耐磨应用中的CVD金刚石转让专利

申请号 : CN200480009288.3

文献号 : CN1771356B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : J·S·吉尔C·E·霍尔D·J·特威切恩G·A·斯卡斯布鲁克

申请人 : 六号元素有限公司

摘要 :

本发明提供了一种单晶CVD(化学气相沉积)金刚石体,其特别适合用作用于耐磨应用的耐磨材料,如拉丝模具、绘画工具或stichel,或流体喷射喷嘴。所述的金刚石典型地具有低的磨损速率,表现出指示低应变的低的双折光指数,并具有可以被加工以表现出高表面抛光的能力。

权利要求 :

1.一种耐磨组件,其包含通过化学气相沉积生产的、具有至少一个磨损面的单晶金刚石体,其中所述金刚石的磨损面的磨损速率按下述方法测量为不大于0.11μm/min:将金刚石加工成至少5个烧结固定的拉丝模具,最小孔径为规定在±0.15μm直径内和椭圆度小于0.1μm的80μm,缩减角为10-12°;然后采用使用矿物质油冷却剂的湿法牵引和10米/秒的牵引速度,使用Heinrich HZ10机器牵引不锈钢丝DIN 1.4301通过每个模具,并用Zumbach ODAC 16J激光直径测量系统在试验开始时及在不同的时间测量钢丝的直径和椭圆度;和然后得到所述至少5个拉丝模具的平均磨损速率,并且其中在结合了所述磨损面的所述单晶金刚石体的一部分中或在所述单晶金刚石体的整个体积中,通过电子顺磁共振测量,所述单晶金刚石体中呈单取代氮中心形式的氮的浓度下限为2×1015原子/cm3。

2.权利要求1的耐磨组件,其中所述的磨损速率为不大于0.10μm/min。

3.权利要求2的耐磨组件,其中所述的磨损速率为不大于0.095μm/min。

4.权利要求3的耐磨组件,其中所述的磨损速率为不大于0.090μm/min。

5.权利要求1的耐磨组件,其中所述的氮的浓度下限为1×1016原子/cm3。

6.权利要求5的耐磨组件,其中所述的氮的浓度下限为2×1016原子/cm3。

7.权利要求1的耐磨组件,其中在结合了所述磨损面的所述单晶金刚石体的一部分中或在所述单晶金刚石体的整个体积中,通过电子顺磁共振测量,所述单晶金刚石体中呈单取代氮中心形式的氮的浓度上限为1×1019原子/cm3。

8.权利要求7的耐磨组件,其中所述的氮的浓度上限为3×1018原子/cm3。

9.权利要求8的耐磨组件,其中所述的氮的浓度上限为1×1018原子/cm3。

10.权利要求1的耐磨组件,其中所述的磨损面从单一生长区形成。

11.权利要求10的耐磨组件,其中所述的单一生长区选自{100}、{113}、{111}及{110}生长区。

12.权利要求11的耐磨组件,其中所述的单一生长区为{100}生长区。

13.权利要求1的耐磨组件,其中所述单晶金刚石体表现出指示低应变的低的双折射,以至于在至少0.4mm的规定厚度的样品中,在至少1.0mm×1.0mm的规定面积内测量时,对于样品分析面积的至少95%,相移正弦的绝对值|sinδ|保持在第一级次中,使得δ不超过π/2,并且|sinδ|不超过0.9。

14.权利要求13的耐磨组件,其中|sinδ|不超过0.6。

15.权利要求1的耐磨组件,其中所述单晶金刚石体表现出指示低应变的低的双折射,以至于在至少0.4mm的规定厚度的样品中,在至少1.0mm×1.0mm的规定面积内测量时,对于分析面积的至少95%,所述样品保持在第一级次中,使得δ不超过π/2,并且Δn[平均]即对于平行于慢轴和快轴偏振的光的折光指数之间的差值在样品厚度上平均的平均值的最大值不超过1.5×10-4。

16.权利要求15的耐磨组件,其中Δn[平均]的最大值不超过5×10-5。

17.权利要求1的耐磨组件,其中所述单晶金刚石体具有可被加工以表现出在至少1.0mm×1.0mm的规定面积内测量的Ra即偏离中线的绝对偏差沿轮廓的算术平均值小于2nm的高表面抛光的能力。

18.权利要求1的耐磨组件,其中选择所述单晶金刚石体的磨损面,使材料中的特征位错方向偏离所述磨损面的法线至少30°。

19.权利要求1的耐磨组件,其中所述的单晶金刚石体已被退火。

20.权利要求1的耐磨组件,呈层状物的形式,并且该单晶金刚石体是独立式的,或形成较大的金刚石体或层状物的层或区域。

21.权利要求20的耐磨组件,其中所述的较大金刚石体或层状物是由化学气相沉积方法生产的单晶或多晶金刚石。

22.权利要求1的耐磨组件,其呈拉丝模具、绘画工具、雕刻工具、高压流体喷射喷嘴或高压水喷射喷嘴的形式。

23.权利要求22的耐磨组件,其中所述的高压流体喷射喷嘴是用于包含一种以上类型的液体或气体,或两者的组合的流体。

24.权利要求22的耐磨组件,其中所述的高压流体喷射喷嘴是用于包含至少一种液体或气体并且另外包含一种或多种类型的固体颗粒的流体。

说明书 :

本发明涉及用作磨损面,尤其是用于拉丝模具的单晶CVD(化学气相沉积)金刚石。

在此申请中,“磨损面”是指与另一表面或流体滑动或移动接触的固体的任何表面,其中该表面因为其较低的磨损速率以及任选地因为以下的一种或多种性质:a)在所述应用所伴随的负载下的低的表面置换,b)在该表面产生的低的摩擦力,或c)表面对不利的改变如光学表面的褪化的耐受性,而特别适合于这种应用。

拉丝模具包括具有在其中形成的孔并被固定在合适的支撑体中的硬质材料主体。这种主体被称为拉丝模具坯(wire drawing dieblank)。直径大于所述孔的直径的金属丝被牵引穿过所述的孔,由此使其直径变小。该模具的内表面由此形成磨损面。有多种硬质材料可被用作所述的主体。已知的最好材料之一是金刚石,原因在于其硬度与耐磨性。已用于拉丝模具的金刚石包括天然金刚石和HPHT金刚石。

有两个参数被认为是线材模具应用中的关键。第一个和首要的参数是总磨损速率。第二个参数是由于不对称磨损而产生的任何椭圆度或不圆变量。在单晶金刚石中,通常通过使用具有沿平行于板的法线的<111>方向取向的成丝孔(即金属丝垂直于所述板的主{111}面取向)的{111}板来降低磨损的不对称性,虽然在具有非圆横截面的金属丝的生产中,其它的板和孔方向的取向可能更可取。

金刚石的磨损速率对其测量条件非常敏感。如在下文中所描述的,这可以在被认为起作用和可能根据试验条件而改变贡献的可能的磨损机理范围内被合理化。但是,目前不存在确定的模型。对于一组具体的条件来说,迄今为止在金刚石中得到的最低的磨损速率(并且因此用作磨损面最有利)通常被公认为是材料的基本性能,以在高质量的单晶天然金刚石中所观察到的性状为代表。适宜的天然金刚石的不易获得和高成本导致了HPHT合成单晶金刚石基本市场的发展。人们已表示出了对使用CVD单晶金刚石的兴趣,但迄今为止在商业上不能得到这种金刚石。

