效能提高的结核病疫苗转让专利

申请号 : CN200480010664.0

文献号 : CN1798762B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : L·格罗德S·H·E·考夫曼B·劳帕赫J·赫斯

申请人 : 马普科技促进协会

摘要 :

本发明涉及新型重组疫苗,它提供针对结核病的免疫保护。另外,本发明还涉及新的核酸分子、包含所述核酸分子的载体、用所述核酸分子转化的细胞和由所述核酸分子编码的多肽。

权利要求 :

1.一种脲酶缺陷型细菌细胞,包含编码融合多肽的重组核酸分子,该融合多肽包含(a)来自多肽的至少一个结构域,其中所述多肽结构域能够在哺乳动物中引发免疫反应,和(b)吞噬溶酶体逃逸结构域。

2.权利要求1的细胞,其中至少一个细胞脲酶亚基编码核酸序列被失活。

3.权利要求2的细胞,其中至少细胞脲酶C亚基编码序列被失活。

4.权利要求1的细胞,其中所述吞噬溶酶体逃逸结构域是李斯特氏菌吞噬溶酶体逃逸结构域。

5.权利要求1的细胞,其中所述吞噬溶酶体结构域由选自以下的核酸分子编码:(a)包含SEQ ID No.1所示的核苷酸211-1722的核苷酸序列,(b)编码与(a)中序列相同氨基酸序列的核苷酸序列,和(c)在严紧条件下与(a)或(b)中序列杂交的核苷酸序列。

6.权利要求1的细胞,其中能够引发免疫反应的结构域是能引发MHC I型限制的CD8T细胞反应的肽或多肽。

7.权利要求1的细胞,其中能够引发免疫反应的结构域来自分枝杆菌多肽。

8.权利要求7的细胞,其中能够引发免疫反应的结构域选自分枝杆菌抗原Ag85B(结核分枝杆菌),Ag85B(牛型分枝杆菌),Ag85A(结核分枝杆菌)和ESAT-6(结核分枝杆菌),或其免疫原性片段。

9.权利要求8的细胞,其中能够引发免疫反应的结构域是抗原Ag85B或其免疫原性片段。

10.权利要求1的细胞,其中融合多肽之前有信号肽序列。

11.权利要求1的细胞,其中连接肽位于引发免疫反应的结构域和吞噬溶酶体结构域之间。

12.权利要求1的细胞,其中所述核酸分子与表达控制序列有效连接。

13.权利要求12的细胞,其中所述表达控制序列在所述细胞中有活性。

14.权利要求1的细胞,其中所述核酸分子位于载体上。

15.权利要求1的细胞,它是分枝杆菌细胞。

16.权利要求15的细胞,它是牛型分枝杆菌细胞。

17.一种脲酶缺陷型细菌细胞,包含至少一种编码吞噬溶酶体逃逸肽或多肽的重细核酸分子,其特征在于,所述细菌细胞选自分枝杆菌细胞。

18.权利要求17的细胞,其包含至少另一种编码能够在哺乳动物中引发免疫反应的肽或多肽的重组核酸分子。

19.权利要求17的细胞,它是牛型分枝杆菌细胞。

20.权利要求1或17的细胞,其中能够引发免疫反应的结构域或肽或多肽选自自身抗原、肿瘤抗原、病毒抗原、寄生虫抗原、细菌抗原和其免疫原性片段。

21.权利要求1或17的细胞,它能够表达所述至少一种重组核酸分子。

22.权利要求21的细胞,它能够分泌由所述的至少一种核酸分子编码的多肽。

23.权利要求1或22的细胞,它在被感染的巨噬细胞中的胞内存留时间,等于或少于天然的分枝杆菌细胞的胞内存留时间。

24.一种包含权利要求1或17的细胞作为活性剂的药物组合物,任选地组合有药学可接受的稀释剂、载体和佐剂。

25.权利要求24的组合物,它是适于给药于粘膜表面或通过肠胃外的途径给药的活疫苗。

26.制备活疫苗的方法,包括将药学有效量的权利要求1或17的细胞与药学上可接受的稀释剂、载体和佐剂配置在一起。

27.制备权利要求1的重组细菌细胞的方法,包含以下步骤:(i)提供脲酶缺陷细菌细胞;

(ii)向所述细菌细胞中插入重组核酸分子,所述核酸分子编码融合多肽,该融合多肽包括(a)来自多肽的至少一个结构域,所述结构域能够在哺乳动物中引发免疫反应,和(b)吞噬溶酶体逃逸结构域,以及(iii)在适当条件下培养通过步骤(ii)得到的细胞。

28.权利要求27的方法,其中所述细胞是牛型分枝杆菌细胞。

29.一种制备权利要求17的重组细菌细胞的方法,包含如下步骤:(i)提供脲酶-缺陷型细菌细胞;

(ii)向所述细菌细胞中插入重组核酸分子,所述核酸分子编码吞噬溶酶体逃逸肽或多肽,和(iii)在适当条件下培养通过(ii)所得到的细胞,其特征在于,所述细菌细胞选自分枝杆菌细胞。

30.权利要求29的方法,包括向细菌细胞中插入至少一种另外的重组核酸分子,所述另外的重组核酸分子编码能够在哺乳动物中引发免疫反应的肽或多肽。

31.权利要求27或29的方法,其中能够引发免疫反应的结构域或肽或多肽选自自身抗原、肿瘤抗原、病毒抗原、寄生虫抗原、细菌抗原和免疫原性片段。

32.根据权利要求1-23的任一项的细菌细胞制造活疫苗的用途。

33.权利要求32的用途,用于制造免疫缺陷对象所用的疫苗。

34.权利要求33的用途,用于制造遭受HIV感染的对象所用的疫苗。

35.权利要求32的用途,用于制造肿瘤疫苗。

36.权利要求35的用途,用于制造针对表浅膀胱癌的疫苗。

37.权利要求32的用途,用于制造兽医领域的疫苗。

说明书 :

本发明涉及一种提供特别针对结核病的保护性免疫的新型重组疫苗。

由结核分枝杆菌引起的结核病(TB)依然是一个重要的全球性难题。据估计,全世界人口中有三分之一的人被结核分枝杆菌感染(Kodhi,1991)。在许多国家,控制TB的唯一手段是接种牛型分枝杆菌卡介苗(BCG)。然而,BCG对于TB的总疫苗有效率大约50%,在不同的实地试验中有效率从0%-80%变化极大(Roche等,1995)。因此,应当对BCG进行改进,例如通过遗传工程的方法,以提供能更好控制TB的疫苗(Murray等,1996;Hess和Kaufmann,1993)。多重抗药性结核病株的广泛出现更突出了对于新型TB疫苗的急迫需求(Grange,1996)。

结核分枝杆菌属于细胞内细菌群,在静息的巨噬细胞的吞噬泡中复制,因此针对TB的保护依赖于T细胞介导的免疫(Kaufmann,1993)。然而,一些小鼠和人体的研究显示,分枝杆菌刺激抗原特异性的、主要组织相容性复合物(MHC)II型或I型分别限制的CD4或CD8 T细胞(Kaufmann,1993)。

MHC I型限制的CD8 T细胞的重要作用通过β2-微球蛋白(β2m)缺陷型小鼠控制实验性结核分枝杆菌感染的失败而得到令人信服的证实(Flynn等,1993)。由于这些突变小鼠缺少MHC I型,不能发育出有功能的CD8 T细胞。和结核分枝杆菌感染形成对照的是,β2m-缺陷型小鼠能够控制一定剂量BCG疫苗株的感染(Flynn等,1993;Ladel等,1995)。另外,接种了BCG,然后再进行结核分枝杆菌感染的β2m-缺陷型小鼠存活期延长,因为BCG使C57BL/6产生了对TB的免疫性(Flynn等,1993)。结核分枝杆菌和BCG之间不同的CD8 T细胞依赖性可作如下解释:结核分枝杆菌抗原比来自BCG的抗原更容易进入细胞质,导致更明确的MHC I型呈递(Hess和Kaufmann)。因此,结核分枝杆菌产生更为有效的CD8 T细胞反应。这种看法近来得到了证实:卵清蛋白作为一种无关的抗原,在与结核分枝杆菌同时感染抗原呈递细胞(APC)时,比与BCG同时感染APC更能使MHC I型呈递提高(Mazzaccaro等,1996)。

