半导体发光元件及其制造方法转让专利

申请号 : CN200480006269.5

文献号 : CN1759491B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 室伏仁青柳秀和武田四郎内田良彦

申请人 : 三垦电气株式会社

摘要 :

半导体发光元件中设有具有发光功能的半导体衬底(2)、阳极(3)、欧姆接触区(4)、合金化阻止用的光透射层(20)、金属光反射层(5)以及导电性支持衬底(8)。所述光透射层(20)由绝缘性材料构成,并具有阻止所述半导体衬底(2)和金属光反射层(5)的合金化的作用。所述欧姆接触区(4)以可透射光的厚度形成。从所述半导体衬底(2)发出的光通过所述光透射层(20)后在所述金属光反射层(5)上反射,并通过所述欧姆接触区(4)后在所述金属光反射层(5)反射。结果提高了半导体发光元件的发光效率。

权利要求 :

1.一种半导体发光元件,其特征在于设有:

半导体衬底(2),其中设有对发光有贡献的多个化合物半导体层(11、12、13),且设有用以取出光的一主面(15)和该主面(15)相反侧的另一主面(16);

电极(3),与所述半导体衬底(2)的一主面(15)连接;

欧姆接触区(4),设于所述半导体衬底(2)的另一主面(16)的一部分上,且与所述半导体衬底(2)欧姆接触;

光透射层(20),配置在所述半导体衬底(2)的另一主面(16)中未配置所述欧姆接触区(4)的部分的至少一部分上,具有使由所述半导体衬底(2)发出的光透射的功能且具有阻止或抑制所述半导体衬底(2)和金属的反应的功能;

金属光反射层(5),配置成覆盖所述欧姆接触区(4)和所述光透射层(20)且具有反射从所述半导体衬底(2)发出的光的功能;以及与所述金属光反射层(5)电连接的另一电极。

2.如权利要求1所述的半导体发光元件,其特征在于:所述光透射层(20)是具有电绝缘性的膜。

3.如权利要求1所述的半导体发光元件,其特征在于:所述光透射层(20)由SiO2、SiO、MgO、In2O3、ZrO2、SnO2、Al2O3、TiO2、ZnO及TaO中选择的一种以上的无机氧化物或者透光性聚酰亚胺树脂构成。

4.如权利要求1所述的半导体发光元件,其特征在于:所述光透射层(20)具有3nm~1μm范围的厚度。

5.如权利要求1所述的半导体发光元件,其特征在于:光透射层(20)具有可获得量子力学隧道效应的厚度。

6.如权利要求1所述的半导体发光元件,其特征在于:所述欧姆接触区(4)由在所述半导体衬底(2)的另一主面(16)上分散配置的多个岛状部分或格子状区域构成。

7.如权利要求1所述的半导体发光元件,其特征在于:所述半导体衬底(2)含有在该另一主面(16)露出的Ga系化合物半导体层(11),且所述欧姆接触区(4)由金属材料和Ga的合金层构成。

8.如权利要求7所述的半导体发光元件,其特征在于:所述Ga系化合物半导体层(11)是在由化学式AlxGayIn1-x-yP组成的III-V族化合物半导体上掺杂了导电型确定杂质的层,其中,x和y是满足0≤x<1、0<y≤1、0<x+y≤1的数值。

9.如权利要求1所述的半导体发光元件,其特征在于:所述金属光反射层(5)是反射率大于所述欧姆接触区(4)的金属层。

10.如权利要求1所述的半导体发光元件,其特征在于:所述金属光反射层(5)为铝层。

11.如权利要求1所述的半导体发光元件,其特征在于还设有:与所述金属光反射层(5)接合的导电性支持衬底(8)。

12.如权利要求11所述的半导体发光元件,其特征在于:所述导电性支持衬底(8)为包含杂质的硅支持衬底,所述另一电极(9)通过所述硅支持衬底与所述金属反射层(5)连接。

13.一种半导体发光元件的制造方法,其特征在于包括如下工序:

第一工序,准备设有对发光有贡献的多个化合物半导体层(11、12、13)且具有用以取出光的一主面(15)和该主面相反侧的另一主面(16)的半导体衬底(2);

第二工序,在所述半导体衬底(2)的另一主面(16)的一部分上形成欧姆接触区(4),且在所述半导体衬底(2)的另一主面(16)的剩余部分的至少一部分上形成具有光透射性且具有阻止或抑制所述半导体衬底(2)和金属的反应的功能的光透射层(20);以及第三工序,形成具有光反射性的金属光反射层(5),覆盖所述欧姆接触区(4)及所述光透射层(20)。

