射角度(俯角)优选为相对于模具基材1的主表面小于90度。在本发明的实施例中,以10度的角度喷射磨料3。因而,可改变在喷射方向上和在与喷射方向垂直的方向上槽的节距(pitch)。其原因如下:由于每个磨料3都以一定角度与模具基材1相碰撞,由于碰撞而形成的变形形状在水平方向(X轴方向)和垂直方向(Y轴方向)之间是不同的。可以通过改变喷砂处理的条件调节表面粗糙度的参数,诸如节距。使用具有大颗粒直径的磨料能够获得在X轴方向和Y轴方向都具有大节距的粗糙度。使用具有更高密度的磨料能够获得深槽的形状。
使用在上述喷射条件下生产的用于复制透明树脂层的模具能够提供在水平方向和垂直方向之间具有不同的漫射角的或者在水平方向和垂直方向之间具有各向异性漫射特性的透明树脂层12。例如,在图2A和2B中所示的磨料3的喷射条件下,反射光或透射光的漫射角在X方向上很小,而在Y方向上很大。
此外,当喷枪2设置在较靠近模具基材1处时,换言之,当图2A中的角度θ变小时,能够增加光漫射膜的水平对垂直漫射角的比(将在下文中描述该比率),还可以提高漫射特性的各向异性的效果。
以角度θ为中心在角度容差α的范围内从喷枪2中向模具基材1喷射磨料3。换言之,磨料3以β1至β2的角度范围入射在模具基材1上并与模具基材1相碰撞。该角度公差α通常约为10度。
为了处理模具基材1的较小面积,应当减小角度公差α或者减小喷枪2与模具基材1之间的距离L。为了处理较大面积,应当在平稳移动喷枪2或者模具基材1的同时进行喷砂处理。在本发明的一个实施例中,优选在水平和垂直方向上,在模具基材1上方扫描喷枪2。由此,可在模具基材1的整个主表面上进行喷砂处理。
图3示出了喷枪2扫描的实例。喷枪2以恒定的速度在模具基材1上方在Y轴的方向上移动,同时磨料3从喷枪2中喷出。当磨料3的碰撞区域到达模具基材1的边缘附近时,喷枪2在X轴方向上移动一定节距。然后喷枪2以恒定速度沿Y轴的反方向移动。随后,每次磨料3的碰撞区域到达模具基材1的边缘附近时,喷枪2都在X轴方向上移动一定节距,并且接着反向在Y轴方向上的移动而以连续不断地进行喷砂处理。由此,在模具基材1的整个表面上形成所需的不规则形状。
优选地调节在X轴方向上的移动节距,以使磨料3的相邻碰撞区域一定程度上重叠,且模具基材1的表面总体上呈均匀的不规则形状。此外,可以在磨料3的碰撞区域处设置掩模以使磨料3仅碰撞在模具基材1的碰撞区域的中央区域上。
对于扫描方法,可以固定模具基材1并移动喷枪2。或者,可以设有在X轴方向上移动模具基材1而在Y轴方向上移动喷枪2的工作台。
通过上述喷砂处理,在模具基材1的表面上形成了具有不规则形状的精细刻制表面。该不规则形状成为透明树脂层12的表面形状的初始模具,该透明树脂层12为最终产物。利用该精细刻制的表面能够形成透明树脂层12。
本发明适用于任何用于从上述精细刻制的表面制造透明树脂层12的方法。例如,利用具有该精细刻制表面的基板能够制造出其上转印有精细刻制表面的电铸成型模具,并且随后可以直接或间接地用该电铸成型模具形成透明树脂层12。
在上述实施例中,使用喷砂法作为制造用于复制透明树脂层的模具的方法。但是,只要在模具的表面上形成精细的不规则形状,方法并不限于此。所述方法的例子包括:在光敏树脂上形成斑纹图案以形成模具的方法,其中该斑纹图案通过在粗糙表面上辐射相干光束形成;利用掩模在光敏树脂上曝光该图案的方法;以及通过机械加工直接切割例如金属或者树脂的模具基材的表面以形成精细的不规则形状的方法。