结核分枝杆菌的分泌蛋白包含有价值的MHC I型呈递抗原来源。近来,一种编码分泌性抗源Ag85A的DNA疫苗在小鼠体内引发MHC I型限制的CD8 T细胞反应,可能有助于预防TB(Huygen等,1996)。总之,证据在增加,在豚鼠和小鼠体内用结核杆菌的分泌性蛋白抗原接种诱导了一些针对TB的保护作用(Horwitz等,1995;Andersen等,1994)。因此,开发基于BCG的改进的TB疫苗的一个重要目标,是使分泌的BCG-特异性抗原提高进入被感染的APC的细胞质的能力。随之发生的衍生自这些分泌蛋白的肽进入MHC I型呈递途径的递送可能增强本已存在的BCG-特异性的抵抗TB的免疫反应。

单核细胞增生李斯特氏菌从吞噬溶酶体的逃逸代表了一种利于MHC I型对李斯特氏菌抗原的抗原呈递的独特机制(Berche等,1987;Portnoy等,1988)。李斯特菌溶胞素(Hly),一种巯基活化的成孔溶细胞素,对于单核细胞增生李斯特氏菌的微生物体从吞噬溶酶体泡中进入宿主细胞的胞质溶胶是必不可少的(Gaillard等,1987;Portnoy等,1988)。这种逃逸功能近来被转化到枯草杆菌和减毒的沙门氏菌株中(Bielecki等,1991;Gentschev等,1995;Hess和Kaufmann,1997)。不产孢子的枯草杆菌突变株或者沙门氏菌属物种表达Hly导致从吞噬溶酶体进入J774巨噬细胞样细胞的胞质溶胶中的细菌性逃逸(Bielecki等,1991;Gentschev等,1995;Hess和Kaufmann,1997)。

WO 99/101496以及Hess等(1988)公开了生物性地分泌活性李斯特菌溶胞素融合蛋白的重组牛型分枝杆菌菌株。这些牛型分枝杆菌菌株在一些动物模型中已经被证实是有效的抗TB疫苗。

根据本发明,Hly是在脲酶-缺陷型BCG菌株上进行表达。这些脲酶-缺陷型BCG菌株在吞噬体内表现出升高的Hly活性,内体膜上孔形成的增强反过来导致突出的免疫保护性。另外,脲酶-缺陷型BCG-Hly菌株参与凋亡过程,这也可能有助于增强免疫保护。因此,这种脲酶-缺陷型BCG菌株具有进一步提高的免疫能力。另外,意外地发现,脲酶-缺陷型BCG菌株与BCG亲本株相比展现出提高的安全性,这使它特别适合于对免疫缺陷对象进行接种。

本发明的第一个方面是一种细菌细胞,特别是一种脲酶缺陷型的,包含编码一种融合多肽的重组核酸分子的分枝杆菌细胞,该融合多肽包含(a)来自多肽的至少一个结构域,其中所述多肽结构域能够在哺乳动物中引发免疫反应,和(b)一个吞噬溶酶体逃逸结构域。优选的,该细胞能够表达本发明的核酸分子。更优选的,该细胞能够分泌该融合多肽和/或能够以适合MHC I型限制抗原识别的形式提供该融合多肽。

本发明的细菌细胞是一种脲酶-缺陷型细胞,例如革兰氏阴性菌细胞或革兰氏阳性菌细胞,优选的是分枝杆菌细胞。脲酶缺陷可通过使一个或几个编码脲酶亚基的细胞核酸分子部分或全部失活而获得,特别是编码脲酶A亚基的ureA,编码脲酶B亚基的ureB和/或编码脲酶C亚基的ureC。分枝杆菌,特别是牛型分枝杆菌和结核分枝杆菌中ureA,ureB和ureC的序列以及它们所编码的蛋白已经在Reyrat等(1995)和Clemens等(1995)的文献中记载,通过引用将该文献并入本申请。

优选的脲酶缺陷型菌株是通过在编码脲酶亚基的核酸序列和/或它们的表达控制序列中删除和/或插入一个或几个核苷酸而得到。删除和/或插入可通过同源重组、转座子插入或其它适当的方法产生。

在一个特别优选的实施例中ureC序列被失活,例如,按照Reyrat等(1995)的方法,通过构建一个含有被选择性标记基因打断的ureC基因的自杀载体,用该载体转染靶细胞,筛选出具有脲酶阴性表现型的阳性选择性标记细胞。

本发明的细胞优选的是牛型分枝杆菌细胞、结核分枝杆菌细胞,特别是减毒的结核分枝杆菌细胞或其他分枝杆菌,例如田鼠分枝杆菌(M.microti)、耻垢分枝杆菌(M.smegmatis)、M.canettii、海分枝杆菌(M.marinum)、或偶发分枝杆菌(M.fortuitum),或者如Reyrat等(1995)所描述的分枝杆菌。

本发明的分枝杆菌细胞包含重组的核酸分子,例如,SEQ ID No.1的核酸分子。该核酸分子包含信号肽编码序列(核苷酸1-120)、编码免疫原性结构域的序列(核苷酸121-153)、连接肽编码序列(核苷酸154-210)、编码吞噬溶酶体结构域的序列(核苷酸211-1722)、另外的连接肽编码序列(核苷酸1723-1800)和编码随机肽的序列(核苷酸1801-1870)。相应的氨基酸序列在SEQ ID No.2中示出。

该核酸包含至少一个来自多肽的免疫原性结构域。该免疫原性结构域可衍生自分枝杆菌属的生物,优选地衍生自结核分枝杆菌或牛型分枝杆菌。该结构域的长度至少有6个氨基酸,优选至少8个氨基酸。该免疫原性结构域优选地是天然分枝杆菌多肽的一部分。但是,本发明的范围也包括经修饰的免疫原性结构域,它是由天然免疫原性结构域经过替换、删除和/或添加一个或几个氨基酸衍生而来。

然而该免疫原性结构域不限于分枝杆菌抗原,可以选自身抗原、肿瘤抗原和病原体抗原,一般如病毒抗原、寄生虫抗原、细菌抗原和其免疫原性片段。适合的肿瘤抗原的特定实例是人肿瘤抗原,例如p53肿瘤抑制基因产物(Houbiers等,1993),以及黑色素细胞分化抗原,如Melan-A/MART-1和gp100(van Elsas等,1996)。适合的病毒抗原的特定实例是人肿瘤病毒抗原,例如人乳头状瘤病毒抗原,如抗原E6和E7(Bosch等,1991);流感病毒抗原,如流感病毒核蛋白(Matsui等,1995;Fu等,1997);或逆转录病毒抗原,例如HIV抗原,如HIV-1抗原p17、p24、RT和Env(Harrer等,1996;Haas等,1996)。适合的寄生虫抗原的特定实例是疟原虫抗原如来自恶性疟原虫的肝期抗原(LSA-1)、环子孢子蛋白(CS或等位变体cp26或cp29)、血小板反应素相关匿名蛋白(TRAP)、子孢子苏氨酸及天冬酰胺富集蛋白(STARP)(Aidoo等,1995),以及弓形体抗原例如来自鼠弓形体的p30(Khan等,1991;Bulow和Boothroyd等,1991)。适合的细菌抗原的特定实例是军团菌抗原例如来自嗜肺性军团病杆菌的主要分泌蛋白(Blander和Horwitz,1991)。