14.如权利要求13所述的半导体发光元件的制造方法,其特征在于准备所述半导体衬底(2)的第一工序包括:准备化合物半导体衬底(30)的工序;

在所述化合物半导体衬底(30)上外延生长对发光有贡献的多个化合物半导体层(11、12、13)的工序;以及除去所述化合物半导体衬底(30)的工序。

15.如权利要求13所述的半导体发光元件的制造方法,其特征在于:所述半导体衬底(2)含有在其另一主面(16)露出的Ga系化合物半导体层(11);

所述第二工序中包括:

在所述半导体衬底(2)的所述另一主面(16)的一部分上形成过渡金属层(17)的工序;

在所述过渡金属层(17)上形成层(18)的工序,该层(18)包含可隔着所述过渡金属层(17)扩散到所述半导体衬底(2)的所述Ga系化合物半导体层(11)的金属材料;

对带有所述过渡金属层(17)和包含所述金属材料的层(18)的所述半导体衬底(2),进行低于构成所述Ga系化合物半导体层(11)的元素和所述金属材料的共晶点的温度的加热处理,隔着所述过渡金属层(17)将所述金属材料注入所述Ga系化合物半导体层(11),形成由构成所述Ga系化合物半导体层(11)的元素和所述金属材料的合金层构成的、具有可让光透过的厚度的欧姆接触区(4)的工序;以及除去所述过渡金属层(17)和包含所述金属材料的层(18)的工序。

16.如权利要求13所述的半导体发光元件的制造方法,其特征在于还包括:将所述金属光反射层与导电性支持衬底接合的工序。

说明书 :