现在将描述根据本发明实施例的屏幕的结构。
图4为示出根据本发明第一实施例的屏幕的结构的截面图。
屏幕100为包括反射板50和光漫射膜10的反射式屏幕。光漫射膜10可以直接在反射板50上形成或者与反射板50相粘接。
反射板50对于各自具有特定波长范围的多个光分量具有反射特性,这些光分量与投影光,也就是图像光相应;并且反射板50对于各自具有除了所述多个特定波长范围之外的可见光波长范围的光分量具有吸收特性。所述特定波长范围优选地包括在投影仪的光源中用作图像光的RGB三原色中每一个的光分量的波长范围。
图5示出了包括光学多层膜52和反射层51的反射板50的结构的实例。光学多层膜52包括介电膜52D和具有透射性的光吸收薄膜52M。
反射层51包括基板51B和设置在基板51B上的金属膜51M。反射层51反射透射通过光学多层膜52的光。
基板51B形成反射板50的支撑体。基板51B由例如聚碳酸酯(PC)、聚对苯二甲酸乙二醇酯(PET)、聚萘二甲醇乙二醇酯(polyethylenenaphthalate)(PEN)、聚醚砜(PES)或聚烯烃(PO)的柔性聚合物构成。
金属膜51M由以高反射率反射可见光的金属构成。例如,金属膜51M由铝、金或银构成,优选地具有50nm或更大的厚度。金属膜51M可以通过例如气相沉积、电镀或涂敷(applying)的任意方法形成在基板51B上。
或者,反射层51可以为由与构成金属膜51M相同的材料构成的金属基板,代替图5中所示的包括基板51B和设置在其上的金属膜51M的反射层51。
光学多层膜52包括介电膜52D和具有透射性的光吸收薄膜52M。光学多层膜52由至少两层构成并具有选择反射特性。在这种情况下,多个介电膜52D和多个具有透射性的光吸收薄膜52M可被交替层叠。或者,可顺序层叠多种类型的介电膜52D。
介电膜52D由至少在可见光波长范围内透明的材料构成。例如,介电膜52D由Nb2O5、TiO2、Ta2O5、Al2O3或SiO2构成。介电膜52D的折射率越大,在三原色的每个光分量的波长范围内的反射峰半宽越大。相反地,介电膜52D的折射率越小,半宽越小。考虑到该趋势,应当根据所需的选择反射特性适当地选择介电材料。
具有透射性的光吸收薄膜52M由具有折射率为1或更大并且吸收系数为0.5或更大的材料构成。光吸收薄膜52M优选地具有5至20nm的厚度。其材料的例子包括铌、铌合金、碳、铬、铁、锗、镍、钯、铂、铑、钛、氮化钛、氮钨化钛(TiNxWy)、锰、钌和碲化铅。可以通过例如溅射的干式工艺形成光学多层膜52的每层膜。
光学多层膜52的每层膜厚如下设计:例如,光学多层膜52具有对于三原色的波长范围的光分量至少为50%的反射率的高反射特性,该光分量具有红色、绿色和蓝色的各个颜色的波长范围。另一方面,例如,光学多层膜52具有对于除了三原色的光分量的波长范围之外的波长范围的光分量至少为80%的吸收率的高吸收特性。优选地设计光学多层膜52的各层膜的厚度,使每层膜的光学厚度nd和入射光波长λ满足下面的公式(1):
nd=λ(α±1/4)                     (1)
其中d为每层膜的厚度、n为膜的折射率、λ为入射到光学多层膜上的光的波长、α为自然数。
例如,反射板50包括由铝(厚度:50nm)构成的金属膜51M和具有由Nb2O5/Nb/Nb2O5(每层膜厚度:560nm/19nm/550nm(与铝膜相邻))构成的三层结构的光学多层膜52。在这种情况下,反射板50具有对于三原色的波长范围的光分量至少50%的高反射率,并具有对于各自具有除了投影光(来自利用激光振荡器的投影仪的光源的光)三原色的光分量的波长范围之外的波长范围的每个光分量(杂散光)至少80%的高吸收率。
