具有图案的衬底及其制造方法,和半导体器件及其制造方法转让专利

申请号 : CN200610004003.8

文献号 : CN1832151B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 青木智幸大力浩二

申请人 : 株式会社半导体能源研究所

摘要 :

本发明提一种具有图案的衬底的制造方法,该方法能够控制邻近薄膜图案之间的距离,还提供了具有窄宽度和厚度的图案的衬底的制造方法,该方法能够控制薄膜图案之间的宽度。本发明提供了一种具有用作具有在电感方面变化较小并具有大电动势的天线的导电膜的衬底的制造方法,以及提供一种具有高产量的半导体器件的制造方法。在衬底、绝缘膜、或导电膜上方形成其中硅与氧结合并且非活性基团与硅结合的薄膜之后,在其上通过印刷法印刷组合物,并烘烤以形成薄膜图案。

权利要求 :

1.一种具有薄膜图案的衬底的制造方法,包括:在衬底上形成其中硅和氧结合并且非活性基团与硅结合的薄膜;

通过丝网印刷法,通过将组合物通过网格挤出,在薄膜上印刷组合物;以及烘烤挤出的组合物从而形成厚度为5至40μm的薄膜图案。

2.根据权利要求1的具有薄膜图案的衬底的制造方法,其中薄膜图案是导电薄膜、绝缘薄膜、或半导体薄膜。

3.根据权利要求1的具有薄膜图案的衬底的制造方法,其中在衬底的整个表面上形成薄膜。

4.根据权利要求1的具有薄膜图案的衬底的制造方法,其中非活性基团是氟代烷基或烷基。

5.一种半导体器件的制造方法,包括:

在绝缘薄膜上形成其中硅和氧结合并且非活性基团与硅结合的薄膜;

通过丝网印刷法,通过将组合物通过网格挤出,在其中硅和氧结合并且非活性基团与硅结合的薄膜上印刷组合物;和烘烤挤出的组合物从而形成厚度为5至40μm的薄膜图案。

6.根据权利要求5的半导体器件的制造方法,其中在绝缘薄膜的整个表面上形成其中硅和氧结合并且非活性基团与硅结合的薄膜。

7.根据权利要求5的半导体器件的制造方法,其中薄膜图案是导电薄膜、绝缘薄膜、或半导体薄膜。

8.一种半导体器件的制造方法,包括:

在衬底上方形成半导体元件;

形成连接到半导体元件的导电薄膜;

形成覆盖半导体元件和导电薄膜的绝缘薄膜,该绝缘薄膜具有暴露部分导电薄膜的开口部分;

在绝缘薄膜和暴露的导电薄膜上形成其中硅和氧结合并且非活性基团与硅结合的薄膜;

通过丝网印刷法,通过将组合物通过网格挤出,在其中硅和氧结合并且非活性基团与硅结合的薄膜上方印刷组合物;以及烘烤该挤出的组合物从而形成厚度为5至40μm的导电图案。

9.根据权利要求8的半导体器件的制造方法,其中在绝缘薄膜和暴露的导电薄膜的整个表面上形成其中硅和氧结合并且非活性基团与硅结合的薄膜。

10.根据权利要求8的半导体器件的制造方法,其中导电图案用作天线、电极、或布线。

11.根据权利要求8的半导体器件的制造方法,其中非活性基团是氟代烷基或烷基。

说明书 :

具有图案的衬底及其制造方法,和半导体器件及其制造方

技术领域

[0001] 本发明涉及具有图案例如用丝网印刷法形成的绝缘膜、导电膜、和半导体膜的衬底和其制造方法。本发明还涉及具有通过丝网印刷法形成的薄膜图案的半导体器件及其制造方法。

背景技术

[0002] 丝网印刷法是将丝网印刷板100和组合物106应用于衬底101的表面上的方法,如图2B所示,在丝网印刷板100中,框架103装配有金属网(网格)104并且在衬底101的上方提供掩模乳液105,如图2A所示,组合物106提供在丝网印刷板上方并当用橡皮滚子107、滚子等推压时被挤出。图2B显示提供有丝网印刷板的衬底的透视图,图2A显示沿其A-B的截面图。
[0003] 然后,如图2C所示,干燥并烘焙施加在衬底101上方的组合物111以形成如图2D和2E所示的薄膜图案131。
[0004] 因为丝网印刷法需要较少数量的步骤和装置并且其制造方法相对简单和容易,所以丝网印刷法在生产成本和产量上具有优势。因此,在形成提供在衬底上方的布线、提供在等离子显示板和发光显示器件中的隔墙(区)和像素电极、和覆盖半导体元件例如IC和LSI的焊块和封装件等的步骤中采用丝网印刷法。
[0005] 然而,在使用丝网印刷法在衬底上印刷组合物的情况下,填充在筛网开口部分中的所使用的组合物彼此连接成衬垫组合物。因此,如图2E所示的顶视图,在其侧表面上具有不同于掩模形状的弯曲(波浪)形状的组合物形成在应用以填充开口部分的组合物的区域132和与其连接的组合物的区域133中。因此,邻近薄膜图案131之间的距离134不同。另外,组合物表面具有对应于掩模的开口部分的不同的薄膜厚度,并且表面不平坦。
[0006] 按上述形状通过烘焙糊剂形成的薄膜图案在邻近薄膜图案之间也具有不同的距离。另外,表面不平坦。
[0007] 当形成天线例如能够通过使用上述薄膜图案来无线接收和传输数据的无线芯片(也称作ID标签、IC标签、和IC芯片、RF(射频)标签、无线标签、电子标签、或RFID(射频标识)时,天线的电感改变并且谐振频率降低,由此减小了电动势。另外,使用邻近天线容易发生短路。
[0008] 在具有组合物的窄线宽的区域133中,组合物容易分离,导致低产量。另外,根据组合物的粘性,导电膜的膜厚变得较薄。为了避免上述问题可以印刷组合物多次。然而,在这种情况下,步骤的数量增加,邻近组合物彼此连接。

发明内容

[0009] 鉴于上述情况,本发明提供一种具有图案的衬底的制造方法,其能够控制邻近薄膜图案之间的距离。本发明还提供一种具有能够控制薄膜图案之间宽度,尤其是具有窄宽度和厚度的图案的制造方法。另外,本发明的目的是提供一种具有用作电感变化较小和具有大电动势的天线的导电膜的衬底的制造方法。另外,本发明的目的还在于提供高产量地制造半导体器件的方法。
[0010] 根据本发明的一个方面,具有薄膜图案的衬底的制造方法和半导体器件的制造方法包括如下步骤:形成薄膜,在薄膜中,硅和氧结合并且非活性基团与衬底、绝缘膜、或导电膜上方的硅结合;使用印刷法将组合物印刷到薄膜的表面上,在薄膜中,硅和氧结合并且非活性基团与硅结合;和烘烤组合物以形成薄膜图案。
[0011] 其中硅和氧结合并且非活性基团与硅结合的薄膜形成在衬底、绝缘膜、或导电膜的整个表面上。
[0012] 薄膜图案是导电膜、绝缘薄膜、或者半导体薄膜。
[0013] 当薄膜图案是导电膜时,薄膜图案用作天线、像素电极、和布线。当薄膜图案是绝缘膜时,薄膜图案用作隔墙层。另外,当薄膜图案是半导体膜时,薄膜图案用作半导体元件的有源区。
[0014] 根据本发明的另一方面,半导体器件的制造方法包括如下步骤:在衬底上形成半导体元件;形成覆盖半导体元件的绝缘膜,该绝缘膜具有开口部分以暴露连接到半导体元件的导电膜的一部分;在绝缘膜和暴露的导电膜上方形成其中硅和氧结合并且非活性基团与硅结合的薄膜;使用印刷法在其中硅和氧结合并且非活性基团与硅结合的薄膜上印刷组合物;和烘烤组合物以形成薄膜图案。
[0015] 其中硅和氧结合并且非活性基团与硅结合的薄膜形成在绝缘膜和暴露的导电膜的整个表面上。
[0016] 本发明的另一方面是具有其中硅和氧结合并且非活性基团与硅结合的薄膜和形成在薄膜上的图案的衬底。
[0017] 其中硅和氧结合并且非活性基团与硅结合的薄膜形成在形成薄膜图案处的衬底的整个表面上。
[0018] 薄膜图案是导电膜、绝缘薄膜、或者半导体薄膜。
[0019] 当薄膜图案是导电膜时,薄膜图案用作天线、像素电极、和布线。当薄膜图案是绝缘膜时,薄膜图案用作隔墙层。另外,当薄膜图案是半导体膜时,薄膜图案用作半导体元件的有源区。
[0020] 另外,根据本发明的另一方面,半导体器件包括衬底上方的半导体元件;连接到半导体元件中的源区或漏区的第一导电膜;形成在第一一导电膜的表面上方的其中硅和氧结合并且非活性基团与硅结合的薄膜;形成在其中硅和氧结合并且非活性基团与硅结合的薄膜上方的第二导电膜。
[0021] 其中硅和氧结合并且非活性基团与硅结合的薄膜形成在导电膜的整个表面上。
[0022] 其中硅和氧结合并且非活性基团与硅结合的薄膜中的非活性基团是选自氟烷基、烷基、氟芳基、和芳基的官能团的至少一种。
[0023] 在本发明中,通过使用印刷法将组合物施加到其中硅和氧结合并且非活性基团与硅结合的薄膜上,可以减小不平坦度,即薄膜图案的侧表面的起伏。因此,可形成其宽度和邻近距离一致的薄膜图案。
[0024] 通过使用上述用于天线的薄膜图案,可形成在电感方面具有较小变化的天线。另外,形成具有大电动势的天线。此外,通过使用用于布线、隔墙层等的薄膜图案可以制造具有小变化的半导体器件。