免疫原性结构域能够在哺乳动物中引发免疫反应。免疫反应可以是B细胞介导的免疫反应。但是,优选的,免疫原性结构域能够引发T细胞介导的免疫反应,更优选能引发MHC I型限制的CD8 T细胞反应。

能够引发免疫反应的结构域更优选选自来自牛型分枝杆菌或结核分枝杆菌的免疫原性肽或多肽或来自其免疫原性片段。合适抗原的特定实例是来自结核分枝杆菌的Ag85B(p30)(Harth等,1996)、来自牛型分枝杆菌BCG的Ag85B(α-抗原)(Matsuo等,1988)、来自结核分枝杆菌的Ag85A(Huygen等,1996),以及来自结核分枝杆菌的ESAT-6(Sorensen等,1996;Harboe等,1996;和Andersen等,1995)。更优选,该免疫原性结构域衍生自抗原Ag85B。最优选地,该免疫原性结构域包含SEQ ID No.2中41位氨基酸至51位氨基酸的序列。

根据本发明的重组核酸分子进一步包含吞噬溶酶体逃逸结构域,即,可使融合多肽从吞噬溶酶体中逃逸进入哺乳动物细胞的胞质溶胶的多肽结构域。优选地,该吞噬溶酶体逃逸结构域是李斯特氏菌吞噬溶酶体逃逸结构域,该结构域记载于US 5,733,151,通过引用合并在此。更优选,该吞噬溶酶体逃逸结构域衍生自单核细胞增多性李斯特氏菌有机体。最优选,该吞噬溶酶体结构域由选自以下的核酸分子编码:(a)包含SEQ ID No.1所示的核苷酸211-1722的核苷酸序列,(b)编码与(a)编码的序列相同的氨基酸序列的核苷酸序列,和(c)在严紧条件下与来自(a)或(b)的序列杂交的核苷酸序列。

除了SEQ ID No.1中所描述的核苷酸序列之外,本发明还包括与之杂交的核酸序列。在本发明中,术语“杂交”按照Sambrook等的定义(分子克隆实验指南,Cold Spring Harbor Laboratory Press(1989),1.101-1.104)使用。依照本发明,如果在用1×SSC和0.1%SDS洗涤1小时,温度为55℃,优选62℃,更优选68℃;特别是用0.2×SSC和0.1%SDS洗涤1小时,温度为55℃,优选62℃,更优选68℃,之后,仍可观察到阳性杂交信号,则使用术语“杂交”。在以上洗涤条件下与按照SEQ ID No.1的核苷酸序列杂交的序列是本发明优选的吞噬溶酶体逃逸结构域编码核苷酸序列。

如上所述的编码吞噬溶酶体逃逸结构域的核苷酸序列可以直接获自李斯特氏菌有机体或任何重组来源,如包含如上所述相应李斯特氏菌核酸分子或其变体的重组大肠杆菌细胞。

优选地,编码融合多肽的重组核酸分子包含信号肽编码序列。更优选地,该信号序列是在分枝杆菌中有活性、优选的在牛型分枝杆菌中有活性的信号序列,例如天然的牛型分枝杆菌信号序列。合适的信号序列的优选实例是编码Ag85B信号肽的核苷酸序列,是SEQ ID No.1所描述的序列中核苷酸1-120。

另外,优选在免疫原性结构域和吞噬溶酶体逃逸结构域之间具有一个连接肽。优选,所述的连接肽具有5到50个氨基酸的长度。更优选,一个编码连接肽的如SEQ ID No.1所述从核苷酸154至210,或者依照遗传密码简并性而与之相应的序列。

该核酸可位于重组载体中。优选该重组载体是原核载体,也就是含有在原核细胞内用于复制和/或基因组整合的元件的载体。优选该重组载体携带与表达控制序列有效连接的本发明的核酸分子。该表达控制序列优选是在分枝杆菌、特别是牛型分枝杆菌中有活性的表达控制序列。该载体可以是染色体外的载体或者是适合于整合入染色体的载体。这种载体的实例对于本领域的技术人员是熟知的,例如,以上Sambrook等所给出的例子。

本发明进一步的方面提供一种脲酶缺陷型细菌细胞,如分枝杆菌细胞,优选的提供一种牛型分枝杆菌细胞,其包含至少一种编码吞噬溶酶体逃逸肽或多肽的核酸分子。即使该吞噬溶酶体逃逸肽或多肽没有与抗原融合,也可发现其免疫原性出人意料地提高。

根据本发明进一步的方面提供的重组细菌细胞可以包含至少一种进一步的重组分子,例如编码能够在哺乳动物中引发免疫反应的肽或多肽的异源核酸分子。所述进一步的免疫原性肽或多肽可以选自分枝杆菌抗原,或更广义地来讲,选自自身抗原、肿瘤抗原、病原体抗原及其免疫原性片段。编码该进一步的肽或多肽的核酸分子可以与融合基因一样位于同一载体内。但是,例如,它也可以独立于所述融合基因位于不同的质粒内,或整合到染色体中。

出人意料的是,发现本发明的分枝杆菌细胞在被感染的细胞如巨噬细胞中的胞内存留时间,等于或少于相应不含重组核酸分子的天然分枝杆菌细胞的胞内存留时间。

本发明还涉及一种包含上述细胞作为活性剂的药物组合物,任选地组合有药学可接受的稀释剂、载体和佐剂。优选的是,该组合物是活疫苗,适于给药于哺乳动物,优选人。实际选择的接种疫苗方法依赖所选择的接种疫苗载体。给药可以一次剂量完成,也可以间隔重复。合适的剂量取决于如疫苗载体本身或给药的途径等各种参数。可选择给药至粘膜表面(例如,眼睛、鼻、口、胃、肠、直肠、阴道,或尿道)或通过肠胃外的途径(例如,皮下、皮内、肌肉内、静脉内或腹膜内)。

另外,本发明关于制备上面所阐述的重组细菌细胞的方法。根据第一个方面,该方法包括如下步骤:(i)提供脲酶-缺陷型细菌细胞,特别是分枝杆菌细胞,(ii)向所述细菌细胞中插入重组核酸分子,所述核酸分子编码融合蛋白,该融合蛋白包括(a)来自多肽的至少一个结构域,所述结构域能够在哺乳动物中引发免疫反应,和(b)吞噬溶酶体逃逸结构域,以及(iii)在适当条件下培养通过步骤(ii)得到的细胞。优选得到的细胞能够表达所述的核酸分子。更优选所述细胞是牛型分枝杆菌细胞。

根据本发明的另一方面,这种方法包括如下步骤(i)提供脲酶-缺陷型细菌细胞,特别是结核分枝杆菌细胞,(ii)向所述细菌细胞中插入重组核酸分子,所述核酸分子编码吞噬溶酶体逃逸肽或多肽,以及(iii),在适当条件下培养通过(ii)所得到的细胞。

如果需要,本发明的方法包括向细菌细胞中插入最少一种进一步的重组核酸分子,所述进一步的重组核酸分子编码能够在哺乳动物中引发免疫反应的肽或多肽。

最后,本发明涉及一种制备活疫苗的方法,包括将药学有效量的重组细胞与药学上可接受的稀释剂、载体和/或佐剂配置在一起。

由于脲酶-缺陷型细菌细胞的高安全性——这种安全性已在两种不同的动物模型中得到证明(实施例3)——本发明的活疫苗特别适于给药于免疫缺陷对象,例如遭受HIV感染的病人或者用免疫抑制药物治疗的病人。在一个特别优选的实施方式中,本发明的活疫苗作为结核疫苗用于免疫缺陷病人。

在进一步优选的实施方式中,该活疫苗被用作肿瘤疫苗,例如,作为针对表浅膀胱癌的疫苗。在本发明再进一步优选的实施方式中,该活疫苗被用于兽医领域,例如作为针对李斯特菌病、副结核病或牛结核病的疫苗。

