TLR7配体及其前药在制备用于治疗丙型肝炎病毒感染的药物中的用途转让专利

申请号 : CN200480025532.5

文献号 : CN1845745B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : D·R·埃夫里特

申请人 : 安那迪斯药品股份有限公司

摘要 :

本发明涉及使用Toll样受体TLR7配体及其前药在哺乳动物中治疗或预防丙型肝炎病毒感染的方法。更具体地说,本发明涉及口服给药治疗有效量的一种或多种TLR7配体前药用于治疗或预防丙型肝炎病毒感染的方法。这些TLR7免疫调节配体及其前药的口服给予哺乳动物可提供治疗有效量并降低不良副作用。

权利要求 :

1.TLR7配体在制备治疗丙型肝炎病毒感染的药物中的用途,其中,所述TLR7配体选自以下:

2.如权利要求1所述的用途,其特征在于,所述药物用于人。

3.如权利要求1所述的用途,所述药物还包括药学上可接受的赋形剂、载体或媒介物。

4.如权利要求1所述的用途,所述药物还包括其它治疗剂。

5.如权利要求4所述的用途,其特征在于,所述其它治疗剂是抗病毒剂。

6.如权利要求1所述的用途,其特征在于,所述TLR7配体的治疗或预防有效量为每天

0.001-100毫克/千克。

7.如权利要求1所述的用途,其特征在于,所述TLR7配体的治疗或预防有效量为每天

0.01-50毫克/千克。

8.如权利要求1所述的用途,其特征在于,所述TLR7配体的治疗或预防有效量为每天

0.1-20毫克/千克。

9.如权利要求1所述的用途,其特征在于,非胃肠道给予所述药物。

10.如权利要求1所述的用途,其特征在于,静脉内给予所述药物。

11.如权利要求1所述的用途,其特征在于,口服给予所述药物。

12.如权利要求1所述的用途,其特征在于,经粘膜给予所述药物。

13.治疗或药学上有效量的掩蔽的TLR7配体前药或其药学上可接受的盐在制备治疗丙型肝炎病毒感染的药物中的用途,所述掩蔽的TLR7配体前药选自:

14.如权利要求13所述的用途,其特征在于,通过口服给予所述药物获得TLR7配体的体内有效血浆浓度,其为仅口服给予TLR7配体得到的有效体内接触的10%-500%。

15.如权利要求13所述的用途,其特征在于,通过口服给予所述药物获得TLR7配体的体内有效血浆浓度,其为仅口服给予TLR7配体得到的有效体内接触的50%-200%。

16.如权利要求13所述的用途,其特征在于,通过口服给予所述药物获得对应TLR7配体的治疗有效血浆浓度而不产生胃肠道刺激。

17.如权利要求13所述的用途,其特征在于,与仅口服给予TLR7配体产生的副作用相比,口服给予所述药物降低患者中的不良副作用。

18.如权利要求13所述的用途,其特征在于,与仅口服给予TLR7配体产生的副作用相比,口服给予所述药物降低患者中50%的不良副作用。

19.如权利要求18所述的用途,其特征在于,所述副作用是胃肠道刺激。

20.如权利要求18所述的用途,其特征在于,所述刺激是出血。

21.如权利要求18所述的用途,其特征在于,所述刺激是损伤。

22.如权利要求18所述的用途,其特征在于,所述刺激是呕吐。

23.如权利要求13所述的用途,其特征在于,所述药物用于人。

24.如权利要求13所述的用途,所述药物还包括药学上可接受的赋形剂、载体和媒介物。

25.如权利要求13所述的用途,所述药物还包括其它治疗剂。

26.如权利要求25所述的用途,其特征在于,所述其它治疗剂是抗病毒剂。

27.如权利要求13所述的用途,其特征在于,所述治疗或预防有效量为每天0.001-100毫克/千克。

28.如权利要求13所述的用途,其特征在于,所述治疗或预防有效量为每天0.1-25毫克/千克。

29.如权利要求13所述的用途,其特征在于,所述治疗或预防有效量为每天0.1-20毫克/千克。

说明书 :