附图说明

[0025] 图1A-1E是说明根据本发明形成薄膜图案步骤的截面图和透视图;
[0026] 图2A-2E是说明根据本发明形成薄膜图案步骤的截面图和透视图;
[0027] 图3A-3E是说明根据本发明形成天线步骤的截面图和透视图;
[0028] 图4A-4C是说明根据本发明的半导体器件的结构的截面图;
[0029] 图5A和5B是说明根据本发明的半导体器件的结构的截面图;
[0030] 图6A-6C是说明根据本发明的半导体器件的结构的顶视图和截面图;
[0031] 图7A-7H是说明根据本发明制造半导体器件的步骤的截面图;
[0032] 图8A-8C是说明根据本发明制造半导体器件的步骤的截面图;
[0033] 图9A-9C是说明根据本发明制造半导体器件的步骤的截面图;
[0034] 图10A-10E是说明根据本发明制造半导体器件的步骤的截面图;
[0035] 图11A-11C是说明根据本发明制造半导体器件的步骤的截面图;
[0036] 图12A-12C是说明根据本发明制造半导体器件的步骤的截面图;
[0037] 图13是说明根据本发明的半导体器件的结构的顶视图;
[0038] 图14是说明根据本发明的半导体器件的结构的视图;
[0039] 图15A-15F是说明根据本发明半导体器件的应用实例的视图;
[0040] 图16是显示丝网印刷板中的开口部分的指定值与薄膜图案宽度的平均值之间关系的曲线图;
[0041] 图17是说明改性玻璃衬底的表面结构的图表;
[0042] 图18A和18B是薄膜图案截面的SEM视图;和
[0043] 图19A和19B是说明其中测量薄膜图案电阻率的元件的结构的视图。

