使用原料气体和反应性气体的处理装置转让专利

申请号 : CN200480013128.6

文献号 : CN1788106B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 田中雅之甲斐亘三村上诚志宫下哲也

申请人 : 东京毅力科创株式会社

摘要 :

本发明涉及一种使用原料气体和反应性气体对被处理体(例如半导体晶片)进行成膜处理等的处理装置。该装置具有:内部容纳被处理体(W)的处理容器(22),分别向处理容器内选择性地供给原料气体和反应性气体的原料气体供给系统(50)和反应性气体供给系统(52),和用于对处理容器内的环境气体进行真空排气、具有真空泵(44、46)的真空排气系统(36)。该装置还具有使原料气体和反应性气体分别绕过处理容器,从各气体供给系统选择性地流入真空排气系统的原料气体旁路系统(62)和反应性气体旁路系统(66)。在各旁路系统(62、66)中,分别设置有在关闭状态下防止原料气体和反应性气体向真空排气系统流出的原料气体流出防止阀(X1)和反应性气体流出防止阀(Y1)。

权利要求 :

1.一种处理装置,其特征在于,具有:

内部容纳被处理体的处理容器;

向所述处理容器内选择性地供给原料气体的原料气体供给系统;

向所述处理容器内选择性地供给反应性气体的反应性气体供给系统;

具有对所述处理容器内的环境气体进行真空排气的第一真空泵和除去废气中的杂质气体的第一捕集装置的真空排气系统;

使所述反应性气体从所述反应性气体供给系统绕过所述处理容器选择性地流入所述真空排气系统的反应性气体旁路系统;

使所述原料气体从所述原料气体供给系统绕过所述处理容器选择性地排放、具有第二真空泵的废弃原料气体排气系统。

2.如权利要求1所述的处理装置,其特征在于,在所述废弃原料气体排气系统中,设置有除去废气中的杂质气体的第二捕集装置。

3.如权利要求1所述的处理装置,其特征在于,所述反应性气体旁路系统的下游端部,在所述第一捕集装置的下游连接于所述真空排气系统。

4.如权利要求1所述的处理装置,其特征在于,所述废弃原料气体排气系统的下游端部,在所述第一捕集装置的下游连接于所述真空排气系统。

5.如权利要求1所述的处理装置,其特征在于,所述废弃原料气体排气系统的下游侧,通过除害装置向大气开放。

6.如权利要求1所述的处理装置,其特征在于,所述原料气体为TiCl4气体,所述反应性气体为NH3气。

7.一种处理装置,其特征在于,具有:

内部容纳被处理体的处理容器;

向所述处理容器内选择性地供给原料气体的原料气体供给系统;

向所述处理容器内选择性地供给反应性气体的反应性气体供给系统;

用于对所述处理容器内的环境气体进行真空排气、具有真空泵的真空排气系统;

从所述原料气体供给系统绕过所述处理容器并与所述真空排气系统连接的原料气体旁路系统;

设置在所述原料气体旁路系统中,用于暂时储存原料气体的原料气体缓冲罐;

所述原料气体旁路系统中,设置在所述原料气体缓冲罐与所述真空排气系统之间的原料气体流出防止阀;

从所述反应性气体供给系统绕过所述处理容器并与所述真空排气系统连接的反应性气体旁路系统;

设置在所述反应性气体旁路系统中,用于暂时储存反应性气体的反应性气体缓冲罐;

以及

所述反应性气体旁路系统中,设置在所述反应性气体缓冲罐与所述真空排气系统之间的反应性气体流出防止阀。

8.如权利要求7所述的处理装置,其特征在于,还具有:气体供给控制部,控制所述原料气体供给系统、所述反应性气体供给系统、所述原料气体流出防止阀和所述反应性气体流出防止阀,使得所述原料气体与所述反应性气体不会同时流入所述真空排气系统。

9.如权利要求8所述的处理装置,其特征在于,所述气体供给控制部进行下述控制:将所述原料气体和所述反应性气体交替、间歇地通入所述处理容器内;同时,将所述原料气体通入所述处理容器内时,关闭所述反应性气体流出防止阀;

将所述反应性气体通入所述处理容器内时,关闭所述原料气体流出防止阀。

10.如权利要求9所述的处理装置,其特征在于,所述气体供给控制部进行下述控制:与停止所述原料气体的供给连动,将所述反应性气体流出防止阀从关闭状态切换到打开状态;

与停止所述反应性气体的供给连动,将所述原料气体流出防止阀从关闭状态切换到打开状态。

11.如权利要求10所述的处理装置,其特征在于,所述气体供给控制部进行下述控制:停止向所述处理容器内供给所述原料气体,经过一定的延迟时间之后,将所述反应性气体流出防止阀从关闭状态切换到打开状态;

停止向所述处理容器内供给所述反应性气体,经过一定的延迟时间之后,将所述原料气体流出防止阀从关闭状态切换到打开状态。

12.如权利要求7所述的处理装置,其特征在于,所述反应性气体为还原气体。

13.如权利要求7所述的处理装置,其特征在于,所述反应性气体为氧化气体。

14.如权利要求7所述的处理装置,其特征在于,所述原料气体为WF6气体,所述反应性气体为SiH4气体。

说明书 :

