加热衬套转让专利

申请号 : CN200480020272.2

文献号 : CN1823552B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 迈克尔·丹尼尔斯菲利普·威尔金

申请人 : 斯茂凯博有限责任公司

摘要 :

一种使用的加热电缆及例如加热衬套。加热电缆包括沿电缆的长度延伸且由分隔层(4)分隔的第一(1)和第二导体(5)。导体和分隔层可是共轴的。第一和第二导体在电缆的一端被串联连接,使得假如第一和第二导体在电缆的另一端处被连接至电源的各个电极,相等电流以相反方向流过导体的毗邻部分。这基本上消除了电缆发射出的电磁辐射。第一导体具有正温度特性,分隔层或具有负温度特性或在预定阈值温度处熔化。在流过分隔层的电流超过预定阈值的情况下,可终止供给给电缆的电力。

权利要求 :

1.一种加热电缆,其包括沿电缆长度延伸的第一导体、沿电缆长度延伸的第二导体、沿电缆长度延伸且插入在第一和第二导体之间的分隔层以及沿电缆长度延伸且围绕第一和第二导体及分隔层的外绝缘套,其中第一和第二导体被串联连接在电缆的一端,使得第一和第二导体被在电缆的另一端连接至AC电源的各个电极时,相等的电流以相反方向分别流过第一和第二导体的毗邻部分,第一导体被形成为具有正温度特性,分隔层被形成为它在第一和第二导体毗邻部分之间提供的电阻具有负温度特性。

2.依据权利要求1的加热电缆,其中第一和第二导体是共轴的,分隔层是管状的,第一导体位于管状分隔层的内侧及第二导体位于管状分隔层的外侧。

3.依据权利要求2的加热电缆,其中第一导体由扭绞在一起的元件形成,每个元件包括纤维芯,围绕该纤维芯缠绕着正温度系数线以形成螺旋线。

4.依据权利要求2或3的加热电缆,其中第二导体是围绕管状分隔层缠绕以形成螺旋线的加热线。

5.依据权利要求1的加热电缆,其中分隔层被形成为被加热至预定阈值温度时熔化。

6.一种加热衬套,其包括依据权利要求1的加热电缆,并包括电源、用于将第一和第二导体在电缆的所述另一端处连接至电源的各个电极的装置、用于监测第一导体的端到端阻抗且将供给电缆的电力作为所监测阻抗的函数进行控制的装置和用于监测流过分隔层的电流及将供给电缆的电力作为所监测电流的函数进行控制的装置。

7.依据权利要求6的加热衬套,包括用于响应所监测阻抗的增加而减小供给电缆的电力的装置。

8.依据权利要求6或7的加热衬套,包括用于在所监测的电流超过预定阈值时终止电缆的电力供给的装置。

说明书 :

技术领域

本发明涉及一种加热衬套。术语“加热衬套”在这里具有广泛的含义,包括结合电加热电缆的任何物品,例如底衬套(典型地放置在床单下)、上衬套(典型地覆盖在睡觉人身上)、加热垫(可由使用者应用至使用者身体的具体部分的相对小的物品)或类似物。