最近已公开了可以制造具有有利的电性能的高纯度的高质量CVD金刚石[国际专利公开WO 01/96634]。该公开内容显示,通过控制杂质的引入及晶格缺陷如位错,不仅可以达到天然金刚石的电性能,而且在某些关键的电子参数上可以显著超过天然金刚石。这是不曾预料的,但回过头来,考虑到这样的杂质和缺陷对俘获电荷载流子的影响,这是合理的。

发明概述

根据本发明的第一个方面,提供了一种通过CVD生产的用于耐磨应用中的单晶金刚石体,其中按以下所述方法测量的所述金刚石的表面磨损速率不大于0.11μm/min,优选不大于0.10μm/min,更优选不大于0.095μm/min,更更优选不大于0.090μm/min。

所述单晶金刚石体优选具有如下特征(i)至(iii)中的至少一种:

(i)由生长过程中的引入而得到的、作为杂质或掺杂物存在于金刚石中的氮。所述氮通常存在于所述单晶的整个体积中,虽然浓度可以变化:益处源于其对生长形态及所得的内部晶体结构的影响,还可能源于其在磨损面的存在。一般地,在磨损面上或在本体中或两者,使用电子顺磁共振(EPR)测量的、呈单取代氮中心[N-C]°形式的氮的浓度下限为2×1015原子/cm3,优选1×1016原子/cm3,更优选2×1016原子/cm3,更更优选5×1016原子/cm3,上限为1×1019原子/cm3,优选3×1018原子/cm3,更优选1×1018原子/cm3;

(ii)从单晶生长区形成的磨损面,即所述金刚石体的计划被用作磨损面的那部分表面,所述生长区优选为{100}、{113}、{111}和{110}生长区之一,更优选为{100}生长区;

(iii)所述金刚石体优选是“高结晶质量”的。在本说明书上下文中,“高结晶质量”允许掺杂硼原子和氮原子及点和线缺陷如包括空穴、氢等的那些缺陷的存在。

所述的单晶CVD金刚石体还可以在磨损面(即在应用中被用作与另一个移动组件接触的磨损面的表面)的主要部分具有以下的一种或多种特征。这里所使用的术语“磨损面的主要部分”表示磨损面的至少70%,优选至少85%,更优选至少95%,更更优选100%的表面:

a)由于生长过程中的引入而存在的掺杂剂,尤其是硼。虽然浓度可以变化,这些掺杂剂通常存在于单晶金刚石的整个体积中,但其益处主要源于它们在磨损面的存在。当存在于磨损面时,硼含量通常在下限为1×1016原子/cm3,优选5×1017原子/cm3,更优选1×1018原子/cm3,上限为1×1020原子/cm3,优选2×1019原子/cm3,更优选5×1019原子/cm3的范围内。

b)在514nm的氩离子激发下,在300K测量时,在磨损面的主要部分,小于5cm-1FWHM(半最大高度处的全宽),优选小于4cm-1,更优选小于3cm-1,更更优选小于2.5cm-1的拉曼线宽度。

c)指示低应变的低的光学双折射,以至于在至少0.4mm,优选至少0.6mm和更优选至少0.8mm厚的样品中,在至少1.0mm×1.0mm,优选至少1.5mm×1.5mm,更优选至少2.5mm×2.5mm,更更优选至少4mm×4mm的横向尺寸内测量时,由‘Deltascan’或具有相似分辨率的类似仪器使用545-615nm范围内,优选589.6nm的辐射所测量的相移的正弦的绝对值|sinδ|不超过一定的极限。具体而言,这些极限是,对于样品分析区域的至少95%,优选至少98%,更优选至少99%,最优选100%,相移的正弦的绝对值|sinδ|保持在第一级次(即δ不超过π/2),并且|sinδ|不超过0.9,优选不超过0.6,更优选不超过0.4,更优选不超过0.3,和更优选不超过0.2。

d)指示低应变的低的光学双折射,以至于在至少0.4mm,优选至少0.6mm和更优选至少0.8mm的指定厚度的样品中,在至少1.0mm×1.0mm,优选至少1.5mm×1.5mm,更优选至少2.5mm×2.5mm,更更优选至少4mm×4mm的指定面积内测量时,由‘Deltascan’或具有相似分辨率的类似仪器使用545-615nm范围内,优选589.6nm的辐射所测量的Δn[平均],即对于平行于慢轴和快轴偏振的光的折光指数之间的差值在样品厚度上平均的平均值的最大值不超过一定极限。具体而言,这些极限是,对于样品分析区域的至少95%,更优选至少98%,更更优选至少99%,最优选100%,所述双折射保持在第一级次内(即δ不超过π/2),且Δn[平均]不超过1.5×10-4,优选不超过5×10-5,更优选不超过2×10-5,更优选不超过1×10-5。

e)可被加工以表现出高表面抛光的能力,在至少1.0mm×1.0mm,优选至少1.5mm×1.5mm,更优选至少2.5mm×2.5mm,更更优选至少4mm×4mm的面积内,表面Ra(偏离中线的绝对偏差沿轮廓的算术平均值)小于2nm,优选小于1nm,更优选小于0.6nm,更更优选小于0.4nm。

f)机械设计强度,利用单悬臂梁技术进行测量得到,单个样品的尺寸为5.0mm×3.0mm×0.17-0.35mm(长×宽×厚),其中对至少8个,优选至少10个和更优选至少15个的批次大小进行测量时,至少70%,优选至少80%,更优选至少90%,更更优选至少95%的测试样品将只在至少2.5GPa,优选至少3.0GPa,更优选至少3.5GPa的强度值上失败。

本发明的单晶CVD金刚石体通常为层状形式,并且可以是独立式的,或形成较大的金刚石体或层状物的层或区域。该较大的金刚石体或层状物可以是由CVD或其它合成方法生产的单晶或多晶金刚石。所述较大的金刚石层状物或金刚石体可以掺杂有硼、氮或其它元素,或这些元素的某些组合。

根据本发明的另一个方面,提供了一种生产本发明的单晶CVD金刚石层状物的方法。该方法包括如下步骤:提供具有基本上不含晶体缺陷的表面的金刚石基质,提供包括所用的硼、氮或其它掺杂剂的合适源的源气体,离解源气体,和在基本上不含晶体缺陷的表面上进行均相外延的金刚石生长,由此生产单晶金刚石的层状物,优选为以上所述的类型。对该方法重要的是金刚石的生长在基本上不含晶体缺陷的金刚石表面上进行。

本发明的方法包括使用控制的氮,和任选地向源气体中添加硼。

按照本发明的方法,已发现可以生产特别适合用作耐磨材料,尤其是用于制造用于拉丝模具的坯料的合成CVD单晶金刚石。由此CVD方法生产的金刚石是单晶的,且当按照下文中所描述的耐磨性试验测量时,磨损速率不大于0.11μm/min,优选不大于0.10μm/min,更优选不大于0.095μm/min,更更优选不大于0.090μm/min。所述金刚石优选还具有上面所述的其它特性中的一种或多种。

对于本发明材料的各种应用,所述金刚石层状物或金刚石体可以原样使用,或者它可以被通过例如切割来切开,以生产两个或多个并通常大量的较小的片或元件,这些片或元件将可以用于以上所述的一个或多个应用。所述片或元件的形状和尺寸由所述应用指定。