TLR7配体及其前药在制备用于治疗丙型肝炎病毒感染的

药物中的用途

[0001] 本申请要求2003年9月5日提交的美国临时专利申请60/500,339,2003年11月10提交的美国临时专利申请60/518,996和2003年11月10日提交的美国临时专利申请
60/518,997的优先权。
[0002] 1.发明领域
[0003] 本申请涉及在哺乳动物中使用Toll样受体(TLR)7配体及其前药治疗或预防丙型肝炎病毒感染的方法。更具体地说,本发明涉及口服给予治疗有效量的一种或多种TLR7配体的前药用于治疗或预防丙型肝炎病毒感染。口服给予哺乳动物这些TLR7免疫调节配体及其前药可提供治疗有效量并降低不良副作用。
[0004] 2.发明背景
[0005] 通过找出结合和活化Toll样受体(TLR)的化合物,实现小分子免疫调节。TLR在哺乳动物的先天免疫反应中起作用,常常是抵抗诸如细菌和病毒等病原体的第一道防线。各种TLR在不同哺乳动物细胞型中的含量不同,含量也可根据结合TLR和激活信号途径的分子结构而改变。这些信号途径产生与先天免疫相关的应答范围。
[0006] TLR鉴别PAMP(病原体相关分子模型)并通过MyD88依赖性白细胞介素1受体(IL-1R)-TLR信号途径刺激免疫细胞,导致转录因子NF-κB2的活化。人体中已鉴定了10种TLR的功能型家族成员(TLR1-TLR10)。Akira S.等,Nature Immunol.,2,675-680(2001)。TLR2、TLR4和TLR5对识别肽聚糖、脂多糖和鞭毛蛋白来说关键。Hayashi,F.等,Nature,
410,1099-1103(2001)。TLR6结合TLR2,识别支原体脂蛋白。Ozinsky,A.,等,Proc.Natl.Acad.Sci USA.,97,13766-13771(2000)。TLR9检测含有非甲基化CpG基序的细菌DNA,TLR3激活与双链RNA响应的免疫细胞。Hemmi,H.等,Nature,408,740-745(2000)。
[0007] 已报道许多化合物,包括鸟苷类似物、取代的嘧啶、咪唑并喹啉作为TLR7配体。例如,参见Hemmi等,Nature Immunol.,3,196-200(2002)(咪喹莫特和R-848(瑞喹莫德));Jurk等,Nat.Immunol.,3,499(2002)(R-848);和Lee 等,Proc.Natl.Acad.Sci USA,100,
6646-6651(2003)(其中鸟苷类似物洛索立宾,7-硫-8-氧代鸟苷(艾沙托立宾)和7-去氮杂鸟苷(deazaguanosine),咪唑并喹啉类,咪喹莫特和R-848(瑞喹莫德)可选择性激活TLR7)。
[0008] 在作为潜在的TLR7配体之前,过去20年已对鸟苷类似物及其它D-和L-嘌呤核苷酸进行了很多的研究。例如,参见Reitz等,J.Med.Chem.,37,3561-78(1994);Michael等,J.Med.Chem.,36,3431-36(1993)(7-和/或8-位具有取代基的免疫调节鸟苷类似物);授权于Krenitsky等的专利5,821,236(公开了可用于肿瘤治疗的阿拉伯糖呋喃糖基嘌呤衍生物的6-烷氧基衍生物);授权于Robins等的美国专利5,041,426(公开了某些在BDF1小鼠中可有效治疗L1210的嘧啶并[4,5-d]嘧啶核苷酸类);Revankar等,J.Med.Chem.,27,1489-96(1984)(具有抵抗某些DNA和RNA病毒的重要广谱抗病毒活性的3-去氮杂鸟嘌呤核苷和核苷酸)。
[0009] 近年来,许多已知具有免疫刺激活性的化合物已在文献中鉴定为TLR7配体。例如,参见Heil等,Eur.J.Immunol.,33(11),2987-97(2003),Lore等,J.Immunol.,171(8),4320-8(2003),Nagase 等,J.Immunol.,171(8),3977-82(2003),Mohty 等,J.Immunol.,
171(7),3385-93(2003),Pinhal-Enfield, 等,Am.J.Pathol.,163(2),711-21(2003),Doxsee 等,J.Immunol.,171(3),1156-63(2003),Bottcher 等,Neurosci.Lett.,344(1),
17-20(2003),Kaisho等,Curr.Mol.Med.,3(4),373-85(2003),Okada等,Eur.J.Immunol.,
33(4),1012-9(2003),Edwards 等,Eur.J.Immunol.,33(4),827-33(2003),Akira 等,Immunol.Lett.,85(2),85-95(2003),Ito 等,Hum.Immunol.,63(12),1120-5(2002),Rothenfusser 等,Hum.Immunol.,63(12),1111-9(2002),Yamamoto 等,J.Immunol.,
169(12),6668-72(2002),Gibson 等,Cell Immunol.,218(1-2),74-86(2002),Horng等,Nature,420(6913),329-33(2002),Yamamoto 等,Nature,420(6913),324-9(2002),Applequist 等,Int.Immunol.,14(9),1065-74(2002),Sato 等,Int.Immunol.,14(7),
783-91(2002);Jurk等,Nat.Immunol.,3(6),499(2002);Hornung等,J.Immunol.,168(9),
4531-7(2002),Hemmi等,Nat.Immunol.,3(2),196-200(2002);Bruno等,Eur.J.Immunol.,
31(11),3403-12(2001);Jarrossay 等,Eur.J.Immunol.,31(11),3388-93(2001);
Miettinen等,Genes Immun.,2(6),349-55(2001),Chuang等,Eur.cytokine Netw.,11(3),
372-8(2000),和Du等,Eur.cytokine Netw.,11(3),362-71(2000)。
[0010] 已知这些TLR7配体在体外和在动物中可刺激免疫响应,这就引发了对这些化合物用途的研究,用于几种治疗应用,包括抗病毒和癌症治疗。这些化合物的特征在于,是a)鸟苷,b)咪唑并喹啉和c)嘧啶的类似物或衍生物。参见Akira,Current Opinion,15,5-11(2003)。发现咪唑并喹啉化学类型中的一种(咪喹莫特)可有效治疗乳头状瘤病毒的局部生殖器感染。第二种咪唑并喹啉类化合物瑞喹莫德可用于治疗HCV,但该化合物在耐受口服剂量下没有抗HCV的作用。Pockros等,Gastroenterology,124(Suppl 1),A-766(2003)。
[0011] 因此,虽然TLR7配体只有限应用于治疗免疫性疾病和病毒感染;例如,参见授权于Robins等的美国专利5,041,426和4,880,784(具有显著免疫活性,包括鼠脾细胞增殖和体内抗塞姆利基森林(Semliki Forest)病毒活性的3-β-D-核呋喃糖基噻唑并[4,5-d]嘧啶);授权于Averett等的美国专利申请公报No.US 2003/0199461和WO 03/045968(具有抗RNA和DNA病毒急性和慢性感染的3-β-D-核呋喃糖基噻唑并[4,5-d]嘧啶核苷);至今已证明配体不能有效治疗或预防丙型肝炎病毒。
[0012] 已知许多嘌呤核苷类似物的口服给予遇到了困难,包括吸收差,溶解差,或胃肠道中由于酸性或碱性条件或酶的作用和/或这些现象的组合导致降解。因此,仍然需要嘌呤核苷酸类似物,它具有改善的口服生物利用度和给予,用于调节免疫系统。
[0013] 而且,与静脉内途径相比,免疫调节核苷的口服耐受性较差。并且,由于大量与肠壁(例如肠)的免疫组织结合,胃肠道存在对免疫试剂的特异性耐受屏障。虽然这是防止机体被肠道菌群侵袭的重要生物学机制,口服给予免疫调节化合物后,由于肠道内给予化合物的局部浓度高,免疫组织也可优先被感染。这就导致不良副作用,例如,对于免疫激活剂,观察到肠胃炎和局部出血作用。
[0014] 文献中尚不存在解决有效口服递送免疫调节剂问题的方法。目前证据表明,口服低剂量后,给予该类药物的机体浓度受胃肠道毒性提高的限制。因此,仍然需要具有改善口服生物利用度和降低胃肠道刺激性的免疫调节TLR7配体。
[0015] 3.发明概述
[0016] 3.1 TLR7配体
[0017] 本发明涵盖了用于治疗或预防丙型肝炎病毒感染的新型方法,以及利用TLR7配体或其药学上可接受的盐、水合物、代谢物或立体异构体的药物组合物。
[0018] 在一个实施方案中,本发明涵盖了在需要的患者中治疗或预防丙型肝炎病毒感染的方法,所述方法包括给予患者治疗或预防有效量的TLR7配体或其药学上可接受的盐、水合物、代谢物或立体异构体或所述立体异构体药学上可接受的盐或水合物。
[0019] 在另一个实施方案中,本发明涵盖了在需要的患者中治疗或预防丙型肝炎病毒感染的方法,所述方法包括给予患者有效或预防有效量的选自以下物质的类似物和衍生物的TLR7配体:a)鸟苷b)咪唑并喹啉c)腺嘌呤和d)嘧啶。
[0020] 在另一个实施方案中,本发明涵盖了在需要的患者中治疗或预防丙型肝炎病毒感染的方法,所述方法包括给予患者治疗或预防有效量的选自以下的TLR7配体或其药学上可接受的盐、水合物、代谢物或立体异构体或所述立体异构体的药学上可接受的盐或水合物:
[0021]
[0022] 其中:
[0023] 每个R1是H,取代或未取代的烷基、链烯基或炔基,它们可被一个或多个O、S或N杂原子隔开,或是取代或未取代的芳基或杂芳基;
[0024] R2是H、OH、SH、卤素、取代或未取代的烷基、链烯基或炔基,它们可被一个或多个O、S或N杂原子隔开,或是取代或未取代的-O-(烷基)、-O-(芳基)、-O-(杂芳基)、-S-(烷基)、-S-(芳基)、-S-(杂芳基)、芳基或杂芳基;
[0025] R3是H、OH、SH、取代或未取代的烷基、链烯基、炔基、芳基、杂芳基、-O-(烷基)、-O-(芳基)、-O-(杂芳基)、-S-(烷基)、-S-(芳基)、-S-(杂芳基)、-NH(烷4 4 4
基)、-NH(芳基)、-NH(杂芳基)、-NH(R)(烷基)、-NH(R)(芳基)、-NH(R)(杂芳基),其
4
中R 是取代或未取代的烷基;
[0026] X是O或S;
[0027] Y是H、卤素、OH、OR4、SH、SR4或取代或未取代的烷基或芳基;
[0028] Z是H、卤素、OH、OR4、SH或SR4;
[0029] 在另一个实施方案中,本发明涵盖了在需要的患者中治疗或预防丙型肝炎病毒感染的方法,所述方法包括给予患者治疗或预防有效量的选自通式Ia、Ib、Ic、Id、Ie、If、Ig1 2
和Ih的TLR7配体,其中R 是H或取代或未取代的烷基、链烯基或炔基;R 是H、OH、卤素、取
3
代或未取代的烷基、链烯基、炔基或-CH2-O-(烷基);R 是H、OH、SH、取代或未取代的-O-(烷
4 4
基)、-S-(烷基)或-NH(烷基);X是O或S;Y是H、卤素、OH、OR、SH或SR ;和Z是H、卤
4 4
素、OH、OR、SH或SR。
[0030] 在另一个实施方案中,本发明涵盖了在需要的患者中治疗或预防丙型肝炎病毒感染的方法,所述方法包括给予患者治疗或预防有效量的选自以下的TLR7配体或其药学上可接受的盐、水合物、代谢物或立体异构体:
[0031]
[0032] 和
[0033] 一方面,本发明涵盖了在需要的哺乳动物中,优选在需要的人中治疗或预防丙型肝炎病毒感染的方法。