通过下列的图和序列表进一步说明本发明。

图1:显示rBCG ureC Hly在鼠类结核气溶胶模型中的保护能力。BALB/c小鼠经静脉接种1×106CFU的rBCG ureC Hly、BCG P ureC,或天然的BCG“巴斯德”所免疫。免疫120天后,动物用H37Rv(200有机体/肺)以气溶胶形式攻击。攻击后的30、60和90天对被感染的器官(脾和肺)上负载的细菌计数。每条线代表10只动物。

图2:显示微生物在肺(图2a)或脾(图2b)上的数量。Rag1-/-小鼠用BCG亲代菌株(wt)或rBCG ureC Hly菌株(urea-Hly)感染。受感染器官所负载的细菌在感染后30,60,90天后被计数。

图3:显示SCID小鼠在经BCG“巴斯德”和rBCG delta ureC Hly感染后的存活率。

SEQ ID No.1:显示本发明核酸分子的核苷酸序列。

SEQ ID No.2:显示SEQ ID No.1的核酸分子相应的氨基酸序列。

实施例1:脲酶-缺陷型BCG Hly菌株的产物及在小鼠模型中的试验

1.BCG delta ureC的脲酶活性失活

为了提高包含Hly蛋白(rBCG-Hly)的BCG菌株的保护能力,脲酶活性被去除。

为了获得脲酶-缺陷型突变体,Reyrat等构建了一个自杀载体,它含有一个被kanamycin标记(aph基因)所断开的ureC基因。2微克的这种构建载体被Sac I线性化,并经电穿孔进入牛型分枝杆菌BCG。筛选卡那霉素抗性的转化体以得到脲酶阴性表现型(cf.Reyrat等,1995)。

2.分枝杆菌大肠杆菌穿梭表达载体pMV306:Hly的构建

为了将吞噬溶酶体逃逸功能(通过单核细胞增生李斯特氏菌EGD Sv 1/2a的Hly介导)转移到BCG巴斯德(1173 P3)delta ureC,使用了大肠杆菌-分枝杆菌穿梭载体。这种整合型质粒pMV306,是载体pMV361的前体,容许稳定的Hly染色体表达。

一个pILH-1-衍生的编码hly-hlyA(大肠杆菌pHly152-特异性溶血素A)ORF的1.7kb的PstI DNA片段被插入到质粒pAT261的PstI位点。得到的融合基因编码表达的分泌蛋白被BCG-特异性信号肽引导到上清液。该构建体称为pAT261:Hly,接下来,它的在hsp60分枝杆菌启动子转录控制之下的Xbal-SallDNA表达盒被用于插入亲代pMV306载体,得到构建体pMV306:Hly。对两种分枝杆菌表达质粒中Hly-特异性插入位点的DNA序列都进行分析。成熟的Hly融合蛋白推定为在N末端含有30个氨基酸,在部分地属于大肠杆菌的HlyA的融合物C末端部分有52个氨基酸。

3.在小鼠模型中的保护能力

将表达载体pMV306:Hly转化进入一种脲酶缺陷型BCG菌株巴斯德(BCG PureC)。得到的转化株命名为rBCG ureC Hly。图1显示该脲酶缺陷型分枝杆菌菌株与亲代BCG巴斯德菌株,以及BCG巴斯德ureC菌株在鼠类结核模中的保护能力的对比。出人意料的是,发现rBCG ureC Hly在早时间点(攻击后30天)已经导致提高的保护能力,且在整个观察期(至90天)持续。

还用rBCG ureC Hly进行了更深入的一项长期的保护实验。BALB/c小鼠静脉接种rBCG ureC Hly,rBCG-Hly或者亲代BCG进行免疫,注射后120天用结核分枝杆菌H37Rv气溶胶攻击。RBCG-Hly和亲代BCG在90天时可导致相当的针对结核分枝杆菌H37Rv的保护作用。作为鲜明对照的是,rBCG ureC Hly在静脉接种开始后30天这一早时间点已经导致更高的保护作用。另外,这种增强的保护作用在整个观察期间持续,并且显示静脉接种后90天结核杆菌H37Rv在肺上的负载量比未经免疫的小鼠减少超过2 log CFU,比接种亲代BCG的小鼠减少超过1 log CFU。

在用临床分离的结核杆菌Beijing攻击后得到近似的结果。BALB/c小鼠静脉接种rBCG ureC Hly,BCG-Hly或亲代BCG进行免疫,在静脉接种后120天用结核分枝杆菌Beijing气溶胶攻击。接种BCG ureC Hly疫苗在早时间点(30天)就已经引发针对结核分枝杆菌Beijing的提高的保护作用,且在直至静脉接种后90天的整个观察期持续。与接种亲代BCG相比,接种rBCG ureC Hly疫苗导致肺中结核分枝杆菌Beijing减少1 log CFU。

实施例2:在豚鼠中针对结核分枝杆菌H37Rv的长期保护作用

由于小鼠对结核分枝杆菌感染具有相对较强的抵抗力,豚鼠作为一种更易感的动物模型被用于测试rBCG ureC Hly的免疫能力。将豚鼠分别进行皮下免疫分枝杆菌疫苗株,rBCG ureC Hly或亲代BCG,用结核分枝杆菌H37Rv进行攻击后,监测体重增加和CFU。直到120天,用rBCG ureC Hly免疫过的豚鼠与用亲代BCG株免疫过的豚鼠显示近似的体重增加,而没有免疫过的动物却明显感染了结核病,因为它们的体重没有增加。

在CFU分析之前对肺和脾的视觉检查显示,被BCG免疫的豚鼠与接种过BCGureC Hly的动物相比,这两种器官表面的结核要大得多,数量也多得多。

实施例3 BCG ureC Hly的安全性评估

用106个BCG亲代菌株(wt)或rBCG ureC Hly菌株的微生物体感染T细胞和B细胞缺陷的Rag1-/-小鼠。监测存在于肺和脾上的微生物体。在肺上观察到的rBCG ureC Hly的CFU显著减少(图2a)。在脾上,用uBCG ureC Hly感染比用亲代BCG感染后的CFU有轻微减少(Fig.2b)。

BCG ureC Hly的安全性在免疫缺陷的SCID小鼠中进行更深入的测试。为此,将SCID小鼠静脉接种107-108个rBCG ureC Hly或亲代BCG菌株的微生物体。尽管SCID小鼠在接种亲代菌株后于接种后的25天死亡,但接种了rBCGureC Hly的小鼠一直存活到接种后的150天(图3)。

这些实验表明BCG ureC Hly与亲代BCG菌株相比,具有更高的安全性。

参考文献

Aidoo,M.,Lalvani,A.,Allsopp,C.E.M.et al.(1995),Identification of conservedantigenic components for a cytotoxic T lymphocyte-inducing vaccine againstmalaria,The Lancet 345:1003.

Andersen,P.(1994),Effective vaccination of mice against Mycobacteriumtuberculosis infection with a soluble mixture of secreted Mycobacterial protein,Infect.Immun.62:2536-2544.

Andersen,P.,Andersen,A.B.,Sorensen,A.L.and Nagai,S.(1995),Recall oflong-lived immunity to Mycobacterium tuberculosis infection in mice,J.Immunol.154:3359.

Berche,P.,Gaillard,J.L.,and Sansonetti,P.J.(1987),Intracellular growth ofL.monocytogenes as a prerequisite for in vivo induction of T cell-mediatedimmunity,J.Immunol.138:2266-2276.

Bielecki,J.,Youngman,P.,Connelly,P.,and Portnoy,D.A.(1990),Bacillussubtilus expressing a hemolysin gene from Listeria monocytogenes can growin mammalian cells,Nature 354:175-176.

Blander,S.J.and Horwitz,M.A.(1991),Vaccination with a major secretoryprotein of Legionella induces humoral and cell-mediated immune responsesand protective immunity across different serogroups of Legionella pneumophilaand different species of Legionella,J.Immunol.147:285.