具体实施方式

[0044] 下面将参照附图说明根据本发明的实施模式。然而,容易理解的是,除非变化和修改脱离本发明的内容和范围,否则各种变化和修改对本领域的技术人员来说都是很明显的。因此,本发明不解释为局限于对下面实施模式的描述。注意在用于描述实施模式的所有图中用相同的附图标记表示相同的部分或具有相同功能的部分,且省略了对其的描述。
[0045] 在本实施模式中,参照图1A至1E描述通过丝网印刷法在衬底上方形成薄膜图案的步骤。
[0046] 图1A,1C,和1D是具有图案的衬底的剖面图,图1B和1E是具有图案的衬底的透视图。另外,图1A显示沿图1B中的A-B的截面图,图1D显示沿图1E中的A-B的截面图。
[0047] 在衬底101的上方形成包括氧、硅、和非活动性团的薄膜102。然后,通过丝网印刷法将组合物施加到具有氧、硅、和非活动性团的薄膜102的上方。特别地,将其中给框架103装备有金属网(网格)104和用于掩模的乳液105的丝网印刷板100提供在衬底上方。
然后,将组合物(糊剂)106提供在丝网印刷板上方,并且使用橡皮滚子107、滚子等挤出组合物106。因此,组合物11 1施加在包括氧、硅、和非活动性团的薄膜102的上方(参见图
1A至1C)。应当注意在使用橡皮滚子和滚子挤出组合物之前,通过刮刀使组合物在丝网印刷板上延伸。
[0048] 然后,通过干燥和烘焙所施加的组合物111形成薄膜图案112(参见图1D和1E)。
[0049] 至于衬底101,可以使用玻璃衬底、石英衬底、由绝缘材料例如像氧化铝的陶瓷形成的衬底、塑料衬底、硅片、金属板等。
[0050] 作为塑料衬底的典型例子,可以提及由PET(聚对苯二甲酸乙二醇酯)、PEN(聚萘二甲酸乙二醇酯)、PES(聚醚砜)、聚丙烯、聚硫化丙烯、聚碳酸酯(PC)、聚醚酰亚胺、聚苯撑砜聚苯醚、聚砜聚邻苯二甲酰胺、尼龙、聚醚醚酮(PEEK)、聚砜(PSF)、聚醚酰亚胺(PEI)、多芳基化合物(PAR)、聚对苯二甲酸丁二酯(PBT)、或者聚酰亚胺形成的塑料衬底、或者由分散有直径为几个纳米的无机微粒的有机材料形成的衬底等。衬底101具有柔韧性。这里,聚碳酸酯被用于衬底101。
[0051] 另外,使用由化学式:Rn-Si-X(4-n)(n=1,2,3)代表的有机硅烷的组合物形成包括氧、硅、和非活性基团的薄膜102。由化学式:Rn-Si-X(4-n)(n=1,2,3)代表的有机硅烷的R包括相对非活性基团例如氟烷基、烷基、氟芳基、和芳基。X由能够与衬底的表面上方的羟基结合的可水解基团例如卤素、甲氧基、乙氧基、丙氧基、异丙氧基、丁氧基、异丁氧基、s-丁氧、t-丁氧基、或者乙酰氧基组成。
[0052] 作为有机硅烷的例子,使用具有氟烷基作为R的氟烷基硅烷(在下文,称为FAS)。FAS的氟烷基R具有(CF3)(CF2)x(CH2)y的结构,其中,x是0或更大和10或者更小的整数,y是0或更大和4或者更小的整数。当多个R或者X与Si结合时,所有的R或者X可以是相同的或者不同的。作为FAS的典型实例,可以提及氟烷基硅烷例如十七氟代四氢化癸基三乙氧基硅烷、十七氟代四氢化癸基三氯硅烷、十三氟代四氢化辛基三氯硅烷、和三氟代丙基三甲氧基硅烷。
[0053] 作为有机硅烷的另一个例子,可以使用具有烷基作为R的烷氧基硅烷。作为烷氧基硅烷,优选使用具有碳数为2至30的烷基。典型地,可以提及乙基三乙氧基硅烷、丙基三乙氧基硅烷、辛基三乙氧基硅烷、癸基三乙氧基硅烷、十 八烷基三乙氧基硅烷(ODS)、二十烷基三乙氧基硅烷、和三十烷基三乙氧基硅烷。
[0054] 另外,有机硅烷的另一个例子,可以使用具有芳基作为R的烷氧基硅烷。作为烷氧基硅烷,优选使用具有碳数为6至8的芳基。典型地,可以提及苯基三乙氧基硅烷、苯甲基三乙氧基硅烷、苯乙基三乙氧基硅烷、甲苯三乙氧基硅烷等。
[0055] 此外,有机硅烷的另一个例子,可以使用具有氟芳基作为R的烷氧基硅烷。作为烷氧基硅烷,优选使用具有碳数量为6至9的氟芳基。典型地,可以提及五氟代苯基三乙氧基硅烷、(五氟代苯基)丙基三乙氧基硅烷等。
[0056] 这里,使用玻璃衬底作为衬底。图17显示用作为有机硅烷的一个例子的CF3(CF2)kCH2CH2Si(OCH3)3处理其表面的玻璃衬底的结构。玻璃衬底的表面与氧结合,氧与硅结合,硅与是相对非活性基团的CF3(CF2)kCH2CH2结合。此外,相邻的硅树脂与插入其间的氧结合。
[0057] 由于玻璃衬底的表面被相对非活性基团覆盖,所以表面中的表面能相对较小。另外,具有不同表面能的组合物比较容易地被排斥硅薄膜上方。例如,与水的接触角按CF<CF2<CF3的次序增加,表面能变得相对较小。另外,碳氟化合物的链越长,接触角就越易于增加,表面能趋于相对较小。因此,组合物在具有小表面能的薄膜的表面上流动并保持稳定形状。
[0058] 在下文中,通过用有机硅烷处理衬底或者构件的表面而形形成的薄膜表示为其中硅和氧结合并且非活性基团与硅结合的薄膜。
[0059] 作为用于有机硅烷的组合物的溶剂,使用烃熔剂例如正戊烷、正己烷、正庚烷、正辛烷、正癸烷、双环戊烷、苯、甲苯、二甲苯、杜烯、茚、四氢化萘、十氢化萘、或者角鲨烯、四氢呋喃等。
[0060] 在使用上述材料形成其中硅和氧结合并且非活性基团与硅结合的薄膜102的情况下,通过涂覆法、液相方法、蒸发法等形成上述材料。另外,通过将上述材料化学吸附到衬底101的表面来形成薄膜102。通过化学吸附形成单分子薄膜。
[0061] 当其中硅和氧结合并且非活性基团与硅结合的薄膜102由单分子膜组成时,其中硅和氧结合并且非活性基团与硅结合的薄膜的一部分可以在后面的步骤中在短时间内溶解。另外,由于单分子膜的均匀厚度,所以其中硅和氧结合并且非活性基团与硅结合的薄膜可以无变化地溶解。作为用于形成单分子膜的方法,将衬底和包含有机硅烷的组合物放置在气密容器中以进行蒸发,以便有机硅烷化学吸附在绝缘膜的表面上,然后用醇清洗表面以形成包含硅、氧和非活性基团的单分子膜。另外,将衬底放置于包含有机硅烷的溶液中,以便有机硅烷化学吸附在绝缘膜的表面上以具有单分子膜。这样,能够形成其中硅和氧结合并且非活性基团同硅相结合的薄膜。
[0062] 这里,采用将衬底放置在包含FAS试剂的气密容器中并在50℃至200℃,优选,100℃至200℃温度下加热五分钟或更长时间,以便FAS吸附到衬底101的表面上的方式,来形成其中硅和氧结合并且非活性基团与硅结合的薄膜102。
[0063] 根据待形成的薄膜图案的结构适当地使用组合物106。在形成导电膜图案的情况下,导电糊剂可以用于该组合物。作为导电糊剂,通过溶解或者分散在有机树脂中来使用具有几纳米到几微米直径的导电微粒。作为导电微粒,可以使用Ag,Au,Cu,Ni,Pt,Pd,Ir,Rh,W,Al,Ta,Mo,Cd,Zh,Fe,Ti,Zr,和Ba,卤化银微粒,或者可分散的纳米微粒的—种或多种元素微粒。另外,堆叠由这些材料形成的导电膜以形成薄膜图案112。另外,作为包含在导电糊剂中的有机树脂,可以使用用作粘合剂、溶剂、分散剂、和聚集金属颗粒的涂层材料的一种或多种有机树脂。典型地,可以提及有机树脂例如环氧树脂和有机硅树脂。
[0064] 在形成绝缘膜图案的情况下,绝缘糊剂可以用于该组合物。作为绝缘糊剂,可以使用由绝缘微粒和粘合剂形成的糊剂。作为绝缘微粒,可以提及硅石、氧化铝等等。
[0065] 另外,作为绝缘糊剂,可以使用热固性树脂、光固化树脂等。典型地,存在包治聚酰亚胺、丙烯酸、酚醛清漆树脂、三聚氰胺树脂、酚醛树脂、环氧树脂、有机硅树脂、邻苯二甲酸二烯丙基酯树脂、氯乙烯树脂、醋酸乙烯酯树脂、聚乙烯醇、聚苯乙烯、甲基丙烯酸树脂、聚乙烯树脂、聚丙烯、聚碳酸酯、聚酯、聚酰胺(尼龙)等等的糊剂,抗蚀剂也包含在其中。另外,也可以提及PSG(磷硅酸盐玻璃)、BPSG(硼磷酸盐玻璃)、硅酸酯基的SOG(旋涂玻璃)、聚硅氮烷基的SOG、烷氧基硅酸基的SOG、聚甲基硅氧烷等。
[0066] 另外,作为组合物,可以使用具有分散的导电微粒的各向异性导电性糊剂。
[0067] 由于组合物印在包含像氟烷基烷基等的相对非活性基团、氧、和硅的薄膜的上方,所以组合物变得具有使组合物的表面能稳定化的形状。因此,减小了组合物侧面的不平坦度(起伏)。通过干燥和烘焙上述组合物形成具有减小的不平坦度的薄膜图案。
[0068] [实施方案]
[0069] 在本实施方案中,将参照图16描述在通过使用丝网印刷板施加和烘焙导电组合物的情况下的薄膜图案的宽度,该丝网印刷板具有装备给具有互相不同宽度的开口部分的乳液。这里,作为衬底,使用两种类型的玻璃衬底和具有其中硅和氧结合并且非活性基团与硅结合的薄膜的玻璃衬底。作为导电组合物,使用Ag糊剂(由住友电子工业制造,产品名称:AGEP-201X)(包括银微粒、2-(2-丁氧基乙氧基)乙酸乙酯、和环氧树脂)。另外,使用其中金属网厚度是14μm并且金属网的开口部分的宽度是53μm的丝网印刷板。每隔10μm将丝网印刷板中的乳液的开口部分的宽度设定在30μm至180μm。
[0070] 具有其中硅与氧结合并且非活性基团与硅结合的薄膜的玻璃衬底的制造方法如下:将其中给玻璃衬底和印其外围提供FAS的托盘放置在加热到 170℃的加热板上;密封托盘,并加热10分钟以将FAS吸附到玻璃衬底的表面;然后,用乙醇清洗玻璃衬底的表面。然后,形成具有均一膜厚的其中硅和氧结合并且非活性基团同硅相结合的薄膜。
[0071] 然后,距离每个衬底的表面1.665nm放置丝网印刷板。然后,在刮刀压力为0.182MPa并且橡皮滚子滚速为20mm/秒的条件下使用刮刀将Ag糊剂遍布在丝网印刷板上。
[0072] 然后,通过在橡皮滚子压力为0.165MPa、橡皮滚子角度为80度、橡皮滚子硬度为80、橡皮滚子滚速为8毫米/秒的条件下向下压橡皮滚子将Ag糊剂印刷在衬底表面上方。
然后,在200℃下烘焙Ag糊剂30分钟以形成薄膜图案。
[0073] 表1至3显示形成在具有其中硅与氧结合并且非活性基团与硅结合的薄膜的玻璃衬底上方的薄膜图案的宽度(测定值)的平均值。表1显示通过使用具有40Pa·s粘度的Ag糊剂形成的薄膜图案(样品1)的宽度(测定值)的平均值。表2显示通过使用具有200Pa·s粘度的Ag糊剂形成的薄膜图案(样品2)的宽度(测定值)的平均值。表3显示通过使用具有400Pa·s粘度的Ag糊剂形成的薄膜图案(样品3)的宽度(测定值)的平均值。另外,表4至6显示玻璃衬底上方的薄膜图案宽度(测量值)的平均值。表4显示通过使用具有400Pa·s粘度的Ag糊剂形成的薄膜图案(样品4)的宽度(测定值)的平均值。表5显示通过使用具有200Pa·s粘度的Ag糊剂形成的薄膜图案(样品5)的宽度(测定值)的平均值。表6显示通过使用具有400Pa·s粘度的Ag糊剂形成的薄膜图案(样品6)的宽度(测定值)的平均值。此外,图16显示根据表1至6的丝网印刷板中开口部分的指定值与每个衬底上的薄膜的宽度之间的关系。
[0074] 表1
[0075]丝网印刷板中开口部分的指定值(μm) 30 40 50 60 70 80 90 100
薄膜图案宽度(测量 值)的平均值(μm) 32 47 62 75 82 91 95 99
丝网印刷板中开口部分 的指定值(μm) 110 120130 140 150 160 170 180
薄膜图案宽度(测量 值)的平均值(μm) 103 113121 132 139 149 158 162
[0076] 表2
[0077]丝网印刷板中开口部分的指定值(μm) 30 40 50 60 70 80 90 100
薄膜图案宽度(测量 值)的平均值(μm) 32 43 55 67 77 85 90 96
丝网印刷板中开口部分的指定值(μm) 110 120 130 140 150 160 170 180
薄膜图案宽度(测量值)的平均值(μm) 90 97 110 122 135 146 154 157
[0078] 表3
[0079]丝网印刷板中开口部分 的指定值(μm) 30 40 50 60 70 80 90 100
薄膜图案宽度(测量 值)的平均值(μm) 28 41 57 67 75 84 93 99
丝网印刷板中开口部分 的指定值(μm) 110 120 130 140 150 160 170 180
薄膜图案宽度(测量 值)的平均值(μm) 97 105 118 127 138 147 158 162
[0080] 表4
[0081]丝网印刷板中开口部分 的指定值(μm) 30 40 50 60 70 80 90 100
薄膜图案宽度(测量值)的平均值(μm) - 73 89 111 126 139 146 150

丝网印刷板中开口部分的指定值(μm) 110 120 130 140 150 160 170 180
薄膜图案宽度(测量值)的平均值(μm) 157 165 174 170 192 194 208 208[0082] 表5
[0083]丝网印刷板中包含的开口 部分的指定值(μm) 30 40 50 60 70 80 90 100薄膜图案宽度(测量值)的平均值(μm) - 60 86 100 111 120 132 135

丝网印刷板板中包含的开口部分的指定值(μm) 110 120 130 140 150 160 170 180
薄膜图案宽度(测量值) 的平均值(μm) 135 143 154 163 169 179 186 -

[0084] 表6
[0085]丝网印刷板中包含的开口部分的指定值(μm) 30 40 50 60 70 80 90 100薄膜图案宽度(测量值)的平均值(μm) - 57 75 915 105 111 121 126

丝网印刷板中包含的开口 部分的指定值(μm) 110 120 130 140 150 160 170 180
薄膜图案宽度(测量值)的平均值(μm) 131 137 148 162 178 184 191 -