使用原料气体和反应性气体的处理装置

技术领域

[0001] 本发明涉及一种使用原料气体和反应性气体(还原气体或氧化气体等)对例如半导体晶片进行成膜处理等的处理装置。

背景技术

[0002] 通常,在制造半导体集成电路的过程中,要对半导体晶片等被处理体反复进行成膜处理、刻蚀处理、热处理、改性处理、结晶处理等各种单片处理,以形成期望的集成电路。在进行上述各种处理时,要将与其处理种类相对应的必需的处理气体,例如成膜处理时的成膜气体、改性处理时的臭氧气体等、结晶处理时的N2气等惰性气体或O2 气等,分别导入处理容器中。
[0003] 例如以对半导体晶片实施单片热处理的单片式处理装置为例,在能够抽成真空的处理容器内,设置例如内置电阻加热器等的载置台,在其上面放置半导体晶片的状态下通入规定的处理气体,在规定的加工条件下对晶片进行各种热处理(例如特开2002-256440号公报)。
[0004] 在此情况下,为了填充配线图案的凹部或者配线图案之间的凹部,还有各种孔等凹部,堆积例如W(钨)、WSi(钨硅化物)、Ti(钛)、TiN(氮化钛)、TiSi(硅化钛)、Cu(铜)、Ta2O5(氧化钽)等金属或金属化合物而形成薄膜。在上述各种薄膜中,由于钨膜电阻率小、成膜温度低等原因而经常被使用,形成这种钨膜时,使用WF6(六氟化钨)作为原料气体,用氢、硅烷、二氯硅烷等将其还原而堆积成钨膜。
[0005] 作为形成电性能良好的绝缘膜(电介质膜)的一个例子,可使用例如ZrCl4或ZrBr4等金属卤化物作为原料气体,与臭氧或H2O2等反应性气体堆积出ZrO2等高电介质膜(特开2002-151489号公报)。
[0006] 但是,伴随着半导体集成电路的高度集成化和高度微细化,不仅推进了各层的薄膜化,而且要求缩小配线图案等的线宽以及更加缩小接触孔和通孔等各种孔径。 [0007] 在这样的情况下,作为即使在晶片上堆积的膜更加薄膜化也将膜 厚的面内均匀性以及堆积膜的电特性维持更高的成膜方法,已知有例如在特开2002-151489号公报中公开的,在可以抽真空的处理容器内设置内置电阻加热器的基板保持台,向此处理容器内彼此间歇地交替通入不同种类的多种处理气体,例如ZrCl4气体和臭氧,同时反复地在上述基板保持台上保持的半导体晶片的表面上层积一个分子层厚度的ZrO2薄膜的处理方法。 [0008] 但是,在交替间歇地向处理容器内通入原料气体例如ZrCl4和反应性气体例如臭氧的情况下,在每次向处理容器内实际供给气体前,有必要进行几秒时间的通入气体的提前送气操作。通过该提前送气操作使气体流量稳定化,可以提高膜厚等的均匀性。在该提前送气操作时流过的气体,不流向处理容器内,而是绕过处理容器直接排放到真空排气系统中。
[0009] 关于这一点,参照图8和图9简单地说明。如图8所示,在容纳半导体晶片W的处理容器2内,能够由设置真空泵4的真空排气系统6进行抽真空。向该处理容器2供给例如ZrCl4作为原料气体的气体供给系统8和供给例如臭氧(O3)作为反应性气体的反应性气体供给系统10分别与之连接。设置有旁通管线12、14,使得各气体供给系统8、10与上述真空排气系统6相连接。在上述真空排气系统6中设置有将废气中的残留气体燃烧除去等的除害装置5。
[0010] 在原料气体供给系统8、反应性气体供给系统10以及各旁通管线12、14上分别设有开关阀门V1~V4。通过适当地开闭各阀门V1~V4,将由各质量流量控制器MFC控制了流量的ZrCl4气体和O3气体,如图9所示交替且间歇地向处理容器2内通入。由此,在晶片W上逐层堆积薄膜。在此情况下,在各种气体分别以脉冲状通入前要持续进行几秒钟左右的提前送气操作。通过该提前送气操作使流入的气体通过旁通管线12、14而不经过处理容器2,直接进入真空排气系统6而排放掉。
[0011] 在此情况下,如图9所示,向处理容器2内分别通入两种气体。但是,会反复发生向具有真空泵4的真空排气系统内同时流入两种气体的情况。结果,两种气体在真空泵4中反应生成堆积物,会产生该堆积物附着在真空泵4中的旋转驱动系统上,对真空泵4造成损伤的问题。特别是在真空泵4内,虽然还没有上升到例如410℃左右的加工温度,但由于气体的压缩,内部温度有上升到例如100~190℃左右的趋势,更加促进了堆积物的生成。
[0012] 在此情况下,如果将图9所示的两种气体的供给间隔(脉冲间隔)P1设置得更大,就能够防止两种气体混合反应。但是,这样处理时间变得过长会使生产能力下降,因此不能采用。也曾考虑在真空泵4的前段设置捕集(trap)装置。但是在此情况下不仅需要位置,而且还必须定期更换捕集装置,所以维护繁杂,而且花费成本,生产能力降低。 [0013] 发明内容
[0014] 本发明是着眼于以上问题、为了有效地解决这些问题而发明的。本发明的目的在于提供一种使得原料气体和反应性气体不会同时流入真空排气系统内,防止生成作为真空泵内故障原因的没用的堆积物的处理装置。
[0015] 本发明的另一个目的在于提供一种能够抑制从废气中除去杂质气体的捕集装置的维修频度的处理装置。
[0016] 根据本发明,可提供一种处理装置,其特征在于,具有:内部容纳被处理体的处理容器,向上述处理容器内选择性地供给原料气体的原料气体供给系统,向上述处理容器内选择性地供给反应性气体的反应性气体供给系统,用于将上述处理容器中的环境气体进行真空排气的具有真空泵的真空排气系统,使上述原料气体从上述原料气体供给系统绕过上述处理容器选择性地流入上述真空排气系统的原料气体旁路系统,使上述反应性气体从上述反应性气体供给系统绕过上述处理容器选择性地流入上述真空排气系统的反应性气体旁路系统,设置在上述原料气体旁路系统中、在关闭状态下防止上述原料气体流向上述真空排气系统的原料气体流出防止阀和设置在上述反应性气体旁路系统中、在关闭状态下防止上述反应性气体流向上述真空排气系统的反应性气体流出防止阀。