图6示出了反射板50的结构的另一个实例。反射板50包括基板51B、设置在基板51B上的光学多层膜53、以及设置在基板51B的反面上的光吸收层54。光学多层膜53对于具有RGB三原色的各个波长范围的光分量具有反射特性,并对于具有在投影光的波长范围之内的除上述RGB三原色的各个波长范围之外的波长范围的光分量具有透射特性。基板51B可为与图5中所示的基板相同的结构。
光学多层膜53具有选择反射特性。在光学多层膜53中,交替层叠高折射率膜53H和低折射率膜53L。低折射率膜53L的折射率低于高折射率膜53H的折射率。
能够通过例如溅射的干法处理或者例如旋涂或浸渍涂布(dip coating)的湿法处理形成高折射率膜53H和低折射率膜53L。
当通过干法处理形成高折射率膜53H时,折射率约为2.0至2.6的各种材料可用于高折射率膜53H。当通过干法处理形成低折射率膜53L时,折射率约为1.3至1.5的各种材料可用于低折射率膜53L。例如,高折射率膜53H可由TiO2、Nb2O5或Ta2O5构成,低折射率膜53L可由SiO2或MgF2构成。
当通过干法处理形成光学多层膜53时,光学多层膜53的每层的厚度优选基于矩阵(matrix)的模拟方法设计得到,以使光学薄膜对于具有特定波长范围的光分量具有高反射特性,且对于具有除上述波长范围之外的至少可见波长范围的光元件具有高透射特性。在此,基于矩阵的模拟方法是在日本未审查专利申请公开号No.2003-270725中披露的一种方法。在该方法中,利用基于下面的原理的公式进行模拟以设计具有所需特性的光学膜的厚度。该原理如下:当光以角度θ0入射到由多种不同材料构成的多层光学薄膜系统上且在每层的交界处产生多次反射时,根据所使用的光源的类型和波长以及每层的光学膜厚(即,折射率和几何膜厚的乘积)来对准相位。因而,反射光束可展示出相干性并彼此干涉。
在本发明中,被用作投影仪光源中的图像光的RGB三原色的各个光分量的波长范围将被选作特定波长范围。通过基于矩阵的模拟方法设计膜厚,以使仅反射具有这些波长范围的光分量并透过具有除上述波长范围之外的波长范围的光分量。具有满足上述条件的厚度的高折射率膜53H和低折射率膜53L彼此层叠,从而可靠地获得满足作为三原色波长范围的滤光器的功能的光学多层膜53。
不特别限定构成由干法处理形成的光学多层膜53的光学膜的层数,并且可以为所希望的层数。但是,光学多层膜53优选地由奇数层构成,其中在光入射侧和相反一侧的最外层为高折射率膜53H。
当由湿法处理形成光学多层膜53时,通过施加用于高折射率膜的溶剂基涂料并固化该涂料形成高折射率膜53H,并通过施加用于低折射率膜的溶剂基涂料并固化该涂料形成低折射率膜53L。用于低折射率膜的溶剂基涂料提供了一种折射率低于高折射率膜53H的折射率的光学膜。光学多层膜53优选地由奇数层构成,其中高折射率膜53H和低折射率膜53L交替层叠。每层光学膜优选地通过施加含有树脂的涂料形成,该树脂通过吸收由加热、紫外线照射或类似方式提供的能量而进行固化反应。例如,高折射率膜53H优选地由JSR公司的Opster的热固树脂(JN7102,折射率:1.68)构成,低折射率膜53L优选地由JSR公司的Opster的热固树脂(JN7215,折射率:1.41)构成。这样的光学多层膜53具有柔韧性。