技术领域

本发明涉及一种在发光层上使用例如AlGaAs系、AlGaInP系、GaN系等的化合物半导体等的高发光效率的半导体发光元件及其制造方法。

背景技术

传统的典型的半导体发光元件中设有GaAs组成的支持衬底和在该支持衬底上形成的对发光有贡献的多个半导体层。所述对发光有贡献的多个半导体层分别由AlGaInP系化合物半导体构成。该AlGaInP系化合物半导体与GaAs支持衬底较良好地格子接合,因此在GaAs支持衬底上可获得结晶性较良好的半导体层。
但是,GaAs支持衬底对从AlGaInP系化合物半导体组成的对发光有贡献的多个半导体层中包含的发光层即活性层发出的光的波段上的光吸收系数极高。因此,从发光层向支持衬底侧放射的光的大部分被GaAs支持衬底所吸收,不能得到具有高发光效率的半导体发光元件。
作为解决上述GaAs支持衬底的光吸收问题的方法,公知的方法有:以与上述半导体发光元件的形成同样的方式在GaAs支持衬底上外延生长对发光有贡献的多个半导体层,然后除去GaAs支持衬底,在对发光有贡献的多个半导体层(以下称为半导体衬底)上粘贴例如由GaP组成的光透射性衬底,进而在该光透射性衬底下面形成具有光反射性的电极。但是,按照该方法制造的设有光透射性衬底和光反射性电极的结构,存在包含发光层的半导体衬底和光透射性衬底的界面的电阻较大,且由于该电阻阳极和阴极之间的正向电压较大的缺点。
作为解决上述缺点的方法,本案申请人的日本专利申请公开公报:特开2002-217450号(称为文献1)中公开了在包含发光层的半导体衬底下面侧分散形成AuGeGa合金层,用Al等的金属反射层覆盖AuGeGa合金层及未被该AuGeGa合金层覆盖的半导体衬底的下面,然后在该金属反射层上粘贴例如由具有导电性的硅组成的导电性支持衬底的方法。该方法中的所述AuGeGa合金层与例如AlGaInp等半导体衬底有较良好的欧姆接触。因而,依据该结构,可降低阳极与阴极之间的正向电压。
另外,由于能够用金属反射膜反射从发光层向支持衬底侧放射的光,可得到高发光效率。
但是,在上述文献1中记载的半导体发光元件中,有时由于多个制造工序中的各种热处理在金属反射膜与相邻的半导体衬底之间发生反应,因此降低了其界面上的反射率。从而,不能高成品率地生产达到所期望程度的发光效率高的半导体发光元件。
发明的公开
本发明的目的在于提供可提高发光效率的半导体发光元件及其制造方法。
以下,参照表示实施例的附图标记,就达成上述目的的本发明进行说明。另外,本发明的说明及权利要求中的附图标记用以帮助理解本发明,不构成对本发明的限定。
本发明的半导体发光元件中设有:
半导体衬底2,其中含有对发光有贡献的多个化合物半导体层11、12、13,且含有用以取出光的一主面15和该主面15相反侧的另一主面16;
电极3,与所述半导体衬底2的一主面15连接;
欧姆接触区4,设于所述半导体衬底2的另一主面16的一部分上,且与所述半导体衬底2欧姆接触;
光透射层20,设在所述半导体衬底2的另一主面16上未配置所述欧姆接触区4的部分的至少一部分上,具有使所述半导体衬底2上发出的光透射的功能且具有阻止或抑制所述半导体衬底2和金属之间的反应的功能;以及
金属光反射层5,配置成覆盖所述欧姆接触区4和所述光透射层20且具有反射从所述半导体衬底2发生的光的功能。
本发明的半导体发光元件不仅可以是已完成的发光元件,也可以是作为中间产品的发光芯片。
并且,所述光透射层20最好是具有电绝缘性的膜。
并且,所述光透射层20最好是由SiO2、SiO、MgO、In2O3、ZrO2、SnO2、Al2O3、TiO2、ZnO及TaO中选择的一种以上的无机氧化物或者透光性聚酰亚胺树脂构成。
并且,所述光透射层20最好具有3nm~1μm范围的厚度。
并且,光透射层20最好具有能够获得量子力学隧道效应的厚度。
并且,所述欧姆接触区4最好由在所述半导体衬底2的另一主面16分散配置的许多岛状部分或格子状区域或条状区域构成。
并且,最好所述半导体衬底2设有在该另一主面16露出的Ga系化合物半导体层11,且所述欧姆接触区4由金属材料和Ga的合金层构成。再有,所述Ga系化合物半导体层11最好是从分别含有导电型确定杂质的由AlxGayIn1-x-yP组成的化合物半导体层、由AlxGayIn1-x-yAs组成的化合物半导体层和由AlxGayIn1-x-yN组成的化合物半导体中选择的一种,其中,x和y是满足0≤x<1、0<y≤1、0<x+y≤1的数值。
并且,所述金属光反射层5最好是反射率大于所述欧姆接触区4的金属层。