另外,根据本发明,拉丝模具包括坯料(blank),该坯料的特征在于是按照下文中所描述的耐磨性试验测量的磨损速率不大于0.11μm/min,优选不大于0.10μm/min,更优选不大于0.095μm/min,更更优选不大于0.090μm/min的单晶CVD金刚石。所述金刚石优选还具有上面所述的其它特性中的一种或多种。

优选地,所述坯料为{111}板,该板具有穿过所述板的、沿平行于该板法线的<111>方向形成的孔。所述坯料还可以是具有平行于板的法线的<100>方向形成的孔的{100}板。

所述的单晶CVD金刚石模具坯料可以被固定在合适的支撑体上,以产生拉丝模具。这种支撑体及将金刚石坯料固定在那里的方法是本领域中所熟知的。

发明详述

在很多材料中磨损机理还不太清楚。对金刚石尤其如此。在金刚石中,据信对磨损机理而言有以下几个关键因素:

1)与金刚石与之接触的材料之间的相互作用有关的化学因素。特别地,碳化物形成物例如钢以提高的速率磨损金刚石,同时金刚石的碳石墨化或由于其它手段而被吸收或溶解到钢中。

2)等离子体/化学因素,其中局部等离子体在滑动接触点产生。模型包括由于摩擦而导致局部电子静电荷形成,这导致等离子体形成,而一旦形成等离子体,等离子体与金刚石表面的相互作用可能取决于气体环境。

3)机械因素,其中较小的金刚石碎片被除掉或脱落,这种碎片相对于磨损面或组件的典型几何尺度来说是较小的。

4)碎片形成,这是另一种机械因素,其中较大的碎片脱落下来。这种较大的碎片可以在局部上显著改变磨损面或组件的几何尺寸,并且不利地影响其性能。在应用中,需要避免这种机理。

考虑到这些磨损机理,尤其是在金刚石中显然占优势的化学磨损机理,通常认为天然金刚石代表了在金刚石中磨损速率的极限。没有相反的简单模型,也没有任何理由来寻找这样一种模型。对一系列材料中变形和磨损的更普遍的理解通常使人们推断到,位错的存在在销住天然侧滑面和使材料硬化以对抗变形和磨损方面是有利的,并因此得出结论,降低位错密度磨损速率将上升。

因此,本发明公开了尤其是当使用钢丝(该模型暗示主要是化学磨损机理)测量时磨损速率明显低于天然金刚石的磨损速率的高品质金刚石是令人惊奇的。

在本发明的金刚石中,当不含或基本上不含掺杂剂时,可能的降低磨损速率的机理包括:

i)提高的局部热扩散,这将有助于降低由摩擦热而达到的温度。

ii)由于非常低的位错密度导致的低应变,降低了材料对化学磨损过程的易感性。

iii)在磨损界面上由于缺少晶体缺陷如位错而导致的非常平滑表面的形成,由此提供了一种更稳定和更少磨损的表面。

这些机理的第一种据推测在存在掺杂剂的材料中不起作用,至少不能达到相同的程度,并且可能不是非常重要,因为热扩散系数随温度显著下降。

但是,在存在掺杂剂的情况下,其它机理可以起作用,这些机理涉及其中掺杂剂可能改变表面的电荷状态及其电导性,由此影响蚀刻等离子体的形成或其对金刚石表面的影响的方式。

具有非常低的磨损速率并可以被抛光至非常光滑表面的金刚石磨损面存在着额外的好处。在某些应用中,只使用金刚石作为一个磨损面,并以另一种材料作为其它磨损面是有利的。其它材料总是比金刚石更易磨损,并且金刚石与其它磨损面之间的摩擦以及其它磨损面所经受的磨损量,可能显著受金刚石表面的细节条件影响。这种类型的影响在润滑磨损应用例如使用油、油脂等的那些润滑磨损应用中可能特别重要,其中非金刚石表面上的磨损可以由金刚石的表面粗糙度决定。

为了表征金刚石的磨损速率,在线材模具应用中开发了一组试验条件。将金刚石加工成烧结固定的拉丝模具,最小孔径为规定在±0.15μm直径内和椭圆度小于0.1μm的80μm。缩减角(reduction angle)为10-12°。用于牵引金属丝机器是Heinrich HZ10,并被用来牵引不锈钢丝DIN 1.4301,采用使用矿物质油冷却剂的湿法牵引,牵引速度为10米/秒,钢丝伸长率为18%,得到标称直径为80μm的钢丝。钢丝的直径和椭圆度在试验开始时及在不同的时间用Zumbach ODAC 16J激光直径测量系统测量和记录。应检测任何具体类型/几何形状的最少5个模具,在每个磨损时间对每个模具得到数据,并将平均值作图。所得的数据为从离开模具的金属丝测量的金属丝直径和椭圆度。椭圆度定义为金属丝的最大弦直径与在相同位置上沿金属丝相对于最大弦直径旋转任意角度的金属丝的最小弦直径之间的差。

本发明金刚石的一系列其它可能的特征可以表征如下:

双折射

对于例如无应力的金刚石的各向同性介质,折光指数不依赖于光的偏振方向。如果金刚石由于内部生长应力或局部缺陷,或由于外部施加的压力而受到不均匀的应力,折光指数将是各向异性的。折光指数随偏振方向的变化可由被称为光率体的表面来表示,所述光率体的通常形式为椭球体。任何两个椭球体轴之间的差是沿第三轴定向的光的线性双折光指数。这可表示为包括未受应力的材料的折光指数、应力和光学-弹性系数的函数。

Deltascan(Oxford Cryosystems)给出了在给定的波长下折光指数如何随垂直于观察方向的平面中偏振方向变化的信息。由A.M.Glazer等人在Proc.R.Soc.Lond.A 452(1996),2751-2765中给出了对Deltascan如何工作的解释。

从平面偏振滤光片对的一系列不同相对取向所扑获的许多图像,Deltascan确定了“慢轴”的方向,即垂直于观察方向的平面中折光指数最大的偏振方向。同时还测量了|sinδ|,其中δ为由下式所给出的相移:

δ=(2π/λ)ΔnL

其中λ是光的波长,L是样本的厚度,Δn是对于平行于慢轴和快轴偏振的光的折光指数之间的差值。ΔnL被称为“光延迟”。

对于L=0.6mm和λ=589.6nm的第一级延迟,此时:当sinδ=1和ΔnL=λ/4时,可推导出Δn=2.45×10-4。当sinδ=0.5和ΔnL=λ/12时,可推导出Δn=0.819×10-4。