[0034] 在可选地实施方案中,本发明涵盖了在需要的患者中治疗或预防丙型肝炎病毒感染的方法,所述方法包括给予患者治疗或预防有效量的TLR7配体和药学上可接受的辅料、载体或媒介物。
[0035] 在可选地实施方案中,本发明涵盖了在需要的患者中治疗或预防丙型肝炎病毒感染的方法,所述方法包括口服、粘膜给予、局部或经皮给予患者治疗或预防有效量的TLR7配体。
[0036] 在优选的实施方案中,本发明涵盖了在需要的患者中治疗或预防丙型肝炎病毒感染的方法,所述方法包括非胃肠道给予患者治疗或预防有效量的TLR7配体。
[0037] 在独立的实施方案中,本发明涵盖了在需要的患者中治疗或预防丙型肝炎病毒感染的方法,所述方法包括给予患者治疗或预防有效量的TLR7配体和其它的治疗剂,优选是其它抗病毒剂或免疫调节剂。
[0038] 本发明还涵盖了包含无菌形式的治疗或药学上可接受量的本发明TLR7配体的适合非胃肠道给予患者的药物组合物;包含治疗或药学上可接受量的本发明TLR7配体的适合口服给予患者的药物组合物,其中,配制所述组合物,以减少上皮下免疫解剖结构与TLR7配体的接触,改善TLR7配体的机体吸收;包含治疗或药学上可接受量的本发明TLR7配体的适合粘膜给予患者药物组合物,其中,配制所述组合物,以减少上皮下免疫解剖结构与TLR7配体的接触,改善TLR7配体的机体吸收;和包含治疗或药学上可接受量的本发明TLR7配体的适合局部给予患者的药物组合物,其中,配制所述组合物,以减少上皮下免疫解剖结构与TLR7配体的接触,改善TLR7配体的机体吸收。根据所治疗的具体组织,可在用本发明活性成分治疗之前、同时或之后使用其它组分如渗透促进剂。在优选的实施方案中,每种所述组合物是单一剂量单位形式,包含一定量的活性成分,足以治疗或预防人体感染丙型肝炎病毒。
[0039] 在具体的实施方案中,本发明涵盖了包含选自以下TLR7配体的药物组合物:a)鸟苷,b)咪唑并喹啉,c)腺嘌呤和d)嘧啶的类似物和衍生物。
[0040] 在另一个具体实施方案中,本发明涵盖了包含选自以下TLR7配体的药物组合物:通式Ia、Ib、Ic、Id、Ie、If、Ig和Ih及其药学上可接受的盐、水合物、代谢物或立体异构体或所述立体异构体药学上可接受的盐或水合物。
[0041] 3.2 TLR7配体前药
[0042] 本发明还涵盖了治疗或预防丙型肝炎病毒感染的新方法,以及利用TLR7配体前药或其药学上可接受的盐、水合物、代谢物或立体异构体的新型药物组合物。
[0043] 本发明还涵盖了用免疫试剂治疗应答免疫疗法的疾病的方法,所述方法包括口服给予需要免疫疗法的患者TLR7配体前药,其中,TLR7配体前药在患者中达到TLR7配体的治疗有效血浆浓度。
[0044] 在一个实施方案中,本发明涵盖了在患者中治疗丙型肝炎病毒感染的方法,所述方法包括口服给予需要的患者TLR7配体前药或其药学上可接受的盐、水合物或立体异构体,其中,口服给予TLR7配体前药可达到TLR7配体的治疗有效血浆浓度,同时降低与口服给予TLR7配体相关的不良副作用。在优选的实施方案中,TLR7配体前药是标记的TLR7配体前药。
[0045] 在另一个实施方案中,本发明还涵盖了治疗应答反应疗法的疾病,同时降低免疫试剂相关副作用的方法,所述方法包括口服给予需要免疫疗法的患者TLR7配体前药,其中,TLR7配体前药在患者中可达到TLR7配体的治疗有效血浆浓度。在优选的实施方案中,TLR7配体前药是标记的TLR7配体前药。
[0046] 在另一个实施方案中,口服给予TLR7配体前药可改善TLR7配体的体内生物利用度。在优选的实施方案中,口服给予TLR7配体前药可达到TLR7配体的体内有效血浆浓度,是仅口服给予TLR7配体得到的有效体内接触水平(exposure)的10%-500%。在另一个优选的实施方案中,口服给予标记的TLR7配体前药体内达到TLR7配体的有效血浆浓度,是仅口服给予TLR7配体得到的有效体内接触水平的50%-200%。
[0047] 在另一个实施方案中,口服给予TLR7配体前药可降低副作用。在优选的实施方案中,副作用包括胃肠道刺激性,其中,胃肠道刺激性包括出血、损伤和呕吐。
[0048] 在另一个实施方案中,与仅口服给予TLR7配体相比,TLR7配体前药在患者中可提高口服生物利用度至少25%,并降低胃肠道刺激性至少50%。在另一个实施方案中,TLR7配体前药提高口服生物利用度至少50%,并降低胃肠道刺激性,使得与仅口服TLR7配体相比,患者中其它毒性变得有限。
[0049] 在优选的实施方案中,TLR7配体前药达到治疗有效血浆浓度,是口服给予患者TLR7配体的有效体内浓度的25%-200%,且胃肠道刺激性最小。
[0050] 在一个实施方案中,本发明方法包括给予需要的患者治疗或预防有效量的选自以下TLR7配体的前药:a)鸟苷,b)咪唑并喹啉,c)腺嘌呤和d)嘧啶的类似物和衍生物。
[0051] 在另一个实施方案中,本发明方法包括给予需要的患者治疗或预防有效量的选自以下TLR7配体的前药:a)鸟苷,b)咪唑并喹啉,c)腺嘌呤和d)嘧啶的类似物和衍生物,其中,前药是(a)TLR7配体胺取代基转化后的酰胺、氨基甲酸酯或脒部分,(b)TLR7配体醇取代基转化后的酯、碳酸酯、氨基甲酸酯、醚、酰亚胺酯(imidate)、缩醛、缩醛胺或缩酮部分,(c)TLR7配体酮取代基转化后的缩醛或缩酮部分,(d)T LR7配体酰氨基取代基的羰基转化后的酰亚胺酯部分,(e)嘧啶或鸟苷的TLR7配体氧代(oxo)取代基转化后的脱氧部分,或(f)胺。
[0052] 在另一个实施方案中,本发明方法包括给予需要的患者治疗或预防有效量选自以下的TLR7配体前药或其药学上可接受的盐、水合物、代谢物或立体异构体或所述立体异构体药学上可接受的盐或水合物:
[0053]
[0054]
[0055] 和
[0056] 其中:
[0057] 每个R1是H、取代或未取代的烷基、链烯基或炔基,它们可被一个或多个O、S或N杂原子隔开,或是取代或未取代的芳基或杂芳基;
[0058] R2是H、OH、SH、卤素、取代或未取代的烷基、链烯基或炔基,它们可被一个或多个O、S或N杂原子隔开,或是取代或未取代的-O-(烷基)、-O-(芳基)、-O-(杂芳基)、-S-(烷基)、-S-(芳基)、-S-(杂芳基)、芳基或杂芳基;
[0059] R3是H、OH、SH、取代或未取代的烷基、链烯基、炔基、芳基、杂芳基、-O-(烷基)、-O-(芳基)、-O-(杂芳基)、-S-(烷基)、-S-(芳基)、-S-(杂芳基)、-NH(烷基)、-NH(芳基)、-NH(杂芳基)、-NH(R4)(烷基)、-NH(R4)(芳基)或-NH(R4)(杂芳基);
[0060] R4是取代或未取代的烷基;
[0061] R5独立地是H,-C(O)(C1-18烷基),外消旋、L-或D-氨基-C(O)CHNH2R9;
[0062] R6是H、OR10或N(R11)2;
[0063] R7独立地是H或取代或未取代的-C(O)(C1-18烷基)或-C(O)2(C1-18烷基);
[0064] R8是H、-OH、-O-(烷基)、-OCO2(C1-18烷基)、-OC(O)(C1-18烷基)、外消旋、L-或D-氨基-OC(O)CHNH2R1;
[0065] R9是H、取代或未取代的烷基、C(O)CH(C1-6烷基)NH2或-C(O)CH(CH2-芳基)NH2;
[0066] R10独立地是H、C1-6烷基、C3-7链烯基、C3-7炔基、-(CR12R13)t(C6-C10芳基)、-(CR12R13)t(C3-C10环烷基)、-(CR12R13)t(C4-C10杂环基)、-(CR12R13)t>1OH、-(CR12R13)t>0CO2C1-18烷基、-(CR12R13)t>0N(R14)CO2C1-18烷基和SO2(芳基),其中,除非另有说明,t是0-6的整数,上述烷基、链烯基、炔基、芳基、环烷基和杂环基任选地被独立地选自以下的基团取代:卤素、氰基、硝基、三氟甲基、三氟甲氧基、C1-C6烷基、C2-C6链烯基、C2-C6炔基、羟基、C1-C6烷氧基、-NH2、-NH-烷基、-N(烷基)2、-NH-芳基、-N(烷基)(芳基)、-N(芳基)2、-NHCHO、-NHC(O)烷基、-NHC(O)芳基、-N(烷基)C(O)H、-N(烷基)C(O)烷基、-N(芳基)C(O)H、-N(芳基)C(O)烷基、-NHCO2烷基、-N(烷基)CO2烷基、-NHC(O)NH2、-N(烷基)C(O)NH2、-NHC(O)NH-烷基、-NHC(O)N(烷基)2、-N(烷基)C(O)NH-烷基、N(烷基)C(O)N(烷基)2、-NHSO2-烷基、-N(烷基)SO2-烷基、-C(O)烷基、-C(O)芳基、-OC(O)烷基、-OC(O)芳基、-CO2-烷基、-CO2-芳基、-CO2H、-C(O)NH2、-C(O)NH-烷基、-C(O)N(烷基)2、-C(O)NH-芳基、-C(O)N(芳基)2、-C(O)N(烷基)(芳基)、-S(O)烷基、-S(O)芳基、-SO2烷基、-SO2芳基、-SO2NH2、-SO2NH-烷基和-SO2N(烷基)2;
[0067] R11独立地是H、C1-6烷基、C3-C10环烷基,或与氮一起形成5-或6-元杂环;
[0068] R12和R13独立地是H、C1-6烷基、C2-6链烯基或C2-6炔基;
[0069] R14是H、C1-6烷基或-CH2-芳基;
[0070] X是O或S;
[0071] Y是H、卤素、OH、OR4、SH、SR4或取代或未取代的烷基或芳基;和
[0072] Z是H、卤素、OH、OR4、SH或SR4;
[0073] 在另一个实施方案中,本发明涵盖了在需要的患者中治疗或预防丙型肝炎病毒方法,所述方法包括给予患者治疗或预防有效量的选自通式IIa、IIb、IIc、IId、IIe、IIf、1 2
IIg和IIh的TLR7配体,其中R 是H或取代或未取代的烷基、链烯基或炔基;R 是H、OH、
3
卤素、取代或未取代的烷基、链烯基或炔基或-CH2-O-(烷基);R 是H、OH、SH、取代或未取
5
代的-O-(烷基)、-S-(烷基)或-NH(烷基);R 独立地是H、-C(O)(C1-18烷基)、外消旋、
9 9 6 10 10
L-或D-氨基-C(O)CHNH2R,其中R 是未取代烷基;R 是H或OR ,其中R 独立地是C1-6烷
12 13 12 13 12 13
基、C3-7链烯基、C3-7炔基、-(CR R )t(C6-C10芳基)、-(CR R )t(C4-C10杂环基)和-(CR R )
14
t>0N(R )CO2C1-18烷基,其中,除非另有说明,t是0-4的整数,上述烷基、链烯基、芳基和杂环基任选地被1-3个独立地选自以下的基团取代:卤素、氰基、硝基、三氟甲基、三氟甲氧基、C1-C6烷基、C2-C6链烯基、C2-C6炔基、羟基、C1-C6烷氧基、-CO2-烷基、-CO2-芳基、-OC(O)烷基
12 13 14 7
和-OC(O)芳基,R 和R 独立地是H、C1-6烷基或C2-6链烯基;和R 是H、-CH3或-CH2CH3;R
8
独立地是H、取代或未取代的-C(O)(C1-18烷基)或-C(O)2(C1-18烷基);R 是H、-OH、-O-(烷
1
基)、-OCO2(C1-18烷基)、外消旋、L-或D-氨基-OC(O)CHNH2R ;X是O或S;Y是H、卤素、OH、
4 4 4 4
OR、SH或SR ;和Z是H、卤素、OH、OR、SH或SR。
[0074] 在具体实施方案中,本发明涵盖了在需要的患者中治疗或预防丙型肝炎病毒感染的方法,所述方法包括给予患者治疗或预防有效量的选自以下的TLR7配体前药或其药学上可接受的盐、水合物或立体异构体或所述立体异构体的药学上可接受的盐或水合物。
[0075]
[0076]
[0077]
[0078]
[0079] 和
[0080]
[0081] 在本发明另一个优选的实施方案中,TLR7配体前药是TLR7配体的氨基酸酯前药。在另一个优选的实施方案中,TLR7配体的氨基酸酯前药是缬氨酰酯。