[0017] 根据该处理装置,能够使通过各旁路系统的原料气体和反应性气体不会同时流入真空排气系统的真空泵内。因此,可以防止在真空排气系统内生成堆积物,该堆积物是真空泵故障的原因。由于同样的原 因,可以无需在以往的真空排气系统中必需的捕集装置。 [0018] 该处理装置优选还具有气体供给控制部,控制上述原料气体供给系统、上述反应性气体供给系统、上述原料气体流出防止阀和上述反应性气体流出防止阀,使上述原料气体和上述反应性气体不会同时流入上述真空排气系统。
[0019] 另外,根据本发明,提供一种处理装置,其特征在于,具有:内部容纳被处理体的处理容器;向上述处理容器内选择性地供给原料气体的原料气体供给系统;向上述处理容器内选择性地供给反应性气体的反应性气体供给系统;用于对上述处理容器内的环境气体进行真空排气、具有真空泵的真空排气系统;从上述原料气体供给系统绕过上述处理容器与上述真空排气系统连接的原料气体旁路系统;设置在上述原料气体旁路系统中,用于暂时储存原料气体的原料气体缓冲罐;上述原料气体旁路系统中,设置在上述原料气体缓冲罐与上述真空排气系统之间的原料气体流出防止阀;从上述反应性气体供给系统绕过上述处理容器与上述真空排气系统连接的反应性气体旁路系统;设置在上述反应性气体旁路系统中,用于暂时储存反应性气体的反应性气体缓冲罐;以及上述反应性气体旁路系统中,设置在上述反应性气体缓冲罐与上述真空排气系统之间的反应性气体流出防止阀。 [0020] 该处理装置优选还具有气体供给控制部,控制上述原料气体供给系统、上述反应性气体供给系统、上述原料气体流出防止阀和上述反应性气体流出防止阀,使上述原料气体和上述反应性气体不会同时流入上述真空排气系统。这种情况下,上述气体供给控制部优选进行如下的控制:将上述原料气体和上述反应性气体交替、间歇地通入上述处理容器内;同时,将上述原料气体通入上述处理容器内时,关闭上述反应性气体流出防止阀;将上述反应性气体通入上述处理容器内时,关闭上述原料气体流出防止阀。
[0021] 上述气体供给控制部优选进行如下的控制:与停止上述原料气体的供给连动,将上述反应性气体流出防止阀从关闭状态切换到打开状态;与停止上述反应性气体的供给连动,将上述原料气体流出防止阀从关闭状态切换到打开状态。这种情况下,上述气体供给控制部优选进行如下的控制:停止向上述处理容器内供给上述原料气体,经过一 定的延迟时间之后,将上述反应性气体流出防止阀从关闭状态切换到打开状态;停止向上述处理容器内供给上述反应性气体,经过一定的延迟时间之后,将上述原料气体流出防止阀从关闭状态切换到打开状态。
[0022] 上述反应性气体是还原气体或者氧化气体。
[0023] 例如,上述原料气体为WF6气体,上述反应性气体为SiH4气体。
[0024] 根据本发明,可提供一种处理装置,其特征在于,具有:内部容纳被处理体的处理容器,向上述处理容器内选择性地供给原料气体的原料气体供给系统,向上述处理容器内选择性地供给反应性气体的反应性气体供给系统,具有用于对上述处理容器内环境气体进行真空排气的第一真空泵和除去废气中的杂质气体的第一捕集装置的真空排气 系统,使上述反应性气体从上述反应性气体供给系统绕过上述处理容器选择性地流入上述真空排气系统的反应性气体旁路系统,用于使上述原料气体从上述原料气体供给系统绕过上述处理容器选择性地排出的、具有第二真空泵的废弃原料气体排气系统。
[0025] 根据该处理装置,例如为了流量稳定化而流入原料气体时,能够通过废弃原料气体排气系统将原料气体排放掉。因此,可减轻真空排气系统的(第一)捕集装置的负担,结果能够抑制该捕集装置的维修频度。
[0026] 在该处理装置中,优选在上述废弃原料气体排气系统中设置除去废气中杂质气体的第二捕集装置。
[0027] 上述反应性气体旁路系统的下游端部,优选在上述第一捕集装置的下游与上述真空排气系统连接。
[0028] 上述废弃原料气体排气系统的下游端部,优选在上述第一捕集装置的下游与上述真空排气系统连接。
[0029] 上述废弃原料气体排气系统的下游侧可经过除害装置向大气一侧开放。 [0030] 例如,上述原料气体为TiCl4气体,上述反应性气体为NH3气体。 [0031] 图1是表示本发明的处理装置的第一实施方式的模式图;
[0032] 附图说明
[0033] 图2是表示在图1所示的装置中,各气体向处理容器内的供给状态的时间图; [0034] 图3是表示在图1所示的装置中,各阀门的开关动作与各气体的流动状态的图表;
[0035] 图4是作为图1所示装置的比较例的处理装置的模式图;
[0036] 图5是表示在图4所示的处理装置中,各阀门的开关动作与各气体的流动状态的图表;
[0037] 图6是表示本发明的处理装置的第二实施方式的模式图;
[0038] 图7是表示在使用图6所示的装置进行成膜处理中,各气体的流动状态等的图表;
[0039] 图8是表示以往的单片式处理装置的模式图;
[0040] 图9表示在图8所示的装置中,各气体的供给状态的时间图;
[0041] 图10是表示以往的另一种处理装置的模式图。