高折射率膜53H的材料不限于上述热固树脂。该材料可以是提供大约1.6至2.1的折射率的溶剂基涂料。例如,可以使用所述的在上述光漫射膜中具有高折射率的光学膜的材料。同样,低折射率材料53L的材料并不限于上述热固树脂。该材料可以是提供大约1.3至1.59的折射率的溶剂基涂料。例如,可以使用所述的在上述光漫射膜中具有低折射率的光学膜的材料。高折射率膜53H的折射率和低折射率膜53L的折射率之间的差越大,层叠的层数越少。
当光学多层膜53由湿法处理形成时,光学多层膜53的每层膜厚如下:例如,光学多层膜53对于具有三原色的波长范围的光分量具有至少50%的反射率的高反射特性,该光分量具有红色、绿色和蓝色每种颜色的波长范围。另一方面,例如,光学多层膜53对于具有除了三原色的光分量的波长范围之外的波长范围的光分量具有至少80%的透射率的透射特性。该光学多层膜53的每层膜的厚度优选设计为满足上述公式(1)。
例如,各层高折射率膜53H(折射率:1.68)的厚度为1,023nm且各层低折射率膜53L(折射率:1.41)的厚度为780nm。九层高折射率膜53H和九层低折射率膜53L交替层叠,并且再在层叠片上层叠高折射率膜53H,以形成具有19层结构的光学多层膜53。在这种情况下,多层膜对于具有三原色的波长范围的光分量具有至少80%的高反射率,并且对于每个具有投影光(来自利用激光振荡器的投影仪的光源的光)除了三原色光分量的波长范围之外的波长范围的每个光分量(杂散光)具有20%或更低的反射率的高透射率。
该光吸收层54为通过在基板51B的反面施加黑色涂料而形成的黑色涂层膜,或者为在基板51B的反面施加的黑色膜。光吸收层54具有光吸收的功能。根据这个结构,光吸收层54吸收透射通过光学多层膜53的光,以防止透射光的反射。因而,在反射板50中,仅具有三原色波长范围的光分量能够更可靠地作为反射光获得。或者,基板51B可包括黑色涂层膜或类似物以使基板51B的颜色为黑色。因此,基板51B本身可具有光吸收层的功能。
在上述两个反射板50中,相应于从投影仪光源射出的光,具有特定波长范围(三原色波长范围)的光分量能够以高反射率被反射,具有除该特定波长范围之外的波长范围的光分量(外部光)能够被吸收。
由于屏幕100包括反射板50,屏幕100反射具有三原色波长范围的光分量。因此,观看者看到投射至该屏幕上的图像的反射图像。换言之,观看者仅看到投射到反射式屏幕上的图像的反射光。但是,例如,当屏幕上的反射光仅由镜面分量构成时,难以看到令人满意的图像并且观看的视场受到限制。这对于观看者而言是不利的,并难以看到自然的图像。
因此,屏幕100还包括光漫射膜10,从而能够看到来自屏幕100的散射的反射光。特别是,根据包括设置在反射板50上的光漫射膜10的该结构,在透过光漫射膜10的入射光中,具有特定波长范围的光分量在反射板50上被选择性地反射。在这种情况下,当穿过光漫射膜10时反射光被漫射,从而获得散射的漫射光而不是镜面分量。因此,从反射式屏幕100反射的光包括镜面分量和散射的反射光。观看者能够观测到散射的漫射光以及镜面分量,从而大大提高观看的视场的特性。因而,观看者能够看到自然的图像。
此外,根据本发明实施例的光漫射膜10被用作屏幕100中的光漫射膜。从而,当该光漫射膜从模具中取出时,以及在储存和处理该光漫射膜时,能够防止该光漫射膜的表面的损伤。因此,能够看到正常的反射图像。此外,当图像光被投射且从前方附近观看屏幕时,在一特定位置能够看到均匀的、高亮度的图像。因此,可以确定该反射图像受到控制以使其指向在特定的观看范围。