并且,所述金属光反射层5最好为铝层。
并且,所述半导体发光元件最好还设有与所述金属光反射层5接合的导电性支持衬底8。
并且,最好所述导电性支持衬底8为包含杂质的硅支持衬底,而且,还设有与所述硅支持衬底连接的另一电极9。
另外,所述半导体发光元件最好经过以下工序制造:
第一工序,准备设有对发光有贡献的多个化合物半导体层11、12、13,且设有用以取出光的一主面15和该主面相反侧的另一主面16的半导体衬底2;
第二工序,在所述半导体衬底2的另一主面16的一部分上形成欧姆接触区4,且在所述半导体衬底2的另一主面16的剩余的至少一部分上形成具有光透射性且具有阻止或抑制所述半导体衬底2和金属之间的反应的功能的光透射层20;以及
第三工序,形成具有光反射性的金属光反射层5,覆盖所述欧姆接触区4和所述光透射层20。
并且,准备所述半导体衬底2的第一工序最好包括:
准备化合物半导体衬底30的工序;
在所述化合物半导体衬底30上外延生长对发光有贡献的多个化合物半导体层11、12、13的工序;以及
除去所述化合物半导体衬底30的工序。
并且,最好这样:
所述半导体衬底2设有在其另一主面16露出的Ga系化合物半导体层11,且所述第二工序中包括:
在所述半导体衬底2的所述另一主面16的一部分上形成过渡金属层17的工序;
在所述过渡金属层17上形成包含可在所述半导体衬底2的所述Ga系化合物半导体层11上经由所述过渡金属层17扩散的金属材料的层18的工序;
在带有所述过渡金属层17和包含所述金属材料的层18的所述半导体衬底2上,通过低于构成所述Ga系化合物半导体层11的元素和所述金属材料的共晶点的温度下的加热处理,经由所述过渡金属层17将所述金属材料导入所述Ga系化合物半导体层11,形成由构成所述Ga系化合物半导体层11的元素和所述金属材料的合金层构成的且具有可让光透射的厚度的欧姆接触区4的工序;以及
除去所述过渡金属层17和包含所述金属材料的层18的工序。
并且,所述半导体发光元件的制造方法最好还包括将导电性支持衬底与所述金属光反射层接合的工序。
本发明的半导体发光元件,在具有发光功能的半导体衬底2和金属光反射层5之间,设有具备光透射性且具备阻止或抑制半导体和金属的反应的功能的光透射层20,因此,制造工序中的各种热处理工序中金属光反射层5和半导体衬底2之间的反应被阻止或抑制,能够防止金属光反射层5的反射率下降。因此,能够容易且高成品率地生产基于金属光反射层5的理论反射率算出的具有高发光效率的半导体发光元件。
本发明优选实施例的欧姆接触区4由其光吸收率低于传统的AuGeGa构成的欧姆接触区的金属材料和Ga的合金层构成。因此,在欧姆接触区4的光吸收被抑制且在半导体衬底2中发生的、向半导体衬底2的另一主面16方向放射的光的大部分能够在欧姆接触区4和Ga系化合物半导体层11的界面上反射。另外,欧姆接触区4形成得较薄,因此,在半导体衬底2中发生并向半导体衬底2的另一主面16方向放射的光的一部分通过欧姆接触区4,并在金属光反射层5反射后向半导体衬底2的一主面15侧传播,能够有效地光输出。因此,能够增大半导体发光元件的输出光量,提高发光效率。
另外,输出光量与传统的相同即可时,可按照在欧姆接触区4和金属光反射层5的界面上增多的反射量增大欧姆接触区4的面积。换言之,即使增大欧姆接触区4的面积,也可令输出光量与传统的相同。这样增大欧姆接触区4的面积时,发光时的电流通路的电阻变小,正向电压下降且功率损耗减小,发光效率提高。
另外,依据本发明优选实施例的制造方法,可通过过渡金属层17的作用良好、容易且高生产性地形成所要的欧姆接触区4。即,由于过渡金属层17具有将构成化合物半导体的元素固相分解的功能和将半导体表面净化的功能,经由过渡金属层17加热半导体衬底2和金属材料层18时,在较低温度(共晶温度以下)下半导体材料和金属材料固相扩散。依据该低温的固相扩散,形成较薄的欧姆接触区4且得到不含具有将金属光反射层5液化并促进与半导体材料的合金化之作用的金属材料(例如,Ge)的欧姆接触区4。因此,可减少欧姆接触区4的光吸收。
附图的简单说明
图1是表示本发明实施例1的半导体发光元件的剖视图。
图2是图1的半导体发光元件的A-A线剖视图。
图3是说明图1的半导体发光元件的制造工序的发光半导体衬底的剖视图。
图4是在图3的发光半导体衬底上设置过渡金属层和金(Au)层后的剖视图。
图5是表示对图4所示的发光半导体衬底实施热处理后形成了欧姆接触区的剖视图。
图6是从图5除去过渡金属层和金层后的剖视图。