[0082] 在本发明的一个实施方案中,R5是不是外消旋、L-或D-氨基-C(O)CHNH2R9。在5
另一个实施方案中,当TLR7配体前药是选自通式IIh的化合物时,R 是不是外消旋,L-或
9
D-氨基-C(O)CHNH2R。
[0083] 在另一个可选地实施方案中,本发明涵盖了在需要的患者中治疗或预防丙型肝炎病毒感染的方法,所述方法包括给予患者治疗或预防有效量的TLR7配体的前药和药学上可接受的赋形剂(excipient)、载体或媒介物(vehicle)。
[0084] 在一个独立的实施方案中,本发明涵盖了在需要的患者中治疗或预防丙型肝炎病毒感染的方法,所述方法包括给予患者治疗或预防有效量的TLR7配体的前药和其它的治疗剂,优选是其它抗病毒或免疫调节剂。
[0085] 本发明还涵盖了包含无菌形式的治疗或药学上可接受量的本发明TLR7配体前药的适合非胃肠道给予患者的药物组合物;包含治疗或药学上可接受量的本发明TLR7配体前药的适合非胃肠道给予患者的药物组合物;包含治疗或药学上可接受量的本发明TLR7配体前药的适合粘膜给予患者的药物组合物;和包含治疗或药学上可接受量的本发明TLR7配体前药的适合局部给予患者的药物组合物。根据所治疗的具体组织,可在用本发明活性成分治疗之前、同时或之后使用其它组分如渗透促进剂。在优选的实施方案中,每种所述组合物是单一剂量单位形式,包含一定量的活性成分,足以治疗或预防人体感染丙型肝炎病毒。
[0086] 在一个具体的实施方案中,本发明涵盖了一种药物组合物,所述药物组合物包含选自以下的TLR7配体前药:通式IIa、IIb、IIc、IId、IIe、IIf、IIg和IIh或其药学上可接受的盐、水合物或立体异构体或所述立体异构体药学上可接受的盐或水合物。
[0087] 在另一个实施方案中,根据治疗的具体组织,可在用一种或多种本发明TLR7配体前药治疗之前、同时或之后使用其它的成分,包括但不限于渗透促进剂,靶向感染区域的分子和降低TLR7配体前药体内毒性的分子。
[0088] TLR7配体前药可用作免疫系统增强剂,并具有某些免疫系统特性,包括:调节、促有丝分裂、增大和/或增强,或它们是具有这些性质的化合物的中间物。在给哺乳动物施用之后,该化合物可望对宿主免疫系统中的天然杀伤细胞、巨噬细胞、树突细胞或淋巴细胞中的至少一种细胞群显示出效果。由于它们具有这些性质,它们可用作抗感染剂,包括但不限于抗病毒剂和抗肿瘤剂,或用作抗病毒和抗肿瘤剂的中间体。它们可作为适合的药物组合物中的活性成分,用于治疗被感染的宿主。
[0089] 在本发明的一个方面,采用TLR7配体前药治疗全部病毒性疾病,该治疗是通过给予该哺乳动物治疗有效量的该化合物来进行的。预期可用TLR7配体前药治疗的病毒性疾病包括由RNA和DNA病毒所引起的急性和慢性感染。不以任何形式限制可被治疗的病毒性感染的范围时,TLR7配体前药在由以下病毒感染引起的疾病的治疗中尤其有效:腺病毒、巨细胞病毒、甲型肝炎病毒(HAV)、乙型肝炎病毒(HBV)、包括黄热病毒的黄热病病毒和包括丙肝病毒(HCV)的黄病毒家族、1型和2型单纯性疱疹病毒、带状疱疹、人疱疹病毒6、人免疫缺陷病毒(HIV)、人乳头状瘤病毒(HPV)、甲型流感病毒、乙型流感病毒、麻疹、副流感病毒、瘟病毒、脊髓灰质炎病毒、痘病毒(包括天花和猴痘病毒)、鼻病毒、冠状病毒、呼吸道合胞体病毒(RSV)、引起出血热的多种病毒:包括沙粒病毒家族(LCM,胡宁病毒、Machup病毒、Guanarito病毒和Lassa热)、布亚病毒(Hanta病毒和里夫特裂谷热)和纤丝病毒家族(埃博拉和马堡病毒);各种病毒性脑炎:包括西尼罗病毒、LaCrosse病毒、加里福尼亚脑炎病毒、委内瑞拉马脑炎病毒、东部马脑炎病毒、西部马脑炎病毒、日本马脑炎病毒、Kysanur森林病毒;和扁虱传播的病毒(tickborne Viruses):如Chrimean-Congo出血热病毒。
[0090] 在本发明的另一方面,采用TLR7配体前药在哺乳动物中治疗细菌、真菌和原生动物感染,该治疗是通过给予该哺乳动物治疗有效量的这些化合物。通过给予TLR7配体前药预期可治疗全部范围里的病原微生物,包括但不限于那些对抗生素有耐药性的生物体。一般发现TLR7配体前药活化免疫系统旁路耐受性机制多个组成部分的能力能降低对抗生素的易感性,因此通过给予TLR7配体前药来治疗哺乳动物中由这类耐药性微生物引起的感染是本发明的一个具体应用。
[0091] 在本发明的另一方面,通过给予哺乳动物治疗有效量的TLR7配体前药来治疗哺乳动物中的肿瘤。预期可治疗的肿瘤或癌症包括但不限于那些由病毒引起的肿瘤或癌症,其作用涉及抑制感染了病毒的细胞转化为新生物状态、抑制病毒从被转化的细胞扩散到其它正常细胞和/或阻止病毒转化的细胞的生长。TLR7配体前药预期可用于抵抗广谱的肿瘤,包括但不限于:癌、肉瘤和白血病。此类中包括:乳腺癌、结肠癌、膀胱癌、肺癌、前列腺癌、胃癌和胰腺癌和淋巴母细胞和骨髓细胞白血病。
[0092] 本发明的另一方面涉及一种治疗哺乳动物的方法,所述方法包括给予治疗和/或预防有效量的含本发明TLR7配体前药的药物。在该方面中,其作用涉及调节哺乳动物的免疫系统的某些部分,具体是调节Th1和Th2的细胞因子活性,包括但不限于:白细胞介素家族,如IL-1到IL-12,和其它细胞因子,如TNFα和干扰素(包括干扰素α、干扰素β和干扰素γ)以及它们的下游效应物。在对Th1和Th2细胞因子的调节发生时,可预期该调节可包括:刺激Th1和Th2、抑制Th1和Th2、刺激Th1或Th2并抑制另一个或者双模式调节(在高浓度时对Th1/Th2水平产生一种效应(如,全身化的抑制),而在低浓度时对Th1或Th2产生另一种效应(如,刺激Th1或Th2,并抑制另一个))。
[0093] 本发明另一个方面,以治疗有效量给予正在接受不包括本发明化合物的免疫调节药物的哺乳动物含有TLR7配体前药的药物组合物。在本发明的优选方面,将免疫调节药物的剂量降低至低于其常规有效剂量,以降低副作用。在第二优选方面,使用免疫调节药物的常规剂量,但当与TLR7配体前药一起给予时具有改善的治疗效果。
[0094] 本发明另一个方面,以治疗有效量给予正在接受不包括本发明化合物的抗感染药物的哺乳动物含有TLR7配体前药的药物组合物。在本发明的优选方面,含TLR7配体前药的药物组合物以治疗有效量与直接作用于感染媒介以抑制其生长或杀灭感染媒介的抗感染药物一起给予。
[0095] 4.附图简要说明
[0096] 图1显示了艾沙托立宾和干扰素α在小鼠中的血浆浓度。
[0097] 图2显示了在接受艾沙托立宾的HCV感染患者中病毒载量的变化。
[0098] 5.发明详述
[0099] 5.1定义
[0100] 用于本发明的下列术语具有如下定义:
[0101] 术语“包含”和“包括”指开放式、非限定性的形式。
[0102] 术语“核苷”是指由结合于杂环的具体位置或嘌呤(9-位)或嘧啶(1-位)的天然位置或类似物的等价位置的任何戊糖或修饰的戊糖形成的化合物。
[0103] 术语“嘌呤”是指含氮双环杂环。
[0104] 术语“D-核苷”是指具有D-核糖糖部分的核苷化合物(例如,腺苷)。
[0105] 术语“L-核苷”是指具有L-核糖糖部分的核苷化合物。
[0106] 术语“免疫调节剂”指能通过刺激或抑制改变正常或异常的免疫系统的天然或合成产品。
[0107] 术语“NOAEL”是指未观察到副作用发生的浓度(No Observed AdverseEvent Level),它是毒性学术语,用于在选定类型中具体剂量水平、频率、持续时间条件下导致不明显毒性的药物剂量。
[0108] “配体”表示能够结合生物学受体的低分子量分子。配体可以是激动剂或拮抗剂,或是没有作用。
[0109] “激动剂”是指通过结合,可刺激受体产生与受体的正常生物学活性一致的生物学效应的配体。
[0110] “拮抗剂”是指通过结合,导致受体不产生受体正常生物学活性的配体。
[0111] 术语“哺乳动物”包括动物和人。
[0112] 术语“预防”指本发明的化合物或组合物防止哺乳动物被诊断出患有疾病或具有患病危险的疾病的能力。该术语也涵盖了预防已患有或具有这类疾病症状的哺乳动物疾病的进一步发展。
[0113] 术语“治疗”是指:
[0114] (i)预防疾病、失调或病情在倾向于发生该疾病、失调或病情、但尚未诊断出已罹患的哺乳动物中的发生;
[0115] (ii)抑制疾病、失调或病情,即阻止其发展;和
[0116] (iii)缓解疾病、失调或病情,即使疾病、失调和/或病情消退。
[0117] 术语“α”和“β”指所画的化学结构中手性碳原子上取代基的特定立体化学构型。
[0118] 术语“患者”或“对象”表示动物(如牛、马、羊、猪、鸡、火鸡、鹌鹑、猫、狗、小鼠、大鼠、兔、豚鼠等)或哺乳动物,包括杂交和转基因动物和哺乳动物。在治疗或预防HCV感染中,术语“患者”或“对象”优选地表示猴子或人,更佳为人。在某一具体的实施方式中,患者或对象是丙肝病毒感染的或暴露于丙肝病毒中的。在某一实施方式中,患者是婴孩(0-2岁)、儿童(2-17岁)、青少年(12-17岁)、成人(18岁及以上)或老人(70岁以上)患者。另外,患者包括免疫受损的患者,如HIV阳性患者、癌症患者、经受免疫疗法或化疗的患者。
在某一具体的实施方式中,患者是健康个体,即没有显示出其它病毒感染症状的患者。
[0119] 术语“治疗有效量”是指足以治疗或预防病毒疾病、延缓或最小化与病毒感染或病毒引起的疾病有关的症状或者治愈或缓解疾病或感染或其病因的本发明TLR7配体或TLR7配体前药的用量。具体而言,治疗有效量表示足以使体内产生治疗效果的用量。与一定量本发明化合物的使用有关,该术语优选地涵盖改进总的疗效、减少或避免疾病的症状或病因,或者增加另一种治疗剂的治疗效应或与另一种治疗剂产生协同作用的无毒性的用量。
[0120] 术语“预防有效量”指足以预防感染、病毒感染的复发或传播的本发明的化合物或其它活性组分的用量。预防有效量可指足以预防原发性感染或感染的复发或传播或与感染有关的疾病的量。与一定量的本发明化合物的使用有关,该术语优选地涵盖改进总的预防或者增加另一种预防剂或治疗剂的预防效应或与另一种预防剂或治疗剂产生协同作用的无毒性的用量。
[0121] 术语“组合”指同时或相继使用一种以上的预防剂和/或治疗剂,并使其各自产生的作用加合或协同。
[0122] 术语“药学上可接受的盐”是指由药学上可接受的非毒性酸或碱包括无机酸和碱及有机酸和碱制备的盐。若本发明TLR7配体前药是碱,所需的药学上可接受的盐可通过现有技术中任何合适的方法制备,例如,用下述物质处理游离碱基:用无机酸,如盐酸、氢溴酸、硫酸、硝酸、磷酸等;或用有机酸,如乙酸、马来酸、琥珀酸、扁桃酸、富马酸、丙二酸、丙酮酸、草酸、乙醇酸、水杨酸、吡喃糖苷酸(pyranosidyl acid),如葡糖醛酸或半乳糖醛酸、α-羟基酸,如柠檬酸或酒石酸;氨基酸,如天门冬氨酸或谷氨酸;芳族酸,如苯甲酸或肉桂酸;磺酸,如对甲苯磺酸或乙磺酸等。若本发明TLR7配体前药是一种酸,所需的药学上可接受的盐可通过任何合适的方法制备,例如,用无机或有机碱处理游离酸,所述的碱为例如,胺(伯、仲或叔胺)、碱金属氢氧化物或碱土金属氢氧化物等。合适盐的例子包括:衍生自氨基酸(如甘氨酸和精氨酸)、氨、伯胺、仲胺或叔胺以及环胺(如哌啶、吗啉和哌嗪)的有机盐;和衍生自钠、钙、钾、镁、锰、铁、铜、锌、铝和锂的无机盐。
[0123] 术语“前药”是指给予后通过代谢反应或溶剂分解可转化为另一种保留生物学活性的化学实体的化合物。
[0124] 术语″TLR7配体前药″是指给予后通过代谢反应或溶剂分解可转化为另一种保留生物学活性且是TLR7配体的化学实体的化合物。TLR7配体前药本身是TLR7的配体,或可被“掩蔽”而不能有效作为TLR7的配体。