具体实施方式

[0042] 下面根据附图详细叙述按照本发明的处理装置的实施方式。
[0043] 第一实施方式
[0044] 首先,说明如图1~图3所示的本发明的第一实施方式。在该第一实施方式中,举例说明互相错开供给时间间歇供给作为原料气体的WF6气体和作为反应性气体的还原气体SiH4以形成钨膜(种膜)的情况。
[0045] 首先,如图1所示,该处理装置20具有内部能够抽真空的筒状的处理容器22。在该处理容器22的内部,设置有用于在其上面放置作为被处理体的半导体晶片W的载置台24,在该载置台24上以埋入的方式设置有作为加热手段的例如电阻加热器26,可将上述晶片W加热到并维持在规定的温度。此外,作为加热手段,可以用加热灯代替电阻加热器。 [0046] 在上述处理容器22的侧壁上设置有在取出和送入晶片W时打开和关闭的闸阀28。
在该处理容器22的顶部设置有作为气体导入机构的例如喷头部30,用于在晶片处理时向处理容器中导入各种必需的气体,能够从多个气体喷射孔30A向处理容器22内喷射导入各种气体。作为上述喷头部30的结构,多个上述气体喷射孔30A形成纵横矩阵状,在内部的扩散室为一个的情况下,具有使分离划分成多股的气体不在此混合的机构,而在扩散室被分隔划分的情况下,各种气体从气体喷射孔30A喷射出之后才混合。这样的气体供给方式被称为所谓的后混合(post-mix)。此外,虽然在本实施例中没有图示,但以这样的后混合方式供给各种气体。另外,作为气体导入机构,并不限于这种喷头结构,例如也可以由喷嘴供给气体。
[0047] 在上述处理容器22的底部32上形成有排气口34,对上述处理容器22的环境气体进行真空排气的真空排气系统36连接在此排气口34上。具体地说,上述真空排气系统36具有与上述排气口34相连接的较大口径的排气管38。在该排气管38上,从上游侧到下游侧依次设置有由能够调节例如阀门的开度、以控制处理容器22内的压力的蝶形阀组成的压力控制阀40,根据需要打开关闭此排气管38的截止阀42,由例如机械增压泵构成的上游侧真空泵44以及由例如干式泵构成的下游侧真空泵46。另外,在下游侧真空泵46的下游侧的真空排气系统36中,设置有除害装置47,使废气中含有的SiH4等杂质气体氧化燃烧分解而被除去。
[0048] 另一方面,在上述喷头部30上,分别设置有向上述处理容器22内选择性地供给原料气体的原料气体供给系统50和向上述处理容器22内选择性地供给反应性气体的反应性气体供给系统52。而且,作为供给其他必需气体的系统,在此喷头部30上还设置有供给H2气的H2气供给系统54和供给惰性气体例如N2气的N2气供给系统(未图示)。此外,可根据需要在上述原料气体和反应性气体中添加载气。在本实施例中,使用例如WF6气体作为原料气体,使用还原气体例如SiH4气体作为上述反应性气体,通过热CVD形成钨膜。 [0049] 具体地说,上述原料气体供给系统50,具有与上述喷头部30相连接的原料气体供给管56,在该原料气体供给管56上,从其上游侧到下游侧依次设置有原料气体阀门56A、质量流量控制器之类的原料气体流量控制器56B以及由阀门构成的原料气体用第一切换阀X3。
[0050] 另外,上述反应性气体供给系统52,具有与上述喷头部30相连接的反应性气体供给管58,在该反应性气体供给管58上,从其上游侧到下游侧,依次设置有反应性气体阀门58A、质量流量控制器之类的反应性气体流量控制器58B以及由阀门构成的反应性气体用第一切换阀Y3。
[0051] 再有,上述H2气供给系统54具有与上述喷头部30相连接的H2气供给管60,在该H2气供给管60上,从其上游侧到下游侧依次设置有H2气阀门60A和质量流量控制器之类的H2气流量控制器60B。
[0052] 而且,为了绕过上述处理容器22,设置有使上述原料气体供给系统50与上述真空排气系统36相连通的原料气体旁路系统62,使原料气体选择性地在此流入。具体地说,上述原料气体旁路系统62具有从上述原料气体流量控制器56B和原料气体第一切换阀X3之间的原料气体供给管56分出的原料气体旁通管64,此原料气体旁通管64的下 游侧,与上述截止阀42和上游侧真空泵44之间的排气管38连通。在该原料气体旁通管64的上游侧,设置有由阀门构成的原料气体第二切换阀X2。
[0053] 另外,为了绕过上述处理容器22,设置有使上述反应性气体供给系统52与上述真空排气系统36相连通的反应性气体旁路系统66,使反应性气体选择性地在此流入。具体地说,上述反应性气体旁路系统66具有从上述反应性气体流量控制器58B和反应性气体第一切换阀Y3之间的反应性气体供给管58分出的反应性气体旁通管68,此反应性气体旁通管68的下游侧,与上述截止阀42和上游侧真空泵44之间的排气管38连接。而且,在该反应性气体旁通管68的上游侧,设置有由阀门构成的反应性气体第二切换阀Y2。此外,根据需要,在上述H2气供给管60上也可以设有如上所述的旁通管。
[0054] 本发明的特征在于,在上述原料气体旁通管64的最下游侧,即在原料气体旁通管64与排气管38的合流部分跟前,设置有用于防止原料气体流出的原料气体流出防止阀X1。
另外,在距该原料气体流出防止阀X1很近的上游侧,根据需要设置有具有规定容量的原料气体缓冲罐70,即使上述原料气体流出防止阀X1处于关闭状态的情况下,通过暂时储存在上述原料气体缓冲罐70内的原料气体,使原料气体暂时流入上述原料气体旁通管64中,即能够进行提前送气操作。
[0055] 本发明的特征还在于,上述反应性气体旁通管68的最下游侧,即在反应性气体旁通管68与排气管38的合流部分跟前,设置有用于防止反应性气体流出的反应性气体流出防止阀Y1。另外,在距该反应性气体流出防止阀Y1很近的上游侧,根据需要设置有具有规定容量的反应性气体缓冲罐72,即使上述反应性气体流出防止阀Y1处于关闭状态的情况下,通过暂时储存在上述反应性气体缓冲罐72内的反应性气体,使反应性气体暂时流入上述原料气体旁通管68中,即能够进行提前送气操作。
[0056] 而且,为了控制这些气体供给系统,设置有例如由微型计算机等构成的气体供给控制部74。具体地说,该气体供给控制部74对上述原料气体供给系统50(包括原料气体第一切换阀X3)、上述原料气体旁路系统62(包括原料气体第二切换阀X2)、上述反应性气体供给系统52(包括反应性气体第一切换阀Y3)、上述反应性气体旁路系统(包括反应性气体第二切换阀Y2)、原料气体流出防止阀X1和反应性气体流出防止阀Y1等直接进行开关控制。