图7是在图6的发光半导体衬底上设置光反射层和第一接合金属层后的剖视图。
图8是在图7的结构上粘贴导电性硅支持衬底后的剖视图。
图9是形成欧姆接触区时的热处理温度和本发明及传统例的欧姆接触区和光反射层的复合层的反射率之间的关系图。
图10与图1同样是表示本发明的实施例2的半导体发光元件的剖视图。
图11是图10的半导体元件的B-B线剖视图。
本发明的最佳实施例
实施例1
以下,参照图1~图9,就本发明实施例1的半导体发光元件1即发光二极管及其制造方法进行说明。
半导体发光元件1构成为发光二极管,如图1简略所示,由以下部分构成:包含对发光有贡献的多个化合物半导体层的发光半导体衬底2、作为第一电极的阳极3、欧姆接触区4、金属光反射层5、第一和第二接合金属层6、7、作为导电性支持衬底的硅支持衬底8、作为第二电极的阴极9、电流阻挡层10及本发明的光透射层20。再有,可将所述发光半导体衬底2称为主半导体区或发光功能区。
发光半导体衬底2依次外延生长如下部分而构成:作为具有第一导电型的第一化合物半导体层的n型包覆层11、活性层12、作为具有第二导电型的第二化合物半导体层的p型包覆层13以及由p型化合物半导体构成的电流扩散层14。再有,可将由n型包覆层11、活性层12及p型包覆层13构成的部分称为发光半导体区。并且,可将活性层12称为发光层。发光半导体衬底2具有光取出侧的一主面15和其相反侧的另一主面16。
n型包覆层11最好为Ga系化合物半导体层,例如最好在由化学式AlxGayIn1-x-yP(其中,x和y是满足0≤x<1、0<y≤1、0<x+y≤1的数值)组成的III-V族化合物半导体上掺杂n型杂质(例如Si)。上述化学式中的Al(铝)的比例x最好为0.15~0.45,若为0.2~0.4则更理想。并且,Ga(镓)的比例y最好为0.15~0.35,若为0.4~0.6则更理想。上述化学式的III-V族化合物半导体至少包含Ga(镓)和P(磷),需要时可包含In(铟)。n型包覆层11的n型杂质的浓度最好为5×1017cm-3以上。该n型包覆层11中包含的Ga对形成欧姆接触区4有贡献。
再有,可在图1的n型包覆层11的位置上设置可用化学式AlxGayIn1-x-yP表示的III-V族化合物半导体构成的n型接触层,且可在该n型接触层和活性层12之间设置n型包覆层。当设置n型接触层和n型包覆层两层时,该两层作为第一化合物半导体层起作用。另外,在设置n型接触层时,n型包覆层的材料与n型接触层的材料可不同。
在n型包覆层11上配置的活性层12由化学式AlxGayIn1-x-yP(其中,x和y是满足0≤x≤1、0≤y≤1、0≤x+y≤1的数值)组成的p型的III-V族化合物半导体构成。本实施例中,对活性层12以低于p型包覆层13的浓度掺杂p型杂质。但是,可对活性层12掺杂n型杂质,或不掺杂导电型确定杂质。图1中示出由n型包覆层11、活性层12和p型包覆层13构成的双异质结结构的发光区域。因而,活性层12可用单一层表示,但取代该单一的活性层12可设置公知的多重量子阱(MQW:Multi-Quantum-Well)结构或单一量子阱(SQW:Single-Quantum-Well)结构的活性层。
活性层12上形成的p型包覆层13最好由化学式AlxGayIn1-x-yP(其中,x和y是满足0≤x≤1、0≤y≤1、0≤x+y≤1的数值)组成的p型的III-V族化合物半导体构成。上述化学式中的Al的比例x最好设定在0.15~0.5的范围。p型包覆层13的p型杂质(例如Zn)的浓度确定为例如5×1017cm-3以上。
在p型包覆层13上配置的电流扩散层14具有:提高流过发光半导体衬底2的正向电流的分布均一性的作用;可与阳极3欧姆接触的作用;以及将活性层12中发出的光向发光元件的外部导出的作用,例如由GaP或GaxIn1-xP或AlxGa1-xAs等的p型的III-V族化合物半导体构成。该电流扩散层14的p型杂质浓度设定得比p型包覆层13高。另外,在电流扩散层14上还可设置由p型化合物半导体构成的p型接触层。
在电流扩散层14中央的上部配置的电流阻挡层10由绝缘层构成。该电流阻挡层10防止正向电流在发光半导体衬底2的中央部集中流过的情况。
阳极3例如由Cr(铬)层和Au(金)层的复合层构成,配置在电流扩散层14和电流阻挡层10上,并与电流扩散层14欧姆接触。并且,阳极3形成从衬底2的一主面15垂直的方向看时为网状或格子状,以使正向电流均匀流过。另外,可将阳极3设为光透射性电极。
