数字多媒体接收机转让专利

申请号 : CN200410101433.2

文献号 : CN1798282B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 郭征元河吉植

申请人 : 三星电子株式会社

摘要 :

提供了一种用于处理单载波调制的信号和多载波调制的信号的数字多媒体接收机。所述数字多媒体接收机包括调谐器、ADC、用于以调制模式指示对同步来自ADC的数字信号以产生同步信号的同步单元、用于以调制模式指示解调该同步信号的解调单元、和用于将解调的信号解码并输出结果信号的信道解码器。同步单元进一步包括用于补偿定时偏移的定时恢复块和用于补偿频率误差的载波恢复块。

权利要求 :

1.一种用于处理单载波调制的信号和多载波调制的信号的数字多媒体接收机,包括:调谐器,用于调谐接收的多媒体信号到相应的波段;

ADC,用于将调谐的模拟信号转换为数字信号;

同步单元,用于使用调制模式指示同步来自ADC的数字信号以产生同步信号;

解调单元,用于使用调制模式指示解调同步单元同步的信号;和

信道解码器,用于将经解调单元解调的信号解码并输出所得的信号,

其中,同步单元包括:定时恢复块,用于使用调制模式指示来补偿来自ADC的数字信号的定时误差;载波恢复块,用于使用调制模式指示来补偿定时恢复块的输出信号的频率误差以产生同步信号。

2.如权利要求1所述的数字多媒体接收机,其中:

定时恢复块包括再采样单元、第一环路滤波器、和定时误差检测器(TED),再采样单元接收来自ADC的数字信号,TED检测再采样单元的输出信号来基于调制模式指示计算定时误差,其输出信号被馈送给第一环路滤波器,第一环路滤波器对TED的输出信号进行滤波,再采样单元使用经第一环路滤波器滤波的定时误差估计补偿来自ADC的数字信号的定时偏移;和载波恢复块包括混合器、NCO单元、第二环路滤波器、和频率误差估计器(FEE),混合器混合再采样单元的输出信号,FEE检测混合器的输出信号并基于调制模式指示估计频率偏移和相位偏移,第二环路滤波器对FEE的输出信号进行滤波,NCO单元将由第二环路滤波器滤波的频率偏移和相位偏移转换为相位值并输出与转换的相位值相应的NCO值,混合器使用NCO单元提供的NCO值来补偿再采样单元的输出信号的频率偏移和相位偏移以产生同步信号作为解调单元的输入。

3.如权利要求1或2所述的数字多媒体接收机,其中,信道解码器是LDPC解码器。

4.一种用于处理单载波调制的信号和多载波调制的信号的数字多媒体接收机,包括:调谐器,用于调谐接收的多媒体信号到相应的波段;

ADC,用于将调谐的模拟信号转换为数字信号;

同步单元,用于使用调制模式指示同步来自ADC的数字信号以产生同步信号;

解调单元,用于使用调制模式指示解调同步单元同步的信号;和

信道解码器,用于将经解调单元解调的信号解码并输出所得的信号,

其中,同步单元包括:载波恢复块,用于使用调制模式指示来补偿来自ADC的数字信号的定时恢复块的输出信号的频率误差;定时恢复块,用于使用调制模式指示来补偿载波恢复块的输出信号的定时误差以产生同步信号。

5.如权利要求4所述的数字多媒体接收机,其中:

载波恢复块包括混合器、NCO单元、第二环路滤波器、和频率误差估计器(FEE),混合器混合来自ADC的数字信号,FEE检测混合器的输出信号并基于调制模式指示估计频率偏移和相位偏移,第二环路滤波器对FEE的输出信号进行滤波,NCO单元将由第二环路滤波器滤波的频率偏移和相位偏移转换为相位值并输出与转换的相位值相应的NCO值,混合器使用NCO单元提供的NCO值来补偿来自ADC的数字信号的频率偏移和相位偏移;和定时恢复块包括再采样单元、第一环路滤波器、和定时误差检测器(TED),再采样单元接收混合器的输出信号,TED检测再采样单元的输出信号来基于调制模式指示计算定时误差,其输出信号被馈送给第一环路滤波器,第一环路滤波器对TED的输出信号进行滤波,再采样单元使用经第一环路滤波器滤波的定时误差估计补偿混合器的输出信号的定时偏移以产生同步信号作为解调单元的输入。

6.如权利要求4或5所述的数字多媒体接收机,其中,信道解码器是LDPC解码器。

说明书 :