[0057] 下面说明使用如上结构的处理装置进行的成膜方法。
[0058] 在此,作为成膜方法的一个例子,如图2所示,以实施形成用于进行种膜的初期钨膜的初期钨膜形成工序,然后连续实施形成主钨膜的主钨膜形成工序的情况为例进行说明。在此情况下,加工压力为例如1000Pa左右,加工温度为例如410℃左右,但并不特别限定于这些值。
[0059] 图2是表示流入处理容器22内的各种气体供给状态的时间图,如图所示,在初期钨膜形成工序中,互相错开规定时间交替地间歇供给作为原料气体的WF6气体和作为反应性气体的还原性气体SiH4。即,交替进行WF6气体的供给和SiH4气体的供给,在这些重复进行的工序之间进行清洗工序80。该清洗工序80通过供给例如N2气将残留气体抽真空而进行。在此,每一次WF6气体和SiH4气体的供给时间T1、T3以及清洗期间T2的长度,例如均为1.5秒左右,向处理容器22内供给一次例如WF6,使WF6气体分子在晶片表面上吸附一层左右,排出处理容器22内的残留气体之后,供给一次SiH4气体,该SiH4气体与吸附在晶片表面上的WF6气体反应,此时形成厚度相当于例如一个或几个分子的非常薄的钨膜。这样的钨膜反复层叠。例如一个周期,即供给一次WF6气体和SiH4气体形成的钨膜的厚度,根据加工条件的不同,为例如 左右。
[0060] 如上所述,在规定的周期、例如20~30个周期左右形成初期钨膜之后,向处理容器22中同时通入WF6气体和H2气,在成膜速度高的状态下形成主钨膜。
[0061] 在此,在上述初期钨膜形成工序中,上述各周期中,在每次向处理容器22内实际通入WF6气体和SiH4气体之前,分别进行几秒时间,例如3秒左右的提前送气,以使WF6气体和SiH4气体的流量稳定化。如上所述,在该提前送气暂时通入的WF6气体或SiH4气体,不通入处理容器22内,而是通过各旁通管64、68直接排放到真空排气系统36中。此时,在本发明中,控制各阀门的开关动作,使WF6气体和SiH4 气体不会同时流入到真空排气系统36中。
[0062] 在说明初期钨膜形成工序的具体动作时,在处理过程中,连续驱动真空排气系统36的各真空泵44、46。在此情况下,排气管38的截止阀42当然维持在打开状态。而且,WF6原料气体供给系统50的原料气体阀门56A和SiH4反应性气体供给系统52的反应性气体阀门58A都总是处于打开状态。
[0063] 在这样的状态下,将WF6气体通入处理容器22内时,使设置在原料气体供给管56上的原料气体第一切换阀X3处于打开状态,而使设置在原料气体旁通管64上的原料气体第二切换阀X2处于关闭状态。相反,在WF6气体不流入处理容器22内,而是流入或导入原料气体旁通管64中时,原料气体第一切换阀X3处于关闭状态,而原料气体第二切换阀X2处于打开状态。
[0064] 在此,重要的一点是,在进行提前送气时,即使将此原料气体第二切换阀X2处于打开状态以使WF6气体导入原料气体旁通管64中,其下游侧的原料气体流出防止阀X1也维持在关闭状态,以使WF6气体不会流入到真空排气系统36中。在此情况下,设置有规定容量的原料气体缓冲罐70,使得即使上述原料气体流出防止阀X1处于关闭状态,也能够保证WF6气体被导入原料气体旁通管64中。换句话说,由于设置了该原料气体缓冲罐70,即使原料气体流出防止阀X1处于关闭状态,也能够使WF6气体仅在短时间内作为提前送气流向该原料气体旁通管64中。这一点在通入SiH4气体的情况下也是同样的。即,使SiH4气体流入处理容器22内时,使设置在反应性气体供给管58上的反应性气体第一切换阀Y3处于打开状态,使设置在反应性气体旁通管68上的反应性气体第二切换阀Y2处于关闭状态。与此相反,使SiH4 气体不流向处理容器22内,而是流入或导入反应性气体旁通管68中时,使反应性气体第一切换阀Y3处于关闭状态,使反应性气体第二切换阀Y2处于打开状态。 [0065] 在此,重要的一点是,在进行提前送气时,即使使该反应性气体第二切换阀Y2处于打开状态以将SiH4气体导入反应性气体旁通管68中,其下游侧的反应性气体流出防止阀Y1也维持在关闭状态,使SiH4 气体不会流入到真空排气系统36中。在此情况下,设置有规定容量的 反应性气体缓冲罐72,使得即使上述反应性气体流出防止阀Y1处于关闭状态,也能够保证SiH4气体被导入反应性气体旁通管68中。换句话说,由于设置了该反应性气体缓冲罐72,即使反应性气体流出防止阀Y1处于关闭状态,也能够使SiH4气体仅在短时间内作为提前送气流向该原料气体旁通管64中。
[0066] 此外,各缓冲罐70、72中储存的气体流入真空排气系统36中的时间选择,只要使得向处理容器22内供给同种气体时,各自的气体流出防止阀X1、Y1处于打开状态即可。 [0067] 在此,参照图3更具体地说明上述各阀门的实际开关动作和各种气体的流动状态。
[0068] 图中,“提前送气”表示进行提前送气操作的状态,“送气”表示向处理容器22内供给气体的状态。在此,各种气体的提前送气各进行3秒,其后向处理容器22内通入气体进行1.5秒的流入。各阀门的切换阀门的开关状态,符号“○”表示打开状态,而符号“×”表示关闭状态。
[0069] 用有没有斜线表示处理容器22、各旁通管64、68、各真空泵44、46中实际上有无气体流入,斜线部分表示存在有气体流动。