Bosch,F.X.,Durst,M.,Schwarz,E.,Boukamp,P.,Fusenig,N.E.and zurHausen,H.(1991),The early genes E6 and E7 of cancer associated humanpapilloma viruses as targets of tumor suppression?,Behring Inst.Mitt.108.Bulow,R.and Boothroyd,J.C.(1991),Protection of mice from fatalToxoplasma gondii infection by immunization with p30 antigen in liposomes,J.Immunol.147:3496.

Clemens,D.L.,and Horwitz,M.A.(1996),The Mycobacterium tuberculosisphagosome interacts with early endosomes and is accessible to exogenouslyadministered transferrin,J.Exp.Med.184:1349-1355.

Clemens,D.L.,Lee B.Y.,Horwitz,M.A.(1995),Purification,characterization,and genetic analysis of Mycobacterium tuberculosis urease,a potentiallycritical determinant of host-pathogen interaction.J.Bacteriol.1995 177:5644-5652.

Darji,A.,Chakraborty,T.,Wehland,J.,and Weiss,S.(1996),Listeriolysingenerates a route for the presentation of exogenous antigens by majorhistocompatibility complex class I,Eur.J.Immunol.25:2967-2971.

Domann,E.,and Chakraborty,T.(1989),Nucleotide sequence of thelisteriolysin gene from a Listeria monocytogenes serotype 1/2a strain,NucleicAcids Res.17:6406.

Flesch,I.,Hess,J.H.,Oswald,I.P.,and Kaufmann,S.H.E.(1994),Growthinhibition of Mycobacterium bovis by IFN-γstimulated macrophages:regulationby endogenous tumor necrosis factor-αand by IL-10,Int.Immunol.6:693-700.

Flynn,J.L.,Goldstein,M.M.,Triebold,K.J.,Koller,B.,and Bloom,B.R.(1992),Major histocompatibility complex class I-restricted T cells are required forresistance to Mycobacterium tuberculosis infection,Proc.Nati.Acad.Sci.USA89:12013-12017.

Fu,T.M.,Friedman,A.,Ulmer, J.B.,Liu,M.A.and Donnelly,J.J.(1997),Protective cellular immunity:cytotoxic T-lymphocyte responses againstdominant and recessive epitopes of influenza virus nucleoprotein induced DNAimmunization,J.Virol.71:2715.

Gaillard,J.L.,Berche,P.,Mounier,J.,Richard,S.,and Sansonetti,P.J.(1987),In vitro model of penetration and intracellular growth of Listeriamonocytogenes in the human enterocyte-like cell line Caco-2,Infect.Immun.55:2822-2829.

Gentschev,I.,Sokolovic,Z.,Mollenkopf,H.-J.,Hess,J.,Kaufmann,S.H.E.,Kuhn,M.,Krohne,G.F.,and Goebel,W.(1995),Salmonella secreting activelisteriolysin changes its intracellular localization,Infect.Immun.63:4202-4205.

Grange,J.M.(1996),Epidemiological aspects of drug resistance,inMycobacteria and human disease,Arnold,London,pp.124-125.

Haas,G.,Plikat,U.,Debre,P.,Lucchiari,M.,Katlama,C.,Dudoit,Y.,Bonduelle,O.,Bauer,M.,Ihlenfeldt,H.G.,Jung,G.,Maier,B.,Meyerhans,A.and Autran,B.(1996),Dynamics of viral variants in HIV-1 Nef and specificcytotoxic T lymphocytes in vivo,J.Immunol.157:4212.

Harboe,M.,Oettinger,T.,Wiker,H.G.et al.(1996),Evidence for occurrence ofthe ESAT-6 protein in Mycobacterium tuberculosis and virulent Mycobacteriumbovis and for its absence in Mycobacterium bovis BCG,Infect.Immun.64:16.

Harrer,T.,Harrer,E.,Kalams,S.A.,Barbosa,P.,Trocha,A.,Johnson,R.P.,Elbeik,T.,Feinberg,M.B.,Buchbinder,S.P.and Walker,B.D.(1996),Cytotoxic T lymphocytes in asymptomatic long-term nonprogressing HIV-1infection.Breadth and specificity of the response and relation to in vivo viralquasispecies in a person with prolonged infection and low viral load,J.Immunol.156:2616.

Harth,G.,Lee,B.-Y.,Wang.J.,Clemens,D.L.,and Horwitz,M.A.(1996),Novel insights into the genetics,biochemistry,and immunocytochemistry of the30-kilodalton major extracellular protein of Mycobacterium tuberculosis,Infect.Immun.64:3038-3047.

Hess,J.,Wels,W.,Vogel,M.,and Goebel,W.(1986),Nucleotide sequence ofplasmid-encoded hemolysin determinant and its comparison with acorresponding chromosomal hemolysin sequence,FEMS Lett.34:1-11.

Hess,J.,and Kaufmann,S.H.E.(1993),Vaccination strategies againstintracellular microbes,FEMS Microbiol.Immunol.7:95-103.

Hess,J.,Gentschev,I.,Miko,D.,Welzel,M.,Ladel,C.,Goebel,W.,andKaufmann,S.H.E.(1996),Superior efficacy of secreted over somatic p60 orlisteriolysin antigen display in recombinant Salmonella vaccine inducedprotection against listeriosis,Proc.Natl.Acad.Sci.USA 93:1458-1463.

Hess,J.,and Kaufmann,S.H.E.(1997),Principles of cell-mediated immunityunderlying vaccination strategies against intracellular pathogens,in HostResponse to Intracellular Pathogens,S.H.E.Kaufmann(ed),R.G.Landes Co.,Austin,pp.75-90.

Hess J.,Miko D.,Catic A.,Lehmensiek V.,Russell DG.,Kaufmann SH.,(1998),Mycobacterium bovis Bacille Calmette-Guerin strains secretinglisteriolysin of Listeria monocytogenes.Proc Natl Acad Sci USA.95(9):5299-304.

Horwitz,M.A.,Lee,B.-W.E.,Dillon,B.J.,and Harth,G.(1995),Protectiveimmunity against tuberculosis induced by vaccination with major extracellularproteins of Mycobacterium tuberculosis,Proc.Natl.Acad.Sci.USA 92:1530-1534.

Houbiers,J.G.A.,Nijman,H.W.,van der Burg,S.H.,Drijfhout,J.W.,Kenemans,P.,van de Velde,C.J.H.,Brand,A.,Momburg,F.,Kast,W.M.and Melief,C.J.M.(1993),In vitro induction of human cytotoxic T lymphocyte responsesagainst peptides of mutant and wild-type p53,Eur.J.Immunol.23:2072.

Huygen,K.,Content,J.,Denis,O.,Montgomery,D.L.,Yawman,A.M.,Deck,R.R.,DeWitt,C.M.,Orme,I.M.,Baldwin,S.,D′Souza,C.,Drowart,A.,Lozes,E.,Vandenbussche,P.,Van Vooren,J.-P.,Liu,M.A.,and Ulmer,J.B.(1996),Immunogenicity and protective efficacy of a tuberculosis DNA vaccine,Nat.Med.2:893-898.

Kaufmann,S.H.E.(1993),Immunity to intracellular bacteria,Annu.Rev.Immunol.11:129-163.

Khan,I.A.,Ely,K.H.and Kasper,L.H.(1991),A purified parasite antigen(p30)mediates CD8 T cell immunity against fatal Toxoplasma gondii infection inmice,J.Immunol.147:3501.

King,C.H.,Mundayoor,S.,Crawford,J.T.and Shinnik,T.M.(1993),Expression of contact-dependent cytolytic activity by Mycobacteriumtuberculosis and isolation of the genomic locus that encodes the activity,Infect.Immun.61:2708-2712.

Kochi,A.(1991),The global tuberculosis situation and the new control strategyof the Worid Health Organization,Tubercle 72:1-6.