数字多媒体接收机

技术领域

[0001] 本发明涉及一种数字多媒体接收机,尤其涉及一种用于处理单载波调制的信号和多载波调制的信号的接收机。

背景技术

[0002] 在多媒体的通信和广播时代,世界各国都在将模拟型的广播进行数字化,尤其是在发达国家如美国,欧洲和日本等国,数字广播系统已经被开发并投入利用。随着其快速发展,在不同的国家里已经提议了用于数字广播的不同的标准。
[0003] 1996年12月24日,美国联邦通信委员会(FCC)提出了高级电视系统委员会(ATSC)数字电视标准作为下一代电视广播标准。所有地面广播经营者必须遵照关于视频/音频压缩、分组数据传输结构、以及调制和传输系统的规范的ATSC标准。仅关于视频格式的规范未被具体规定,而是留给业界决定。
[0004] ATSC数字TV标准利用单载波VSB方式在6MHz的带宽上传输高质量视频、音频和附加数据,并且同时支持地面广播模式和高数据速率电缆广播模式。此方式的主要方面在于具有数字信号调制能力的作为现有模拟型VSB方式的改进形式的8-VSB调制方法。
[0005] 在欧洲,已经为了其高的频率利用率和抗干扰能力而将COFDM(编码正交频分复用)系统应用于DVB-T(地面数字视频广播)。
[0006] 其它使用不同的调制方法的数据传输方案可分为多载波方案和单载波方案。由此,传统数字多媒体接收机可分为多载波数字多媒体接收机和单载波数字多媒体接收机。
[0007] 图1是表示用于处理多载波调制的信号的传统数字多媒体接收机的示意性框图。
[0008] 该传统的多载波数字多媒体接收机包括:调谐器110,用于调谐接收到的多载波调制的多媒体信号;ADC(模数转换器)120,用于将从调谐器110输出的信号转换为数字信号;同步单元130,用于将来自ADC 120的信号进行定时恢复和载波恢复;快速傅立叶变换(FFT)单元140,用于对从同步单元130输出的信号进行快速傅立叶变换;均衡单元150,用于对从FFT单元140输出的信号进行均衡;QAM(正交幅度调制)码元检测单元160,用于对均衡器的输出执行码元检测;前项纠错(FEC)单元170,用于对从码元检测单元160输出的信号进行前项纠错;和解扰器180,用于将从FEC单元170输出的信号进行解扰以得到MPEG流。
[0009] 图2是表示用于处理单载波调制的信号的传统数字多媒体接收机的示意性框图。
[0010] 该常规的单载波数字多媒体接收机包括:调谐器210,用于接收单载波调制的多媒体信号;ADC 220,用于将从调谐器210输出的信号转换为数字信号;同步(SYNC)单元230,用于执行定时恢复和载波恢复;均衡单元240,用于对从同步单元230输出的信号进行均衡;(偏置)QAM码元检测单元250,用于对均衡单元240的输出进行码元检测;FEC单元
260,用于对码元检测单元250输出的信号进行前项纠错;和解扰器270,用于对FEC单元
260输出的信号进行解扰以得到MPEG流。
[0011] 对于是单载波传输系统的性能好还是多载波传输系统的性能好存在长久的争议,但是没有具体的结果。这两种方案各自均有优点和缺点。因此,期望广播站允许从多种传输方案中选择适合其特定需要和广播环境的传输方案。在这种情况下,需要能够接收和解码单载波和多载波调制的广播信号的接收机,以观看来自使用不同传输方案的广播电台的数字电视(DTV)节目。
[0012] 众所周知,传统的数字多媒体接收机不能同时接收单载波调制的信号和多载波调制的信号,这存在很多不便。

发明内容

[0013] 本发明的一方面在于解决至少上述问题和/或缺点。
[0014] 本发明提供了一种用于处理单载波调制的信号和多载波调制的信号的接收机。
[0015] 所述用于处理单载波调制的信号和多载波调制的信号的接收机包括,用于调谐接收的多媒体上到相应波段的调谐器,用于将调谐的模拟信号转换为数字信号的ADC,用于使用调制模式指示同步来自ADC的数字信号以产生同步信号的同步单元,用于使用调制模式指示解调同步单元同步的信号的解调单元,和用于将经解调单元解调的信号解码并输出结果信号的信道解码器。
[0016] 数字多媒体接收机的同步单元可包括用于使用调制模式指示来补偿来自ADC的数字信号的定时误差的定时恢复块;和用于使用调制模式指示来补偿定时恢复块的输出信号的频率误差以产生同步信号的载波恢复块。
[0017] 定时恢复块包括再采样单元、第一环路滤波器、和定时误差检测器(TED)。再采样单元接收来自ADC的数字信号,TED检测再采样单元的输出信号来基于调制模式指示计算定时误差,其输出信号被馈送给第一环路滤波器,第一环路滤波器对TED的输出信号进行滤波,再采样单元使用经第一环路滤波器滤波的定时误差估计补偿来自ADC的数字信号的定时偏移。
[0018] 载波恢复块包括混合器、NC0单元、第二环路滤波器、和频率误差估计器(FEE)。混合器混合再采样单元的输出信号,FEE检测混合器的输出信号并基于调制模式指示估计频率偏移和相位偏移,第二环路滤波器对FEE的输出信号进行滤波,NC0单元将由第二环路滤波器滤波的频率偏移和相位偏移转换为相位值并输出与转换的相位值相应的NC0值,混合器使用NC0单元提供的NC0值来补偿再采样单元的输出信号的频率偏移和相位偏移以产生同步信号作为解调单元的输入。
[0019] 另一方面,数字多媒体接收机的同步单元可包括,用于使用调制模式指示来补偿来自ADC的数字信号的定时恢复块的输出信号的频率误差的载波恢复块;和用于使用调制模式指示来补偿载波恢复块的输出信号以产生同步信号的定时误差的定时恢复块。
[0020] 载波恢复块包括混合器、NC0单元、第二环路滤波器、和频率误差估计器(FEE)。混合器混合来自ADC的数字信号,FEE检测混合器的输出信号并基于调制模式指示估计频率偏移和相位偏移,第二环路滤波器对FEE的输出信号进行滤波,NC0单元将由第二环路滤波器滤波的频率偏移和相位偏移转换为相位值并输出与转换的相位值相应的NC0值,混合器使用NC0单元提供的NC0值来补偿来自ADC的数字信号的频率偏移和相位偏移。
[0021] 定时恢复块包括再采样单元、第一环路滤波器、和定时误差检测器(TED)。再采样单元接收混合器的输出信号,TED检测再采样单元的输出信号来基于调制模式指示计算定时误差,其输出信号被馈送给第一环路滤波器,第一环路滤波器对TED的输出信号进行滤波,再采样单元使用经第一环路滤波器滤波的定时误差估计补偿混合器的输出信号的定时偏移产生同步信号作为解调单元的输入。
[0022] 最好是,信道解码器是LDPC解码器。