欧姆接触区4在发光半导体衬底2的另一主面16上分散配置。即,形成从发光半导体衬底2的另一主面16看时在n型包覆层11上岛状埋入的状态的各欧姆接触区4。因而,发光半导体衬底2的另一主面16上露出各欧姆接触区4和它们之间的n型包覆层11。
各欧姆接触区4基本上由只由Ga和Au组成的合金层即混合层构成,与n型包覆层11及光反射层5欧姆接触。由GaAu合金层构成的各欧姆接触区4最好以20~1000埃的厚度形成。当欧姆接触区4的厚度薄于20埃时,不能取得良好的欧姆接触,若该厚度超过1000埃,则欧姆接触区4的光透射性变差。
由AuGa合金层构成的欧姆接触区4的光吸收率小于上述文献1的AuGeGa合金层的光吸收率,由AuGa合金层构成的欧姆接触区4的光透射率大于上述文献1的AuGeGa合金层的光透射率。即,上述文献1的AuGeGa合金层包含阻碍光透射的Ge(锗)且具有2000埃以上的厚度,因此在上述文献1的欧姆接触区中,由欧姆接触区吸收大部分的光,几乎没有透过欧姆接触区的光。然而,本实施例的欧姆接触区4由不含Ge的AuGa合金层构成且具有20~1000埃的较薄的厚度,因此光透射率大于传统的AuGeGa。再有,本发明中的光透射率、光吸收率及光反射率均针对活性层12放射的光而言。
n型包覆层11的表面隔着欧姆接触区4和本发明的光透射层20被金属光反射层5覆盖。在n型包覆层11和金属光反射层5之间配置的本发明的绝缘性的光透射层20抑制金属光反射层5和n型包覆层11之间的反应即合金化。因此,在经过制造工序中的各种热处理工序后,金属光反射层5维持高反射率。金属光反射层5表面的反射率大于欧姆接触区4和n型包覆层11的界面的反射率。从活性层12向发光半导体衬底2的另一主面16侧放射的光的一部分通过本发明的光透射层20后达到金属光反射层5的表面,并在该光反射层5的表面反射后返回发光半导体衬底2的一主面15侧。若与上述文献1同样地将金属光反射层5与n型包覆层11直接接触,则因制造工序中的加热处理而在金属光反射层5和n型包覆层11的界面生成光吸收层。因而降低金属光反射层5中的光反射率。然而本发明的绝缘性的光透射层20防止因制造工序中的加热处理而在金属光反射层5和n型包覆层11的界面上生成光吸收层的情况。因此,带有本发明的绝缘性的光透射层20的金属光反射层5的光反射率比带有上述文献1的光吸收层的金属光反射层的光反射率高20%左右。即,从图1的发光半导体衬底2侧向光透射层20入射的大部分光经由光透射层20达到金属光反射层5,并在金属光反射层5反射后返回发光半导体衬底2的一方的主面侧。从而,提高发光元件的光取出效率。
另外,本实施例的欧姆接触区4不合Ge而基本上仅由AuGa成,且20~1000埃左右极薄地形成。因而,从发光半导体衬底2侧向欧姆接触区4入射的光的一部分通过欧姆接触区4后到达金属光反射层5,并在金属光反射层5反射后返回发光半导体衬底2的一主面侧。因此,图1的欧姆接触区4和金属光反射层5的复合层的光反射率大于上述文献1的欧姆接触区和金属光反射层的复合层的光反射率。
由以上可知,带有金属光反射层5的光透射层20的部分和带有欧姆接触区4的部分均改善了光反射率。从而,与上述文献1相比提高了发光元件的光取出效率。
绝缘性的光透射层20在n型包覆层11的表面以格子状或网状形成。但是,光透射层20的平面图案并不限于格子状或网状,例如也可为将多个岛状部分分散配置的图案或条状图案。光透射层20从具有阻止或抑制半导体衬底2和金属光反射层5的合金化反应的功能且具有使从活性层12向金属光反射层5侧放射的光通过的功能的材料中选择。本实施例中光透射层20由硅氧化物(SiO2)构成。但是,光透射层20可由从SiO2(二氧化硅)、SiO(一氧化硅)、MgO(氧化镁)、In2O3(氧化铟)、ZrO2(氧化锆)、SnO2(氧化锡)、Al2O3(氧化铝)、TiO2(氧化钛)、ZnO(氧化锌)及TaO(氧化钽)中选择的一种以上的无机氧化物或透光性聚酰亚胺树脂形成。对于从活性层12放射的光,光透射层20的光透射率大于欧姆接触区4的光透射率。光透射层20具有可阻止或抑制合金化反应的厚度例如3nm(30)~1μm范围的厚度。若该光透射层20的厚度为可得到量子力学隧道效应的厚度例如3~10nm范围的厚度则更理想。
第一接合金属层6由Au(金)构成,形成在金属光反射层5的整个下面。第二接合金属层7由Au(金)构成,形成在具有导电性的硅支持衬底8的一个表面。第一和第二接合金属层6、7通过热挤压法互相接合。
作为导电性支持衬底的硅支持衬底8在硅中加入了杂质,具有发光半导体衬底2的机械支持功能和作为散热体的功能以及作为电流通路的功能。