[0125] 术语″掩蔽的TLR7配体前药″是指给予后通过代谢反应或溶剂分解可转化为另一种保留生物学活性且是TLR7配体的化学实体的任何化合物,其中给予的化合物是比由代谢转化或溶剂分解得到的化合物有效性差的TLR7配体。
[0126] 术语“药学上可接受的活性代谢物”是指通过体内特定化合物或其盐的代谢反应得到的药学上可接受的活性产物。进入体内后,大多数药物是可改变其物理性质和生物学性质的化学反应的底物。这些代谢转化通常影响TLR7配体的极性,改变药物体内分布和排泄途径。然而,在某些情况下,药物代谢应产生治疗效果。例如,许多抗代谢类的抗癌药物转运入癌细胞后必须转化为其活性形式。
[0127] 术语″烷基″,如本文所用,除非另有说明,是指具有1-20个碳原子,优选1-10个碳原子,最优选1-4个碳原子的饱和直链或支链非环状烃。代表性的饱和直链烷基包括甲基、乙基、正丙基、正丁基、正戊基、正己基、正庚基、正辛基、正壬基和正癸基;饱和支链烷基包括异丙基、伯丁基、异丁基、叔丁基、异戊基、2-甲基丁基、3-甲基丁基、2-甲基戊基、3-甲基戊基、4-甲基戊基、2-甲基己基、3-甲基己基、4-甲基己基、5-甲基己基、2,3-二甲基丁基、2,3-二甲基戊基、2,4-二甲基戊基、2,3-二甲基己基、2,4-二甲基己基、2,5-二甲基己基、2,2-二甲基戊基、2,2-二甲基己基、3,3-二甲基戊基、3,3-二甲基己基、4,4-二甲基己基、2-乙基戊基、3-乙基戊基、2-乙基己基、3-乙基己基、4-乙基己基、2-甲基-2-乙基戊基、2-甲基-3-乙基戊基、2-甲基-4-乙基戊基、2-甲基-2-乙基己基、2-甲基-3-乙基己基、2-甲基-4-乙基己基、2,2-二乙基戊基、3,3-二乙基己基、2,2-二乙基己基、3,3-二乙基己基等。烷基可以是未取代或取代的。
[0128] 本文使用的术语“芳基”,除非另有说明,是指具有5-14个环原子的碳环芳环。碳环芳基的环原子都是碳原子。芳环结构包括具有一个或多个环结构的化合物,如单、双或三环化合物,以及苯并-稠合碳环部分如5,6,7,8-四氢萘基等。优选地,芳基为单环或双环。代表性的芳基包括苯基、甲苯基、蒽基、芴基、茚基、薁基、菲基和萘基。碳环芳基可以是未取代或取代的。
[0129] 术语“取代”是指具有一个或多个取代基的特定基团。术语″未取代″是指没有取代基的特定基团。“取代烷基”或“取代芳基”是指被一个或多个选自以下的取代基取代:卤素(F、Cl、Br或I)、低级烷基(C1-6)、-OH、-NO2、-CN、-CO2H、-O-低级烷基、-芳基、-芳基-低级烷基、-CO2CH3、-CONH2、-OCH2CONH2、-NH2、-SO2NH2、卤素烷基(例如,-CF3、-CH2CF3)、-O-卤素烷基(例如,-OCF3、-OCHF2)等。
[0130] 除非另有说明,本文所用术语“光学纯”或“立体异构纯”是指包含一种化合物立体异构体且基本没有该化合物的其它立体异构体的组合物。例如,具有一个手性中心的立体异构纯的化合物基本上不含有该化合物相对的对映体。典型的立体异构纯化合物包含大于约80重量%的该化合物的一种立体异构体和小于约20重量%的该化合物的其它立体异构体。更优选大于约90重量%该化合物的一种立体异构体和小于约10重量%该化合物的其它立体异构体,甚至更优选大于约95重量%该化合物的一种立体异构体和小于约5重量%该化合物的其它立体异构体,最优选大于约97重量%该化合物的一种立体异构体和小于约3重量%该化合物的其它立体异构体。由于许多本发明化合物包含D或L形式的多糖,本发明也涵盖了D和L型糖。例如,立体异构纯D糖基本上不含L型。在可选地实施方案中,使用L型TLR7配体则基本上不含D型。这样,本文所述方法和组合物包括在可选实施方案中使用左旋糖或由它们制备的聚合物。
[0131] 本发明化合物具有互变异构现象。虽然通式I和II不能表示所有可能的互变异构形式,应理解通式I代表了所示化合物的任何互变异构形式,不受所示通式图示限制在仅一具有化合物。例如,应理解,不考虑其醇或酮形式是否具有取代基,它们代表相同的化合物(如以下通式IIa实施例所示)。
[0132]
[0133] 5.2鉴定TLR7配体
[0134] 已知的TLR7配体包括但不限于,(1)鸟苷类似物,如7-去氮杂鸟苷和相关化合物,包括但不限于Townsend,J.Heterocyclic Chem,13,1363(1976)和Seela,等,Chem.Ber.,114(10),3395-3402(1981)所述化合物;7-烯丙基,8-氧-鸟苷(洛索立宾)和相关化合物,包括但不限于Reitz,等,J.Med.Chem,37,3561-3578(1994)所述化合物;7-甲基,9-去氮杂鸟苷和相关化合物,包括但不限于Girgis等,J.Med.Chem.,33,2750-2755(1990)所述化合物;8-溴代鸟苷和其它8-卤代嘌呤化合物,包括但不限于美国专利4,643,992所述化合物;6-氨基-9-苄基-2-丁氧基-9H-嘌呤-8-醇和其它2,6,8,9-取代的嘌呤,包括但不限于Hirota等,J.Med.Chem.,45,5419-5422(2002),Henry等,J.Med.Chem.,33,
2127-2130(1990),Michael等,J.Med.Chem.,36,3431-3436(1993),Furneaux 等,J.Org.Chem.,64(22),8411-8412(1999),Barrio 等;J.Org.Chem.,61,6084-6085(1996),美 国专利4,539,205,美国专利5,011,828,美国专利5,041,426,美国专利4,880,784和国际专利申请公开No.WO 94/07904所述化合物;(2)咪唑并喹啉,包括但不限于1-(4-氨基-2-乙氧基甲基-咪唑并[4,5-c]喹啉-1-基)-2-甲基-丙-2-醇(imiquimoid),
如国际专利申请公开WO 94/17043所述;1-异丁基-1H-咪唑并[4,5-c]喹啉-4-基胺(resiquimoid),如国际专利申请公开WO 94/17043和美国专利申请10/357,777(美国专利申请公开No.US 2003/0195209),10/357,733(美国专利申请公开No.US 2003/0186949),
10/358,017(美国专利申请公开No.US2003/0176458),10/357,995(美国专利申请公开No.US 2003/0162806),10/165,222(美 国 专 利 申 请 公开 No.US 2003/0100764),
10/011,921(美国专利申请公开No.US 2003/0065005)和10/013,059(美国专利申请公开No.US2002/0173655)所述;美国专利5,395,937;国际专利申请公开WO 98/17279;和(3)嘧啶衍生物,包括但不限于2-氨基-6-溴-5-苯基-3H-嘧啶-4-酮(溴匹立明)以
及类似的取代嘧啶,包括但不限于Wierenga等,J.Med.Chem,23,239-240(1980),Fan等,J.Heterocyclic Chem.,30,1273(1993),Skilnick等,J.Med.Chem.,29,1499-1504(1986),Fried,等,J.Med.Chem.,23,237-239(1980) 和 Fujiwara 等,Bioorg.Med.Chem.Lett.,
10(12)1317-1320(2000)所述的化合物。所有专利、专利公开、和出版物被纳入本文作为参考。
[0135] 除上述TLR7配体外,通过已知筛选方法还可容易地鉴定其它TLR7配体。例如,参见Hirota等,J.Med.Chem.,45,5419-5422(2002);和Akira S.等,Immunology Letters,85,85-95(2003)。使用这些已知筛选方法之一的变体(如部分6.1所述),还可鉴定腺嘌呤的类似物和衍生物作为TLR7配体。本领域已知腺嘌呤衍生物如欧洲专利申请公开No.EP 1
035 123,EP1 043 021和EP 0 882 727所述;美国专利6,376,501;美国专利6,329,381;
美国专利6,028,076和美国专利申请公开No.US 2003/0162806。
[0136] 使用本领域技术人员已知方法,尤其是根据上文列出的参考文献和专利,可合成通式Ia-Ih的TLR7配体。
[0137] 5.3制备TLR7配体前药
[0138] 本发明TLR7配体前药的制备如下:制备(a)TLR7配体胺取代基转化后的酰胺、氨基甲酸酯或脒部分,(b)TLR7配体醇取代基转化后的酯、碳酸酯、氨基甲酸酯、醚、酰亚胺酯、缩醛或缩酮部分,(c)TLR7配体胺取代基转化后的缩醛或缩酮部分,(d)TLR7配体酰氨基的羰基取代基转化后的酰亚胺酯部分,(e)TLR7配体嘧啶或鸟苷的氧代取代基转化后的脱氧产物,(f)胺。例如,TLR7配体前药的制备如下:通过(1)将TLR7配体的羟基(OH)取代基转化为氨基酸酯,或(2)使TLR7配体的胺取代基转化为酰胺或氨基甲酸酯。制备前药的方法是本领域公知的,如Burger’s MedicinalChemistry和Drug Chemistry,1,172-178,949-982(1995)所述。也可参见Bertolini等,J.Med.Chem.,40,2011-2016(1997);Shan,等,J.Pharm.Sci.,86(7),765-767;Bagshawe,Drug Dev.Res.,34,
220-230(1995);Bodor,Advances in Drug Res.,13,224-331(1984);Bundgaard,Design of Prodrugs(Elsevier Press 1985);Larsen,Design和Application of Prodrugs,Drug Design 和 Development(Krogsgaard-Larsen 等,eds.,Harwood Academic Publishers,
1991);Dear 等,J.Chromatogr.B,748,281-293(2000);Spraul 等,J.Pharmaceutical & Biomedical Analysis,10,601-605(1992);和Prox等,Xenobiol.,3,103-112(1992)。
[0139] 方案1-18显示了制备通式II的代表性化合物的一般制备过程。
[0140] 方案1-6描述了如何从鸟苷类似物和衍生物合成5’-氨基酸酯。
[0141] 方案1
[0142]
[0143] Townsend,JHC,13,
[0144] 1976,1363
[0145] Seela,等Chem Ber.,
[0146] 114,10,1981,3395-3402
[0147] a)2,2-二甲氧基丙烷,丙酮,DMSO,MeSO3H,0℃
[0148] b)BOC-NHCHR1CO2H,EDC,DMAP,PhMe,0℃-rt
[0149] c)anh HCl,iPrOAc,iPrOH
[0150] 方案2
[0151]
[0152] Reitz,等,JMC,37,1994,3561-3578
[0153] a)2,2-二甲氧基丙烷,丙酮DMSO,MeSO3H,0℃
[0154] b)BOC-NHCHR1CO2H,EDC,DMAP,PhMe,0℃-rt
[0155] c)anh HCl,iPrOAc,iPrOH
[0156] 方案3
[0157]
[0158] Girgis,等,JMC,33,1990,2750-2755
[0159] a)2,2-二甲氧基丙烷,丙酮DMSO,MeSO3H,0℃
[0160] b)BOC-NHCHR1CO2H,EDC,DMAP,PhMe,0℃-rt
[0161] c)anh HCl,iPrOAc,iPrOH