[0086] 在图16中,水平轴表示丝网印刷板中开口部分的指定值,垂直轴表示对薄膜图案的宽度的测定值的平均值。另外,实线表示在其上形成其中硅与氧结合并且非活性基团与硅结合的薄膜的玻璃衬底上方的薄膜图案(样品1至3)的宽度。虚线表示玻璃衬底上方的薄膜图案(样品4至6)的宽度。另外,圆形标记表示当Ag糊剂具有40Pa·s的粘度时,薄膜图案(样品1和4)的宽度的测定值。每一三角形标记表示当Ag糊剂具有200Pa·s的粘度时,薄膜图案(样品2和5)的宽度的测定值。每一长方形标记表示当Ag糊剂具有400Pa·s的粘度时,薄膜图案(样品3和6)的宽度的测定值。
[0087] 如图16所示,形成在玻璃衬底上方的薄膜图案变得比丝网印刷板的指定值更厚。另一方面,形成在其中硅和氧结合并且非活性基团与硅结合的薄膜的上方的薄膜图案相对于丝网印刷板的指定值在介于30至80μm的丝网印刷板的指定值的范围内稍微更厚。应当注意该薄膜图案的宽度变得比形成在玻璃衬底上方的薄膜图案的宽度更薄。另外,在介于90至100μm的丝网印刷板的指定值的范围内,薄膜图案的宽度大约等于丝网印刷板的指定值。另外,在介于110至180μm的丝网印刷板的指定值的范围内,薄膜图案的宽度与丝网印刷板的指定值相比较变得稍微更薄。
[0088] 根据上述结果,能够通过使用丝网印刷法将组合物施加在其中硅与氧结合并且非活性基团与硅结合的薄膜上方来控制薄膜图案的宽度。
[0089] 然后,图18A和18B显示根据上述条件使用在乳液中具有110μm宽度的开口部分的丝网印刷板形成的薄膜图案的横截面的SEM视图(从前上部观察)。
[0090] 图18A显示形成在具有其中硅和氧结合并且非活性基团与硅结合的薄膜的玻璃衬底1801上方的薄膜图案1802。应当注意因为是单分子膜所以难以通过SEM观察其中硅与氧结合并且非活性基团与硅结合的薄膜。薄膜图案的宽度是98μm,最大膜厚度是19μm。另一方面,图18B显示形成在玻璃衬底1811上方的薄膜图案1812。薄膜图案的宽度是
148μm,并且最大膜厚是13μm。因此,当将组合物印刷在其上具有氧、硅、和非活性基团的玻璃衬底的上方时,可以形成具有大约与开口部分相同宽度和在侧面具有减小的不平坦度的薄膜图案。
[0091] 然后,将参照图19A和19B描述通过其中硅和氧结合并且非活性基团与硅结合的薄膜测量导电膜的电阻。
[0092] 如图19A所示,通过溅射在玻璃衬底1901上方形成具有5μm膜厚的铝薄膜1902。然后,通过上述方法将FAS吸附在铝薄膜1902上,并用醇清洗玻璃衬底1901以形成其中硅与氧结合并且非活性基团与硅结合的薄膜1903。其中硅与氧结合并且非活性基团与硅结合的薄膜具有极薄的膜厚并难以通过SEM观测。然后,在其中硅与氧结合并且非活性基团与硅结合的薄膜1903上,通过用上述方法施加并烘焙Ag糊剂来形成具有5μm膜厚的Ag薄膜1904a和1905b以制造样品A。另外,如图19B所示,通过溅射在玻璃衬底1901上方形成具有5μm膜厚的铝薄膜1902。然后,通过使用印刷方法在铝薄膜上方施加并烘焙Ag糊剂来形成具有5μm膜厚的Ag薄膜1904a和1904b以制造样品B。
[0093] 在样品户腓品B的每个中,当用检测器测量Ag薄膜1904a与1904b之间的电阻时,样品A品B的电阻分别是0.2Ω。因此,发现导电膜可以通过其中硅与氧结合并且非活性基团与硅结合的薄膜传导。
[0094] [实施方案2]
[0095] 在本实施方案中,将参照图3A至3E描述据本发明形成具有传导性的薄膜图案和具有该薄膜图案的半导体器件的步骤。作为半导体器件,将半导体器件例如无线芯片、无线标签、无线Ic、RFID、和IC标签用于说明。另外,在本实施方案中,作为具有传导性的薄膜图案,将能够无线接收和传输数据的天线用于说明。
[0096] 图3A、3C、和3D显示具有天线的衬底的剖面图。图3B和3E显示具有所述天线的衬底的透视图。另外,图3A显示图3B中的A-B的截面图,图3D显示沿图3E中的A-B的载面图。
[0097] 在衬底101上方形成其中硅和氧结合并且非活性基团同硅相结合的薄膜102。然后,通过丝网印刷法将组合物施加在其中硅和氧结合并且非活性基团与硅结合的薄膜102上方。特别地,将其中给框架103装备有金属网(网格)104和用于掩模的乳液105的丝网板提供在衬底上方。然后,将导电组合物305提供在丝网板100上方,使用橡皮滚子107挤出导电组合物305。这样,将导电组合物313施加在其中硅和氧结合并且非活性基团与硅结台的薄膜102上方(查阅图3A至图3C)。
[0098] 在本实施方案中,使用玻璃衬底。通过将FAS吸附在衬底表面上来形成其中硅与氧结合并且非活性基团与硅结合的薄膜102。另外,Ag糊剂用于导电组合物305。
[0099] 然后,干燥和烘焙所施加的组合物313以形成环形天线312(查阅图3D和3E)。
[0100] 根据上述涉骤,可形成具有减小的侧面不平坦度的天线。另外,可形成具有该天线的衬底。使导电膜之间的距离均—化。这样,可形成具有电感化小而电动势大的天线。
[0101] 然后,参照图4A至4C和图5A至5B描述由使用具有所述天线的上述衬底形成的无线芯片为代表的半导体器件。
[0102] 根据本发明的半导体器件具有其中集成了多个电路的结构。包含多个场效应晶体管的层530形成在那里。另外,天线形成在衬底上方。在本实施方案中,显示了具有用作形成在实施模式1中的薄膜图案的天线的衬底531(参见图4A)。包含多个场效应晶体管的层530具有不同的多个场效应晶体管。
[0103] 首先,描述包含多个场效应晶体管的层530的截面结构。场效应晶体管511和512形成在单晶半导体衬底500的上方,元件隔离区506a至506c置于其间。通过已知的方法形成场效应晶体管511和512。
[0104] 另一方面,导电连接端子312a形成在在具有天线321的衬底531上方。
[0105] 如图4A至4C所示,通过将场效应晶体管511的导电层541连接到连接端子312a来完成半导体器件。特别地,用各向异性导电粘合剂552粘接到具有天线的衬底531和包含多个场效应晶体管的层530。在该各向异性导电粘合剂552中,分散着导电微粒551。用置于其间的导电微粒551连接天线的连接端子312和加用作场效应晶体管511的源电极或者漏电极的导电层541。
[0106] 作为各向异性导电粘合剂的典型例子,可以提及包含分散的导电微粒551(其颗粒尺寸是几纳米到几十微微米)的粘合树脂例如环氧树脂或者酚醛树脂。另外,导电微粒551由金、银、铜、钯和铂的一种或多种元素组成。另外,导电微粒551可以是具有这些元素的多层结构的微粒。此外,作为导电微粒,由选自金、银、铜、钯、和铂的一种或多种元素形成的薄膜可形成在由树脂形成的微粒的表面上方。
[0107] 当导电微粒551的直径是1到100nm,优选选5到50nm时,将一种或多种导电微粒551连接到连接端子312a。在这种情况下,一种或者多种导电微粒551保持连接端子312a与导电层541之间的距离。
[0108] 另外,如图4C所示,可以使用包含直径为o.5至10μm,优选为1至5μm的导电微粒553的粘结层554。在这种情况下,导电层541与连接端子312a通过在垂直方向具有压碎形状的导电微粒553连接。导电微粒553保持导电层541与连接端子312a之间的距离。
[0109] 代替场效应晶体管,可以使用包含提供在绝缘衬底上方的TFT的层。
[0110] 然后,参照图5A和5B描述其中使用TFT代替单晶半导体衬底来形成电路和在TFT的背面连接天线的例子。这里,TFT的背面表示在那里提供TFT的绝缘膜703一侧。
[0111] 如图5A所示,基材750提供在包含含提供在衬底上方的TFT 701和702的层的上方。而包含TFT 701和702的层与衬底隔开,用各向异性导电粘合剂562将具有天线321 的衬底531连接到单独的一侧(查阅图5A)。
[0112] 用作TFT701的源极布线或者漏极布线的导电膜724a具有填充绝缘膜723、722、和703的开口部分的区域724c。因此,由于导电膜暴昭在绝缘膜703的开口部分中,因此能够在TFT的背面上连接用作天线的导电膜和TFT。而绝缘膜723、722、703的开口部分可以如下形成:通过刻蚀绝缘膜723和722暴露出源和漏区719a和719b和绝缘膜703;以及蚀刻绝缘膜703的暴露部分以形成开口部分。