阴极9在硅支持衬底8的整个下面形成。若取代硅支持衬底8而设置金属支持衬底,则由于它本身成为阴极,可省去图1的阴极9。
制造图1的半导体发光元件1时,首先准备图3(A)所示的例如由GaAs构成的化合物半导体衬底30。接着,在化合物半导体衬底30上,通过公知的MOCVD(Metal Organic Chemical Vapor Deposition)法依次外延生长n型包覆层11、活性层12、p型包覆层13及电流扩散层14。本实施例中,n型包覆层11、活性层12、p型包覆层13及电流扩散层14被称为发光半导体衬底2。由于发光半导体衬底2由化合物半导体构成,能够形成化合物半导体衬底30上错位和缺陷少的发光半导体衬底2。
接着,除去化合物半导体衬底30,留下图3(B)所示的发光半导体衬底2。图3(A)中,在发光半导体衬底2的另一主面16侧配置了化合物半导体衬底30,但可以在发光半导体衬底2的一主面15侧配置化合物半导体衬底30。这种情况下,可在图3后的工序中将化合物半导体衬底30去除。
接着,在发光半导体衬底2的另一主面16即n型包覆层11的表面上,通过用公知的溅镀或等离子CVD等方法被覆硅氧化物来形成硅氧化膜。接着,用光蚀刻技术除去该硅氧化膜的一部分,在发光半导体衬底2的另一主面16上形成图3(B)所示的网状的硅氧化膜构成的绝缘性的光透射层20。从而,发光半导体衬底2的另一主面16的一部分被绝缘性的光透射层20覆盖,其余部分露出。
接着,在发光半导体衬底2的另一主面16上,光透射层20之间岛状露出的n型包覆层11的表面上用真空蒸镀法依次形成例如由Cr(铬)构成的过渡金属层17和Au(金)层18。图4的过渡金属层17的厚度确定为10~500埃,金层18的厚度确定为200~10000埃左右。
接着,对带有图4所示的过渡金属层17和金层18的发光半导体衬底2进行低于n型包覆层11中的Ga(镓)和金层18的Au(金)的共晶点即共融点(345℃)的温度(例如300℃)的加热处理(退火)。从而,金属18的Au经由过渡金属层17向n型包覆层11扩散,生成由Ga和Au的合金层构成的欧姆接触区4。
上述加热处理的温度和时间确定欧姆接触区4的厚度限制在20~1000埃的范围。并且,上述加热处理的温度被确定为可得到具有薄且均匀的厚度且具有较低电阻的欧姆接触区4的低于Ga(镓)和Au(金)的共晶点即共融点的任意温度。
为了查找上述加热处理的温度理想范围,而将形成欧姆接触区4时的热处理温度经多个阶段变化来形成多个发光元件,测定将各发光元件的欧姆接触区4和金属光反射层5看作一个反射部分时的该反射部分的反射率。该测定结果在图9的特性线A上示出。另外,这里的反射率的测定是用波长650nm的红光进行。为了进行比较,将形成上述文献1的AuGeGa构成的欧姆接触区时的热处理温度经多个阶段变化而形成多个发光元件,测定将各发光元件中的欧姆接触区和金属光反射层看作一个反射部分时的该反射部分的反射率。该测定结果在图9的特性线B上示出。
在特性线B所示的传统的含有Ge(锗)的欧姆接触区的情况下,300℃的热处理后的反射率约为30%,在特性线A的本发明实施例的不含Ge的情况下,300℃的热处理后的反射率约为60%。因而,依据本发明实施例,由欧姆接触区4和金属地反射层5构成的复合的反射部分的反射率约提高了30%。依据图9的特性线A,热处理温度越低反射率就越高。但是,热处理温度过低时,欧姆接触区4和n型包覆层11之间的接触电阻增大。为了将该接触电阻抑制为2×10-4Ωcm2以下,热处理温度最好为250~340℃,若为290~330℃则更好。
过渡金属层17在热处理时,使构成n型包覆层11的AlGaInP分解为各元素,并具有容易移动各元素的作用及净化n型包覆层11的表面的作用。根据过渡金属层17的上述作用,通过低于Ga和Au的共晶点的温度的热处理,使Au扩散到n型包覆层11中,极薄地形成由Ga和Au的合金层或混合层构成的欧姆接触区4。
接着,用蚀刻法除去图5的热处理后的过渡金属层17及金层18,得到带有图6的欧姆接触区4和光透射层20的发光半导体衬底2。通过低于Au和Ga的共晶点的温度的热处理得到的Au和Ga的合金层构成的欧姆接触区11的表面形态比上述文献1的共晶点以上的热处理的AuGeGa构成的欧姆接触区的表面形态(morphology)得到大幅改善。因而,包含图6的欧姆接触区4的发光半导体衬底2的另一主面16的平坦性良好。