[0070] 首先作为初始阶段,如步骤1、2所示,对于WF6气体,使阀门X1、X2处于打开状态、阀门X3处于关闭状态,向旁通管64和真空泵44、46中流入WF6进行提前送气,使此气体流量稳定化。此时,对于SiH4气体,使阀门Y2、Y3处于关闭状态、阀门Y1处于打开状态,将旁通管68和反应性气体缓冲罐72内进行充分的抽真空,准备下一次提前送气的操作。 [0071] 然后在步骤3中,对于WF6气体,阀门X1维持打开状态,阀门X2由打开状态切换到关闭状态,阀门X3则由关闭状态切换到打开状态。由此,WF6气体向旁通管64中的流动停止,即提前送气停止,流向处理容器22中进行送气。随后,WF6气体也流向真空泵44、46一侧。此时,由于阀门X1处于打开状态,原先在提前送气时流入和储存在旁通管64内或原料气体缓冲罐70内的WF6气体被抽真空排放而成为高真空,准备下一次提前送气的操作。 [0072] 与此相反,对于SiH4气体,维持阀门Y3处于关闭状态,气体不 流入处理容器22中,阀门Y2由关闭状态切换到打开状态,同时阀门Y1由打开状态切换到关闭状态,由此,使SiH4气体流入处于高真空的反应性气体旁通管68和反应性气体缓冲罐72内,由此进行提前送气。此时,由于如上所述阀门Y1处于关闭状态,该SiH4气体不能流入真空泵44、46一侧,因此,在流入WF6气体的此真空泵44、46内和真空排气系统36内不会附着钨膜。 [0073] 接下来在步骤4中,对于WF6气体,阀门X2维持关闭状态、阀门X1维持打开状态、阀门X3由打开状态切换到关闭状态。由此,停止向处理容器22中供给WF6气体,同时,向处理容器22内供给未图示的N2气等,将处理容器22内的残留气体抽真空排放。此时,处理容器22内残留的WF6气体流入真空泵44、46内,同时,将原料气体旁通管64内或原料气体缓冲罐70内继续抽真空成为更高的真空,准备下一次的提前送气操作。 [0074] 与此相反,对于SiH4气体,维持前面的步骤3的状态,继续提前送气操作。即,该步骤4对应于图2中的清洗工序80。
[0075] 接下来在步骤5中,对于WF6气体,阀门X3维持关闭状态,阀门X1由打开状态切换到关闭状态,阀门X2由关闭状态切换到打开状态。由此,使得WF6气体流入处于高真空的原料气体旁通管64和原料气体缓冲罐70中,从而进行提前送气。此时,由于如上所述阀门X1处于关闭状态,所以不能流入真空泵44、46一侧,因此在流入SiH4 气体的真空泵44、46内不会附着钨膜。
[0076] 与此相反,对于SiH4气体,阀门Y1和Y3都由关闭状态切换到打开状态,阀门Y2由打开状态切换到关闭状态。由此,使SiH4气体流入处理容器22内进行送气,同时,停止向反应性气体旁通管68供给SiH4气体,从而结束提前送气。此时,由于阀门Y1处于打开状态,反应性气体旁通管68内或反应性气体缓冲罐72内被抽真空成为高真空,准备下一次的提前送气操作。在此步骤5时,在处理容器22内,在前面的步骤3时在晶片W表面上附着的WF6气体与供给的SiH4气体反应,形成薄的钨膜。
[0077] 接下来在步骤6中,对于WF6气体,各阀门X1、X2和X3维持前面步骤5的状态,继续进行提前送气的操作。
[0078] 与此相反,对于SiH4气体,阀门Y1维持打开状态,阀门Y2维持关闭状态,阀门Y3由打开状态切换到关闭状态。由此,停止向处理容器22内供给SiH4气体,同时,向处理容器22内一边供给未图示的N2 气体等一边抽真空以排出处理容器22内的残留气体。此时,处理容器22内的残留SiH4气体流入真空泵44、46内,同时,反应性气体旁通管68内和反应性气体缓冲罐72内被抽真空成为更高的真空,准备下一次的提前送气操作。即,该步骤6对应于图2中的清洗工序80。这里,上述步骤3~步骤6形成一个循环,以后将此循环重复进行必要的次数,例如20~30次左右。
[0079] 在这样通过错开规定时间交替地向处理容器22内间歇供给原料气体和反应性气体(这里是还原气体)而成膜的情况下,即使在向处理容器22内供给各种气体之前分别重复进行提前送气操作,也能够防止上述两种气体以混合状态同时流入包括真空泵44、46的真空排气系统36中,所以在上述各真空泵44、46内不会形成例如钨膜附着在其上,可以防止包括各真空泵44、46的真空排气系统36中的损伤(损坏)。
[0080] 在此,对图4和图5所示的比较例与根据本发明的第一实施方式的处理装置分别进行成膜处理以进行比较,说明其评价结果。
[0081] 图4所示的处理装置,除了在图1所示的本发明处理装置中不设置原料气体流出防止阀X1、原料气体缓冲罐70、反应性气体流出防止阀Y1和反应性气体缓冲罐72以外,其余都与图1所示的处理装置的结构相同,在图4中相同的结构部分使用相同的符号。 [0082] 根据该处理装置,如图5所示,各步骤3、5、7、9、11、13…中的提前送气和送气同时操作时,两种气体以混合状态流入真空泵44、46内,此时生成钨膜附着,给各泵44、46上造成损伤。
[0083] 在各处理装置中,在真空排气系统36的上游侧真空泵44的前段设置有加热型捕集器(trap),一边捕集钨膜一边进行6小时的成膜加工。其结果,在比较例的处理装置中得到6.7g的捕集量,但在本发明的处理装置中,几乎没有捕集量,可以确认本发明的处理装置的有效性。
[0084] 此外,在本实施方式中,在各旁通管64、68上分别设置有缓冲罐70、72,在各旁通管64、68的内径足够粗而且管道很长,能够确保管 道的容量与各缓冲罐70、72的容量相当的情况下,也可以不设置该缓冲罐70、72。
[0085] 在此,说明上述各缓冲罐70、72的设计的一个例子。控制气体流量的质量流量控制器之类的流量控制器56B、58B,此部分的流速达到音速,为了维持音速喷嘴状态,上下游的压力比必须设定为0.5以下。
[0086] 在此,假设质量流量控制器的最大流量为450sccm、进行提前送气的时间为3秒,当质量流量控制器的一次侧压力为70000Pa时,必须保持二次压力在35000Pa以下。而且,3
WF6气体提前送气的流量Q[Pa·m/sec]可由以下的公式给出。
[0087] Q=450×10-6×101325/60=0.76Pa·m3/sec
[0088] 因此,提前送气期间的流入量Pv[Pa·m3]如下。
[0089] Pv=3×Q=2.28Pa·m3
[0090] 因此,根据Boyle-Charle定律,缓冲罐的最小必需容量V如下。
[0091] V=Pv/ΔP=2.28/35000=6.5×10-5m3
[0092] 此外,由本实施例的气体供给控制部74控制各阀门的开关时,可以使用延迟计时器进行各阀门的开关操作。例如使原料气体流出防止阀X1与反应性气体第一切换阀Y3连动,例如在阀门Y3切换为打开时阀门X1切换为闭合,当阀门Y3从打开状态切换为关闭状态时,延迟1.5秒后,阀门X1从关闭状态切换为打开状态。
[0093] 同样,使反应性气体流出防止阀Y1与原料气体第一切换阀X3连动,例如在阀门X3切换为打开时阀门Y1切换为闭合,在阀门X3从打开状态切换到关闭状态时,延迟1.5秒以后,阀门Y1从关闭状态切换到打开状态。