附图说明

[0023] 通过下面结合附图对实施例进行的下述描述,本发明的上述和其他目的和优点将会变得更加清楚,其中:
[0024] 图1是表示用于处理多载波调制的信号的传统数字多媒体接收机的示意性方框图;
[0025] 图2是表示用于处理单载波调制的信号的传统数字多媒体接收机的示意性方框图;
[0026] 图3是表示根据本发明第一实施例的用于处理单载波调制的信号和多载波调制的信号的数字多媒体接收机的方框图;
[0027] 图4是表示根据本发明第一实施例的图3所示的数字多媒体接收机中执行的数字多媒体信号接收方法的流程图;
[0028] 图5是表示根据本发明第二实施例的用于处理单载波调制的信号和多载波调制的信号的数字多媒体接收机的方框图;
[0029] 图6是表示根据本发明第二实施例的图5中所示的数字多媒体接收中执行的自动增益控制方法的流程图;
[0030] 图7是表示根据本发明第三实施例的用于处理单载波调制的信号和多载波调制的信号的数字多媒体接收机的结构的方框图;
[0031] 图8是显示根据本发明第四实施例的用于处理单载波调制的信号和多载波调制的信号的数字多媒体接收机的方框图;
[0032] 图9是根据本发明第四实施例的在图8所示的数字多媒体接收机中执行的数字多媒体接收方法的流程图;
[0033] 图10是表示根据本发明第五实施例的用于处理单载波调制的信号和多载波调制的信号的数字多媒体接收机的结构的方框图;
[0034] 图11是显示根据本发明第六实施例的用于处理单载波调制的信号和多载波调制的信号的数字多媒体接收机的方框图;
[0035] 图12是根据本发明第六实施例的在图11中所示的数字多媒体接收机中执行的数字多媒体接收方法的流程图;
[0036] 图13是显示根据本发明第七实施例的用于处理单载波调制的信号和多载波调制的信号的数字多媒体接收机的方框图;
[0037] 图14是根据本发明第七实施例的在图13所示的数字多媒体接收机中执行的数字多媒体接收方法的流程图;和
[0038] 图15是表示根据本发明第八实施例的用于处理单载波调制的信号或多载波调制的信号的数字多媒体接收机的方框图。