[0113] 至于基材750,可以使用实施模式中显示的衬底101或者薄膜。作为薄膜,可以使用使用聚丙烯、聚酯、乙烯基、聚氟乙烯、聚氯乙烯等形成的薄膜、纤维材料纸、基材薄膜(聚酯、聚酰胺、无机汽相沉积薄膜、纸等)叠层薄膜和粘合剂合成树脂薄膜(丙烯酸基合成树脂环氧基合成树脂等)等。对薄膜执行热压粘合例如热处理和加压处置。在执行热处理和加压处理的情况下,通过热处理熔化提供在薄膜的最上表面上的粘合剂层或者提供在最外层上的层(不是粘合剂层)以通过加压粘接。
[0114] 薄膜的表面装备有粘合剂层或没有。粘合剂层对应于包含粘合剂例如热固性树脂、UV固化树指、或者环氧树脂脂基粘合剂的层。硅石涂层优选用于薄板材料,可以使用,例如,堆叠粘合剂层、薄膜例如聚酯、和硅石涂层的薄板材料。
[0115] 以下列方法中的任一种将包含TFT 701和702的层与衬底分离:(1)将具有大约300至500℃的耐热性的衬底用作衬底,在衬底与绝缘膜703之间提供金属氧化物薄膜,金属氧化物薄膜由于结晶而弱化,因此完全分离包含TFT 701和702的层;(2)在衬底与绝缘层703之间提供包含氢的非晶硅薄膜,通过激光照射或者使用气体或者溶液的刻蚀除去非晶硅薄膜,从而分离包含TFT 701和702的层;(3)机械地或者通过使用溶液的刻蚀除下其上形成包含TFT 701和702的层的衬底,从而分离包含TFT 701和702的层;以及(4)在高耐热衬底与绝缘层703之间提供剥离层和金属氧化物薄膜,金属氧化物薄膜由于结晶而弱化,通过使用溶液或者气体例如ClF3的刻蚀除去部分剥离层,然后完全地分离弱化的金属氧化物薄膜。
[0116] 与各向异性导电粘合剂552相似,各向异性导电粘合剂562是其中分散有导电微粒561的粘合剂。通过压力粘接可连接包含TFT 701和702的层和包含导电膜的衬底531。另外,填充在绝缘膜703、722、和723的开口部分中的区域24c通过导电微粒561电连接到导电膜的连接端子321a。
[0117] 另外,可以用各向异性导电粘合剂572将在其表面上具有天线的衬底581以及包含TFT 701和702的层的背面连接到该表面(查阅图5B)。典型地,暴露TFT 702的源或者漏电极724b的一部分以用各向异性导电微粒571电连接到形成在具有天线的衬底581上方的导电膜的连接端子121。
[0118] 当当包含IFT 701和702的隔离层连接到柔性衬底或者如上所述的薄膜时,半导体器件在厚度和重量方面都减小了,甚至在掉落时也很难破裂。另外,由于柔性衬底具有柔韧性,所以衬底可以连接到曲面或者不规则形状上;因此获得不同的应用。当再使用衬底时,可以降低半导体器件的成本。
[0119] 当提供多个天线时,由于即使当损坏了天线中的—个时,其他的天线也可以接收来自于外部系统的叫磁波,所以可以增加耐用性。另外,当多个天线发送和接收不同频率波段时,可以接收多个频带范围;因此,可以制成更多不同种类的阅读器/记录器。
[0120] 根据上述结构,可以制造半导体器件例如无线芯片。
[0121] [实施方案3]
[0122] 在本实施方案中,参照图6A至6C和7A至7H描述根据本发明形成导电膜图案的步骤和具有该导电膜图案的半导体器件。通过使用像素电极作为导电膜图案和使用发光显示器件作为半导体器件来描述本实施方案。
[0123] 图5A显示密封之前的像素部分的顶视图。图6B显示沿图6A中的A-A′的截面图,图6C显示沿图6A中的B-B的载面图。
[0124] 包含硅、氧、和非活性基团的薄膜212形成在第一衬底210的上方,多个第一电极213按照具有规则的距离的条纹形状布置在其上。具有对应于每—个像素的开口部分的分隔墙214提供在每一个第一电极213的上方。具有开口部分的分隔墙214由光敏或者非光敏有机材料(聚酰亚胺、丙烯酸、聚酰胺、聚酰亚胺酰胺、抗蚀剂、或者苯并环丁烯)、或者SOG薄膜(例如,包含烷基的SiOx薄膜)组成。另外,黑色颜料或者炭黑可分散在上述材料中以使隔离物具有遮光效应。由于具有遮光效应,具有开口部分的分隔墙214用作黑基质(BM)。应当注意对应于每一个像素的开口部分用作发光区域221。
[0125] 多个呈倒置锥形的分隔墙222平行地提供在具有开口部分的分隔墙214的上方以便与第一电极213相交。通过使用正感光树脂形成呈倒置锥形的分隔墙222以便非曝光区保留作为图案,并通过调整曝光量或者显影时间以便根据光刻法更广泛地刻蚀图案下面的区域。呈倒置锥形的分隔墙222也可以由具有遮光效应的上述材料组成以提高对比度。
[0126] 呈倒置锥形的每一分隔墙222的高度比包含有机化合物和第二电极216的层215R、215G、和215B的膜厚更高。然后,形成包含有机化合物和第二电极216的每一层215R、
215G、和215B以电隔离。呈条纹形状的第二电极216平行地延伸到该方向以便与第一电极
213相交。应当注意包含有机化合物的薄膜和导电膜也形成在呈倒置锥形的分隔墙222的上方。
[0127] 在本实施方案中,有选择地形成包含有机化合物的层215R、215G、和215B以获得可以发出三种光(R,G,和B)的全色发光显示器件。包含有机化合物的每一层215R、215G、和215B按平行条形图案形成。
[0128] 作为替换地,也能够在整个表面上方形成包含有机化合物的层和提供单色发光元件,从而获得单色发光显示器件或者区域颜色发光显示器件。还可替换地,可以将发白光器件与滤光片结合以获得全色发光显示器件。由于由具有遮光效应的材料组成的分隔墙214用作黑基质,所以可以使用仅仅包含彩色层的滤光片。
[0129] 通过用密封剂连接第二衬底来密封发光元件。如有必要可以形成覆盖第二电极216的保护膜。优选第二衬底具有对湿气的高抗渗性。另外,如有必要,可以将干燥剂分布在由密封剂围绕的区域中。
[0130] 当第一电极213由光反射导电材料组成,以及第二电极216由透光导电材料组成时,可以获得其中通过第二衬底传输来自发光元件的光的顶端发射型发光器件。将包含碳和镍的铝合金薄膜以单层或者叠层的下层一侧的形式用作第一电极213时,由于激发或热处理,优选与氧化铟锡(ITO)、包含氧化硅的ITO、和包含碳和镍的铝合金的接触电阻不做很大地起伏。
[0131] 当第一电极213由透光导电材料组成并且第二电极216由光反射导电材料组成时,可以获得其中通过第一衬底210获取从发汇元件发出的光的底部发射型发光器件。
[0132] 当第一电极213和第二电极216者都使用透光导电材料形成时,可以获得其中通过第一衬底和第二衬底获取从发光元件发出的光的发光器件。
[0133] 然后,参照图7A至7H描述图6A至6C所示的显示器件的制造方法。
[0134] 在图7A、7C、7E、和7G中显示了图6B中所示的区域的制造步骤。在图7B、7D、7F、和7H显示了图6C中所示的区域的制造步骤。
[0135] 在衬底210的上方,形成其中硅和氧结合并且非活性基团与硅结合的薄膜212。通过丝网印刷法向其上涂覆包含氧化锌和氧化铟的组合物。然后,执行干燥和烘焙以形成具有条纹形状的第一电极213(查阅图7A和7B)。
[0136] 然后,在第一电极213上,形成具有对应于每一个像素的开口部分的分隔墙214。通过已知的方法例如丝网印刷法、涂覆法和刻蚀法使用上述材料形成分隔墙。这里,印刷其中分散了分散型黑色颜料或者炭黑的光敏或者非光敏有机材料,然后,干燥和烘焙以形成具有开口部分的分隔墙214。
[0137] 在具有开口部分的分隔墙214的上方彼此平行地提供多个具有倒置锥形的分隔墙222以便与第一电极213相交。将正感光树脂施加到具有开口部分的分隔墙214,并干燥和烘焙。然后,根据光刻法执行曝光和显影以形成具有倒置锥形的分隔墙,其形成在非暴露隔离物中。通过控制曝光量或者显影时间以便更多地刻蚀每个分隔墙的中下部来获得倒置锥形。也可以使用具有挡光特性的上述材料形成具有倒置锥形的分隔墙222以提高对比度(参照图7C和7D)。
[0138] 然后,有选择地形成包含有机化合物的层215R、215G、和215B。包含有机化合物的每一层215R、215G、和215B形成为平行条形图案。因此,能够获得可以发出三种光(R、G和B)的全色发光显示器件。
[0139] 然后,形成第二电极216。作为第二电极,通过已知的方法例如溅射或者蒸发形成反射导电层。应当注意通过具有倒置锥形的分隔墙222划分每一像素。因此,具有倒置锥形的分隔墙222的头部分防止形成包含有机化合物的层215R、215G、和215B和第二电极216。因此,不用已知的光刻法而用具有倒置锥形的每个分隔墙222划分包含有机化合物的层和第二电极。