Deltascan产生了显示a)“慢轴”,b)sinδ和c)在操作波长下吸收的空间变化的三色编码的图像。

样品被制备为已知厚度的光学板,并在至少1.3mm×1.3mm,优选2.5mm×2.5mm,更优选4mm×4mm的面积内分析。在589.6nm的波长下记录下各样品的各自覆盖1mm×0.75mm面积的Deltascan图像或“画面”组。在每幅画面内,Deltascan单独地分析640×480个像素,以确保在非常精细的尺度上分析样品。然后,分析Deltascan|sinδ|图像阵列的sinδ状态特征。最简单的分析是鉴别sinδ在整个分析区域内每个1mm×0.75mm画面中的最大值,并用这些值来表征整个分析区域内的最大值。当1mm×0.75mm画面阵列与分析的区域不完全正好匹配时,排列画面以获得完全覆盖所述区域的画面的最小总数,并集中画面,以便如实际对称地利用边缘画面。然后,将任何画面中处于分析区域边界以外的那部分数据排除在对画面的分析之外。或者,可分析每个1mm×0.75mm的画面在去除了属于分析样品区域内5%、2%、1%的数据或不排除任何数据后所剩下的最大值,以分别得到分析区域内材料的95%、98%、100%内的最大值。

sinδ的状态特征是具体材料的板的性质,通过应用最小厚度,所述板在这里被限定为有用厚度的板。通过将所述sinδ的信息转变回对于平行于慢轴和快轴偏振的光的折光指数之间的差值在样品厚度上平均的值Δn[平均],可得到更基本的材料性质。

表面R a

表面粗糙度用Zygo NewView 5000扫描白光干涉仪测量。所述干涉仪利用装配有Michelson或Mireau型干涉物镜的显微镜。采用这种系统,1×至50×的放大倍数是可能的。通过在金刚石板的整个区域内进行测量,我们发现如果所述的板完全精细抛光,那么表面粗糙度在板的区域内的变化小于10%。因此,在目前的测量中,粗糙度从0.36mm×0.27mm的代表性区域内的测量推断。

机械强度

从通过实际断裂试验得到的报导的单晶金刚石强度数据的缺乏可清楚地说明本发明金刚石的有用性。目前报导的数据是基于压痕试验,以及在这种方法中所固有的近似和假设。相反,本发明的方法使得可获得足够数量的材料,使得可以完成正常的断裂试验。

此外,断裂强度试验是破坏性试验。因为每一片天然金刚石都是唯一的,一旦知道了其强度,它就不能再用于应用中。因此,断裂试验只能被用来表征强度对一些需要非破坏性试验的代用品特征的延伸,以及用于应用材料块设计的最低预期强度。相反,本发明的合成金刚石是被很好地表征和一致的材料,这样可以以等价样品的断裂统计数据为基础合理地预测具体元件的断裂强度。本说明书中所使用的金刚石的设计强度是利用以下程序测试的材料的至少70%,优选80%,更优选至少90%,更更优选至少95%的等价样品所表现出来的强度。

使用单悬臂梁技术测量强度,样品尺寸为5.0mm×3.0mm×0.18-0.35mm(长度l×宽度b×厚度d)。样品从{100}取向的板切割出,其中长轴沿<110>方向(这样厚度沿<100>,长和宽沿<110>)。试验程序安装暴露长度为4mm的梁(即,1mm在夹具内),并在距离夹具3.5mm处施加力。

强度σb由以下表达式给出:

σb=(6Ws)/(bd2)

其中W为断裂负载,s为负载线与夹具线之间的距离。

测试样品从均相外延的CVD金刚石板切割出,并通过在越来越细的磨料直至约0.1μm的磨料尺寸上进行的渐进(scaife)抛光来仔细制备。差的表面磨光可能限制所述材料的测量强度,而这种材料获得高的表面磨光的能力可有助于其整体强度。

本发明的CVD金刚石材料是通过CVD方法,在受控制水平的氮存在下,并任选在受控制水平的其它掺杂剂尤其是硼存在下生产的。所利用的氮的水平在控制晶体缺陷的发展和由此实现具有本发明的关键特征的金刚石材料中是关键的。已发现,采用非常高含量的氮所生长的材料可能显示退化的晶体质量。相反,在基本上没有氮或少于300ppb氮的条件下生长的材料具有相当高水平的产生局部应变的缺陷,这可能影响金刚石的性能如应变。这种现象的确切机理不太清楚,但已观察到以下的结果。在下文中,词‘位错’意图包括孤立的位错和其中位错群聚在一起的位错束。

没有金刚石材料可被制造为在大的体积内完全没有位错和其它晶体缺陷。不同的性能对这种晶体缺陷的敏感度不同。局部的应变场似乎对位错非常敏感。

在生长工艺的气体混合物中没有足够氮存在的情况下,在{100}生长面上,在预先存在于基质材料中或是在基质/生长界面上产生的位错周围形成了凹陷。无论是由于这些凹陷还是其它原因,这些位错可在生长过程中缓慢地倍增。在一定程度上,此过程是指数型的,位错倍增的速度取决于存在的局部位错密度和排列。

在少量氮存在下,相关的小平面的生长速度被改变,并且这些凹陷可被除去。无论是因为不存在这些凹陷还是其它原因,位错的倍增可被减少或完全避免。

这些凹陷还可能是以非均匀方式在材料中包容其它缺陷和杂质的原因。

因此,工艺气体中优选的氮浓度的低限由限制凹陷和控制产生缺陷的应变的需要来设定,而工艺气体中氮浓度的上限由有害的晶体退化的开始来设定。

使用以上的条件,已可以生产典型为层状形式、具有有利的耐磨性能的本发明的单晶CVD金刚石材料。

对于本发明的耐磨金刚石层状物的生产来说,重要的是单晶CVD金刚石层状物的生长发生在基本上没有晶体缺陷的金刚石表面上。在本申请上下文中,缺陷主要是指位错和微裂缝,但也包括双晶间界、非固有地与掺杂剂氮原子有关的点缺陷、低角边界和对晶格的任何其它延伸的干扰。优选基质是低双折射Ia型天然金刚石、Ib或IIa型高压/高温合成金刚石或CVD合成的单晶金刚石。

在基本上没有缺陷的基质上生长的质量随层状物生长变厚和缺陷结构倍增而快速劣化,从而引起广泛的晶体劣化、形成孪晶和再成核。

在使用暴露缺陷的优化的等离子或化学蚀刻(称为暴露等离子蚀刻),例如使用下述类型的短等离子蚀刻之后,通过光学评价可最容易地表征缺陷密度。可暴露两种类型的缺陷:

1)基质材料质量固有的那些缺陷。在选择的天然金刚石中,这些缺陷的密度可低至50/mm2,更典型的值为102/mm2,但在其它金刚石中,这些缺陷的密度可以是106/mm2或更大。

2)因抛光而产生的那些缺陷,包括位错结构和沿抛光线形成振痕的微裂缝。这些缺陷的密度可在样品上显著变化,典型的值从约102/mm2至抛光差的区域或样品上的大于104/mm2。

优选的低缺陷密度是使得与上述缺陷有关的表面蚀刻特征的密度低于5×103/mm2,和更优选低于102/mm2。

通过仔细制备基质,可使发生CVD生长的基质表面和表面下方的缺陷含量最小。此处,制备包括施加到来自采矿(在天然金刚石的情况下)或合成(在合成材料的情况下)材料上的任何过程,因为各步骤都可能影响材料内的、当基质制备完成时最终形成基质表面的平面上的缺陷密度。具体的加工步骤可包括常规的金刚石加工方法如机械锯解、研磨和抛光(在本申请中,特别地为产生低缺陷水平而优化),和较不常规的技术如激光加工或离子植入和提起技术、化学/机械抛光,以及液体化学加工和等离子体加工技术。另外,应当使表面RQ(通过触针轮廓测定器测量,优选测量0.08mm长)最小化,在任何等离子蚀刻之前的典型值不超过数纳米,即小于10nm。RQ是表面轮廓偏离平面的均方根偏差(对于高斯分布的表面高度,RQ=1.25Ra:对于定义,参见例如″Tribology:Friction and Wear of Engineering Materials″,IMHutchings,(1992),Publ.Edward Arnold,ISBN 0-340-56184)。