背景技术

安全性在加热衬套中是主要问题,尤其是被用于温暖例如被褥的加热衬套。主要的安全问题是过热问题。尽管努力解决这个问题,但在二十一世纪开始,仍然存在因为底衬套的过热而导致的被褥着火的严重受伤和有时死亡出现的情况。次要的但仍然意义重大的问题是由于使用者紧密靠近传输交流电的导体而导致暴露于辐射(一般被称作EMF效应)。
最早解决过热问题的尝试在美国专利3375477中被说明。这篇文献说明了一种由第一导体和第二导体制造的加热电缆,加热电流流过第一导体,第二导体沿第一导体的长度延伸但由分隔层与第一导体分隔。分隔层具有负温度系数(NTC),以使该层的阻抗随增加的温度而降低。检测通过分隔层泄漏到第二导体的电流且用于在泄漏电流超过预定阈值的情况下中断供给第一导体的电力。假如供给的电流超过阈值,切断电源的设备提供另外的安全切断。NTC分隔层被设计以使它在过热的情况下不被破坏,因此,衬套被设计为不会因为有时受到过热温度而永久不能工作。
在US3375477中说明的一般类型的产品已经在英国出售。那个产品是由内导电芯、围绕芯形成的分隔层、螺旋围绕分隔层的加热线和绝缘的外保护层制造的共轴结构。内芯由一束扭绞在一起的元件制造,这些元件的每一个由合成纤维芯制造,围绕合成纤维芯缠绕着导电箔片条。一般称为“金属丝(tinsel)”的这种结构在许多加热衬套中使用,因其具有很高柔性且具有相对小的体积。然后,在扭绞的芯上挤压形成NTC分隔层,加热线螺旋缠绕在分隔层上,外绝缘保护层被挤压形成在线和分隔层上。在使用中,加热线的相对端被连接至一般为电源电压的电源的相对电极。金属丝芯不传送流过导线的电流,而是仅仅用于拾取通过分隔层的加热线的电流泄漏。泄漏电流随增加的温度而增加,泄漏电流的幅度被用于控制传送至加热线的电力。
在已知的产品中,仅仅监测加热电缆的一个参数,这就是NTC分隔层的导电率。一般地,该电缆将被配备一个控制器,该控制器也具有在加热元件汲取的电流超过预定阈值时用以切断电力供给的电路,从而整个组件可被作为双安全特征系统。然而,简单的过电流保护一般不能有效避免沿加热电缆的长度出现“热点”。另外,如果主加热电流仅仅沿加热线流动而不沿着金属丝芯流动,电缆发射电磁辐射因此没有解决EMF问题。
在依赖于NTC分隔层检测过热的基本构思的发展中,提出了使用一种既是NTC又是可熔化的分隔层.这样一种结构被说明在美国专利6310332中.在说明的结构中,通过监测分隔层的NTC特性实现正常电压控制.然而,假如沿加热电缆长度的任意点达到异常高温,则分隔层将熔化,使得共轴组件的两个导体变为直接接触,从而引起两个导体间短路.这样一种短路是容易检测的且被用于切断电源.一旦这种情况发生,当然产品实际上被破坏,因其不能恢复至正常工作状况.
US6310332说明了两个实施例,即图1中的实施例和图2和3中的“多功能”实施例。在图2和3中的实施例中,一个导体传输加热电流而另一个导体被用于检测目的。检测导体还可具有正电阻特性(PTC)以提供用于监测沿电缆长度的温度的附加装置。然而,使用该配置,因为检测电缆不传输加热电流,EMF问题没有解决。在与此对照的图1的实施例中,两个加热电缆被二极管串联连接,加热电流通过每个加热线。这种布置解决了EMF问题,因两个加热线中的电流以相反方向沿电缆流动,但是没有PTC检测元件,通过以与流过将两个加热线连接在一起的二极管的电流的流动方向相反的方向流动的电流的出现来检测通过分隔层的电流泄漏。
当如图1中布置时,NTC和可熔化的分隔层解决了EMF问题,并且提供双重过热检测特征,即检测因温度改变而导致的分隔层阻抗的变化和检测在异常高温出现时分隔层的熔化。然而,这两种过热检测系统均依赖于单个元件即挤压形成的分隔层的特性。为使其有效,意味着分隔层必须被制造为具有非常高的公差。例如,假如分隔层没有正确的厚度,对温度变化的NTC响应将不能够如要求的那样进行安全的过热检测。同样地,假如分隔层的化学成分不能被严格地控制,分隔层的NTC特性和熔化温度可能落在保持安全性的范围之外。
新西兰专利243204描述了一种共轴加热电缆,其通过提供缠绕的双加热电缆以减少电磁场发射来解决EMF安全问题。所描述的电缆解决了EMF问题,但是仅仅能够监测以避免过热为目的的一个电缆特性。

发明内容

本发明的目的是提供一种加热衬套和一种用于具有改善的工作特性的加热衬套的电缆。
依据本发明,提供一种加热电缆,其包括沿电缆长度延伸的第一导体、沿电缆长度延伸的第二导体、沿电缆长度延伸且插入在第一和第二导体之间的分隔层以及沿电缆长度延伸且围绕第一和第二导体及分隔层的外绝缘套,其中第一和第二导体被串联连接在电缆的一端从而使电流可沿两个方向通过导体,使得第一和第二导体被在电缆的另一端连接至AC电源的各个电极时,相等的电流以相反方向流过导体的毗邻部分,第一导体被形成为具有正温度特性,分隔层被形成为在导体毗邻部分之间提供的电阻具有负温度特性。
第一和第二导体可是共轴的,分隔层可是管状的,第一导体位于管状分隔层的内侧及第二导体位于管状分隔层的外侧。
优选地,第一导体由扭绞在一起的元件形成,每个元件包括纤维芯,围绕该纤维芯缠绕着正温度特性线以形成螺旋线。第二导体可是围绕管状分隔层缠绕以形成螺旋线的加热线。
可选择地或另外,分隔层可形成为被加热至预定阈值温度时熔化。
当电缆被连接至电源时,第一和第二导体串联地连接在电源的两极之间.例如,监测第一导体的端到端阻抗,对电缆的电力供给作为所监测阻抗的函数被控制,以使供给的电力随逐渐增加的监测阻抗而被逐渐减少.或作为因NTC材料温度增加导致的阻抗减少的结果,或作为分隔层的至少一部分熔化以使第一和第二导体互相相接触的结果而流过分隔层的电流也被用于控制电力的供给.一旦所监测的电流超过预定阈值,可终止电缆的电力供给.