[0162] 方案4
[0163]
[0164] 8-溴代鸟苷[303136-79-0]
[0165] 市售
[0166] a)2,2-二甲氧基丙烷,丙酮DMSO,MeSO3H,0℃
[0167] b)BOC-NHCHR1CO2H,EDC,DMAP,PhMe,0℃-rt
[0168] c)anh HCl,iPrOAc,iPrOH
[0169] 在典型的合成路径中,优选用丙酮化合物,先保护通式Ia、Ib、Id、Ie或Ih β-D-核糖部分的2′,3′-羟基,如2,6,10或14所示。游离5′-羟基在多种酯化反应条件下与N-保护的氨基酸反应,形成3,7,11或15。氨基酸酯的氮和核糖单元的2′,3′-羟基在多种脱保护条件下反应,优选同时反应,然后氨基酸酯的游离胺形成盐,如4,8,12或16所示。
[0170] 方案5
[0171]
[0172] Reitz,等JMC,37,1994,3561-3578
[0173] a)2,2-二甲氧基丙烷,丙酮,DMSO,MeSO3H,0℃
[0174] b)BOC-NHCHR1CO2H,EDC,DMAP,PhMe,0℃-rt
[0175] c)anh HCl,iPrOAc,iPrOH
[0176] 方案6
[0177]
[0178] Kini等,JMC,34,1991,3006-3010
[0179] a)2,2-二甲氧基丙烷,丙酮,DMSO,MeSO3H,0℃
[0180] b)BOC-NHCHR1CO2H,EDC,DMAP,PhMe,0℃-rt
[0181] c)anh HCl,iPrOAc,iPrOH
[0182] 在方案5和6所示的合成途径中,先用丙酮化合物保护化合物17和21β-D-核糖部分的2′,3′-羟基,分别形成18和22。然后游离的5′-羟基与N-叔丁氧基羰基缬氨酸进行酯化,分别形成19和23。氨基酸酯的氮和核糖的2′,3′-羟基同时脱保护,形成如20和24所示的盐酸盐。
[0183] 方案7和8描述了如何从腺嘌呤类似物和衍生物合成氨基甲酸酯和碳酸酯。
[0184] 方案7
[0185]
[0186] a)HOBT,DMF,CH2Cl2,0℃
[0187] b)TFA,CH2Cl2,0℃-rt
[0188] 在典型的合成路径中,用碳酸酯或氯甲酸酯处理通式If的氨基,形成氨基甲酸酯。对于27,氨基酸酯N-末端保护的胺可脱保护,形成诸如28的盐。
[0189] 方案8
[0190]
[0191] Kurimota,等,Bioorg Med Chem,
[0192] 12,2004,p 1091-1099
[0193] a)C6H13OC(O)Cl,(iPr)2NEt,CH2Cl2,MeOH,DMAP,0-35℃
[0194] 在方案8中,用氯代甲酸正己酯酯化腺嘌呤衍生物29的羟基,得到碳酸酯30。
[0195] 方案9和10描述了如何从咪唑并喹啉类似物合成氨基甲酸酯。
[0196] 方案9
[0197]
[0198] 在典型的合成路径中,通式Ic类似物的氨基在多种条件下与碳酸酯、焦碳酸酯或氯甲酸酯反应,形成氨基甲酸酯。
[0199] 方案10
[0200]
[0201] a)[C5H11OC(O)]2O,NEt3,CHCl3,40℃
[0202] 在方案10中,用焦碳酸正戊酯处理咪唑并喹啉31,得到戊基氨基甲酸酯34。
[0203] 方案11-12描述了如何合成通式Ig嘧啶的氨基甲酸酯和酰亚胺酯。
[0204] 方案11
[0205]
[0206] Wierenga等JMC,23,Fan等,JHC,30,
[0207] 1980,239-240 1993,1273-1276
[0208] a)[EtO(CO)]2O,NEt3,DMF,65℃
[0209] 在氨基甲酸酯的典型合成中,35的氨基在上述条件下与焦碳酸乙酯反应,形成氨基甲酸酯36。
[0210] 方案12
[0211]
[0212] Wierenga等,JMC,23,
[0213] 1980,239-240
[0214] a)聚合物支持的PPh3,EtOH,DEAD,THF,rt
[0215] 在酰亚胺酯的典型合成中,如上所示,35的氨基在Mitsunobu型条件下与乙醇反应,形成乙氧基衍生物37。
[0216] 方案13描述了如何从咪唑并喹啉类似物合成咪唑并喹啉类似物。
[0217] 方案13
[0218]
[0219] 在典型的合成路径中,通式Ic衍生物的氨基在多种反应条件下与碳酸酯、焦碳酸酯或氯甲酸酯反应,形成氨基甲酸酯。
[0220] 方案14显示了制备7-烯丙基-2-氨基-9-β-D-核呋喃糖基-7,9-二氢-嘌呤-8-酮的一般制备过程。
[0221] 方案14
[0222]
[0223] a)Ac2O,DMAP,NEt3,CH3CN
[0224] b)POCl3,75℃
[0225] c)Zn-Cu,AcOH,70℃
[0226] d)K2CO3,CH3OH,rt
[0227] 在典型的合成路径中,优选用酰基保护7-烯丙基-2-氨基-9-β-D-核呋喃糖基-7,9-二氢-1H-嘌呤-6,8-二酮17中β-D-核糖的2′,3′,5’-羟基,如40所示,7-烯丙基-2-氨基-9-β-D-核呋喃糖基-7,9-二氢-1H-嘌呤-6,8-二酮在多种反应条件下,将C-6位羰基转化为易被还原的多种基团,包括但不限于卤素,如41所示。在不同或相同的反应条件下还原后,核糖单元的2′,3′,5’-羟基脱保护,形成43。如果需要可对化合物43进行进一步修饰。
[0228] 方案15显示了7-烯丙基-2-氨基-6-乙氧基-9-β-D-核呋喃糖基-7,9-二氢-嘌呤-8-酮的一般制备过程。
[0229] 方案15
[0230]
[0231] a)聚合物支持的PPh3,EtOH,DEAD,THF,rt
[0232] b)K2CO3,CH3OH,rt
[0233] 在典型的合成路径中,40在多种条件下将C-6位的羰基转化为多种亚氨基-醚,包括但不限于乙基,如44所示。然后,核糖单元的2′,3′,5’-羟基脱保护,形成45。如果需要还可对化合物45进行进一步修饰。
[0234] 方案16描述了如何从腺嘌呤类似物和衍生物合成醚。
[0235] 方案16
[0236]
[0237] Kurimota,等,Bioorg Med Chem,
[0238] 12,2004,p 1091-1099
[0239] a)Br2,CH2Cl2
[0240] b)NaOEt,EtOH
[0241] 在典型的合成路径中,可在C-8位卤化腺嘌呤衍生物。然后,卤素可以和合适的醇盐进行置换反应,形成衍生物如64。
[0242] 方案17显示了7-烯丙基-2-氨基-6-取代的烷氧基-9-β-D-核呋喃糖基-7,9-二氢-嘌呤-8-酮的一般制备过程。
[0243] 方案17
[0244]
[0245] a)Et3SiCl,咪唑,DMF,rt
[0246] b) 聚合物支持的PPh3,DEAD,THF,rt
[0247] c)HF·NEt3,CH3OH,rt
[0248] 在典型的合成路径中,核糖17上的羟基被保护为甲硅烷基醚。69的C-6位上的羰基在多种条件下转化为各种亚氨基-醚,包括但不限于4-羟甲基-5-甲基-[1,3]二氧代-2-酮的醚,如70所示。然后,核糖单元的2′,3′,5’-羟基脱保护,形成71。
[0249] 方案18显示了7-烯丙基-2-氨基-6-取代的烷氧基-9-β-D-核呋喃糖基-7,9-二氢-嘌呤-8-酮的一般制备过程。
[0250] 方案18
[0251]
[0252] a)HOCH2N(CH3)CO2Et,聚合物支持的PPh3,DEAD,THF,rt
[0253] b)HF·NEt3,CH3OH,rt
[0254] 69的C-6位羰基在多种条件下转化为各种亚氨基-醚,包括但不限于N-甲基-N-(羟甲基)氨基甲酸酯的醚,如72所示。然后,核糖单元的2′,3′,5’-羟基脱保护,形成73。如果需要可对化合物73进行进一步修饰。
[0255] 5.4丙型肝炎病毒感染的治疗和预防方法
[0256] 本发明提供在需要的患者中治疗或预防丙型肝炎病毒感染的方法。
[0257] 本发明还提供在治疗和/或预防丙肝病毒感染过程中,将治疗有效量的TLR7配体或其前药或这些配体和前药的组合引入患者的血流。
[0258] 本发明的TLR7配体或TLR7配体前药或其药学上可接受的盐、水合物或立体异构体在治疗或预防急性或慢性感染中的值将随决于感染的性质和严重程度、给予活性组分的途径而改变。剂量,以及某些情况下的给药频度,也将根据要治疗的感染、个体患者的年龄、体重和个体应答而改变。合适的剂量方案可由本领域的技术人员根据这些因素很容易地确定。
[0259] 本发明的方法特别适合于人类患者。具体而言,本发明方法和剂量可用于免疫损伤患者,包括但不限于:癌症患者、HIV感染患者和患有免疫退化疾病的患者。此外,这些方法可用于目前处于好转状态的免疫损伤患者。本发明的方法和剂量也可用于经受其它抗病毒治疗的患者。本发明的预防方法具体可用于有被病毒感染危险的患者。这些患者包括但不限于:健康护理工作人员,如,医生、护士、收容所护理人员;军事人员;教师;育儿工作者;旅行或居住在国外(特别是第三世界)的患者,包括社会救助工作者,传教士和外交使节。最后,这些方法和组合物包括对难以控制的患者或对治疗产生耐药性(如对逆转转录酶抑制剂、蛋白酶抑制剂等产生耐药性)的患者。
[0260] 剂量
[0261] 本发明化合物的毒性和药效可通过在细胞培养或试验动物中的标准药理程序来测定,如测定LD50(致使50%种群死亡的剂量)和ED50(对50%种群治疗有效的剂量)。毒性和治疗效应的剂量比为治疗指数,其可表示为LD50/ED50。
[0262] 从细胞培养分析和动物研究中得到的资料可用来确定用于人体的化合物的剂量。这类化合物的剂量优选在包括几乎没有或没有毒性的ED50的外周浓度范围里。可在此范围内,根据所用剂型和给药途径改变剂量。对于用于本发明方法中的任何化合物,治疗有效剂量可从细胞培养分析中最初估算。可在动物模型中配制剂量以得到包括细胞试验中测定的IC50(即,达到症状最大抑制的一半的试验化合物的浓度)的外周血浆中浓度(circulatingplasma concertration)范围;或者,在动物模型中调配TLR7配体的剂量,以得到TLR7配体的外周血浆中浓度范围,使其与得到固定反应量级所需的浓度一一对应。这类信息可以用来更准确地确定对人体有用的剂量。血浆中浓度可通过,例如高效液相色谱进行测定。
[0263] 本发明的方案和组合物在用于人体前,优选先对所需的治疗或预防活性进行体外试验,然后再进行体内试验。例如,体外分析可用来确定是否需要给予特定的治疗方案,体外分析包括体外细胞培养分析,其中将应答TLR7配体作用的细胞接触配体,并通过合适的技术测量应答的强度。然后根据TLR7配体前药的效能和TLR7配体前药的转化程度来评估TLR7配体的功效。用于本发明方法的化合物可在给人体试验前用合适的动物模型进行试验,所述的动物模型包括但不限于:大鼠、小鼠、鸡、牛、猴子、兔子、仓鼠等。然后化合物可用于合适的临床试验。
[0264] 本发明TLR7配体或其药学上可接受的盐、溶剂化物、水合物或立体异构体,在治疗或预防急性或慢性感染或疾病中的预防剂量或治疗剂量的量值将随感染的性质和严重程度、活性组分的给药途径而不同。剂量,以及可能的给药频度也将随要治疗的感染、病人的年龄、体重和个体应答而不同。本领域的人员可根据对这些因素的考虑很容易地选择合适的剂量方案。在某一个实施方式中,给药剂量根据使用的特定化合物和病人的体重和病情而定。并且,剂量也可根据各种具体的TLR7配体前药而不同;合适的剂量可根据前述的体外测试,特别是使用与TLR7配体前药相关的TLR7配体的试验,并根据动物研究来预测,从而使得在所述的系统或参照本文所述的内容测量时显示出使用浓度低于其它TLR7配体前药却有效的那些TLR7配体前药使用较小的剂量。一般来说,每天的剂量范围为约0.001-100毫克/千克,优选约1-25毫克/千克,更优选约5-15毫克/千克。对于治疗丙肝病毒感染者,在一日内分1-4次给予约0.1毫克-约15克/天的剂量,优选100毫克/天到12克/天,更优选100-8000毫克/天。在化合物如3-β-D-核呋喃糖基噻唑并[4,