[0094] 另外,在本实施例中,是以各种气体的供给时间T1、T3和清洗工序的时间T2(参照图1)均设定为1.5秒的情况为例说明的,但这只不过表示一个例子,当然并不限定于此数值的例子。提前送气时间当然也不限定于3秒。
[0095] 再有,这里供给WF6气体作为原料气体,供给还原气体SiH4作为反应性气体,但是作为还原气体,并不限定于SiH4气体,也可以使用H2气、乙硅烷、二氯硅烷等。使用其他气体例如ZrCl4作为原料气体,通过氧化进行成膜时,可以使用氧化气体例如O3作为反应性气体。
[0096] 第二实施方式
[0097] 下面,参照图10所示的现有例,对图6和图7所示的本发明第二实施方式进行说明。第二实施方式的目的在于抑制设置在真空排气系统中的捕集装置的维修频度。这里以使用TiCl4气体和NH3气通过热CVD法形成TiN膜的情况为例进行说明。
[0098] 图10所示的现有的处理装置的处理容器22内的结构,与图1中的结构相同,这里使用与图1相同的符号,省略其说明。在该处理容器22内的喷头部30上,连接有供给例如TiCl4气体作为原料气体的原料气体供给系统90。在该原料气体供给系统90的中间设置有进行流量控制的质量流量控制器之类的流量控制器92A,同时在该流量控制器92A的上游侧设置有阀门94,在下游侧设置有第一切换阀96A。
[0099] 另外,在喷头部30上连接有供给例如NH3气作为反应性气体的反应性气体供给系统98。NH3气有时使用大的流量,有时使用小的流量,与此不同的使用量范围相对应,在上述反应性气体供给系统98的中途并联地设置两个流量控制器100A、100B,同时在各流量控制器100A、100B的上游侧,分别设有阀门102A、102B,通过切换阀门102A和102B,能够选择控制流量的范围。例如一个流量控制器100A以大流量范围作为控制对象,而另一个流量控制器100B以小流量范围作为控制对象。在作为该反应性气体供给系统98的最下游即喷头部30的上游侧,设置有第一切换阀104A。
[0100] 另一方面,在与处理容器22的排气口34相连接的真空排气系统36中,从上游侧开始依次设置有压力控制阀40、截止阀42、捕集装置106、干式泵之类的真空泵108和除害装置47。捕集装置106是从废气中除去杂质气体,例如残留的原料气体或其反应副产物气体的装置。除害装置47通过例如燃烧除去残留在废气中的杂质气体。另外,由于比TiCl4气体更容易被捕获,根据需要可以从上述捕集装置106的上游侧导入NH3气作为与其反应的气体。另外,在靠近上述捕集装置106的上游侧和下游侧分别设置有维修捕集装置106时截断气流的阀门108A、108B。
[0101] 而且,在上述原料气体供给系统90的流量控制器92A的下游侧和靠近上述真空排气系统36的捕集装置106的上游侧之间连接有原料气 体旁通管110,同时在该原料气体旁通管110的最上游侧设置有第二切换阀96B,通过切换上述第一和第二切换阀96A和96B,使原料气体流入处理容器22内,或者绕过处理容器22流入原料气体旁通管110中。此外,该原料气体旁通管110,主要是在使原料气体稳定化时,使原料气体不通过处理容器22中流动时使用。
[0102] 另外,在上述反应性气体供给系统98的两个流量控制器100A、100B的下游侧和靠近上述真空排气系统36的捕集装置106的下游侧之间,连接有作为反应性气体旁路系统的反应性气体旁通管112,同时在该反应性气体旁通管112的最上游侧设置有第二切换阀104B,通过切换上述第一和第二切换阀104A、104B,使反应性气体流入处理容器22内,或者绕过处理容器22而流入反应性气体旁通管112。此外,该反应性气体旁通管112,主要是在使反应性气体稳定化时,使原料气体不通过处理容器22中流动时使用。
[0103] 在此,将反应性气体旁通管112的下游侧与捕集装置106的下游侧连接起来的原因,是由于即使NH3气流到这里也不会产生反应副产物,所以不需要经过捕集装置106而排放掉。在上述捕集装置106中,除去TiCl4气体或作为该反应副产物的NH4Cl、TiClx(钛氯化物)、TiO2 (氧化钛)等。
[0104] 但是,在使用该处理装置通过热CVD进行TiN膜的成膜处理时,为了实际成膜而流入处理容器22内再被排放出的残余TiCl4气体或反应副产物的气体以及为了使流量稳定化而流入原料气体旁通管110内的TiCl4气体,都流入捕集装置106中,在这里按照如上所述的方式除去。
[0105] 因此,由于在短时间内捕集装置106内的捕集物大量积存,致使捕集装置106的维修操作的频度变高,这会引起处理装置的运转率降低。另外,由于流入了大量反应副产物,也会造成管道内堵塞等不良状况。
[0106] 为了解决以上问题,该第二实施方式的处理装置构成为如图6所示。在图6中,与图10所示的结构相同的结构部分使用相同的符号,省略其说明。
[0107] 在图6所示的处理装置中,设置有废弃原料气体排气系统120代 替图10中的原料气体旁通管110。具体地说,与图10所示的原料气体旁通管110相同,该废弃原料气体排气系统120具有从原料供给系统90分出的配管122。而且,在该气体配管122的中间,从上游侧开始依次设置有原料气体用第二捕集装置124、原料气体用第二真空泵126和原料气体用除害装置128。原料气体用第二捕集装置124与真空排气系统36的第一捕集装置106是相同的结构。另外,原料气体用第二真空泵126与第一真空泵106相同,是干式泵之类的真空泵。原料气体用除害装置128,是通过例如燃烧除去废气中的杂质气体(TiCl4)的装置。此外,在靠近上述第二捕集装置124的上游侧和下游侧分别设置有在维修该捕集装置时等的关闭阀门130A、130B。
[0108] 废弃原料气体排气系统120的下游侧,经过除害装置128向大气开放。而且,在使TiCl4的气体流量稳定化的所谓的提前送气时,通过废弃原料气体排气系统120将TiCl4气体排放到系统外的大气中。这里也是由于TiCl4气体更容易被捕获,根据需要可以在上述捕集装置106和原料气体用捕集装置124的上游侧导入NH3气作为与其反应的气体。此外,虽然未图示,但实际上也设置有向处理容器22内供给惰性气体例如N2气的供给系统。 [0109] 下面参照图7说明使用该处理装置进行的成膜方法的一个例子。在此,以向处理容器22内交替地通入原料气体TiCl4和反应性气体NH3,一层一层地叠层TiN膜的情况为例进行说明。