Ladel,C.H.,Daugelat,S.,and Kaufmann,S.H.E.(1995),Immune response toMycobacterium bovis bacille Calmette Guérin infection in majorhistocompatibility complex class I-and II-deficient knock-out mice:contributionof CD4 and CD8 T cells to acquired resistance,Eur.J.Immunol.25:377-384.Laemmli,U.K.(1970),Cleavage of structural proteins during the assembly ofthe head of bacteriophage T4,Nature 227:680-685.

Langermann,S.,Palaszynski,S.R.,Burlein,J.E.,Koenig,S.,Hanson,M.S.,Briles,D.E.,and Stover,C.K.(1994),Protective humoral response againstpneumococcal infection in mice elicited by recombinant Bacille Calmette-Guérin vaccines expressing pneumococcal surface protein A.,J.Exp.Med.180:2277-2286.

Matsui,M.,Moots,R.J.,Warburton,R.J.,Peace-Brewer,A.,Tussey,L.G.,Quinn,D.G.,McMichael,A.J.and J.A.Frelinger(1995),Genetic evidence fordifferences between intracellular peptides of influenza A matrix peptide-specific CTL recognition,J.Immunol.154:1088.

Matsuo,K.,Yamaguchi,R.,Yamazaki,A.,Tasaka,H.,Terasaka,K.,andYamada,T.(1990),Cloning and expression of the Mycobacterium bovis BCGgene for extracellular alpha antigen,J.Bacteriol.170:3847-3854.

Mazzaccaro,R.Z.,Gedde,M.,Jensen,E.R.,Van Santen,H.M.,Ploegh H.L.,Rock,K.L.,and Bloom,B.R.(1996),Major histocompatibility class Ipresentation of soluble antigen facilitated by Mycobacterium tuberculosisinfection,Proc.Natl.Acad.Sci.USA 93:11786-11791.

McDonough,K.A.,Kress,Y.,and Bloom,B.R.(1993),Pathogenesis oftuberculosis:Interaction of Mycobacterium tuberculosis with macrophages,Infect.Immun.61:2763-2773.

Murray,P.J.,Aldovini,A.,and Young,R.A.(1996),Manipulation andpotentiation of anti-mycobacterial immunity using recombinant bacilleCalmette-Guérin strains that secrete cytokines,Proc.Natl.Acad.Sci.USA 93:934-939.

Nato,F.,Reich,K.,Lhopital,S.,Rouye,S.,Geoffroy,C.,Mazie,J.C.,andCossart,P.(1991),Production and characterization of neutralizing and non-neutralizing monoclonal antibodies against listeriolysin O.,Infect.Immun.59:4641-4646.

Portnoy,D.A.,Jacks,P.S.,and Hinrichs,D.J.(1988),Role of hemolysin for theintracellular growth of Listeria monocytogenes,J.Exp.Med.167:1459-1471.

Reyrat J.M.,Berthet F.X.,Gicquel B.,(1995)The urease locus ofMycobacterium tuberculosis and its utilization for the demonstration of allelicexchange in Mycobacterium bovis bacillus Calmette-Guerin.Proc Natl AcadSci USA.92(19):8768-72.

Roche,P.W.,Triccas,J.A.,and Winter,N.(1995),BCG vaccination againsttuberculosis:past disappointments and future hopes,Trends Microbiol.3:397-401.

Russell,D.G.(1995),Mycobacterium and Leishmania:stowaways in theendosomal network.Trends in Cell Biology 5:125-128.

Sambrook,J.,Fritsch,E.F.,and Maniatis,T.(1989),Molecular cloning:aIaboratory manual,2nd edition,Cold Spring Harbor Laboratory Press,NewYork.

Schoel,B.,Welzel,M.,and Kaufmann,S.H.E.(1994),Hydrophobic interactionchromatography for the purification of cytolytic bacterial toxins,J.Chromatography A 667:131-139.

Sorensen,A.L.,Nagai,S.,Houen,G.,Andersen,P.and Andersen,A.B.(1995),Purification and characterization of a low-molecular-mass-T-cellantigen secreted by Mycobacterium tuberculosis,Infect.Immun.63:1710.

Stover,C.K.,Bansal,G.P.,Hanson,M.S.Burlein,J.E.,Palaszynski,S.R.,Young,J.F.,Koenig,S.,Young,D.B.,Sadziene,A.,Barbour,A.G.(1993),Protective immunity elicited by recombinant Bacille Calmette Guérin(BCG)expressing outer surface protein A(OspA)lipoprotein:A candidate lymedisease vaccine,J.Exp.Med.178:197-209.

Stover,C.K.,de la Cruz,V.F.,Fuerst,T.R.,Burlein,J.E.,Benson,L.A.,Bennett,L.T.,Bansal,G.P.,Young,J.F.,Lee,M.H.,Hatfull,G.F.,Snapper,S.B.,Barletta,R.G.,Jacobs,W.R.,Jr.,and Bloom,B.R.(1991),New use ofBCG for recombinant vaccines,Nature 351:456-460.

Sturgill-Koszycki,S.,Schlesinger,P.H.,Chakraborty,P.,Haddix,P.L.,Collins,H.L.,Fok,A.K.,Allen,R.D.,Gluck,S.L.,Heuser,J.and Russell,D.G.(1994),Lack of acidification in Mycobacterium phagosomes produced by exclusion ofthe vesicular proton-ATPase,Science 263:678-681.

Towbin,H.,Staehelin,T.,and Gordon,J.(1979),Electrophoretic transfer ofproteins from polyacrylamide gels to nitrocellulose sheets:procedure andsome applications,Proc.Natl.Acad.Sci.USA 76:4350-4354.

Tsuchiya,S.,Kobayashi,Y.,Goto,Y.,Okumura,H.,Nakae,S.,Konno,T.,andTada,K.(1982),Induction of maturation in cultured human monocytic leukemiacells by a phorbol diester,Cancer Res.42:1530-1536.

Tweten,R.K.(1995),Pore-forming toxins of gram-positive bacteria,inVirulence Mechanisms of Bacterial Pathogens,J.A.Roth et al.(ed),AmericanSociety for Microbiology,Washington,D.C.,pp.207-228.

van Elsas,A.,van der Burg,S.H.,van der Minne,C.E.,Borghi,M.,Mourer,J.S.,Melief,C.J.M.and Schrier,P.I.(1996),Peptide-pulsed dendritic cellsinduce tumoricidal cytotoxic T lymphocytes from healthy donors against stablyHLA-A*0201-binding peptides from Melan-A/MART-1 self antigen,Eur.J.Immunol.26:1683.

序列表

(1)一般信息:

(i)申请人:

(A)NAME:Max-Planck-Gesellschaft zur Foerderung

         der

         Wissenschaften e:V.

(B)街道:Hofgartenstrasse 2

(C)城市:慕尼黑

(E)国家:德国

(F)邮政编码:80539

(ii)发明名称:结核病疫苗

(iii)序列数:2

(iv)计算机可读形式:

(A)媒介类型:磁盘

(B)计算机:IBM PC兼容机

(C)操作系统:PC-DOS/MS-DOS

(D)软件:PatentIn Release #1.0,Version #1.30(EPO)

(2)SEQ ID NO:1的信息:

(i)序列特征:

(A长度:1881碱基对

(B)类型:核酸

(C)链性质:两者

(D)拓扑结构:线性

(ix)特征:

(A)名称/关键词:CDS

(B)位置:1..1878

(xi)序列描述:SEQ ID NO:1

ATG ACA GAC GTG AGC CGA AAG ATT CGA GCT TGG GGA CGC CGA TTG ATG     48

Met Thr Asp Val Ser Arg Lys Ile Arg Ala Trp Gly Arg Arg Leu Met

  1               5                  10                  15

ATC GGC ACG GCA GCG GCT GTA GTC CTT CCG GGC CTG GTG GGG CTT GCC     96

Ile Gly Thr Ala Ala Ala Val Val Leu Pro Gly Leu Val Gly Leu Ala

             20                  25                  30

GGC GGA GCG GCA ACC GCG GGC GCG TTC TCC CGG CCG GGG CTG CCG GTC    144

Gly Gly Ala Ala Thr Ala Gly Ala Phe Ser Arg Pro Gly Leu Pro Val

         35                  40                  45

GAG TAC CTG CAG TCT GCA AAG CAA TCC GCT GCA AAT AAA TTG CAC TCA    192

Glu Tyr Leu Gln Ser Ala Lys Gln Ser Ala Ala Asn Lys Leu His Ser

     50                  55                  60

GCA GGA CAA AGC ACG AAA GAT GCA TCT GCA TTC AAT AAA GAA AAT TCA    240

Ala Gly Gln Ser Thr Lys Asp Ala Ser Ala Phe Asn Lys Glu Asn Ser

 65                  70                  75                  80

ATT TCA TCC ATG GCA CCA CCA GCA TCT CCG CCT GCA AGT CCT AAG ACG    288

Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser Pro Lys Thr

                 85                  90                  95

CCA ATC GAA AAG AAA CAC GCG GAT GAA ATC GAT AAG TAT ATA CAA GGA    336

Pro Ile Glu Lys Lys His Ala Asp Glu Ile Asp Lys Tyr Ile Gln Gly

            100                 105                 110

TTG GAT TAC AAT AAA AAC AAT GTA TTA GTA TAC CAC GGA GAT GCA GTG    384

Leu Asp Tyr Asn Lys Asn Asn Val Leu Val Tyr His Gly Asp Ala Val

        115                 120                 125

ACA AAT GTG CCG CCA AGA AAA GGT TAC AAA GAT GGA AAT GAA TAT ATT    432

Thr Asn Val Pro Pro Arg Lys Gly Tyr Lys Asp Gly Asn Glu Tyr Ile

    130                 135                 140

GTT GTG GAG AAA AAG AAG AAA TCC ATC AAT CAA AAT AAT GCA GAC ATT    480

Val Val Glu Lys Lys Lys Lys Ser Ile Asn Gln Asn Asn Ala Asp Ile

145                 150                 155                 160

CAA GTT GTG AAT GCA ATT TCG AGC CTA ACC TAT CCA GGT GCT CTC GTA    528

Gln Val Val Asn Ala Ile Ser Ser Leu Thr Tyr Pro Gly Ala Leu Val

                165                 170                 175

AAA GCG AAT TCG GAA TTA GTA GAA AAT CAA CCA GAT GTT CTC CCT GTA    576

Lys Ala Asn Ser Glu Leu Val Glu Asn Gln Pro Asp Val Leu Pro Val

            180                 185                 190

AAA CGT GAT TCA TTA ACA CTC AGC ATT GAT TTG CCA GGT ATG ACT AAT    624

Lys Arg Asp Ser Leu Thr Leu Ser Ile Asp Leu Pro Gly Met Thr Asn

        195                 200                 205

CAA GAC AAT AAA ATC GTT GTA AAA AAT GCC ACT AAA TCA AAC GTT AAC    672

Gln Asp Asn Lys Ile Val Val Lys Asn Ala Thr Lys Ser Asn Val Asn

    210                 215                 220

AAC GCA GTA AAT ACA TTA GTG GAA AGA TGG AAT GAA AAA TAT GCT CAA    720

Asn Ala Val Asn Thr Leu Val Glu Arg Trp Asn Glu Lys Tyr Ala Gln

225                 230                 235                 240

GCT TAT CCA AAT GTA AGT GCA AAA ATT GAT TAT GAT GAC GAA ATG GCT    768

Ala Tyr Pro Asn Val Ser Ala Lys Ile Asp Tyr Asp Asp Glu Met Ala

                245                 250                 255

TAC AGT GAA TCA CAA TTA ATT GCG AAA TTT GGT ACA GCA TTT AAA GCT    816

Tyr Ser Glu Ser Gln Leu Ile Ala Lys Phe Gly Thr Ala Phe Lys Ala

            260                 265                 270

GTA AAT AAT AGC TTG AAT GTA AAC TTC GGC GCA ATC AGT GAA GGG AAA    864

Val Asn Asn Ser Leu Asn Val Asn Phe Gly Ala Ile Ser Glu Gly Lys

        275                 280                 285

ATG CAA GAA GAA GTC ATT AGT TTT AAA CAA ATT TAC TAT AAC GTG AAT    912

Met Gln Glu Glu Val Ile Ser Phe Lys Gln Ile Tyr Tyr Asn Val Asn

    290                 295                 300

GTT AAT GAA CCT ACA AGA CCT TCC AGA TTT TTC GGC AAA GCT GTT ACT    960

Val Asn Glu Pro Thr Arg Pro Ser Arg Phe Phe Gly Lys Ala Val Thr

305                 310                 315                 320

AAA GAG CAG TTG CAA GCG CTT GGA GTG AAT GCA GAA AAT CCT CCT GCA   1008

Lys Glu Gln Leu Gln Ala Leu Gly Val Asn Ala Glu Asn Pro Pro Ala

                325                 330                 335

TAT ATC TCA AGT GTG GCG TAT GGC CGT CAA GTT TAT TTG AAA TTA TCA   1056

Tyr Ile Ser Ser Val Ala Tyr Gly Arg Gln Val Tyr Leu Lys Leu Ser

            340                 345                 350

ACT AAT TCC CAT AGT ACT AAA GTA AAA GCT GCT TTT GAT GCT GCC GTA   1104

Thr Asn Ser His Ser Thr Lys Val Lys Ala Ala Phe Asp Ala Ala Val

        355                 360                 365

AGC GGA AAA TCT GTC TCA GGT GAT GTA GAA CTA ACA AAT ATC ATC AAA   1152

Ser Gly Lys Ser Val Ser Gly Asp Val Glu Leu Thr Asn Ile Ile Lys

    370                 375                 380

AAT TCT TCC TTC AAA GCC GTA ATT TAC GGA GGT TCC GCA AAA GAT GAA    1200

Asn Ser Ser Phe Lys Ala Val Ile Tyr Gly Gly Ser Ala Lys Asp Glu

385                 390                 395                 400

GTT CAA ATC ATC GAC GGC AAC CTC GGA GAC TTA CGC GAT ATT TTG AAA    1248

Val Gln Ile Ile Asp Gly Asn Leu Gly Asp Leu Arg Asp Ile Leu Lys

                405                 410                 415

AAA GGC GCT ACT TTT AAT CGA GAA ACA CCA GGA GTT CCC ATT GCT TAT    1296

Lys Gly Ala Thr Phe Asn Arg Glu Thr Pro Gly Val Pro Ile Ala Tyr

            420                 425                 430

ACA ACA AAC TTC CTA AAA GAC AAT GAA TTA GCT GTT ATT AAA AAC AAC    1344

Thr Thr Asn Phe Leu Lys Asp Asn Glu Leu Ala Val Ile Lys Asn Asn

        435                 440                 445

TCA GAA TAT ATT GAA ACA ACT TCA AAA GCT TAT ACA GAT GGA AAA ATT    1392

Ser Glu Tyr Ile Glu Thr Thr Ser Lys Ala Tyr Thr Asp Gly Lys Ile

    450                 455                 460

AAC ATC GAT CAC TCT GGA GGA TAC GTT GCT CAA TTC AAC ATT TCT TGG    1440

Asn Ile Asp His Ser Gly Gly Tyr Val Ala Gln Phe Asn Ile Ser Trp

465                 470                 475                 480

GAT GAA GTA AAT TAT GAT CCT GAA GGT AAC GAA ATT GTT CAA CAT AAA    1488

Asp Glu Val Asn Tyr Asp Pro Glu Gly Asn Glu Ile Val Gln His Lys

                485                 490                 495

AAC TGG AGC GAA AAC AAT AAA AGC AAG CTA GCT CAT TTC ACA TCG TCC    1536

Asn Trp Ser Glu Asn Asn Lys Ser Lys Leu Ala His Phe Thr Ser Ser

            500                 505                 510