附图说明

通过例子,参考附图,现将说明本发明的实施例,其中:
图1说明依据本发明的加热电缆的物理结构;和
图2示意性说明依据本发明的譬如图1中的电缆和加热衬套中的电源装置之间的关系。

具体实施方式

参考图1,示意了依据本发明的加热电缆的结构。该电缆包括四个元件扭绞在一起形成一束的形式的中心芯1,每个元件包括中心纤维芯2,中心纤维芯2提供机械强度且被由提供正温度系数(PTC)的材料制造的螺旋形延伸线3缠绕。芯1具有挤压在其上的分隔层4,加热线5被缠绕在分隔层4上以形成螺旋线。防水和电绝缘的材料形成的挤压套6完成电缆组件。
参考图2,示意性地表示包括控制器且结合譬如图1中的电缆的电热毯的电路。线1表示电缆的芯1、线4表示分隔层,线5表示加热线。电缆的两端被连接至电源电路,电源电路包括控制器7、第一电流监测器8、电压监测器9和第二电流监测器10。各个电流和电压监测器向控制器7提供监测参数的输出表示。控制器使用这三个输入监测电缆的状况且控制供给给电缆的电力。芯1的一端可经控制器7被连接至AC电源的负极,加热线5的一端可经电流监测器8和控制器9被连接至AC电源的正极(livepole),芯1和线5的另一端经电流监测器10被有效地短接在一起。
在本发明的第一实施例中,插入在芯1和加热线4之间的分隔层4由具有负温度系数(NTC)的材料制造。结果,当沿电缆的长度的任意位置处的温度增加时,分隔层4的局部阻抗减少,因此通过分隔层4的电流泄漏增加。这个泄漏电流被用作电缆的控制参数之一。芯1呈现正温度系数(PTC),因此在电缆温度增加时,芯1的端到端阻抗增加。这种阻抗增加被用作另一个控制参数。
通过了解施加至芯的电压和通过芯的电流以监测芯两端之间的阻抗,从而监测芯1的端到端阻抗。电压监测器9的输出可被用于调整由控制器7供给的电力,以保持稳定的电缆温度。控制器7可配置用户可操作的开关,以调整电力被供给的标准速率(normal rate),从而满足特定用户的要求。
关于监测穿过分隔层4的电流泄漏,如果没有泄漏,则由电流监测器8和10监视的电流将是相同的。泄漏电流的大小等于通过电流监测器8和10的电流之间的差值。控制器7可被用于逐渐减少供给的电力以响应泄漏电流的增长,如果泄漏电流超过预定值,总电流被减少至零。可选择地,达到阈值之前控制器7可不响应监测的泄漏电流,在阈值点控制器简单地终止电力的供给。
假定电路起作用以监测PTC芯1的端到端阻抗,端还起作用以监测通过分隔层4泄漏的电流大小,两个安全监测系统实质上是独立的.使一个检测系统无效的制造误差,例如分隔层4的厚度或结构的误差,不会使另一个检测系统无效.再者,监测通过分隔层4的电流泄漏的电路对任何泄漏电流是敏感的,即使所有泄漏电流出现在电缆的非常局部的部分.因此,电路对局部热点的发展非常敏感.
关于EMF问题,假定仅仅向电缆的一端供给电力,并且由于在电缆的另一端经电流监测器10被连接在一起而使芯1和加热线5串联连接,即使沿电缆长度的任意点处通过分隔层4有一些泄漏电流,大致相等的电流通过芯1和加热线5的毗邻位置,这些电流的方向互相相反。结果是,基本上没有从电缆发射的电磁辐射。
作为由NTC材料制造的分隔层4的替换例子,分隔层4可由可熔化材料制造,假如局部温度超过预定阈值则可熔化材料将被熔化。当这种熔化出现时,假若组件被包裹在挤压套6中(图1),并且围绕分隔层4缠绕加热线5,则芯1和线5将接触并使电缆有效短路。这将被立即检测到,因为短接的芯1和加热线5之间的电流流动,使通过电流监测器10的电流急剧下降。假如短路发生在靠近电缆的被供给电力的那一端,吸引的电流将急剧上升,这可作为过电流状况被简单地检测,使得控制器能够终止电力供给。假如短路发生在电缆的靠近电流监测器10被连接的另一端,短路电流仍将导致通过监测器10的电流下降,使得控制器响应由监测器8和10检测到的电流之间产生的差值,以终止供给。
可以理解,所描述的每个的系统具有三个独立的安全特征,也就是固有的低电磁辐射、通过监测PTC芯1的阻抗检测温度、通过监测通过分隔层4的电流检测温度(NTC响应或熔化)。当然,分隔层4可以由NTC并且在对应于局部过热的阈值温度处可熔化的材料制造。
可以理解,所描述的电缆的各种元件可由常规材料制造。例如,“金属丝”芯1可使用标准设备和材料制造。所需要的仅仅是芯1的端到端阻抗随温度增加。被结合在芯1中的铜或铜/镉线可展现充分的PTC特性。在冷却时小至几十欧姆的端到端阻抗,可产生足够大的电压降,以便可靠地检测随温度增加的电压降。关于分隔层4,适当制备的聚乙烯可被用作可熔层和/或作为NTC层。加热线5可以是完全常规的,如可以是用于形成外绝缘套的材料。
可以理解,示意性说明在图2中的电路仅仅是一个能够执行必需功能的电路的可能配置,即监测PTC芯1的端到端阻抗和监测通过分隔层4的电流泄漏。