具体实施方式

[0039] 现在,将详细描述本发明的实施例,其例子列举的在附图中,其中相同的标号始终表示相同的部件。下面参照附图描述实施例以解释本发明。
[0040] 图3是根据本发明第一实施例的用于处理单载波调制的信号和多载波调制的信号的数字多媒体接收机的方框图。
[0041] 参照图3,该数字多媒体接收机包括:调谐器310,用于将接收到的多媒体信号调谐到相应频段,其中,多媒体信号是单载波调制的信号或多载波调制的信号;ADC(模-数转换器)320,用于将来自调谐器310的调谐的信号转换为数字信号;解调单元330,包括用于将单载波调制的信号解调并输出的解调器331和用于将多载波调制的信号解调并输出的解调器332,其中,当数字信号被输入到解调单元330时,两个解调器中的一个或两个将来自ADC320的数字信号解调并输出;选择器340,用于根据调制模式指示在从解调单元330输出的被解调的信号中选择有效的信号;和共用信道解码器350,用于将选择的从解调单元330输出的解调的信号解码并输出得到的信号。
[0042] 在解调单元330中,解调器331和解调器332中的一个或两个运行并处理输入的数字信号。如果输入信号是单载波调制的信号,则解调器331运行并正确地输出单载波解调的信号。如果数字信号是多载波调制的信号,则解调器332运行并正确地输出多载波解调的信号。
[0043] 选择器340接收指示输入到解调单元340中的信号的调制模式的调制模式指示,并根据该调制模式指示选择从解调器331和解调器332中输出的信号中的一个。更详细地说,如果该数字信号是单载波调制的信号,则选择器340选择从解调器331输出的解调的信号。如果该数字信号是多载波调制的信号,则选择器340选择从解调器332输出的解调的信号。
[0044] 被用于单载波传输模式和多载波传输模式的共用信道解码器350通过选择器340连接于解调单元330,RS块解码器和LDPC解码器可被用作共用信道解码器350。
[0045] 现在,将参照图3和图4描述根据本发明第一实施例的数字多媒体接收机的操作。
[0046] 图4是根据本发明第一实施例的图3中所示的数字多媒体接收中执行的数字多媒体信号接收方法的流程图。
[0047] 在步骤S410,调谐器310将接收到的信号调谐到相应频段。然后,在步骤S420,ADC320将来自调谐器310的调谐的信号数字化并输出数字信号。
[0048] 在步骤S430,解调单元330将来自ADC 320的数字信号解调并输出解调的信号。这里,解调单元330中解调器中的一个或两个能够处理数字信号。具体地讲,如果输入的信号是单载波调制的信号,则解调器331在单载波模式下将输入的数字信号正确地解调并输出。如果输入的信号是多载波调制的信号,则解调器332在多载波模式下将输入的数字信号正确地解调并输出。
[0049] 在步骤S440,选择器340根据调制模式指示从来自解调单元330的信号中选择有效的信号。如果选择器340根据模式调制信息得知输入到解调单元330的数字信号是单载波调制的信号,则选择器340选择从解调器331输出的解调的信号。如果选择340根据调制模式指示得知输入到解调单元330的数字信号是多载波调制的信号,则选择器340选择从解调器332输出的解调的信号。
[0050] 在步骤S450,共用信道解码器350将来自选择器340的解调的信号解码并输出。
[0051] 通过使用本发明的具有上述结构的数字多媒体接收机及接收方法,可以通过确定接收到的多媒体信号的调制模式,单载波调制的信号和多载波调制的信号均能被处理。从而,该接收机的硬件实现被简化,接收机的接收性能被改善。
[0052] 图5是表示根据本发明第二实施例的用于处理单载波调制的信号和多载波调制的信号的数字多媒体接收机的方框图。
[0053] 如图5所示,该数字多媒体接收机包括:调谐器510,ADC 520,用于根据调制模式指示控制输入到ADC 520的调谐的信号的增益的AGC(自动增益控制器)530,和用于根据调制模式指示对数字信号进行解调的解调单元540。
[0054] 图5所示的数字多媒体接收机的结构与图3所示的接收机的结构相似。为了简化,图5中没有示出选择器和解码器。此外,调谐器510和ADC 520与图3中的调谐器310和ADC 320的功能相同,因此,省略的对它们的详细描述。
[0055] 单载波调制的信号和多载波调制的信号具有不同的PAPR(峰均功率比)特性,多载波调制的信号与单载波调制的信号相比具有相对大的PAPR。用于这两种调制模式的AGC算法也不相同。在上述接收机中,只使用了一个AGC,因此,在用于处理单载波调制的信号和多载波调制的信号的数字多媒体接收机中,AGC 530应根据指示多媒体信号的调制模式的调制模式指示来采用相应的算法。
[0056] AGC 530测量来自ADC 520的数字信号的如平均功率或平均幅度(magnitude)的信号特性,并根据与调制模式相应的AGC算法调整随后从调谐器510输入到ADC 520的调谐的信号的增益,从而,从调谐器510输出的信号的幅值在ADC 520的适当的操作范围之内。例如,由于PAPR的不同,用于多载波模式的AGC的目标功率被设置为比单载波模式的AGC的目标功率低的值。这样,ADC 520与多媒体信号的调制模式相应而正确运行。
[0057] AGC 530是RF(射频)AGC或IF(中频)AGC。
[0058] 图6是表示根据本发明的第二实施例的图5所示的数字多媒体接收机中执行的自动增益控制方法的流程图。
[0059] 在步骤S610,调谐器510调谐接收到的多媒体信号。
[0060] 在步骤S620,ADC 520将从调谐器510输出的调谐的信号转换为数字信号。