5-d]嘧啶前药的优选实施方案中,一日内约分1-4次给予200-8000毫克/天。另外,推荐的日剂量可在一段时间里以单一制剂或与其它治疗剂联合循环给药。在一个实施方式中,日剂量为单剂或等分剂量。在一个相关的实施方式中,推荐的日剂量可每周给予一次、每周给予两次、每周给予三次、每周给予四次或每周给予五次。
[0265] 在优选的实施方式中,给予本发明化合物,以使该化合物在患者体内全身分布。在相关的实施方式中,给予本发明化合物,以在体内产生全身作用。
[0266] 在另一个实施方式中,本发明的化合物通过口服、粘膜(包括舌下、颊部、直肠、鼻或阴道)给药、非胃肠道(包括皮下、肌内、静脉推注、动脉内或静脉内)给药、透皮给药或局部给药。在某一具体的实施方式中,本发明的化合物通过粘膜(包括舌下、颊部、直肠、鼻或阴道)给药、非胃肠道(包括皮下、肌内、静脉推注、动脉内或静脉内)给药、透皮给药或局部给药。在另一具体实施方式中,本发明的化合物通过口服给药。在另一具体实施方式中,本发明的化合物不是通过口服给药的。
[0267] 正如本领域的普通技术人员所了解的那样,对于不同的感染可用不同的治疗有效量。相似的是,足以治疗或预防这类感染、但不足以引起或足以减少与常规治疗有关的副作用的量也涵盖在上述的剂量范围和给药频度方案里。
[0268] 联合疗法
[0269] 本发明的具体方法还包括给予其它的治疗剂(即,非本发明化合物的治疗剂)。在本发明特定的实施方式中,本发明化合物可与至少一种其它治疗剂联合使用。所述治疗剂包括但不限于:抗生素、止吐药、抗抑郁剂和抗真菌剂、抗炎剂、抗病毒剂、抗癌药、免疫调节剂、β-干扰素、烷基化剂、激素或细胞因子。本发明优选的实施方式涵盖给予HCV特异性活性或显示出抗-HCV活性的其它治疗剂。
[0270] 本发明TLR7配体前药可与抗生素联合给药或配制。例如,它们可与大环内酯类_ _ _(如,妥布霉素(Tobi))、头孢菌素(如,头孢氨苄(Keflex)、头孢拉定(Velosef)、头孢呋_ _ _ _
辛(Ceftin)、头孢丙烯(Cefzil)、头孢克洛(Ceclor)、头孢克肟(Suprax)或头孢羟氨苄_ _ _
(Duricef))、克红霉素(如克拉霉素(Biaxin))、红霉素(如,红霉素(EMycin))、青霉素_ _ _
(如,青霉素V(V-CillinK 或PenVeeK))或是喹喏酮(如,氧氟沙星(Floxin)、环丙沙星_ _
(Cipro)或诺氟沙星(Noroxin))、氨基糖苷类抗生素(如,安普霉素、阿贝卡星、班贝霉素、布替罗星、地贝卡星、新霉素、十一烯酸酯(盐)、奈替米星、巴龙霉素、核糖霉素、西索米星和大观霉素)、氨苯吡啶醇(amphenicol)抗生素(如,叠氮氯霉素、氯霉素、氟苯尼考和甲砜霉素)、安莎霉素抗生素(如,利福米特和利福平)、碳头孢烯(如,氯碳头孢)、碳青霉烯(如,比阿培南和亚胺培南)、头孢菌素(如,头孢克洛、头孢羟氨苄、头孢孟多、头孢曲秦、头孢西酮、头孢唑兰、头孢咪唑、头孢匹胺和头孢匹罗)、头霉素类(如,头孢拉宗、头孢美唑和头孢米诺)、单菌霉素类(如,氨曲南、卡芦莫南和替吉莫南)、氧头孢烯类(如,氟氧头孢和拉氧头孢)、青霉素类(如,氮_脒青霉素、氮卓脒青霉素匹酯、阿莫西林、巴氨西林、苄基青霉素酸、苄基青霉素钠、依匹西林、芬贝西林、氟氯西林、培那西林、喷沙西林氢碘化物、苄胺青霉素(penicillino-benethamine)、青霉素O、青霉素V、苄星青霉素V、哈胺青霉素V、青四环素和青霉素钾(phencihicillin potassium)、林可酰胺(如,克林霉素和林可霉素)、安福霉素、杆菌肽、卷曲霉素、多粘菌素E、持久霉素、恩维霉素、四环素类(如,阿哌环素、金霉素、氯莫环素和地美环素)、2,4-二氨基吡啶类(如,溴莫普林)、硝基呋喃类(如,左呋喃他酮和呋唑氯铵)、喹诺酮类和其类似物(如,西诺沙星、克林沙星、氟甲喹和格帕沙星)、磺胺类(如,乙酰磺胺甲氧吡嗪,苄磺胺,诺丙磺胺、酞磺醋胺、磺胺柯定和磺胺西汀)、砜类(如,地百里砜、葡砜钠和苯丙砜)、环丝氨酸、莫匹罗星和马铃薯球蛋白。
[0271] 本发明TLR7配体前药可与止吐剂联合给药或配制。合适的止吐剂包括但不限于:甲氧氯普胺、多潘立酮、丙氯拉嗪、异丙嗪、盐酸氯丙嗪、曲美苄胺、昂丹司琼、格拉司琼、羟嗪、乙酰亮氨酸单乙醇胺、阿立必利、阿扎司琼、苯喹胺、氨醇醋茶碱、溴必利、布克力嗪、氯波必利、赛克力嗪、茶苯海明、地芬尼多、多拉司琼、美克洛嗪、美沙拉妥、美托哌丙嗪、大麻隆、氮羟哌丙嗪、匹哌马嗪、东莨菪碱、舒必利、四氢大麻酚、硫乙拉嗪、氨砜拉嗪、托烷司琼和它们的混合物。
[0272] 本发明TLR7配体前药可与抗抑郁药联合给药或配制。合适的抗抑郁药包括但不限于:苯奈达林、卡罗沙酮、西酞普兰、二甲沙生、芬咖明、吲达品、盐酸茚洛秦、奈福泮、诺米芬辛、羟色氨酸、奥昔哌汀、帕罗西汀、舍曲林、硫西新、三唑酮、苯酰甲苄肼、异丙氯肼、异丙烟肼、异卡波肼、尼亚拉胺、奥他莫辛、苯乙肼、可替宁、罗利普令、咯利普兰、马普替林、美曲吲哚、米安色林、米氮平(mirtazepine)、阿地唑仑、阿米替林、氧阿米替林、阿莫沙平、布替林、氯米帕明、地美替林、地昔帕明、二苯西平、二甲他林、度琉平、多塞平、三氟丙嗪、丙米嗪、丙米嗪N-氧化物、伊普吲哚、洛非帕明、美利曲辛、美他帕明、去甲替林、诺昔替林、奥匹哌醇、苯噻啶、丙吡西平、普罗替林、奎纽帕明、噻奈普汀、曲米帕明、阿屈非尼、贝那替秦、安非他酮、布他西丁、地奥沙屈、度洛西汀、依托哌酮、非巴氨酯、非莫西汀、芬戊二醇、氟西汀、氟伏沙明、血卟啉、金丝桃素、左法哌酯、美地沙明、米那普仑、苯哒吗啉、吗氯贝胺、奈法唑酮、奥沙氟生、吡贝拉林、普罗林坦、吡琥胺酯、利坦色林、罗克吲哚、氯化铷、舒必利、坦度螺酮、托扎啉酮、托芬那辛、甲苯噁酮、反苯环丙胺、L-色氨酸、文拉法辛、维洛沙秦和齐美定。
[0273] 本发明TLR7配体或TLR7配体前药可与抗真菌剂联合给药或配制。合适的抗真菌剂包括但不限于:两性霉素B、伊曲康唑、酮康唑、氟康唑、intrathecal、氟胞嘧啶、咪康唑、布康唑、克霉唑、制霉菌素、特康唑、噻康唑、环吡酮、益康唑、碘氯苯炔醚、萘替芬、特比萘芬、十一烯酸酯(盐)和灰黄霉素。
[0274] 本发明TLR7配体或TLR7配体前药可与抗炎剂联合给药或配制。有用的抗炎剂包括但不限于:非甾体类抗炎药,如水杨酸、乙酰水杨酸、水杨酸甲酯、二氟尼柳、双水杨酯、奥沙拉秦、柳氮磺吡啶、对乙酰氨基酚、吲哚美辛、舒林酸、依托度酸、甲芬那酸、甲氯灭酸钠、托美丁、酮咯酸、双氯酚酸(dichlofenac)、布洛芬、萘普生、萘普生钠,非诺洛芬、酮洛芬、氟吡洛芬、奥沙普秦、吡罗昔康、美洛昔康、安吡昔康、屈恶昔康、pivoxicam、替诺昔康、萘丁美酮、保泰松、羟布宗、安替比林、氨基比林、阿扎丙宗和尼美舒利;白三烯拮抗剂,包括但不限于:齐留通、金硫葡糖、金硫丁二钠和金诺芬;甾体类,包括但不限于:阿氯米松二丙酸酯、安西奈德、倍氯米松二丙酸酯、倍他米松、倍他米松苯甲酸酯、倍他米松二丙酸酯、倍他米松磷酸钠、倍他米松戊酸酯、氯倍他索二丙酸酯、氯可托龙三甲基乙酸酯、氢化可的松、氢化可的松衍生物、地奈德、去羟米松、地塞米松、氟尼缩松、flucoxinolide、氟氢缩松、氯氟松、甲羟松、甲泼尼龙、乙酸甲泼尼龙、甲泼尼龙琥珀酸钠、莫米松糠酸酯、帕拉米松乙酸酯、泼尼松龙、泼尼松龙乙酸酯、泼尼松龙磷酸钠、泼尼松龙tebuatate、泼尼松、曲安西龙、曲安奈德、曲安西龙二乙酸酯和己曲安奈德;以及其它的抗炎药,包括但不限于:甲氨蝶呤、秋水仙碱、别嘌醇、丙磺舒、磺吡酮和苯溴马隆。
[0275] 本发明TLR7配体或TLR7配体前药可与其它抗病毒剂联合给药或配制。有用的抗病毒剂包括但不限于:蛋白酶抑制剂、核苷逆转录酶抑制剂和核苷类似物。抗病毒剂包括但不限于:齐多夫定、无环鸟苷、更昔洛韦、阿糖腺苷、碘苷、曲氟尿苷、左旋韦林、三氮唑核苷(viramidine)和利巴韦林、以及膦甲酸、金刚烷胺、金刚乙胺、沙奎那韦、茚地那韦、安泼那韦、洛匹那韦、利托那韦、α-干扰素、β-干扰素、阿德福韦、抗来呋定、恩替卡韦、普来可那立。
[0276] 本发明TLR7配体或TLR7配体前药可与免疫调节剂联合给药或配制。免疫调节剂包括但不限于:甲氨蝶呤、来氟米特、环磷酰胺、环孢素A、霉酚酸酯、雷伯霉素(西罗莫司)、咪唑立宾、脱氧精胍菌素、布喹那、malononitriloamindes(如来氟米特)、T细胞受体调节剂和细胞因子受体调节剂、肽模拟物和抗体(如,人的、人化的、嵌合、单克隆、多克隆、Fvs、ScFvs、Fab或F(ab)2片段或表位结合片段)、核酸分子(如,反义核酸分子和三螺旋体)、小分子、有机化合物和无机化合物。T细胞受体调节剂的例子包括但不限_于:抗-T细胞受体抗体(如,抗-CD4抗体(如cM-T412(Boeringer)、IDEC-CE9.1(IDEC和SKB)、mAB4162W94、Orthoclone 和OKTcdr4a(Janssen-Cilag))、抗-CD3 抗 体 ( 如,Nuvion(ProductDesignLabs)、OKT3(Johnson&Johnson) 或 Rituxan(IDEC))、抗 -CD5 抗体(如,抗-CD5蓖麻蛋白连接的免疫结合物)、抗-CD7抗体(如,CHH-380(Novartis))、抗-CD8抗体、抗-CD40配合物单克隆抗体(如,IDEC-131(IDEC))、抗-CD52抗体(如,CAMPATH1H(Ilex))、抗-CD2抗体、抗-CD11a抗体(如,Xanelim(Genentech))和抗-B7抗体(如,IDEC-114(IDEC))和CTLA4-免疫球蛋白。细胞因子受体调节剂的例子包括但不限于:可溶的细胞因子受体(如,细胞外域的TNFα受体或其片段、细胞外域IL-1β受体或其片段和细胞外域IL-6受体或其片段)、细胞因子或其片段、(如,白细胞介素(IL)-2、IL-3、IL-4、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-11、IL-12、IL-15、TNF-α、干扰素(IFN)-α、IFN-β、IFN-γ和GM-CSF)、抗细胞因子受体抗体(如,抗-IFN受体抗体、抗-IL-2受体抗体(如,Zenapax(ProteinDesignLabs))、抗-IL-4受体抗体、抗-IL-6受体抗体、抗-IL-10受体抗体和抗-IL-12受体抗体)、抗-细胞因子抗体(如,抗-IFN抗体、抗-TNFα抗体、抗-IL-1β抗体、抗-IL-6抗体、抗-IL-8抗体(如,ABX-IL-8(Abgenix))和抗-IL-12抗体)。
[0277] 本发明TLR7配体或TLR7配体前药可与抑制病毒酶的药剂联合给药或配制。所述的药剂包括,但不限于,HCV蛋白酶的抑制剂,如BILN 2061和NS5b聚合酶的抑制剂,如NM107和其前体药物NM283(IdenixPharmaceuticals公司,美国马里兰州Cambridge)。
[0278] 本发明TLR7配体前药可与如Wu在Curr Drug Targets InfectDisord(2003;3(3):207-19)中所述的抑制HCV聚合酶的药剂或与如BretnerM等人,在Nucleosides Nucleotides Nucleic Acids(2003;22(5-8):1531)中所述的抑制病毒螺旋化功能的药剂或与如Zhang X在Drugs(2002;5(2):154-8)中所述的HCV特定靶向物的抑制剂联合给药或配制。
[0279] 本发明TLR7配体或TLR7配体前药可与抑制病毒复制的药剂联合给药或配制。