ATC TAT TTG CCA GGT AAC GCG AGA AAT ATT AAT GTT TAC GCT AAA GAA    1584

Ile Tyr Leu Pro Gly Asn Ala Arg Asn Ile Asn Val Tyr Ala Lys Glu

        515                 520                 525

TGC ACT GGT TTA GCT TGG GAA TGG TGG AGA ACG GTA ATT GAT GAC CGG    1632

Cys Thr Gly Leu Ala Trp Glu Trp Trp Arg Thr Val Ile Asp Asp Arg

    530                 535                 540

AAC TTA CCA CTT GTG AAA AAT AGA AAT ATC TCC ATC TGG GGC ACC ACG    1680

Asn Leu Pro Leu Val Lys Asn Arg Asn Ile Ser Ile Trp Gly Thr Thr

545                 550                 555                 560

CTT TAT CCG AAA TAT AGT AAT AAA GTA GAT AAT CCA ATC GAA TAT GCA    1728

Leu Tyr Pro Lys Tyr Ser Asn Lys Val Asp Asn Pro Ile Glu Tyr Ala

                565                 570                 575

TTA GCC TAT GGA AGT CAG GGT GAT CTT AAT CCA TTA ATT AAT GAA ATC    1776

Leu Ala Tyr Gly Ser Gln Gly Asp Leu Asn Pro Leu Ile Asn Glu Ile

            580                 585                 590

AGC AAA ATC ATT TCA GCT GCA GTT CTT TCC TCT TTA ACA TCG AAG CTA    1824

Ser Lys Ile Ile Ser Ala Ala Val Leu Ser Ser Leu Thr Ser Lys Leu

        595                 600                 605

CCT GCA GAG TTC GTT AGG CGC GGA TCC GGA ATT CGA AGC TTA TCG ATG    1872

Pro Ala Glu Phe Val Arg Arg Gly Ser Gly Ile Arg Ser Leu Ser Met

    610                 615                 620

TCG ACG TAG                                                        1881

Ser Thr

625

(2)SEQ ID NO:2的信息:

(i)序列特征:

(A)长度:626氨基酸

(B)类型:氨基酸

(D)拓扑结构:线性

(ii)分子类型:蛋白质

(xi)序列描述:SEQ ID NO:2

Met Thr Asp Val Ser Arg Lys Ile Arg Ala Trp Gly Arg Arg Leu Met

  1               5                  10                  15

Ile Gly Thr Ala Ala Ala Val Val Leu Pro Gly Leu Val Gly Leu Ala

             20                  25                  30

Gly Gly Ala Ala Thr Ala Gly Ala Phe Ser Arg Pro Gly Leu Pro Val

         35                  40                  45

Glu Tyr Leu Gln Ser Ala Lys Gln Ser Ala Ala Asn Lys Leu His Ser

     50                  55                  60

Ala Gly Gln Ser Thr Lys Asp Ala Ser Ala Phe Asn Lys Glu Asn Ser

 65                  70                  75                  80

Ile Ser Ser Met Ala Pro Pro Ala Ser Pro Pro Ala Ser Pro Lys Thr

                 85                  90                  95

Pro Ile Glu Lys Lys His Ala Asp Glu Ile Asp Lys Tyr Ile Gln Gly

            100                 105                 110

Leu Asp Tyr Asn Lys Asn Asn Val Leu Val Tyr His Gly Asp Ala Val

        115                 120                 125

Thr Asn Val Pro Pro Arg Lys Gly Tyr Lys Asp Gly Asn Glu Tyr Ile

    130                 135                 140

Val Val Glu Lys Lys Lys Lys Ser Ile Asn Gln Asn Asn Ala Asp Ile

145                 150                 155                 160

Gln Val Val Asn Ala Ile Ser Ser Leu Thr Tyr Pro Gly Ala Leu Val

                165                 170                 175

Lys Ala Asn Ser Glu Leu Val Glu Asn Gln Pro Asp Val Leu Pro Val

            180                 185                 190

Lys Arg Asp Ser Leu Thr Leu Ser Ile Asp Leu Pro Gly Met Thr Asn

        195                 200                 205

Gln Asp Asn Lys Ile Val Val Lys Asn Ala Thr Lys Ser Asn Val Asn

    210                 215                 220

Asn Ala Val Asn Thr Leu Val Glu Arg Trp Asn Glu Lys Tyr Ala Gln

225                 230                 235                 240

Ala Tyr Pro Asn Val Ser Ala Lys Ile Asp Tyr Asp Asp Glu Met Ala

                245                 250                 255

Tyr Ser Glu Ser Gln Leu Ile Ala Lys Phe Gly Thr Ala Phe Lys Ala

            260                 265                 270

Val Asn Asn Ser Leu Asn Val Asn Phe Gly Ala Ile Ser Glu Gly Lys

        275                 280                 285

Met Gln Glu Glu Val Ile Ser Phe Lys Gln Ile Tyr Tyr Asn Val Asn

    290                 295                 300

Val Asn Glu Pro Thr Arg Pro Ser Arg Phe Phe Gly Lys Ala Val Thr

305                 310                 315                 320

Lys Glu Gln Leu Gln Ala Leu Gly Val Asn Ala Glu Asn Pro Pro Ala

                325                 330                 335

Tyr Ile Ser Ser Val Ala Tyr Gly Arg Gln Val Tyr Leu Lys Leu Ser

            340                 345                 350

Thr Asn Ser His Ser Thr Lys Val Lys Ala Ala Phe Asp Ala Ala Val

        355                 360                 365

Ser Gly Lys Ser Val Ser Gly Asp Val Glu Leu Thr Asn Ile Ile Lys

    370                 375                 380

Asn Ser Ser Phe Lys Ala Val Ile Tyr Gly Gly Ser Ala Lys Asp Glu

385                 390                 395                 400

Val Gln Ile Ile Asp Gly Asn Leu Gly Asp Leu Arg Asp Ile Leu Lys

                405                 410                 415

Lys Gly Ala Thr Phe Asn Arg Glu Thr Pro Gly Val Pro Ile Ala Tyr

            420                 425                 430

Thr Thr Asn Phe Leu Lys Asp Asn Glu Leu Ala Val Ile Lys Asn Asn

        435                 440                 445

Ser Glu Tyr Ile Glu Thr Thr Ser Lys Ala Tyr Thr Asp Gly Lys Ile

    450                 455                 460

Asn Ile Asp His Ser Gly Gly Tyr Val Ala Gln Phe Asn Ile Ser Trp

465                 470                 475                 480

Asp Glu Val Asn Tyr Asp Pro Glu Gly Asn Glu Ile Val Gln His Lys

                485                 490                 495

Asn Trp Ser Glu Asn Asn Lys Ser Lys Leu Ala His Phe Thr Ser Ser

            500                 505                 510

Ile Tyr Leu Pro Gly Asn Ala Arg Asn Ile Asn Val Tyr Ala Lys Glu

        515                 520                 525

Cys Thr Gly Leu Ala Trp Glu Trp Trp Arg Thr Val Ile Asp Asp Arg

    530                 535                 540

Asn Leu Pro Leu Val Lys Asn Arg Asn Ile Se rIle Trp Gly Thr Thr

545                 550                 555                 560

Leu Tyr Pro Lys Tyr Ser Asn Lys Val Asp Asn Pro Ile Glu Tyr Ala

                565                 570                 575

Leu Ala Tyr Gly Ser Gln Gly Asp Leu Asn Pro Leu Ile Asn Glu Ile

            580                 585                 590

Ser Lys Ile Ile Ser Ala Ala Val Leu Ser Ser Leu Thr Ser Lys Leu

        595                 600                 605

Pro Ala Glu Phe Val Arg Arg Gly Ser Gly Ile Arg Ser Leu Ser Met

    610                 615                 620

Ser Thr

625