[0061] 在步骤S630,AGC 530测量来自ADC 520的数字信号的如平均功率和平均幅度的信号特性。
[0062] 在步骤S640,AGC 530根据测量的结果和调制模式指示来控制从调谐器510输入到ADC 520的信号的增益。
[0063] 通过使用具有上述结构的根据本发明的数字多媒体接收机和自动增益控制方法,可以通过确定接收到的多媒体信号的调制模式来处理单载波调制的信号和多载波调制的信号。此外,根据接收到的多媒体信号的调制模式可以控制接收机的调谐器的增益。从而,接收机的硬件的实现被简化,并且接收机的接收性能被改善。
[0064] 图7是表示根据本发明第三实施例的用于处理单载波调制的信号和多载波调制的信号的数字多媒体接收机的结构的方框图。
[0065] 图7所示的数字多媒体接收机包括调谐器710、ADC 720、同步单元730、解调单元740、和信道解码器750。
[0066] 调谐器710将接收的多媒体信号调谐到相应的波段。ADC 720通过采样和量化将经调谐的模拟信号转换为数字信号。
[0067] 同步单元730使用调制模式指示对ADC 720转换的数字信号进行同步。
[0068] 同步单元730包括用于补偿来自ADC 720的数字信号的定时偏移的定时恢复块730T和用于补偿频率和相位偏移的载波恢复块。
[0069] 定时恢复块730T包括再采样单元731、第一环路滤波器732、和定时误差检测器(TED)733。在此,TED733检测再采样单元731的输出信号以基于调制模式指示计算定时误差,其输出信号被馈送给第一环路滤波器732。第一环路滤波器732对TED 733的输出信号进行滤波,经第一环路滤波器732滤波的信号被馈送给再采样单元731。再采样单元731使用经第一环路滤波器732滤波的定时误差估计来补偿来自ADC 720的数字信号的定时偏移。而且,再采样单元731可包含分别用于抽取和插值的抽取器和插值器。由于对于单载波调制模式和多载波调制模式的定时误差检测算法不同,所以对于所述两种模式的算法在TED 733中实现,TED 733基于调制模式指示选择相应的算法。在此种情况下,定时误差信息是由调制模式指示决定的。
[0070] 载波恢复块730C包括混合器734、NCO单元735、第二环路滤波器736、和频率误差估计器(FEE)737。在此,FEE 737检测混合器734的输出是并且基于调制模式指示估计频率偏移和相位偏移。第二环路滤波器736对FEE737的输出信号进行滤波,其输出被馈送到NCO单元735。NCO单元735将频率偏移和相位偏移转换为相位值并输出与转换的相位值相应的NCO值。混合器734使用NCO单元提供的NCO值来补偿再采样单元731的输出信号的频率偏移和相位偏移以产生同步信号作为解调单元740的输入。与定时误差检测的情形相似,单载波调制模式和多载波调制模式的频率误差估计算法在FEE中实现,FEE 737基于调制模式指示选择相应的算法。也就是说,估计的频率误差信息是根据调制模式指示产生的。
[0071] 解调单元740基于调制模式指示将从同步单元730同步的信号解调。
[0072] 信道解码器750将解调的信号解码并输出该信号。
[0073] 从以上的描述可以看出,根据本发明的数字多媒体接收机基于调制模式指示进行同步。
[0074] 根据图7的接收机结构,定时恢复一发生后载波恢复就发生。然而,实际上,定时恢复块730T可置于不同的位置,只要定时恢复在解调之前发生。也就是说,定时恢复块730T和载波恢复块730C的位置可以互换。
[0075] 调制模式指示可从模式检测器(未显示)接收。
[0076] 通过使用图7所示的数字多媒体接收机的结构,可基于单载波调制模式和多载波调制模式补偿定时偏移和频率偏移。因此,接收机对单载波调制模式和多载波调制模式可正确地操作。
[0077] 接收滤波器通常用在数字多媒体接收机中,以降低码元间干扰和附加噪声。用于单载波调制模式和多载波调制模式的系统由于不同的频谱特性而应具有不同的带宽。为了在数字多媒体接收机中只使用一个共用接收滤波器以处理单载波调制模式和多载波调制模式,接收滤波器的特性应该通过应用不同的预定系数集来被改变。为此,用于单载波调制模式和多载波调制模式的共用接收滤波器的滤波器系数集应该根据调制模式而被更新。
[0078] 图8是显示根据本发明第四实施例的用于处理单载波调制的信号和多载波调制的信号的数字多媒体接收机的方框图。
[0079] 参照图8,该数字多媒体接收机包括调谐器810、ADC 820、滤波器系数单元830、接收滤波器840、解调单元850、和信道解码器860。
[0080] 调谐器810调谐(下变换)经天线接收到的多媒体信号。
[0081] ADC 820通过采样、量化、和编码将由调谐器810调谐的信号转换为数字信号。
[0082] 滤波器系数单元830根据调制模式指示来提供滤波器系数集。滤波器系数单元830包括滤波器系数存储器831和滤波器系数上载器832。
[0083] 滤波器系数存储器831存储了分别与单载波调制模式和多载波调制模式相应的两个滤波器系数集。滤波器系数上载器832根据调制模式指示从滤波器系数存储器831读出滤波器系数集并且将其上载到接收滤波器840。
[0084] 接收滤波器840根据由滤波器系数存储器831提供的与单载波调制模式或多载波调制模式相应的滤波器系数集,将来自ADC 820的数字信号滤波。接收滤波器840可以是平方根升余弦(SRRC)滤波器。用作与发送端SRRC滤波器相匹配的SRRC滤波器通过匹配信号将信噪比最大化。
[0085] 解调单元850根据调制模式指示来解调由接收滤波器840滤波的数字信号。解调单元850包括第一开关851、OQAM解调器852、FFT单元853、QAM解调器854、和第二开关855。