使基质表面损伤最小化的一种具体方法是包括在将发生均相外延金刚石生长的表面上的就地等离子蚀刻。原则上,这种蚀刻不必就地进行,也不必进行该蚀刻后立刻进行生长,但若就地进行蚀刻,则可实现最大的益处,因为它避免了进一步物理损伤或化学污染的任何危险。当生长工艺也是基于等离子体时,就地蚀刻通常也是最方便的。等离子蚀刻可使用与沉积或金刚石生长工艺相类似的条件,但在没有任何含碳的源气体存在下和通常在稍低的温度下进行,以更好地控制蚀刻速率。例如,它可包括以下一种或多种下述过程:

(i)氧气蚀刻,其主要使用氢气,及任选的小量Ar和所要求的小量氧气。典型的氧气蚀刻条件是:压力为50-450×102Pa,蚀刻气体含有1-4%含量的氧,0-30%含量的氩气和余量的氢气,所有百分数为体积百分数,基质温度为600-1100℃(更典型地为800℃),和典型的持续时间为3-60分钟。

(ii)氢气蚀刻,其与(i)相类似,但其中不含氧气。

(iii)可以使用不是仅仅基于氩气、氢气和氧气的备选的蚀刻方法,例如使用卤素、其它惰性气体或氮气的那些蚀刻方法。

典型地,蚀刻包括氧气蚀刻,接着进行氢气蚀刻,然后通过引入碳源气体直接将工艺转入到合成。选择蚀刻的时间/温度,以便能够除去残留的加工造成的表面损伤,和除去任何表面污染物,但同时没有形成高度粗糙的表面和没有沿延伸的缺陷(如位错)过度蚀刻,过度蚀刻会横断表面并因此引起深的凹陷。由于蚀刻是侵蚀性的,所以对这一阶段来说尤其重要的是,腔室设计和其组件材料的选择应当使得没有材料通过等离子体被从所述腔室转移到气相中或转移到基质表面上。氧气蚀刻之后的氢气蚀刻对晶体缺陷的特异性较低,它将氧气蚀刻(它侵蚀性地进攻这类缺陷)引起的棱角变圆和提供较光滑的、较好的表面用于随后的生长。

在其上发生CVD金刚石生长的金刚石基质的主表面优选是{100}表面。由于加工的限制,实际的样品表面取向可偏离该理想取向最高达5°,并且在一些情况下可高达10°,尽管这不是理想的,因为它会不利地影响可重复性。

在本发明方法中,适当控制发生CVD生长的环境中的杂质含量也是重要的。更特别地,金刚石的生长必须在除了特意添加的氮或所用的其它掺杂剂以外基本上不含污染物的气氛存在下进行。氮的添加应当被精确地控制,使误差小于300份/十亿份(作为总气体体积的分子分数)或气相内目标值的10%,无论哪一个是较大的,优选误差小于200份/十亿份(作为总气体体积的分子分数)或气相内目标值的6%,无论哪一个是较大的,更优选误差小于100份/十亿份(作为总气体体积的分子分数)或气相内目标值的3%,更更优选误差小于50份/十亿份(作为总气体体积的分子分数)或气相内目标值的2%,无论哪一个是较大的。特别在300ppb-5ppm范围内的浓度,对气相内绝对和相对氮浓度的测量要求复杂的监测设备,例如该测量可通过例如WO 01/96634中所描述的气相色谱法实现。

源气体可以是本领域已知的任何源气体,并且含有含碳材料,其可解离产生自由基或其它活性物种。气体混合物通常还含有适于提供原子形式的氢或卤素的气体,可以是例如氮气或氨气的氮源,以及任选的硼源。

优选使用微波能量在反应器(其实例是本领域已知的)中进行源气体的解离。然而,应当使从反应器转移的任何杂质量最小化。可使用微波系统以确保等离子体远离除发生金刚石生长的基质表面及其固定物(基质载体)之外的所有表面。优选的固定材料的实例包括钼、钨、硅和碳化硅。优选的反应器腔室材料的实例包括不锈钢、铝、铜、金和铂。

应当使用高的等离子体功率密度,这来自于高的微波功率(对于25-300mm的基质直径,典型地为3-60kW)和高的气体压力(50-500×102Pa,优选100-450×102Pa)。

本发明方法的一个关键要素在于,它允许合成厚层状物形式的合适质量的材料。因为优选的生长区是{100},但优选的拉丝模具坯料是{111},因此优选以与原始金刚石基质成一定的角度切割线材模具坯料。为了做到这一点,取决于模具坯料的尺寸,最小的CVD层状物厚度典型地为2-3毫米,但对于例如4-6毫米厚的更厚的层状物,利用所生产的材料体积的效率急剧提升。

源自本发明的CVD金刚石材料的应用(其中这些独特的材料性质使得能够实现性能)包括但不限于:

C拉丝模具,特别是应用于形成碳化物的金属的拉丝模具,其中化学磨损机理通常被认为是重要的。这样的金属包括钢丝,尤其是含Ni和Cr的那些,但在商业上要求大量地牵引这样的金属丝,由此需要具有较低的磨损速率的合适的模具。

C要求非常低的摩擦系数或随时间流逝而附着至紧密的机械公差的轴承面。这种表面通常提供移动组件的位置稳定性,这是系统正常发挥功能所需要的。

C磨损面,例如在操作磨蚀性流体或含悬浮颗粒的流体的流体控制系统内的阀、孔口和光学分析窗口中所使用的那些。

具有不可预见的益处的本发明金刚石的一个特别的特征是材料中的低应力,这由低的双折射表征。具有低的双折射的材料表现出了非常低的磨损速率,使得它适合用于其中双折射可以通常不被认为是限制性因素的应用中。例如,除了由增加的孔大小及不圆度所表征的拉丝模具的磨损外,低的双折射导致stichels(金刚石绘画工具)、水流喷射喷嘴的低磨损速率,以及与磨蚀性流体流接触的分析窗口光学性能的较慢劣化。

同样,进行低表面粗糙度的抛光的能力也是低应力的指征。这样,可以被抛光至非常低的表面粗糙度的材料已在一系列应用中显示出出人意料好的耐磨性能,除高表面抛光可以给所述应用带来的好处以外,至少在表面状况由磨损过程决定之前的最初阶段。

研究工作显示,使金刚石退火可以额外地提高所述金刚石的磨损速率及其在耐磨和切割应用中的有益应用。这种好处特别在通过本发明的方法生长的材料中看得到,该材料在生长后原样的条件下已经具有相对较低的磨损。退火是指其中以控制的方式使用升高的温度以给金刚石的任何性能带来有益改进的任何方法,所述性能指的是在本说明书中详细说明的那些性能,或是在应用中是对那些性能的补充的性能。热处理将根据已生长的CVD金刚石的性能以及要求产生的改变而变化。据推测退火工艺还减少金刚石中的局部应变点,以及改变非金刚石结构的区域。退火可在接近大气压下或高压下,典型地在高于1200℃,更典型在高于1700℃的温度范围内发生。2500℃-2800℃的退火温度范围的上限是由现有试验能力的限制来设定的,虽然预期从更高的温度可以得到好处。