[0140] 然后,通过用相对的衬底密封衬底210来形成显示器件。图13显示密封之后用FPC等安装的显示器件的顶视图。
[0141] 根据本说明书的显示器件包含其中给显示器件装备有连结器,例如FPC(柔性印刷电路)、TAB(载带自动连接)带和TCP(载带封装)的模块、其中印刷线路板连接到TAB带或者TCP的末端的模块、和其中通过COG(玻璃上芯片)将IC(集成电路)直接地安装在显示元件上的模块。
[0142] 用密封剂311连接衬底301和相对的衬底310以便彼此相对。通过使用光固化树脂,更优选具有小的脱气和低吸湿性的材料形成密封剂311。另外,为了保持衬底之间的距离恒定,将填料(棍或者纤维间隔物)或者球状间隔物加入密封剂311。优选使用具有与衬底301相同热膨胀系数的材料形成衬底310,可以使用玻璃(包含石英玻璃)或者塑料。
[0143] 如图13所示,组成显示图象的像素部分具有彼此垂直相交的扫描线和数据线。
[0144] 图6中的第一电极213对应于图13中的数据线303,第二电极216对应于扫描线302,具有倒置锥形的分隔墙222对应于分隔墙304。包含有机化合物的层置于数据线303和扫描线302之间,标识为305的交点对应于—个像素。
[0145] 数据线303的线末端电连接到输入终端307,然后通过输入终端307连接到FPC309b。扫描线302通过输入终端306电连接到FPC309a。
[0146] 如有必要,光学薄膜例如起偏振片、圆形起偏振片(包含椭圆起偏振片)、波形板(λ/4板、λ/2板)、和滤光片可适当地提供在发射面上。另外,减反射膜提供在起偏振片或者圆形起偏振片上。例如,可以执行防眩光处理以降低由于表面的不平坦通过扩散反射光的反射眩光。可替换地,也可以执行用于加热起偏振片或者圆形起偏振片的减反射处理。在其后优选执行硬膜处理以使起偏振片或者圆形起偏振片不受外来冲击影响。然而,起偏振片或者圆形起偏振片降低光的提取效率,并且起偏振片或者圆形起偏振片本身是昂贵的并容易退化。
[0147] 根据上述处理,能够形成像素电极和发光显示器年。
[0148] [实施方案4]
[0149] 在本实施方案中,将参照图8A至8C描述具有连接到TFT的导电膜的半导体器件的制造方法。在衬底700的上方提供包含多个TFT层。作为这些TFT,可以适当地结合P型沟道TFT和n型沟道TFT。在本实施方案中,使用n型沟道TFT。
[0150] 在形成在衬底700上方的绝缘膜703的上方提供TFT 701和702。提供绝缘膜723以便覆盖TFT 701和02以及用作钝化膜的绝缘膜722。提供绝缘膜723以使表面水平。用作源极布线或者漏极布线的导电膜7214和724b连接到源区和漏区719a和719b。导电膜724a和724b填充在绝缘膜723中的接触孔中。
[0151] 另外,提供绝缘膜726和727以便覆盖导电膜724a和724b。提供这些绝缘膜726和27以使表面水平并保护TFT 701和702以及导电膜724a和724b。
[0152] 在形成绝缘膜726和727之后,在绝缘膜726和727的一部分中提供开口部分以暴露导电膜24a。然后,形成其中硅和氧结合并且非活性基团与硅结合的薄膜728。这里,可以适当地使用在实施模式中描述的其中硅和氧结合并且非活性基团与非活性基团结合薄膜102的相同的材料作为其中硅和氧结合并且非活性基团与硅结合的薄膜728(查阅图8A)。
[0153] 然后,在形成在开口部分上的其中硅和氧结合并且非活性基团与硅结合的薄膜728的上方使用丝网印刷法涂覆导电组合物。结果,将具有理想形状的导电组合物731涂覆在其中硅和氧结合并且非活性基团与硅结合的薄膜728的上方。在实施模式中描述的导电组合物可以适当地用作导电组合物731(查阅图8B)。
[0154] 根据上述步骤,通过干燥和烘焙具有理想形状的导电组合物形成连接接到TFT的导电膜741。应当注意导电膜741用作连接端子、导线、和天线。
[0155] [实施方案5]
[0156] 在本实施方案中,将参照图9A至9C描述具有连接到TFT的导电膜的半导体器件的制造方法。在本实施方案中,形成像素电极作为通过丝网印刷法形成的导电膜,形成液晶显示器件作为半导体器件。
[0157] 与实施方案4相同,在衬底700的上方形成TFT 701,形成绝缘膜722和723以覆盖TFT 701。部分地刻蚀绝缘膜膜722和723以提供开口部分,然后形成连接到源区和漏区719a的导电膜724a。
[0158] 然后,在绝缘膜723和导电膜724a的上方形成其中硅和氧结合并且非活性基团与硅结合的薄膜751。
[0159] 然后,与实施模式相同通过丝网印刷法在其中硅和氧结合并且非活性基团与硅结合的薄膜751的上方印刷第一像素电极752(查阅图9B)。
[0160] 印刷并烘焙包含氧化铟锡(ITO)、氧化锌(ZnO)、氧化铟锌(IZO)、掺杂镓的氧化锌(GZO)、包含氧化硅的氧化铟锡等的组合物以形成具有透光特性的像素电极。通过使用上述像素电极,可制造透光光液晶显示器。
[0161] 另外,印刷并烘焙主要包含金属微粒例如Ag(银)、Au(金)、Cu(铜)、W(钨)、和Al(铝)的组合物以形成具有反射性的像素电极。通过使用上述像素电极,可制造反射液晶显示器。
[0162] 此外,通过给每个像素提供上述透光像素电极和上述反射像素电极来制造半透光液晶显示器件。
[0163] 根据上述步骤,可以形成有源基质衬底。
[0164] 然后,通过印刷方法或者旋转涂层方法形成绝缘膜,通过摩擦处理形成定向膜753。应当注意可以通过斜向蒸发形成定向膜753。
[0165] 尽管没有说明,但在提供有定向膜764、第二电极(相对电极)763、和着色层762的相对衬底761中的像素部分的周围区上通过液滴排出方法形成具有闭环形状的密封剂。用填料混合密封剂,并给相对衬底761提供滤光片和保护薄膜(黑基质)。
[0166] 然后,通过分配技术(点滴技术)将液晶材料滴在由密封剂形成的闭环的内侧。然后,在真空中贴合相对衬底和有源基质衬底,通过使用紫外线固化形成充满液晶材料的液晶层765。应当注意可以使用其中在将相对衬底贴合至到衬底之后通过使用毛细现象注入液晶材料的浸渍技术(倾注技术)来代替分配技术(点滴技术)作为用于形成液晶层765的方法。
[0167] 然后,将布线衬底,典型地FPC(柔性印刷电路)贴合到具有置于其间的连接导电层的扫描线和信号线的连接端子部分。根据上述步骤,可以形成液漏显示器。
[0168] 应当注意可以在连接端子与源极布线(或栅极布线)之间,或者在像素部分中提供用于防止产生静电放电故障的保护电路,典型地为二极管等。在这种情况下,通过与上述TFT相同的步骤制造保护电路。可以通过连接像素部分的栅极布线层和二极管的漏极或者源极布线层防止静电放电。
[0169] [实施方案6]
[0170] 在本实施方案中,参照附图描述半导体的制造方法。
[0171] 在衬底1100的表面上方,形成绝缘膜1001、和剥离层1102a和1102b(参看图10A)。
[0172] 衬底1100可以是玻璃衬底、石英衬底、金属衬底、具有其中形成绝缘膜的表面的不锈钢衬底等。上述衬底1100在形状和尺寸方面没有限制。因此,例如,如果使用具有一米或以上侧面的长方形衬底作为衬底1100,就可以显著地增加产量。这是与使用圆形硅衬底相比的主要优点。
[0173] 在衬底1100上方形成绝缘膜1001之后,通过光刻法形成抗蚀剂掩模,然后,通过使用抗蚀剂掩模有选择地刻蚀导电层以形成剥离层1102a和1102b。为了获得剥离层1102a和1102b,单一层或者堆叠层由选自钨(W)、钼(Mo)、钛(Ti)、钽(Ta)、铌(Nb)、镍(Ni)、钴(Co)、锆(Zr)、锌(Zn)、钌(Ru)、铑(Rh)、钯(Pd)、锇(Os)、铱(Ir)、和硅(Si)的元素、主要包含这些元素的合金材料、或者主要包含这些元素的化合物材料形成。包含硅的层具有无定形结构、微晶结构、和多晶结构的任意一种。
[0174] 当每一剥离层1102a和1102b具有单层结构时,优选形成钨层、钼层、或者包含钨和钼的组合物的层。作为替代,可以形成包含钨的氧化物或者氧氮化合物的层、包含钼的氧化物或者氧氮化合物的层、或者包含钨和钼的混合物的氧化物或者氧氮化合物的层。应当注意作为钨和钼的混合物,例如,可以提及钨和钼的合金。
[0175] 当每一剥离层层1102a和1102b具有堆叠层结构时,优选形成钨层、钼层、或者包含钨和钼的混合物的层作为第一层,形成包含钨、钼、或者钨和钼的混合物的氧化物、氮化物、氧氮化合物、或者氮化物氧化物的层作为第二层。