上述实施例中的反射板50包括波长选择反射层。但是,只要该反射层能够反射投影的图像光,该反射层并不限于此。例如,反射层可由在可见光的宽波长范围内具有高反射率的材料构成,例如铝或银。
图7为示出根据本发明第二实施例的屏幕的结构的截面图。
如图7所示,屏幕200为包括支撑体60和设置在支撑体60上的光漫射膜10的透射式屏幕。
支撑体60用作屏幕200的支撑体,并且由例如聚对苯二甲酸乙二醇酯(PET)、聚萘二甲醇乙二醇酯(PEN)、聚醚砜(PES)或聚烯烃(PO)的聚合物构成。
在屏幕200中,在支撑体60的表面上接收入射光,该表面与其上具有光漫射膜10的表面相反。入射光穿过支撑体60透射,在光漫射膜10上散射,并被发射。观看者通过观看该散射的反射光能够看到自然的图像。
根据本发明实施例的光漫射膜10被用作屏幕200中的光漫射膜。因而,当该光漫射膜从模具中移开时,以及在储存和处理该光漫射膜过程中,能够防止该光漫射膜的表面的损伤。因此,能够看到标准的反射图像。
通过,例如,在由PET膜构成的支撑体60的表面上施加光漫射膜10制备根据本发明第二实施例的屏幕200。
在屏幕200的变型中,可在支撑体60上形成透明树脂层12。
此外,在两个屏幕100和200中,光漫射膜10的表面形状优选地相应于各个屏幕位置受到控制,从而调节漫射特性。因此,从观看者看到的整个屏幕的亮度分布被控制为均匀分布。为达到该效果,例如,亮度峰值的轴的移动(shift)优选地在屏幕的中部方向上。也就是,从整个屏幕的漫射特性的角度来看,作为在屏幕的所有边缘部分(即,上、下、左和右边缘)中的漫射特性,透射光的亮度的峰值在屏幕的中部方向上倾斜(tilt),并且该倾斜度随着该位置从屏幕的中部移至边缘部分持续不断地增加。
根据本发明实施例的光漫射膜的应用范围并不限于上述的投影显示装置。根据本发明实施例的光漫射膜可用于各种领域,例如其视角受到控制的显示装置,例如,液晶显示的背光,或者发光系统。
实例
现在将描述本发明的实例。下面的实例是一些范例,本发明不限于这些实例。
实例1
在下面的条件下制备光漫射片:
(1)用于复制透明树脂层的模具
通过在下面的条件下喷砂来制备用于复制透明树脂层的模具。
(a)模具基材:铝板
(b)喷砂的条件:
·喷砂机(来自富士制造有限公司)
·磨料:铝(No.#180,平均颗粒直径:76μm)
·喷枪和模具基材之间的距离:50mm
·喷枪和模具基材形成的角度:9度
·压缩空气的气压:0.6Mpa
·喷射磨料至模具基材的表面的状态:图2A和2B中所示的状态
·扫描喷枪的条件:在图3中所示的状态下以5mm的节距在X方向和Y方向上扫描喷枪。
该模具的最终表面在垂直方向和水平方向之间具有不同的不规则形状。Sm(不规则形状的平均距离)的值作为表面形状的参数由ET4000A指针型微结构测量仪(来自Kosaka Laboratory Ltd.)测得。不规则形状的平均距离Sm在X轴方向上为S=0.13,在Y轴方向上为S=0.07。
(2)透明支撑体:聚对苯二甲酸乙二醇酯(PET)膜(来自NipponMagphane有限公司的A4300,厚度:100μm)
(3)透明树脂层的树脂材料A:UV可固化丙烯酸树脂
(制备光漫射膜的步骤)
(S21)将树脂材料A施加在用于复制透明树脂层的模具的精细刻制的表面上。
(S22)在该模具上由树脂材料A构成的涂层膜被PET膜覆盖使其不包括气泡。在这个步骤中,在由橡皮辊控制压力的同时,对所得的膜加压以使涂层树脂膜的厚度为50μm。