拉丝工艺是牵引较大直径的金属丝通过一个较小直径的孔,由此通过塑性变形降低金属丝的直径,同时材料的体积保持相同。通常,通过牵引圆柱形式或线卷形式的原料经过一组连续更小直径的拉丝模具来生产指定直径的金属丝。被牵引的材料的实例包括钢和钢合金、铜和铜合金、金和钨。工具磨损是生产过程被中断的主要原因。典型的用于拉丝模具的材料是碳化钨、通常具有钴粘结相的烧结的多晶金刚石、天然金刚石以及HPHT单晶质金刚石。对HPHT单晶质金刚石的材料选择标准有取向、颜色、瑕疵和内部应力。改进的耐磨性可以构成对拉丝制造商生产效率的重要改进。根据本发明方法制备的CVD金刚石表现出优异的低应力,如通过金刚石板的光学双折射所测量的。根据本发明方法制备的CVD金刚石还不含瑕疵或其它缺陷例如夹杂物。结果,已显示其磨损显著降低,并且由这种材料制造的拉丝模具的寿命比现有材料如Ia型“Cape”金刚石的寿命延长25%至40%以上。

金刚石绘画工具或stichels被用于印刷工业,以雕刻铜圆柱体呈金刚石成型的凹痕的图案,这些凹痕在印刷期间起到留住油墨的作用。这些凹痕的深度和形状必须被精确控制,因为它们控制着转移到纸张上的油墨的量。在成型金刚石顶端的磨损将影响印刷结果的质量。因为金刚石的耐磨性能受金刚石组成、晶体的不完整性及内部应力的影响,所以使用由本发明方法制备的单晶CVD金刚石是特别有利的。当在这种应用中使用IIa型天然金刚石时,材料中的较大的应力会导致早期失效。通常这部分是由于磨损造成的,但也经常是因为断裂而引起的灾难性失效。后者可归因于IIa型天然金刚石通常较大的内应力。在现有技术中,优选的材料通常是Ia型天然金刚石,其具有比IIa型天然金刚石低得多的应力。但是,在Ia型金刚石中,内应力也在磨损和失效中起着重要的作用。相对高应力的“棕色”绘画工具的平均寿命比更昂贵的黄色(“cape”)工具更低。

在水流喷射切割中,使用喷嘴来产生水流喷射,以切割从食物到瓷砖的不同材料。通常使用蓝宝石喷嘴。该喷嘴的寿命为50小时,而普通的Ia金刚石喷嘴的寿命为500至800小时。所述的寿命通过孔的磨损来确定;当孔变得太大或丧失其圆形轮廓时,切割的质量变得不令人满意。金刚石喷嘴的优势在于使用者可经历较少的停机时间,较少的材料损失和得到更好的产品。从本发明的单晶CVD金刚石制造的金刚石喷嘴目前正在开发中。这些CVD金刚石喷嘴显示出更低的磨损速率,可更长期保持合适的尺寸和切割轮廓,和减少进行喷嘴置换的停机时间。进一步的优点在于材料的可重复特性,可提供更一致的应用行为特征,有助于喷嘴的制备,使得更多的设计成为可能,并排除了使用天然金刚石时所需要的材料选择步骤。

金刚石切削工具被广泛用于从不同材料如非铁金属、工业陶瓷、塑料和玻璃制造的高精度成型部件的机械加工中。通常,所述工具的顶端被用来切削或研磨具有非常低的粗糙度和高成型精度的部件。例如,在金属切削工业中,生产用于大功率激光应用的平的、球形的和非球形的金属镜,和用于扫描应用的多棱镜以及类似的高表面质量的光学元件。类似地,在玻璃和塑料工业中,可以生产球形和非球形透镜,以用于诸如隐形眼睛、光盘读出系统、眼镜等的应用。通常,在机器制造业中,高精度的非铁金属部件被通过金刚石尖端切削或研磨来生产,例如汽车工业中的铝部件。一般在这些应用中金刚石的主要好处在于,金刚石切割产生了最后的表面抛光,避免了费时的多步骤工艺。

在所述工具中的磨损最终决定了用这些工具制造的产品的质量和寿命。通常将棕色和黄色(“Cape”)的Ia型天然金刚石用于这些工具。但是,根据本发明方法制造的单晶CVD金刚石与天然金刚石工具相比具有降低的磨损和断裂,并在更长时间内产生更一致的高表面抛光。

在某些应用中,通过考虑材料中的主要位错方向,可以得到进一步的好处。在CVD金刚石中形成的位错通常平行于或接近平行于生长方向,即垂直于所述位错相交的生长小平面的方向形成。那么可以制备磨损面,使得材料中的位错主要平行于或垂直于磨损面,并且在位错是平行的或具有平行元素的时候,还可以选择在磨损面上相对于位错方向的平行元素的移动方向。好处源于磨损过程与位错及承载面的具体几何形状相互作用的机理。例如,垂直于磨损面的位错具有直到晶体内的连续弱化点,而平行的位错将导致快速移动穿过磨损面,可能直到其边缘的弱化点。

为了本说明书的目的,在特定生长区内的特征位错方向,是使用向量平均的位错的平均方向,并且其中至少70%,更典型80%,更更典型90%的位错位于在平均方向的20°内,更优选15°内,更更优选10°内,和最优选5°内的方向中。

所述特征位错方向可以通过例如X-射线拓扑图来确定。这种方法不需要分辨单个位错,但可以分辨位错束,通常强度部分地与束中位错的数目成比例。然后可以从沿位错方向平面的横截面绘制的拓扑图得到简单的或优选强度加权的向量平均,其中垂直于那个方向所取得的拓扑图是独特的,因为具有点图案而不是线图案。在板的原始生长方向已知的情况下,这是一个明智的起点,从它可以确定位错的方向。

在根据以上方法确定了特征位错方向后,其取向可以相对于单晶CVD金刚石板的一个磨损面或多个磨损面进行分类。如果位错方向与从磨损面所取的法线或垂直线之间的角度大于30°,优选大于40°,更优选大于50°,那么位错方向被认为是远离金刚石板的所述磨损面的法线或垂直线取向。

以上对本发明金刚石的使用的描述仅是本发明材料的广泛应用的实例,并且本领域技术人员将会认识到本发明的CVD金刚石材料的耐磨性对除这里所指出的那些应用以外的其它应用的普遍重要性。

通过以下的非限制性的实施例,将进一步详细讨论本发明。

实施例1

可如下所述制备适用于合成本发明的单晶CVD金刚石的基质:

i)在显微观察和双折射成像的基础上,优化原材料(Ia型天然宝石和Ib型HPHT宝石)的选择,以鉴别没有应变和缺陷的基质。

ii)使用激光锯切、研磨和抛光,以使亚表面缺陷最小化,利用暴露等离子蚀刻的方法以确定由于所述加工而引入的缺陷水平。

iii)优化后,可以常规地生产基质,其中在暴露蚀刻后可测量的缺陷密度主要取决于材料品质,并低于5×103/mm2,且通常低于102/mm2。由这种方法制备的基质然后被用于随后的合成。