[0086] 第一开关851根据调制模式指示来选择OQAM解调器852和FFT单元853之一。更具体地讲,如果调制模式指示是单载波调制模式指示,即,如果由接收滤波器840滤波的信号是单载波调制模式的信号,那么第一开关851选择OQAM解调器852。OQAM解调器852解调由接收滤波器840滤波的信号。如果调制模式指示是多载波调制模式指示,即,如果由接收滤波器840滤波的信号是多载波调制模式的信号,那么第一开关851选择FFT单元853。FFT单元853对由接收滤波器840滤波的信号执行FFT变换,然后QAM解调器854解调由FFT单元853 FFT变换的信号。
[0087] 第二开关855根据调制模式指示来选择OQAM解调器852和QAM解调器854中的一个。更具体地讲,如果调制模式指示是单载波调制模式指示,那么第二开关855选择OQAM解调器852的输出信号以将其输出到信道解码器860。如果调制模式指示是多载波调制模式指示,那么第二开关855选择QAM解调器854的输出信号以将其输出到信道解码器860。
[0088] 信道解码器860解码由解调单元850解调的信号。信道解码器860可以是LDPC解码器。
[0089] 另外,第一开关851可被省略。在这种情况下,OQAM解调器852和QAM解调器854或两者之一工作。详细地,由接收滤波器840滤波的信号同时输入到OQAM解调器852和FFT单元853,OQAM解调器852和FFT单元853或两者之一被允许工作。
[0090] 此外,在本实施例中,解调器852也可以是QAM解调器。
[0091] 现在将参照图9来详细地描述图8中所示的数字多媒体接收机的操作过程。图9是根据本发明第四实施例的在图8所示的数字多媒体接收机中执行的数字多媒体接收方法的流程图。
[0092] 参照图9,在步骤S910中,接收到的信号被调谐(下变换)。在步骤S920中,调谐(下变换)的信号被转换为数字信号。
[0093] 在步骤S930中,该数字信号根据调制模式指示被滤波。更具体地讲,根据调制模式指示提供滤波器系数集,并且基于该滤波器系数集将数字信号滤波。
[0094] 在步骤S940中,滤波后的数字信号根据调制模式指示被解调。详细地,如果调制模式指示是单载波调制模式指示,那么滤波后的信号通过OQAM解调来被解调,如果调制模式指示是多载波调制模式指示,那么滤波后的信号通过FFT和QAM解调来被解调。
[0095] 最后,在步骤S950中,解调后的信号被解码。
[0096] 此外,在步骤S940中,如果调制模式指示是单载波调制模式指示,那么滤波后的信号也可以通过QAM解调来被解调。
[0097] 由于共用滤波器用于单载波调制的信号和多载波调制的信号,所以数字多媒体接收机的实现被简化,并且数字多媒体接收机的处理性能被提高。
[0098] 图10是表示根据本发明第五实施例的用于处理单载波调制的信号和多载波调制的信号的数字多媒体接收机的结构的方框图。
[0099] 图10所示的数字多媒体接收机包括调谐器1010、ADC 1020、同步单元1030、解调单元1040、选择器1050、和信道解码器1060。
[0100] 调谐器1010对接收的多媒体信号调谐到相应的波段。ADC 1020通过采样和量化将经调谐的模拟信号转换为数字信号。
[0101] 同步单元1030以调制模式指示对ADC 1020转换的数字信号进行同步。
[0102] 解调单元1040将从同步单元1030同步的信号解调。解调单元1040包括第一解调块1041和第二解调块1042。第一解调块1041和第二解调块1042分别可解调接收的单载波调制的信号和多载波调制的信号。基于调制模式指示,所述两个解调块的与调制模式相应的解调块被启动。
[0103] 第一解调块1041包括用于均衡从同步单元1030同步的单载波调制的信号的第一均衡单元1043和用于解调从第一均衡单元1043均衡的信号的OQAM单元1044。第一均衡单元1043还包括第一均衡滤波器1043a和系数更新器1043b。
[0104] 第一均衡滤波器1043a使用由系数更新器1043b提供的均衡系数对从同步单元1030同步的信号进行均衡。系数更新器1043b使用从同步单元1030同步的信号、均衡器的输出、和参考信号进行均衡系数的计算的估计。
[0105] 在单载波调制模式中,第一均衡滤波器1043a使用由系数更新器1043b提供的均衡系数对从同步单元1030同步的信号进行均衡。第一均衡滤波器1043a的输出被输入到OQAM单元1044并且在其中被解调。从OQAM单元1044解调的信号被输入到选择器1050以供选择。系数更新器1043b检测从同步单元1030同步的信号、均衡器输出和参考信号,并更新均衡系数,以及将均衡系数信息提供给均衡滤波器1043a。
[0106] 在此,预定的信号,如PN序列被用作参考信号。如果第一均衡单元1043处于直接判断模式(decision-directed mode),那么OQAM解调输出被用作参考信号。
[0107] 均衡系数依据所使用的均衡算法而不同。因此系数更新器1043b的实现由所使用的均衡滤波器的种类决定。在现有的用于单载波调制的信号的均衡的算法,例如线性均衡、频域均衡和决定反馈均衡(decision-feedbackequalization)中,使用DFE算法更好。在处理单载波调制的信号时,DFE滤波器的使用提供提出的解调装置的更好的性能。
[0108] OQAM单元1044可用QAM模式解调器代替。
[0109] 另一方面,第二解调块1042包括用于将同步的多载波调制的信号从时域转换到频域的FFT单元,用于均衡转换的信号的第二均衡单元1046,和用于解调从第二均衡单元1046均衡的信号的QAM单元1047。第二均衡单元1046进一步包括第二均衡滤波器1046a和信道估计器1046b。