[0110] 首先,在步骤1的“预热”中,打开电阻加热器26加热载置台24和放置在其上面的晶片W并维持在规定的温度。此段的时间是例如10sec左右。此时,通过大流量用和小流量用的两个流量控制器100A、100B分别控制流量,将NH3气通入处理容器22中。此外,驱动真空排气系统36抽真空是不言而喻的。在此以后,继续通过流量控制器100B流入小流量的NH3气以使气体流量稳定化,在不需要成膜时不流入处理容器22内,通过反应性气体旁通管112排放掉,与前面所述的一样。
[0111] 接下来,在步骤2的“清洗1”中,开始通入TiCl4气体,该气体不流入处理容器22内,作为提前送气流入废弃原料气体排气系统120的气体配管122。关于NH3气,切换该第一和第二切换阀104A、104B, 将迄今一直流入处理容器22内的NH3气切换到流入反应性气体旁通管112一侧,进行提前送气。此时停止大流量NH3气体的供给。此时TiCl4 气体的流量在5~100sccm的范围,例如为50sccm,该处理时间在0.1~15sec的范围,例如为10sec。
[0112] 接下来,在步骤3的“稳定1”中,将上述步骤2的状态继续0.1~15sec的范围,例如10sec,使气体流量稳定化。在此,步骤2和步骤3中作为提前送气流入的TiCl4气体的总流量是16.7scc。
[0113] 接下来,在步骤4“TiCl4预(Pre)”中,切换TiCl4气体的第一和第二切换阀96A、96B,将迄今一直通过气体配管122排放掉的TiCl4 气体供给处理容器22内。此时TiCl4气体的流量在5~100sccm的范围,例如为50sccm。通过该步骤4在处理容器4内的晶片W的表面上吸附厚度为原子水平或分子水平例如一层至数层左右的TiCl4气体。 [0114] 接下来,在步骤5的“沉积”中,切换NH3气的第一和第二切换阀104A和104B,使迄今一直排放掉的小流量NH3气流入处理容器22内进行成膜处理。通过这样将NH3气通入处理容器22内,该NH3气与吸附在晶片W表面的TiCl4气体发生热分解反应,通过热CVD形成薄的TiN膜(氮化钛膜)。这里,吸附的TiCl4气体应该是形成TiN膜时的核,由此能够缩短成核时间(incubation time)。此时的加工时间为0.1~15sec的范围,例如为10sec。
在该步骤4和步骤5中流入处理容器22内的TiCl4气体的总流量是16.7scc。 [0115] 接下来,在步骤6的“稳定2”中,停止流入TiCl4气体,同时,切换NH3气的第一和第二切换阀104A、104B,使流入处理容器22内的小流量NH3气流入反应性气体旁通管112。
此加工时间为0.1~15sec的范围,例如为10sec。
[0116] 接下来,在步骤7的“清洗2”中,开始通入大流量的NH3气使其流量稳定化。此时,对处理容器22内抽真空,通入未图示的惰性气体,例如N2气,排出残留气体。此加工时间为0.1~15sec的范围,例如为10sec。
[0117] 接下来,在步骤8的“NH3后(Post)”中,切换第一和第二切换阀104A、104B,使大流量和小流量的NH3气都流入处理容器22内,由此使晶片表面上堆积的TiN膜的表面被NH3改性乃至完全氮化。与 此同时,为了使流量稳定化开始流入TiCl4气体,该TiCl4气体不流入处理容器22内,而是流入气体配管122排放掉。此时TiCl4气体的流量为5~100sccm的范围,例如为50sccm,此加工时间为0.1~15sec的范围,例如为10sec。在该步骤8中作为提前送气流入的TiCl4气体的总流量为8.3scc。
[0118] 接下来,以上述步骤2~步骤8为一个循环,重复进行各工序5~50次左右,例如10次(循环),堆积出多层TiN膜。
[0119] 接下来,在步骤9的“真空”中,完全停止供给气体,使成膜处理结束。 [0120] 如上所述,一次循环中TiCl4气体的总流量,整体为41.7scc,其中16.7scc经过处理容器22流入第一捕集装置106,另外25scc的TiCl4 气体流入原料气体用第二捕集装置124一侧。即,流入第一捕集装置106内的只有TiCl4气体总使用量的约40%(=16.7÷41.7),所以该第一捕集装置106的寿命延长2.5倍。因此,仅其寿命延长就能够抑制第一捕集装置106的维修频度。
[0121] 由于流向真空排气系统36的TiCl4气体减少,其反应副产物也减少,所以能够防止在真空排气系统36的配管等堵塞。
[0122] 在本实施方式中,在废弃原料气体排气系统120中设置了原料气体用第二捕集装置124,但在是也可以不设置该捕集装置,用原料气体用除害装置128除去流入气体配管122内的TiCl4气体。可以设置多个第二捕集装置124,例如并联设置两个选择性地使用。
由此,由于在原料气体用捕集装置维修时没有必要停止处理装置的运转,所以能够提高装置的运转率。
[0123] 再者,也可以不设置废弃原料气体排气系统120的原料气体用除害装置128,使该废弃原料气体排气系统120的下游侧连接在真空排气系统36的除害装置47和第一捕集装置106之间,使流入废弃原料气体排气系统120内的TiCl4气体在上述除害装置47中分解并除去。
[0124] 在本实施方式中,第一和第二切换阀96A、96B和104A、104B分别使用单独分开的阀门,但也可以代之以具有同样功能的三通阀。另外,在此说明了一个处理装置,但在存在多个同样结构的处理装置的情况下,在各处理装置的气体配管122中,第二捕集装置124、第二真 空泵126以及原料气体用除害装置128都可以共用一个。
[0125] 而且,在此是以使用TiCl4气体和NH3气体形成TiN膜的情况为例进行说明,但是并不限于此,在形成Ti膜的情况下,在使用WF6作为原料气体形成W膜或WN膜的情况下,在使用PET(五乙氧基钽)作为原料气体形成Ta2O5膜的情况下,在其它的HfO2膜、RuO2膜、Al2O3 膜等的反应工序中,在实施产生气体状态以外的例如固体或液体状态反应副产物的加工的情况下,都可以适用本发明。
[0126] 此外,在本实施例中,以半导体晶片作为被处理体为例进行了说明,但是并不限于此,当然也可以适用于LCD基板、玻璃基板等。