(S23)用紫外光从PET膜一侧以1,000mJ/cm2的集束照射量照射该所得的膜,该集束照射量足以聚合并固化该树脂。由此,树脂材料A被固化。
(S24)在室温下从透明树脂层移开该模具以制备包括透明树脂层和PET膜的光漫射膜。
实例2至5
除了使用分别具有不同的玻璃态转化温度的UV可固化丙烯酸树脂(树脂材料B、C、D和E)作为树脂材料之外,如实例1那样制备光漫射膜。
实例6
除了在制备用于复制透明树脂层的模具时,在喷砂过程中改变喷枪和模具基材形成的角度之外,如实例2制备光漫射膜。
比较例1至3
除了使用分别具有不同的玻璃态转化温度的UV可固化丙烯酸树脂(树脂材料F、G和H)作为树脂材料之外,如实例1那样制备光漫射膜。
比较例4
在下面的条件下形成透明树脂层。使用与实例1中相同的透明支撑体。
(1)树脂材料I:通过混合下面的组分制备树脂材料I。
·苯乙烯粒(来自Sekisui Plastics有限公司的苯乙烯粒SBX6,颗粒直径:6μm)                                                        重量%7
·UV可固化丙烯酸树脂(在实例2中使用的树脂材料B)重量%93
(制备光漫射膜的步骤)
(S31)将树脂材料I均匀施加在透明支撑体上。
(S32)用紫外光以1,500mJ/cm2的集束照射量照射所得的树脂材料I和透明支撑体而不使用模具,以固化树脂材料I。由此制备出包括透明树脂层(粒层)和PET膜的光漫射膜。
下面评价如上所述制备出的光漫射膜。
(i)损耗因数(tanδ)的最大温度
从光漫射膜切割出一个5mm×50mm的样品。用来自IT Keisoku Seigyo有限公司的DVA220动态粘弹计测量该光漫射膜样品的粘弹性。在温度以2℃/min的升温速率从-50℃增至200℃的同时,在恒定应力下以5Hz的频率在拉伸模式下测量粘弹性。由此确定拉伸动态粘弹性。随后,由动态粘弹性计算出温度和损耗因数(tanδ)之间的关系以确定损耗因数(tanδ)具有最大值(即,损耗因数(tanδ)的最大温度)时的温度。
此外,仅有PET膜(即透明支撑体)的粘弹性也被测量。测得的损耗因数(tanδ)的最大温度为115℃。该结果表明在光漫射膜中在115℃测得的损耗因数(tanδ)的最大温度得自于透明支撑体。
(ii)在膜的形成中模具的取出特性
在制备光漫射膜的步骤之中,在步骤S24中,当移开模具时,目测光漫射膜的外观。
(iii)铅笔硬度(pencil hardness)
作为抗划伤性的评价,在室温下根据日本工业标准(JIS)5600-5-4中所述的方法测量光漫射膜的透明树脂层侧的铅笔硬度。
(iv)负荷测试
在60℃条件下在光漫射膜的透明树脂层侧的表面上设置玻璃平板。在该玻璃平板上施加1,000g/cm2的负荷并将该状态保持72个小时。随后,温度被降至室温并目测光漫射膜的表面。当负重的痕迹可见,该样品被评价为NG(不满意)。当负重的痕迹不可见,该样品被评价为OK(满意)。
(v)弯曲测试
下面进行一种测试,其对应于在处理光漫射膜期间以锐角弯曲透明树脂层的情况。光漫射膜的PET膜的表面(即,与其上具有透明树脂层的另一表面相反的表面)在室温下与直径为1mm铁棒相接触。光漫射膜弯曲20次,以使围绕该棒光漫射膜形成的角度为30度。随后,目测光漫射膜的表面状态。当弯曲的痕迹可见,该样品被评价为NG(不满意)。当弯曲的痕迹不可见,该样品被评价为OK(满意)。