使高温/高压合成的Ib型金刚石在高压压力机中生长,并使用上述方法制备成基质以使基质缺陷最小化,形成5mm×5mm见方,厚度500微米的抛光板,所有面为{100}。在该阶段的表面粗糙度RQ小于1nm。使用高温金刚石铜焊,将该基质固定在钨基质载体上。将其引入到反应器中,并如上所述开始蚀刻和生长循环,更具体地:

1)2.45GHz的反应器预先配备有使用净化器的位点,从而将输入气体流内非故意添加的污染物降低到低于80ppb。

2)在263×102Pa以及730℃的基质温度下,使用15/75/600sccm(标准立方厘米/秒)的O2/Ar/H2,进行就地氧等离子蚀刻。

3)通过从气流中除去氧气,不间断地将氧气蚀刻转换到氢气蚀刻。

4)通过添加碳源(在此例中为甲烷)和掺杂剂气体,将氢气蚀刻转入到生长工艺。在此例中是以36sccm流动的甲烷,并且1ppm的N2存在于工艺气体中,由在H2中有100ppm N2的校准气源提供,以简化控制。基质温度为800℃。

5)当生长期完成时,从反应器中取出基质,并从基质上取下CVD金刚石层状物。

以上生长的CVD金刚石层状物可以足够大,以生产至少一个、优选数个拉丝模具,取决于所述CVD金刚石层状物的尺寸和拉丝模具要求的尺寸。

如上所述生长的CVD金刚石层状物在从金刚石基质上取下后为5.6mm×5.6mm×3.0mm,并被切成厚度为所要求的0.6mm的{111}板,以用作金刚石模具坯料。

另外,类似地从HPHT和天然金刚石制备拉丝模具坯料,所述HPHT和天然金刚石被仔细选择以获得用作拉丝模具的已知的高性能。

按照前面所描述的试验方法的细节,从这些模具坯料制备出模具,所述模具分别具有从{100}和{111}取向的板引出的<100>和<111>牵引方向。

如前面试验方法中所描述的,使用所述模具进行拉丝,并分析所得的磨损数据以显示所述拉丝模具的孔的平均直径增长(图1)和椭圆度的发展(图2)。这些图中的每个数据点表示5个模具上测量结果的平均值。

以下材料显示在所述的两个图中:

CVD   -本实施例的新型金刚石

ND    -天然金刚石,被选择以适合拉丝模具应用

MCD-HPHT合成金刚石,被选择以适合拉丝模具应用

<100>-金属丝沿法线<100>方向牵引的{001}板

<111>-金属丝沿法线<111>方向牵引的{111}板

这样,CVD<100>是指以金属丝沿法线<100>方向牵引的{001}板进行测试的本实施例的新型CVD金刚石材料。

从图1中所示的数据可以得出关于模具孔直径的平均增长速率的以下结论:

a)在天然金刚石和本发明的CVD金刚石中,模具孔直径的平均增长速率表现出随时间的好的线性行为。

b)在CVD金刚石中,对于<111>和<100>金属丝方向,模具孔直径的平均增长速率相似,并且在天然金刚石中也相似。

c)对于<111>和<100>金属丝方向,本发明的CVD金刚石中模具孔直径的平均增长速率显著低于天然金刚石的类似数据。

d)特别地,定义为在模具孔直径的平均增长速率基础上得到的最小二次方数据拟合直线的倾斜度的磨损速率,对所测试的各种材料和构型而言结果如下:

从图2所示的数据可以得出关于在模具孔直径中椭圆度发展的以下结论:

a)对于<111>方向,在天然金刚石和CVD金刚石中椭圆度发展的速度相似。这暗示在这两种材料中磨损机理相似,虽然很清楚,总的磨损速率在它们之间明显不同。

b)同样,对于<100>方向,在天然金刚石和CVD金刚石中椭圆度发展的速度相似,虽然比按照现有技术的对于<111>方向的椭圆度发展速度明显要高。这再次暗示磨损机理在两种材料中相似,虽然总的磨损速率在它们之间明显不同。

实施例2

按照实施例1中所述的方法合成出均相外延CVD金刚石板。

然后,在小心准备的铸铁金刚石抛光轮上精细抛光所述板的一面。所使用的柄(tang)非常坚硬,并夹持住所述的金刚石倚靠在平行于scaife表面运转的参考面上。然后将金刚石板翻转过来,在相同的scaife上将另一面抛光至需要的平面度和平行度。

然后用Zygo NewView 5000扫描白光干涉仪测量所述板的表面Ra。测量在样品的每一侧上进行,每次测量在1mm×1mm的区域上进行,由9个区域在每一侧的中心形成3mm×3mm的格子,然后计算9个测量结果的统计平均值。在A侧上测量的Ra是0.53nm±0.04nm,B侧上测量的Ra是0.54nm±0.05nm。

实施例3

根据实施例1中所描述的方法合成一组6mm×6mm×0.4mm的均相外延的CVD金刚石板。从这些板切割出一组横向尺寸为3mm×5mm、厚度为0.17至0.22mm的矩形试样,保证所述的切割片没有生长面边界。

使用一系列的金刚石粉直至0.1μm在scaife上抛光所述的样品组。应尽可能地小心以保证将所有的亚表面损害从样品中除掉。使用最细磨料的最终抛光阶段是至关重要的,因为它决定了最终表面瑕疵的尺寸分布。在顶面和底面被抛光后,样品的边被制成相同的标准。抛光结束后,用Nomarski干涉对比检查表面,并进行‘微地图化’以检查表面粗糙度。放大倍数为200倍的Nomarski显微镜显示,在表面中没有可看见的缺陷。由Ra值所定义的表面粗糙度是使用非接触性的、光学表面粗糙度测量仪(′Micromap′)来确定的。在垂直方向上进行两个系列的200μm长的扫描,并将所得到的Ra值平均,得到了小于0.25nm的平均Ra值。这与如抛光珠宝贸易中的天然金刚石那样使用相同技术抛光的金刚石的1nm至5nm的典型Ra值形成对比。

在最后抛光前,将附加的离子束蚀刻阶段施加于某些样品的表面。另一种任选的技术是在最后抛光前化学薄化所述样品。

通过单悬臂梁弯曲测量板的强度。约0.2mm厚的一组9个样品的各强度值以GPa为单位为1.50、1.63、2.50、3.26、3.30、4.15、4.29、4.83、5.12。对该组数据与其它数据组的分析暗示,两个最低值是来自与其它7个不同的群体,这可能表示在此情形下样品的制备不足够仔细,不能避免对测量强度的任何影响。即使在这两个可疑数据点被包括的情况下,77%的样品的断裂强度为至少2.5GPa,并且所述数据暗示,强度实际上超过3GPa。

为了比较,在在公知领域没有对应的数据(所有对天然金刚石的已知强度测量都基于压痕试验,而这是间接的和不太可靠的方法,原因在于适宜样品的受限制的可获得性)的情况下,测量了一批5个IIa型天然金刚石板的强度。这些板通过用光学显微镜在50倍的放大倍率下观察而仔细选择,以不含可能弱化金刚石的夹杂物和其它缺陷,并用相同的技术制备和测试。这组约0.18mm厚的5个样品的各强度值以GPa计为1.98、2.08、2.23、2.61、2.94,其明显由所述材料的固有性能限制。类似地,使用相同的技术,对通过高压高温方法合成的Ib型单晶金刚石进行仔细选择、加工和测试。这组约0.35mm厚的14个样品的各强度值以GPa计为0.94、1.11、1.16、1.3、1.35、1.38、1.46、1.50、1.54、1.6、1.65、1.72、1.73、1.98、2.17。