[0110] 在多载波调制模式中,信道估计器1046b使用参考信号进行估计,在此种情况下,从同步单元1030同步的信号中提取的PN序列被用作参考信号,并且将信道估计信息提供给第二均衡滤波器1046a。FFT单元1045 FFT转换从同步单元1030同步的信号。第二均衡滤波器1046a使用来自信道估计器1046b的信道估计信息均衡FFT转换的信号。QAM单元1047以QAM模式解调第二均衡滤波器1046a均衡的信号以产生解调的信号作为选择器1050的输入,以供根据调制模式指示来选择。
[0111] 实际上,其它预定的信号,如导频子载波可用作参考信号。导频子载波是从FFT单元1045的输出检测到的。
[0112] 选择器1050从OQAM单元1044和QAM单元1047的输出中选择与调制模式指示相应的输出信号以作为信道解码器1060的输入。
[0113] 信道解码器1060将解调的信号解码并输出该信号。在此,LDPC解码器可用作信道解码器。
[0114] 由此,图10所示的解调单元具有均衡信号的能力,可解调接收的单载波调制的信号和多载波调制的信号。
[0115] 使用图10所示的解调单元可基于单载波调制模式和多载波调制模式补偿信道失真。从而,可提高用于该两种模式的数字多媒体接收机的性能,并且减少信道误差。
[0116] 为了降低能够处理单载波调制的信号和多载波调制的信号的数字多媒体接收机的成本,可以使用一个共用的ADC。但是,由于单载波调制模式和多载波调制模式独特的性质,这两种调制模式的码元率不同。因此,在数字多媒体接收机的处理路径中,共用ADC的输出应该被抽取为适合于单载波调制模式和多载波调制模式的不同的码元率。
[0117] 例如,假设ADC的采样率为r1,单载波调制模式和多载波调制模式的码元率分别为r2和r3。单载波调制模式的抽取率N:1等于r1:r2,多载波调制模式的抽取率M:1等于r1:r3。因为r3小于r2,所以M大于N。
[0118] 图11是显示根据本发明第六实施例的用于处理单载波调制的信号和多载波调制的信号的数字多媒体接收机的方框图。
[0119] 参照图11,该数字多媒体接收机包括调谐器1110、ADC 1120、抽取单元1130、解调单元1140、和信道解码器1150。
[0120] 调谐器1110调谐(下变换)经天线接收到的多媒体信号。
[0121] ADC 1120通过采样、量化、和编码将由调谐器1110调谐的信号转换为数字信号。
[0122] 抽取单元1130根据调制模式指示抽取来自ADC 1120的数字信号。抽取单元1130包括第一开关1131、第一抽取器1132、和第二抽取器1133。
[0123] 第一开关1131根据调制模式指示选择第一抽取器1132和第二抽取器1133中的一个。更具体地讲,如果调制模式指示是单载波调制模式指示,那么第一开关1131选择第一抽取器1132,第一抽取器1132接收经过第一开关1131的数字信号。第一抽取器1132以N:1抽取来自ADC 1120的数字信号。如果调制模式指示是多载波调制模式指示,那么第一开关1131选择第二抽取器1133,第二抽取器1133接收经过第一开关1131的数字信号。第二抽取器1133以M:1抽取来自ADC 1120的数字信号。这里,相应于单载波调制模式和多载波调制模式来分别预定N和M。
[0124] 解调单元1140解调由抽取单元1130抽取的信号。解调单元1140包括OQAM解调器1141、FFT单元1142、QAM解调器1143、和第二开关1144。
[0125] OQAM解调器1141将由第一抽取器1132抽取的信号解调。FFT单元1142对由第二抽取器1133抽取的信号执行FFT变换,并且QAM解调器1143将由FFT单元1142 FFT变换的信号解调。
[0126] 第二开关1144根据调制模式指示来选择OQAM解调器1141和QAM解调器1143中的一个。第二开关1144的功能与图8中的第二开关855的功能相同,因此省略了对它的详细描述。
[0127] 信道解码器1150解码由解调单元1140解调的信号。信道解码器1150可以是LDPC解码器。
[0128] 另外,与图8类似,第一开关1131可以省略。
[0129] 此外,在本实施例中,解调器1141也可以是QAM解调器。
[0130] 现在将参照图12来详细地描述图11中所示的数字多媒体接收机的操作过程。图12是根据本发明第六实施例的在图11中所示的数字多媒体接收机中执行的数字多媒体接收方法的流程图。
[0131] 参照图12,在步骤S1210中,接收到的信号被调谐(下变换)。在步骤S1220中,调谐(下变换)的信号被转换为数字信号。
[0132] 在步骤S1230中,数字信号根据调制模式指示被抽取。详细地,如果调制模式指示是单载波调制模式指示,那么数字信号被以N:1抽取,如果调制模式指示是多载波调制模式指示,那么数字信号被以M:1抽取。这里,相应于单载波调制模式和多载波调制模式来分别预定N和M。
[0133] 在步骤S1240中,抽取后的信号被解调。更具体地讲,如果调制模式指示是单载波调制模式指示,那么N:1抽取后的信号通过OQAM解调被解调。如果调制模式指示是多载波调制模式指示,那么M:1抽取后的信号通过FFT变换和QAM解调被解调。
[0134] 最后,在步骤S1250中,解调后的信号被解码。
[0135] 此外,在步骤S1240中,如果调制模式指示是单载波调制模式指示,那么N:1抽取后的信号也可以通过QAM解调被解调。
[0136] 由于抽取器分别将采样率与单载波调制的信号和多载波调制的信号的码元率成比例地转换,所以在数字多媒体接收机只使用一个共用的ADC。因此,数字多媒体接收机的硬件实现被简化,并且单载波调制的信号和多载波调制的信号能够被正确地处理。