[0176] 当每一剥离层1102a和1102b具有包含钨的层和包含钨的氧化物的层的堆叠层结构时,可以在包含钨的层上形成包含氧化硅的层,从而在钨层与氧化硅层之间的界面上形成包含钨的氧化物的层。另外,使包含钨的层的表面经受热氧化处理、氧等离子体处理、N2O等离子体处理、或者使用强氧化溶液例如臭氧水的处理以形成包含钨的氧化物的层。将相同的方法应用于形成包含钨的氮化物、氧氮化合物和氮化物氧化物的层的情况。在形成包含钨的层之后,可以在其上形成氮化硅层、氧氮化硅层、和氮化硅氧化层。
[0177] 用WOx表示钨的氧化物,其中x在2≤x≤3的范围之内。存在x是2(WO2)、2.5(W2O5)、2.75(W4O11)、3(WO3)等的情况。
[0178] 根据上述步骤,在衬底1100与剥离层1102a和1102b之间形成绝缘膜1001,然而,本发明不局限于这些步骤。可以形成剥离层1102a和1102b使其与衬底1100接触。
[0179] 在本实施方案中,使用玻璃衬底作为衬底1100,通过CVD方方法形成100nm厚的氧氮化硅薄膜作为绝缘膜1101,通过溅射形成30nm厚的钨层作为剥离层1102a和1102b。
[0180] 然后,如图10B所示,形成绝缘膜1105作为基膜以覆盖剥离层1102a和1102b。为了获得绝缘膜1105,通过已知的方法(溅射、等离子体CVD方法等)形成由氧化硅薄膜、氮化硅薄膜、或者氧氮化硅薄膜形成的单一层或者堆叠层。作为基膜的绝缘膜用作防止杂质侵入衬底1100的阻挡层。
[0181] 在本实施方案中,对于绝缘膜1105通过溅射形成200nm厚的氧化硅薄膜作为基膜。
[0182] 然后,在绝缘膜1105上方形成非晶态半导体薄膜(例如,包含非晶硅的薄膜)。然后,通过已知的结晶方法(激光结晶、使用RTA或者退火炉的热结晶、使用促进结晶的金属元素的热结晶、结合了热结晶和使用促进结晶的金属元素的激光结晶的方法等)使非晶态半导体薄膜结晶以形成结晶半导体薄膜。然后,将所获得的结晶半导体薄膜蚀刻成理想的形状以形成结晶半导体薄膜1127至1130。
[0183] 下面将具体地描述结晶半导体薄膜1127至1130的制造步骤。首先,通过等离子体CVD方法形成66nm厚的非晶态半导体薄膜。在用包含作用于促进结晶的金属元素的镍的溶液涂覆非晶态半导体薄膜之后,使非晶态半导体层经受脱氢处理(在500℃下进行一小时)和热结晶处理(在550℃下进行四个小时),从而形成结晶半导体薄膜。然后,用连续振荡或者脉冲振荡的激光照射结晶半导体薄膜,并使用通过光刻法形成的抗蚀剂掩模有选择地刻蚀,以便形成结晶半导体薄膜1127至1130。
[0184] 另外,在结晶半导体薄膜上方形成用作吸气位置的非晶态半导体薄膜。需要用作吸气位置的非晶态半导体薄膜包含杂质元素例如磷和氩,因此,优选通过溅射形成非晶态半导体薄膜以能够包含高浓度的氩。然后,通过热处理(例如RTA法和使用退火炉的热退火)将金属元素扩散到非晶态半导体薄膜中,除去包含金属元素的非晶半导体膜。结果,可以降低或者除去结晶半导体薄膜中的金属元素的含量。
[0185] 然后,形成绝缘膜以覆盖结晶半导体薄膜1127至1130。为了获得绝缘膜,通过等离子体CVD方法或者溅射由氧化硅薄膜、氮化硅薄膜、或者氧氮化硅薄膜形成单一层或者堆叠层。
[0186] 在本实施方案中,通过CVD方法形成氧氮化硅膜作为绝缘膜。
[0187] 然后,在绝缘膜上方堆叠第一导电膜和第二导电膜。通过已知的方法(等离子体CVD方法或者溅射)形成第一导电膜使其具有20至100nm的厚度。通过已知的方法形成第二导电膜使其具有100至400nm的厚度。第一导电膜和第二导电膜由选自钽(Ta)、钨(W)、钛(Ti)、钼(Mo)、铝(Al)、铜(Cu)、铬(Cr)、铌(Mb)等的元素、或者主要包含这些元素的合金材料或者化合物材料形成。做为选择,第一和第二导电膜由用杂质元素例如磷掺杂的半导体材料典型地地例如多晶硅形成,
[0188] 通过结合,例如,氮化钽(TaN)层和钨(W)层、氮化钨(WN)层和钨层、氮化钼(MoN)层和钼(Mo)层等形成第一导电膜和第二导电膜。当第一导电膜和第二导电膜由具有高热阻的钨和氮化钽形成时,可以执行用于热激活的热处理。
[0189] 在本实施方案中,形成30nm厚的氮化钼层作为第一导电膜,形成370nm厚的钨层作为第二导电膜。
[0190] 然后,通过光刻法形成抗蚀剂掩模,执行刻蚀以形成栅电极,从而形成用作栅电极的导电膜(也称为栅电极)1107至1110。
[0191] 然后,通过离子掺杂或者离子注入以低浓度将赋予n型导电性的杂质元素加到结晶半导体薄膜1127至1130中。
[0192] 然后,形成绝缘膜以覆盖绝缘膜和导电膜1107至1110。为了获得绝缘膜,通过已知的方法(例如等离子体CVD法和溅射)形成由包含无机材料例如硅、硅的氧化物或者硅的氮化物形成的薄膜、或者包含有机材料例如有机树脂的薄膜(也称作有机薄膜)形成的单一层或者堆叠层。
[0193] 在本实施方案中,通过CVD方法形成氧氮化硅薄膜用作绝缘膜。
[0194] 然后,通过主要在垂直方向进行刻蚀的各向异性刻蚀有选择地刻蚀绝缘膜,以便形成与导电膜1107至1110的侧壁接触的绝缘膜(在下文,称为侧壁绝缘膜)1115至1118。使用侧壁绝缘膜1115至1118作为用于掺杂的掩模以形成源区和漏区。
[0195] 根据用于形成测壁绝缘膜1115至1118的刻蚀步骤,也刻蚀绝缘膜以形成栅绝缘膜1119至1122。栅绝缘膜1119至1122与导电膜1107至1110和侧壁绝缘膜1115至1118交迭。当栅绝缘膜的材料的蚀刻速率等于侧壁绝缘膜1115至1118的蚀刻速率时,如图10B所示刻蚀栅绝缘膜。因此,当栅绝缘膜的材料的蚀刻速率不同于侧壁绝缘膜1115至1118的蚀刻速率时,甚至在执行刻蚀步骤以形成侧壁绝缘膜11 15至1118之后仍残余栅绝缘膜。
[0196] 接着,使用侧壁绝缘膜1115和1117作为掩模将给予n型导电性的杂质元素加到结晶半导体薄膜1127和1129,从而形成第一n型杂质区域(也称LDD区域)1123a和1123c和第二n型杂质区域(也称源区和漏区)1124a和1124c。
[0197] 另外,将给予p型导电性的杂质元素加到结晶半导体薄膜1128和1130,从而形成第一p型杂质区域(DD区域)1123b和1123d和第二p型杂质区域(也称源区和漏区)1124b和1124d。
[0198] 包含在第一n型杂质区域1123a和1123c中的杂质元素的浓度低于包含在第二n型杂质区域1124a和1124c中的杂质元素的浓度。同样地,包含在第一p型杂质区域1123b和1123d中的杂质元素的浓度低于包含在第二p型杂质区域1124b和1124d中的杂质元素的浓度。
[0199] 通过上述步骤,完成n型薄膜晶体管1131和1133。另外,完成p型薄膜晶体管1132和1134。
[0200] 每一n型薄膜晶体管1131和1133具有LDD结构,并包含具有第一n型杂质区域、第二n型杂质区域和沟道形成区域、栅绝缘膜、和用作栅电极的导电膜的有源层。每一p型薄膜晶体管1132和1134具有LDD结构,并包含具有第一n型型杂质区域、第二n型杂质区域和沟道形成区域、栅绝缘膜、和用作栅电极的导电膜的有源层。
[0201] 然后,形成由单一层或者堆叠层形成的绝缘膜以覆盖薄膜晶体管1131至1134。在本实施方案中,显示了堆叠两个绝缘膜以覆盖薄膜晶体管1131至1134的情况。对于第一绝缘膜1141,形成包含氧氮化硅的50nm厚的薄膜,对于第二绝缘膜1142,形成包含氧化硅的600nm厚的薄膜。
[0202] 在形成绝缘膜1141和1142之前,或者在形成绝缘膜1141和1142中的一个或者两个之后,优选执行热处理以恢复半导体薄膜的结晶度,激活加入到半导体薄膜中的杂质元素,并氢化半导体薄膜。作为热处理,可以采用热退火、激光退火、RTA等。
[0203] 然后,通过光刻法刻蚀绝缘膜1141和1142,从而形成接触孔以暴露n型杂质区域1124a和1124c、和p型杂质区域1124b和1124d(参看图10C)。
[0204] 然后,形成导电膜以填充接触孔,并对其图案化以形成导电膜1155至1162。导电膜1155至1162用作TFT的源极布线或者漏极布线。
[0205] 为了获得导电膜1155至1162,通过已知的方法(例如等离于体CVD方法和溅射)形成由选自钛(Ti)、铝(Al)、和钕(Nd)的至少一种元素、或者主要包含这些元素的合金材料或者化合物材料形成的单一层或者堆叠层。例如,主要包含铝的合金材料对应于主要包含铝并包含镍的材料、或者主要包含铝并包含镍以及碳和硅中的一种或者两种的合金材料。