表1示出了该评估结果。
根据该结果,根据本发明实施例的光漫射膜在膜的形成中从模具取出的特性、铅笔硬度、负荷测试以及弯曲测试方面显示了令人满意的结果,同时漫射角的各向异性得到保持(在下面描述)。由于动态粘弹性决定的损耗因数(tanδ)的最大温度处于本发明范围内(从0℃至60℃),透明树脂层处于具有足够的强度和柔韧性的状态。因此,透明树脂层能够同时满足受透明树脂层的强度影响的铅笔硬度测试和负荷测试,以及受柔韧性影响的弯曲测试和从模具中取出的特性。当损耗因数(tanδ)的最大温度低于本发明范围的温度时,透明树脂层过于柔韧。因而,透明树脂层很容易粘接于模具。此外,过低的损耗因数(tanδ)的最大温度导致在负荷测试中变形及铅笔硬度降低。另一方面,当损耗因数(tanδ)的最大温度高于本发明范围的温度时,透明树脂层很硬并易碎。因而,在从模具中取出和弯曲测试的过程中,膜破碎。铅笔硬度也由于脆性而降低。
表1
 tanδ最大温度(℃)在膜的形成中模具的取出特性铅笔硬度测试负荷测试弯曲测试实例15,115满意3HOKOK实例236,115满意5HOKOK实例322,115满意4HOKOK实例456,115满意5HOKOK实例522,95,115满意6HOKOK实例636,115满意5HOKOK比较例1-5,115粘于模具上2BNGOK比较例275,115膜破裂2HOKNG比较例395,115膜破裂HNGNG比较例436,115-3HNGNG
实例A至F以及比较例a至d
随后,通过铝蒸镀在实例1至6和比较例1至4中的各光漫射膜的PET膜表面(即,与其上具有透明树脂层的另一个表面相反的表面)上形成反射层。由此,制备出以4∶3的比率各具有100英寸的大小的反射式屏幕。
下面评价如上所述的制得的屏幕。
(1)漫射角
漫射角由在各个屏幕上反射光的亮度分布的状态所确定。特别是,在测量中,设置具有2000ANSI流明的光输出的液晶投影仪(SONY公司的VPL-CX5)使其面对屏幕,并投射白色图像。屏幕和投影仪之间的距离为2m。投影仪的投影透镜的位置被设为零度。为了测量亮度,在2m半径的圆弧上扫描亮度计(TOPCON公司的BM-9),该圆弧的中心在屏幕的光漫射膜上。亮度为最大亮度的一半(半宽)处的角度定义为漫射角。确定在屏幕的垂直方向和水平方向上的漫射角。
(2)屏幕增益和屏幕上的亮度分布
设置具有2000ANSI流明的光输出的液晶投影仪(SONY公司的VPL-CX5)使其面对屏幕,并投影白色图像。设置投影仪以在水平方向上2m的距离远离具有屏幕的表面。用亮度计(TOPCON公司的BM-9)测量屏幕的中部的亮度S。当在同一位置处设置标准白板时,同样测得亮度W。计算亮度S与亮度W的比率(S/W)并定义为屏幕增益。此外,目测在屏幕上的面内亮度分布。
表2表明该评价结果。
该结果表明在实例A至F中提供各向异性漫射角。
此外,在实例A至E中,适当地控制水平方向和垂直方向的漫射角。因此,能够制造出具有高屏幕增益(即很亮)和良好的面内亮度分布的屏幕。此外,在实例F中,能够制造出屏幕增益很高且在水平方向上反射光的指向性很强的屏幕。
表2

本领域技术人员可以理解,可以根据设计要求和其它因素进行不同的修改、组合、再组合以及改变,只要它们处于所附的权利要求书或与其等价物的范围之内。
本发明包括涉及于2004年9月1日向日本专利局提交的日本专利申请JP2004-254328的主题,该专利的全文在此引入作为参考。