[0137] 可以通过使用数据交织器来提高纠错编码的效率。数据交织器分散了突发错误。因为根据不同的调制模式,数据帧结构不同,所以限定数据交织器功能的参数可以不同,以用于单载波调制模式和多载波调制模式。因此,在数字多媒体接收机中,用于去交织器的参数应该根据不同的调制模式而改变。另外,LDPC码由于其超强纠错能力可以用于单载波调制模式和多载波调制模式。
[0138] 图13是显示根据本发明第七实施例的用于处理单载波调制的信号和多载波调制的信号的数字多媒体接收机的方框图。
[0139] 参照图13,该数字多媒体接收机包括调谐器1310、ADC 1320、解调单元1330、去交织器1340、和LDPC解码器1350。
[0140] 调谐器1310调谐(下变换)经天线接收到的多媒体信号。
[0141] ADC 1320通过采样和量化将由调谐器1310调谐的信号转换为数字信号。
[0142] 解调单元1330根据调制模式指示解调来自ADC 1320的数字信号。解调单元1330包括第一开关1331、OQAM解调器1332、FFT单元1333、QAM解调器1334、和第二开关1335。
[0143] 第一开关1331根据调制模式指示来选择OQAM解调器1332和FFT单元1333之一。更具体地讲,如果调制模式指示是单载波调制模式指示,即,如果多媒体信号是单载波调制模式,那么第一开关1331选择OQAM解调器1332。OQAM解调器1332解调来自ADC 1320的数字信号。如果调制模式指示是多载波调制模式指示,即,如果多媒体信号是多载波调制模式,那么第一开关1331选择FFT单元1333。FFT单元1333对来自ADC 1320的数字信号执行FFT变换。QAM解调器1334解调由FFT单元1333 FFT变换的信号。
[0144] 去交织器1340根据调制模式指示去交织解调的信号。更具体地讲,去交织解调的功能由其参数确定。具有同一结构的去交织器1340能够通过使用相应于单载波调制模式和多载波调制模式的不同参数,来将解调的信号去交织。即,相应于以上两种调制模式的不同参数根据调制模式指示施加给交织器1340。
[0145] 因此,只有一个去交织器用于处理单载波调制的信号和多载波调制的信号。因此,去交织器1340的参数应该根据调制模式指示来被确定。
[0146] LDPC解码器1350将由去交织器1340去交织的信号解码。LDPC解码器1350也可以被其它类型的解码器取代。
[0147] 另外,与图9的情况类似,第一开关1331可以省略。
[0148] 此外,在本实施例中,解调器1332也可以是QAM解调器。
[0149] 图14是根据本发明第七实施例的在图13所示的数字多媒体接收机中执行的数字多媒体接收方法的流程图。
[0150] 参照图14,在步骤S1410中,接收到的信号被下变换。在步骤S1420中,下变换的信号被转换为数字信号。
[0151] 在步骤S1430中,该数字信号根据调制模式指示被解调。详细地,如果调制模式指示是单载波调制模式指示,那么该数字信号通过OQAM解调来被解调,如果调制模式指示是多载波调制模式指示,那么该数字信号通过FFT变换和QAM解调来被解调。
[0152] 在步骤S1440中,根据调制模式指示将解调的信号去交织。在这种情况下,根据调制模式指示来确定和施加去交织参数。
[0153] 最后,在步骤S1450中,解调后的信号被LDPC解码。
[0154] 此外,在步骤S1430中,如果调制模式指示是单载波调制模式指示,那么该数字信号也可以通过QAM解调来被解调。
[0155] 由于只有一个去交织器用于单载波调制的信号和多载波调制的信号,所以数字多媒体接收机的实现被简化。此外,因为在数字多媒体接收机中使用了具有超强纠错能力的LDPC解码器,所以数字多媒体接收机的处理性能被提高。
[0156] 图15是表示根据本发明第八实施例的用于处理单载波调制的信号或多载波调制的信号的数字多媒体接收机的框图。
[0157] 参照图15,数字多媒体接收机包括:调谐器1510,用于将接收到的多媒体信号调谐到相应频段;ADC 1520,用于将从调谐器1510输出的调谐的信号转换为数字信号;解调器1530,用于解调来自ADC 1520的数字信号;码元去映射器1540,用于将从解调器1530输出的解调的信号去映射;和LDPC解码器1550,用于将来自码元去映射器1540的信号解码并输出得到的信号。
[0158] 在要求在无错的情况下传输高清晰度的视频/音频的比特流的数字多媒体传输系统中,使用强大的纠错码以减少比特错误率非常重要。LDPC码作为一种纠错码具有较强的纠错能力,因此,LDPC码可以与相应于单载波调制模式或多载波调制模式的数字多媒体传输系统相结合。
[0159] 在数字多媒体发射机使用LDPC编码器以提高纠错能力的情况下,在接收机中应相应地使用LDPC解码器。在这种情况下,可得到改善的接收性能。
[0160] 当接收到的多媒体信号是单载波调制的信号时,码元去映射器1540是OQAM码元去映射器或QAM码元去映射器。
[0161] 当接收到的多媒体信号是多载波调制的信号时,码元去映射器1540是QAM码元去映射器。
[0162] 通过使用上述接收机,可得到改善的纠错能力。
[0163] 如上所述,根据本发明的一方面,数字多媒体接收机可以处理单载波调制的信号和多载波调制的信号,而具有简化的结构和高的接收性能。
[0164] 根据本发明的另一方面,通过使用LDPC解码器,数字多媒体接收的解码性能显著提高。
[0165] 虽然已参照具体实施例表示和描述了本发明,但是本领域的技术人员应该理解,在不脱离由所附权利要求限定的本发明的精神和范围的情况下,可以对其进行各种形式和细节的修改。