本发明的CVD金刚石的强度群体明显不同,并高于其它形式的金刚石。

具有低磨损速率的高强度金刚石的一个具体应用是用于流体分析的光学窗口,其中被分析的流体可以造成所述窗口的磨损或劣化。直径为7mm,具有5mm的通光孔,并沿一个平直表面的外围1mm被铜焊的一个具体窗口必须以4的安全因子承受200个大气压的压差。

断裂强度与厚度t有如下关系:

t=√(3r2Pk/8σb)

其中r为通光孔径,P为压力,σb为断裂强度,k为约束因子,对金刚石而言,在边上未受限制的是3.1,而在边上完全受限制的是1.1(假设金刚石泊松比的值为0.1)。因为难以确定受限制的程度,所以我们取边未受限制的最坏情况的假设。

如果在这种应用中使用天然金刚石窗口(设计强度为2.0MPa),厚度需要为0.54mm。使用本发明的坚固的单晶CVD金刚石(设计强度为3.0MPa),厚度可降低至0.44mm。材料厚度的减少可降低窗口的成本。

实施例4

按照实施例1中所描述的方法合成一组3块均相外延的CVD金刚石板。这些板被制备成厚度为0.60至0.64mm、横向尺寸最高达6mm×6mm的光学板。在589.6nm的波长下对每个样品记录Deltascan图像组,每个图像覆盖1mm×0.75mm的区域。分析每个Deltascansinδ图像,获得|sinδ|的最大值,并且得到的值被显示在下面的|sinδ|图中。

显示每一幅1mm×0.75mm画面中|sinδ|最大值的样品E4.1的Deltascan图像

以上数据的分析显示如下结果:

一个2.0mm×2.25mm区域内|sinδ|最大值为0.3

一个3.0mm×4.0mm区域内|sinδ|最大值为0.6

一个5.25mm×4.0mm区域内|sinδ|最大值为0.9

显示每一幅1mm×0.75mm画面中|sinδ|最大值的E4.2样品的Deltascan图

以上数据的分析显示如下结果:

一个2.0mm×3.75mm区域内的|sinδ|最大值为0.3

一个3.0mm×3.75mm区域内的|sinδ|最大值为0.4

一个4.0mm×4.5mm区域内的|sinδ|最大值为0.7

显示每一幅1mm×0.75mm画面中|sinδ|最大值的E4.3样品的Deltascan图

以上数据的分析显示如下结果:

一个3.0mm×2.25mm区域内的|sinδ|最大值为0.2

一个3.75mm×3.0mm区域内的|sinδ|最大值为0.6

一个4.0mm×4.5mm区域内的|sinδ|最大值为0.9

实施例5

使用本发明的材料和通常选择用于stichel(绘画工具)应用的天然Ia型(“Cape”)金刚石生产一批相同设计的stichel(绘画工具)。使用在4000Hz下操作的Hell Gravure Systems GmbH K202机器进行试验。用于试验中的stichel设计是标准的130°设计,其中所述的角度是指前缘(leading edge)的角度。

Stichel的寿命确定为形成压痕的stichel的顶端保持在产品规范内的持续时间,并且对天然Ia型stichel来说测量结果为平均300小时,对从本发明材料制造的CVD合成金刚石stichel来说测量结果为平均496小时。

还发现单晶CVD金刚石的低应力和不含夹杂物及其它晶体缺陷事实上消除了stichel断裂和早期灾难性失效的风险,这本身对所述应用是有根本好处的。CVD型stichel的磨损模式也更可预测,所以寿命性能更易于被表征和调节。特别地,在绘画工具的切割线上不存在缺口(chip-out)给雕刻的凹痕带来更平滑的表面,这将导致油墨向纸张释放的更好的控制。

实施例6

按照实施例1中所描述的方法合成8组均相外延的CVD金刚石层状物。所述CVD金刚石层状物具有最高达6.5mm的横向尺寸和最高达3.2mm的厚度。从这些CVD金刚石层状物制备总共48块横向尺寸典型为4.0×4.0mm、厚度为1.2510mm±0.00025mm的光学抛光的板。

用Zygo NewView 5000扫描白光干涉仪,利用20倍放大倍率的Mireau型干涉物镜和Zygo MetroPro软件包来测量这些板中15个的表面粗糙度。图象电子放大(zoom)设为1倍。相机分辨率为640×460象素,刷新频率为20Hz。观察的视野为0.36×0.27mm,横向分辨率为0.56μm。使用软件带通滤波器,有12.5的切断空间频率和400线/mm。对表面轮廓进行最小二次方拟合,其中与总表面位置、角取向和形式有关的活塞、倾斜、功率和象散被排除。用带通滤波器过滤与由此限定的参考表面的剩余偏差,并计算偏差的均方根值。发现由此确定的各板的粗糙度在0.5nm至1.5nm之间,平均值为0.92nm,标准偏差为0.11nm。当对整个4.0×4.0mm的表面区域内的5个不同的随机选择的位置进行测量时,各板显示出小得多的小于0.05nm的标准偏差。

实施例7

按照实施例1中所描述的方法合成均相外延的CVD金刚石层状物。然后将其制备成具有6个抛光的{100}面,尺寸为4.00mm×3.65mm×1.31mm的光学板。

对垂直于样品表面的三个相互垂直的观察方向的每一个,在589.6nm的波长下记录Deltascan图像组,每个图像覆盖1mm×0.75mm的面积。按照以上描述的方法,利用画面内得到的100%的数据,分析每一幅Deltascan sinδ图像的sinδ最大值。

对于观察方向平行于板的4.00mm维所记录的sinδ图,sinδ的最大值为0.1。同样,对于观察方向平行于板的3.65mm维所记录的sinδ图,sinδ的最大值为0.1。然后,对这两个观察取向的每一个,计算对于平行于慢轴和快轴偏振的光的折光指数之间差值的平均值,即Δn[平均]的最大值,结果发现其值为约3×10-6。

观察方向垂直于两个最大维并平行于1.31mm维所得到的数值示于以下的sinδ图。此观察方向对应于CVD金刚石层状物的生长方向,并因此平行于材料中位错的主要方向。

观察方向平行于板的1.31mm维,显示每一幅1mm×0.75mm画面中|sinδ|的最大值的样品的Deltascan图显示如下。

  0.1   0.2   0.1   0.1   0.1   0.2   0.1   0.1   0.2   0.2   0.1   0.1   0.3   0.2   0.2   0.2   0.2   0.1   0.1   0.1   0.1   0.1   0.1   0.1

基于相应的sinδ值和样品厚度,可计算出在此观察方向上每一幅画面所对应的Δn[平均]的最大值,以下给出所述的数值:

  sinδ   0.10   0.20   0.30   Δn   7.2×10-6   1.4×10-5   2.2×10-5

在某些耐磨应用中,较高应力的随机分散点或甚至单个点的存在可能是限制性的,导致凹陷或粗糙度在磨损面上发展,并提高所述表面或匹配表面的磨损速率。利用横跨样品测量的每个数据象素,本实施例中的数据显示,使用本发明的方法生长的材料可以通常在横跨整个样品以及局部上实现极低水平的与应变相关的双折射。

发明背景