接着,如图7所示,用真空蒸镀法形成由厚度1~10μm左右的Al层构成的金属光反射层5,覆盖发光半导体衬底2的另一主面16即n型包覆层11的露出表面和欧姆接触区4的表面,用红外线灯等进行短时间的热处理。从而,具有导电性的金属光反射层5与欧姆接触区4欧姆接合且也同与n型包覆层ll相邻的光透射层20接合。由Al构成的金属光反射层5隔着缘性的光透射层20与n型包覆层11接合,因此半导体发光元件1的正向电流不从n型包覆层11向金属光反射层5流过。由于与金属光反射层5相邻的欧姆接触区4的表面形态良好,金属光反射层5的平坦性良好。
接着,光反射层5上通过Au的真空蒸镀而形成第一接合金属层6。
接着,准备在包含图8所示的杂质的Si衬底构成的导电性衬底8的一主面上真空蒸镀由Au构成的第二接合金属层7的衬底,将第一和第二金属接合层6、7加压接触,然后进行300℃以下温度的热处理,并通过互相扩散Au来粘贴第一和第二金属接合层6、7,将发光半导体衬底2和具有导电性的硅支持衬底8一体化。
接着,如图1所示,在发光半导体衬底2的一表面15上形成用以阻止电流的电流阻挡层10和阳极3,并在导电性支持衬底8的下面形成阴极9而完成半导体发光元件1。
本实施例具有如下效果。
(1)在金属光反射层5和发光半导体衬底2之间形成绝缘性的光透射层20,因此能够阻止或抑制经过制造工序中的各种热处理工序的过程中在金属反射层5和发光半导体衬底2之间产生的合金化反应。若产生合金化部分,则降低金属反射层5的反射率,但本实施例中不发生这种问题。因此,能够容易且高成品率地生产具有根据金属光反射层5的理论反射率算出的高发光效率的发光元件。
(2)欧姆接触区4不含光吸收性大的Ge且极薄地形成,因此具有由欧姆接触区4和金属光反射层5构成的反射部分的光反射率高的值(例如60%)。因此,从活性层12射向金属光反射层5侧的光大部分返回到发光半导体衬底2的一个表面15侧,发光效率变高。
(3)由于欧姆接触区4和光反射层5构成的反射部分的光反射率增大,在获得预定光输出时可比传统的增大在发光半导体衬底2的另一主面16的面积中欧姆接触区4所占面积的比例。若增大欧姆接触区4的面积,则半导体发光元件1的正向电阻减少,正向电压降及耗电减小,而发光效率提高。本实施例的红色发光二极管的最大发光效率在电流容度40A/cm2时为47lm/W(流明/瓦)。
(4)隔着过渡金属层17,从Au层18向n型包覆层11扩散Au,从而能够在低于共晶点的温度下容易地形成由AuGa构成的欧姆接触区4。
(5)由于欧姆接触区4的表面形态良好,能够良好地实现导电性硅支持衬底8的粘贴。
实施例2
接着,参照图10和图11,就实施例2的半导体发光元件1a进行说明。另外,图10和图11中与图1和图2共同的部分上采用同一参考标记,并省略其说明。
图10和图11的半导体发光元件1a中,将绝缘性的光透射层20的配置形态变形,其它与图1和图2相同形成。本实施例2中,在n型包覆层11设有网状或格子状的凹部,光透射层20厚度方向的一部分在上述凹部中配置,剩余部分从n型包覆层11凸出。根据图10和图11的半导体发光元件1a也能得到与图半导体发光元件1同样的效果。
变形例
本发明并不受限于上述的实施例,例如可进行如下变更。
(1)发光半导体衬底2的机械强度充分时,可省去图1和图10的硅支持衬底8。这时金属光反射层5起到阴极的作用。
(2)图2中欧姆接触区4的俯视分布图案为四边形的岛状,但可以变更圆形岛状或格子状或条状等。将欧姆接触区4变更为格子状时,取代图2的n型包覆层11而格子状配置欧姆接触区4,并取代图2的欧姆接触区4而岛状配置n型包覆层11。
(3)在欧姆接触区4和n型包覆层11之间及光透射层20和n型包覆层11之间,可设置由AlGaInP构成的n型接触层或n型缓冲层或者设置该两层。
(4)欧姆接触区4可用AuGa以外的AuGeGa等其它材料形成。若该其它材料具有光透射性,可通过限制该厚度为20~1000埃,使欧姆接触区4和金属光反射层5构成的反射部分的光反射率比较高并提高发光效率。
(5)金层18可为其它金属的层。该其它金属可从能够与Ga合金化的材料中选择。
(6)可取代硅支持衬底8而设置金属支持衬底。
(7)上述过渡金属层(17)可为从以下层中选择的一层:包含从Cr以外的Ti、Ni、Sc、V、Mn、Fe、Co、Cu、Zn、Be中选择的至少一种的层;Au层、Cr层及Au层的复合层;Cr层、Ni层及Au层的复合层;以及Cr层、AuSi层及Au层的复合层。
工业上的利用可能性
由以上可知,本发明可用于发光二极管等的半导体发光元件。