[0206] 在本实施方案中,对于导电膜1155至1162通过溅射从绝缘膜1142一侧按照顺序堆叠60nm厚的钛层、40nm厚的氮化钛层、500nm厚的铝层、60nm厚的钛层、和40nm厚的氮化钛层。
[0207] 然后,形成由单一层或者堆叠层形成的绝缘膜1163以覆盖导电膜1155至1162(参看图10D)。覆盖导电膜1155至1162的薄膜1163由无机绝缘膜形成。对于无机绝缘膜,施加1.5μm厚的硅氧烷聚聚合物,然后干燥和烘焙以形成绝缘膜1163。
[0208] 与覆盖薄膜晶体管的绝缘膜1142相似,在覆盖导电膜1155至1162的绝缘膜1163中形成接触孔,并形成其中硅和氧结合并且非活性基团与硅结合的薄膜1164。在本实施方案中,FAS化学吸附到绝缘膜1163,从而形成单分子的其中硅和氧结合并且非活性基团与硅结合的薄膜1164。
[0209] 然后,通过丝网印刷法在其中硅和氧结合并且非活性基团与硅结合的薄膜1164的上方印刷导电组合物,并执行干燥和烘焙以形成5至40μm厚的导电膜1165。导电膜1165用作天线的一部分。
[0210] 在本实施方案中,Ag糊剂剂用作导电膜1165。根据上述步骤,可以形成用作连接到TFT的天线的导电膜1165。
[0211] 可以在其中硅和氧结合并且非活性基团与硅结合的薄膜1164和用作天线的导电膜1165的上方形成由碳例如DLC(金刚石类碳)、氮化硅和氮化硅氧化物形成的保护膜。
[0212] 然后,在其中硅和氧结合并且非活性基团与硅结合的薄膜1164和导电膜1165的上方形成绝缘膜1181。由于在随后的分离步骤中将绝缘膜1181作为保护膜(参照图10E),所以绝缘膜1181优选是平板薄膜。
[0213] 在本实施方案中,对于绝缘膜1181,通过丝网印刷法形成15μm厚的环氧树脂层。应当注意,在下文,从绝缘膜1105到绝缘膜1181的堆叠层表示为包含多个薄膜晶体管的层
1170。
[0214] 然后,形成开口部分1182以暴露剥离层1102a和1102b。通过使用激光烧蚀方法或者光刻法除去绝缘薄膜1105、1141、1142、1163、和1181的一部分形成开口部分1182。
[0215] 在本实施方案中,通过来自UV激光器的激光束照射形成开口部分1182(参看图11A)。
[0216] 将蚀刻剂引入到开口部分1182中,从而除去剥离层1102a和1102b的一部分(参看图11B)。被部分刻蚀的剥离层表示为残余的剥离层1183和1184。在湿法刻蚀的情况下,使用通过用水或者氟化铵烯释氢氟酸而获得的混合溶液、氢氟酸和硝酸的混合溶液、氢氟酸、硝酸和乙酸的混合溶液、过氧化氢和硫酸的混合溶液、过氧化氢、氨水和水的混合溶液、过氧化氢、盐酸和水的混合溶液等作为蚀刻剂。另外,在干刻蚀的情况下,使用包含卤素基原子或者分子例如氟的气体或者包含氧的气体。优选使用包含卤素氟化物或者卤素化合物的气体或者溶液作为蚀刻剂。
[0217] 在本实施方案中,使用三氟化氯(CIF3)刻蚀一部分剥离层。被部分刻蚀的剥离层表示为残余的剥离层1183和1184。
[0218] 然后,用粘合剂1185将绝缘膜1181的表面粘附于基材1186,并将衬底1100和剥离层1102a和1102b与包含多个薄晶体管的层1170分离(参看图11C)。
[0219] 在本实施方案中,使用装备有低粘性膜的转置滚子作为基材1186并在将粘合剂1185施加到绝缘层1181的同时转动,以便仅将包含提供在绝缘膜1105上方的多个晶体管的层1170转置在基材1186之上。转置滚子由硅酮基树脂或者氟基树脂形成。
[0220] 此时,将在基材1186与包含多个晶体管的层1170之间的粘合强度设置得比衬底1100与绝缘膜1105之间的更高。然后,仅仅使包含提供在绝缘膜1105上方的多个晶体管的层与衬底分离。
[0221] 然后,将基材1186和包含多个薄膜晶体管的层1170分离。
[0222] 然后,将薄膜1191粘附到绝缘膜1105(参看图12A)。可以适当地使用实施方案2中公开的基材750作为薄膜1191。当使用其中堆叠粘合剂层、PET膜、和硅石涂层的薄板材料作为薄膜1191时,可以在密封之后防止水分等进入内部。
[0223] 然后,从绝缘膜1181除去粘合剂1185(参看图12B)。
[0224] 在本实施方案中,通过用V射溅照射来除除去粘合剂1185。
[0225] 然后,将薄膜1192粘附到包含多个晶体管的层1170和薄膜1191的表面以密封包含多个晶体管的层1170(参看图12C)。也可以适当地使用与膜1191相同的材料作为薄膜1192。
[0226] 在本实施方案中,使用其中堆叠粘合剂层、PET膜、和硅石涂层的薄板材料作为薄膜1192。
[0227] 然后,在膜1191和1192的粘附区域中,分别地切断包含多个晶体管的层。因此,可以形成无线芯片。
[0228] [实施方案7]
[0229] 在本实施方案中,参照图14描述由无线芯片代表的半导体器件的结构。如图14所示,根据本发明的半导体器件20具有无线传播数据的功能,其包含电源电路11、时钟产生电路12、数据解调制电路13、用于控制其他电路的控制电路14、接口电路15、存储电路16、数据总线17、天线(天线线圈)18、探测器21、和探测器电路22。
[0230] 在电源电路11中,根据从天线18输入的交流电信号来产生提供给半导体器件20中的每个电路的不同种类的电源。在时钟产生电路12中,根据从天线18输入的交变电信号来产生提供给半导体器件20中的每个电路的不同种类的时钟信号。数据解调/调制电路13具有与阅读器/记录器19联系的解调/调制数据的功能。控制电路14具有控制存储电路16的功能。天线18具有发送/接收电磁场或者电波的功能。阅读器/记录器19与半导体器件联系并控制半导体器件,以及处理半导体器件的数据。应当注意半导体器件的结构不局限于上述结构,可以另外提供其他的元件,例如,供电电压的限幅电路和用于加密的硬件。
[0231] 存储电路16具有其中将有机化合物层或者相变层置于一对导电膜之间的存储元件。应当注意存储电路16仅仅具有其中将有机化合物层或者相变层置于一对导电膜之间的存储元件,或者具有具有不同结构的另一个存储电路。例如,具有不同结构的存储电路时应于选自DRAM、SRAM、FeRAM、掩模ROM、PROM、EPROM、EEPROM、和闪存的一个或多个。
[0232] 探测器21包含电阻元件、电容耦合元件、电感耦合元件、光电元件、光电转换器、温差电动势元件、晶体管、热敏电阻、和二极管。探测器电路22检测阻抗、电抗、电感、电压、或者电流方面的变化,并执行模模拟/数字(A/D)转化以输出控制电路14的信号。
[0233] [实施方案8]
[0234] 可以根据本发明形成用作无线芯片的半导体器件。半导体器件的应用范围广泛。半导体器件可以安装在不同的对象上,例如票据、硬币、证券、无记名债券、证书(驾驶证、身份证等,参照图15A)、用于包装物体的容器(包装纸、瓶子等,参看图15C)、记录媒体(DVD、录像磁带等,参看图15B)、交通工具(自行车等,参看图15D)、个人物品(袋、眼镜等)、食物、衣服、生活品、和电子设备的商品、或者物体的装运标签(参看图15E和15F)。电子设备包含液晶显示器、EL显示器件、电视机(也简称为电视或者电视接收收器)、移动电话等等。半导体器件还可以安装在植物、动物、人体等上。
[0235] 将半导体器件粘附到物体的表面或者结合进待固定的物体中。例如,可以将无线芯片结合进书的纸张、或者用有机树脂制造的包装的有机树脂中。当将无线芯片结合进票据、硬币、证券、无记名债券、证书等等时,就可以防止伪造。另外,当将无线芯片结合进用于包装物体的容器、记录媒体、个人物品、食物、衣服、生活品、电子设备等等时,可以更高效地执行测试系统、租赁系统等。采用通过已知的分离步骤分离形成在衬底上方的薄膜集成电路,然后贴附到覆盖材料的方式获得根据本发明的无线芯片;因此,可以在尺寸、厚度和重量方面减小无线芯片并可以在保持精美设计的同时将无线芯片安装在物体上。另外,由于上述的无线芯片具有柔韧性,所以可将其贴附于具有曲面的物体例如瓶子和管。
[0236] 当将根据本发明的半导体器件应用到产品管理和分配系统时,可以获得高性能系统。例如,当通过提供在运输带旁边的阅读器/记录器阅读存储在安装在货运标签上的半导体器件中的信息时,就可以读出信息例如分配进程和投递地址以容易地检查和分配物体。