[0280] 本发明TLR7配体或TLR7配体前药可与细胞因子联合给药或配制。细胞因子的例子包括但不限于:白细胞介素-2(IL-2)、白细胞介素-3(IL-3)、白细胞介素-4(IL-4)、白细胞介素-5(IL-5)、白细胞介素-6(IL-6)、白细胞介素-7(IL-7)、白细胞介素-9(IL-9)、白细胞介素-10(IL-10)、白细胞介素-12(IL-12)、白细胞介素15(IL-15)、白细胞介素18(IL-18)、来自血小板的生长因子(PDGF)、促红细胞生成素(Epo)、表皮细胞生长因子(EGF)、成纤维细胞生长因子(FGF)、粒细胞巨噬细胞刺激因子(GM-CSF)、粒细胞集群刺激因子(G-CSF)、巨噬细胞集群刺激因子,(M-CSF)、泌乳刺激素和干扰素(IFN)(例如,IFN-α和IFN-γ)。
[0281] 本发明TLR7配体或TLR7配体前药可与激素联合给药或配制。激素的例子包括但不限于:黄体素化激素释放激素(LHRH)、生长激素(GH)、生长激素释放激素、ACTH、生长激素抑制素、生长激素、生长调节素、甲状旁腺素、下丘脑释放因子、胰岛素、胰高血糖素、脑啡肽、抗利尿激素、降血钙素、肝素、低分子量肝素、类肝素、合成和天然的阿片、胰岛素甲状腺刺激激素和内啡肽。
[0282] 本发明TLR7配体或TLR7配体前药可与β-干扰素联合给药或配制,β-干扰素包括但不限于:干扰素β-1a、干扰素β-1b。
[0283] 本发明TLR7配体或TLR7配体前药可与α-干扰素联合给药或配制,α-干扰素包括但不限于:干扰素α-1、干扰素α-2a(roferon)、干扰素α-2b、内含子、Peg-内含子、Pegasys、同义干扰素(ingergen)和albuferon。
[0284] 本发明TLR7配体或TLR7配体前药可与吸收促进剂联合给药或配制,尤其是以淋巴系统为靶向的吸收促进剂,其包括但不限于:甘胆酸钠;癸酸钠;N-月桂酰基-β-D-麦芽吡喃糖苷;EDTA;混合的胶束;和Muranishi在Crit.Rev.Ther.Drug Carrier Syst,7-1-33中所报告的物质,该文献全文纳入本文供参考。也可使用其它已知的吸收促进剂。
因此,本发明也涵盖了包含一种或多种式I所示的前药、式II所示的化合物和本发明的其它化合物与一种或多种吸收促进剂的药物组合物。
[0285] 本发明TLR7配体或TLR7配体前药可与烷基化剂联合给药或配制。烷基化剂的例子包括但不限于:氮芥、吖丙啶、甲基蜜胺、磺酸烷酯、亚硝基脲、三氮烯、双氯乙基甲胺、环磷酰胺、异环磷酰胺、美法仑、苯丁酸氮芥、六甲蜜胺(hexamethylmelaine)、三胺硫磷、白消安、卡氯芥、链脲菌素、氮烯唑胺和替莫唑胺。
[0286] 本发明化合物和其它治疗剂可具有加合作用,或更佳的是具有协同作用。在优选的实施方式中,含有本发明化合物的组合物可与另一种治疗剂同时给予,所述的另一种治疗剂可为与含有本发明化合物的组合物一部分相同或不同的组合物。在另一个实施方式中,在给予另一种治疗剂之前或之后给予本发明的化合物。在一个独立的实施方式中,对以前曾使用另一种治疗剂(特别是抗病毒剂)治疗或是目前不再接受使用另一种治疗剂治疗的病人,给予本发明的化合物。
[0287] 在一个实施方式中,本发明的方法包括给予一种或多种本发明TLR7配体或TLR7配体前药而不再给予其它的治疗剂。
[0288] 药物组合物和剂型
[0289] 包含本发明TLR7配体或前药,或其药学上可接受的盐、水合物或立体异构体的药物组合物和单剂剂型也在本发明的范围内。本发明的个体剂型适合于口服、粘膜给药(包括舌下、颊部、直肠、鼻或阴道给药)、非胃肠道(包括舌下、肌内、静脉推注、动脉内或静脉内给药)透皮给药或局部给药。本发明的药物组合物和剂型典型地还包含一种或多种药学上可接受的赋形剂。无菌制剂也在本发明的范围内。
[0290] 在一个可选的实施方式中,其中的药物组合物包括本发明TLR7配体或前药,或其药学上可接受的盐、水合物或立体异构体,以及至少一种其它的治疗剂。其它治疗剂的例子包括但不限于上述章节5.2.2所列的物质。
[0291] 本发明的组合物、形状和剂型类型典型地随其应用而改变。例如,用于一种疾病或相关疾病的急性治疗的剂型可含有比慢性治疗相同疾病所用量更大的一种或多种活性组份。相似的是,非胃肠道剂型可含有比用于治疗相同疾病或失调的口服剂型更少量的一种或多种活性组份。
[0292] 本领域的技术人员可以很容易地了解涵盖于本发明中的特定剂型的这些和其它方式可以是相互不同的。参见,例如,Remington’s PharmaceuticalScience,第18版,Mack Publishing,美国宾夕法尼亚Eston(1990)。剂型的例子包括但不限于:片剂;囊片(caplet);胶囊,例如软弹性明胶胶囊的胶囊;扁胶囊(cachet);糖锭(troche);锭剂;分散剂;栓剂;软膏剂;泥敷剂(poutice);糊剂;粉剂;敷料;霜剂;膏药;溶液剂;贴剂;气雾剂(如鼻喷雾剂或吸入剂);凝胶;适合对病人进行口服或粘膜给药的液体剂型,包括悬浮剂(如,水性或非水性液体悬浮剂、水包油乳剂或油包水液体乳剂)、溶液和酏剂;适合对病人非胃肠道给药的液体剂型;和可用来重构(reconstitute)以适合对病人非胃肠道给药液体剂型的无菌固体(如,结晶或无定形固体)。
[0293] 典型的药物组合物和剂型包括一种或多种载体、赋形剂或稀释剂。合适的赋形剂是药学领域中公知的,本文提供了合适的赋形剂的非限定性例子。一种特定的赋形剂是否适合掺入药物组合物或剂型取决于该技术领域公知的各种因素,包括但不限于要对病人给药的途径。例如,诸如片剂的口服剂型可含有不适合非胃肠道剂型的赋形剂。特定赋形剂的适合度也根据剂型中的特定活性成分而定。
[0294] 本发明还涵盖包含活性组份的无水药物组合物和剂型,因为水会加速某些化合物的降解。例如,加入水(如5%的水)是药学领域中是普遍接受的,它可作为模拟长期存放的手段来测定诸如制剂在一段时间里的保存期限或稳定性等性质。参见,如Jens T.Carstensen,Drug Stability:Principles &Practice,第2版,Marcel Dekker,美国纽约州纽约,1995,第379-80页。水和热量能有效地加速一些化合物的分解。因此,由于在制造、处理、包装、贮存、运输和使用制剂时一般会遇到潮气和/或湿度,水对制剂的影响是极为巨大的。
[0295] 本发明的无水药物组合物和剂型可使用无水或低湿度的组份和在低湿度或低潮湿的条件进行制备。
[0296] 无水药物组合物应在制备和贮存中使其无水性质得以维持。因此,无水组合物优选地使用防水的材料进行包装,使它们能包含在合适的配方试剂盒中。合适包装的例子包括但不限于:密封箔、塑料、单位剂型容器(如小药水瓶)、浮泡包装和带包装。
[0297] 本发明还涵盖包含一种或多种减少活性组份分解速率的化合物的药物组合物和剂型。这类化合物(下面称为稳定剂)包括但不限于:抗氧化剂,如抗坏血酸、pH缓冲剂或盐缓冲剂。
[0298] 如同赋形剂的量和类型,剂型中活性组份的量和特定的类型会根据各种因素而不同,例如,但不限于,因给予病人的途径不同而不同。但是,包含本发明化合物或其药学上可接受的盐或水合物的本发明的典型剂型包含0.1毫克到1500毫克/单位,以提供每天约0.01到200毫克/千克的剂量。
[0299] 口服剂型
[0300] 适合口服给药的本发明的药物组合物可为不连续的剂型,例如,但不限于:片剂(如咀嚼片)、囊片、胶囊和液体(如矫味的浆状物剂)。这类剂型含有预定量的活性组份,可用药学领域技术人员公知的方法制备。一般参见Remington’s Pharmaceutical Sciences,第18版,Mack Publishing,美国宾夕法尼亚州Easton(1990)。
[0301] 典型的本发明口服剂型的制备是通过使活性组份与至少一种赋形剂根据常规药物复合技术充分混合。赋形剂可根据所需给药的制备形式具备各种赋形剂形式。例如,适合用于口服液体或气雾剂剂型的赋形剂包括但不限于:水、二醇、油、醇、调味剂、防腐剂和着色剂。适合用于固体口服剂型(如粉末、片剂、胶囊和囊片)的赋形剂例子包括但不限于:淀粉、糖、微晶纤维素、稀释剂、成粒剂、润滑剂、粘合剂和崩解剂。
[0302] 由于片剂和胶囊剂易于给药,它们代表了口服剂型中最佳的剂型,在此情况下使用了固体赋形剂。若需要,片剂可用标准的水性或非水性技术进行包衣。此类剂型可用药学中的任何方法进行制备。一般来说,药物组合物和剂型的制备是通过使活性组份与液体载体、细分散固体载体或两者均匀密切地混合,必要时再使产品形成所需的形状。
[0303] 例如,片剂可通过压制或模压来制备。压制的片剂可通过在合适的机器中压制任选地与赋形剂混合的、自由流动形式(如粉末或颗粒)的活性组份来制备。模压片剂的制备可通过在合适的机器中模压用惰性液体赋形剂湿润的粉末化的化合物。
[0304] 可用于本发明口服剂型的赋形剂例子包括但不限于:粘合剂、填料、崩解剂和润滑剂。适合用于药物组合物和剂型的粘合剂包括但不限于:玉米淀粉、土豆淀粉或其它淀粉、明胶、诸如阿拉伯胶、藻酸钠、藻酸、其它藻酸盐、粉末化黄芪胶、瓜耳胶的天然和合成的胶、纤维素和它的衍生物(如乙基纤维素、乙酸纤维素、羧甲基纤维素钙、羧甲基纤维素钠)、聚乙烯基吡咯烷酮、甲基纤维素、预胶化的淀粉、羟丙基甲基纤维素(如,第2208、2906、2910号)、微晶纤维素和其混合物。
[0305] 适合用于本文的药物组合物和剂型中的填料包括但不限于:滑石粉、碳酸钙(如颗粒或粉末)、微晶纤维素、粉末化的纤维素、糊精、高岭土、甘露醇、硅酸、山梨醇、淀粉、预化淀粉和它们的混合物。本发明药物组合物中粘合剂或填料典型地占药物组合物或剂型的约50-99重量%。
[0306] 微晶纤维素的合适类型包括但不限于:商品名为AVICEL-PH-101、AVICEL-PH-103 AVICEL RC-581、AVICEL-PH-105(购自FMC Corporation美国纤维胶分部,Avicel销售部,美国宾夕法尼亚Marcus Hook),和它们的混合物。特定的粘合剂是微晶纤维素和羧甲基纤维素的混合物,商品名为AVICEL RC-581。合适的无水或低湿的赋形剂或添加剂包括TMAVICEL-PH-103 和Starch 1500LM。
[0307] 用于本发明组合物的崩解剂使片剂暴露于水环境时崩解。含有太多崩解剂的片剂会在贮存时崩解,而含有太少崩解剂的片剂不能以所需的速率崩解或在所需的条件下不能崩解。因此,既不太多也不太少的足量崩解剂而决定性地改变活性组份释放的崩解剂可用来形成本发明的固体口服剂型。崩解剂的用量可随制剂的类型而不同,这对于所述领域的普通技术人员来说是很容易辨别的。典型的药物组合物包含约0.5-约15重量%的崩解剂,特别是约1-5重量%的崩解剂。
[0308] 可用于本发明药物组合物和剂型的崩解剂包括但不限于:琼脂-琼脂、藻酸、碳酸钙、微晶纤维素、交联羧甲基纤维素钠、交联聚维酮、polacrillin钾、淀粉乙醇酸钠、土豆淀粉或木薯淀粉、预胶化淀粉、其它淀粉、陶土、其它藻胶、其它纤维素、胶体和它们的混合物。
[0309] 可用于本发明的药物组合物和剂型的润滑剂包括但不限于:硬脂酸钙、硬脂酸镁、矿物油、轻质矿物油、甘油、山梨醇、甘露醇、聚乙二醇、其它二醇、硬脂酸、月桂基硫酸钠、滑石粉、氢化植物油(如花生油、棉籽油、葵花油、芝麻油、橄榄油、玉米油和豆油)、硬脂酸锌、油酸乙酯、月桂酸乙酯、琼脂和它们的混合物。其它的润滑剂包括,例如,硅酸盐硅胶(AEROSIL 200,由W.R.Grace Co.制造,美国马里兰州Baltimore)、合成二氧化硅的凝结气雾胶(由美国得克萨斯州,Plano的Degussa Co出售.)、CAB-O-SIL(pyrogenic二氧化硅产品,由美国马塞诸塞州,波士顿的CabotCo.出售)和它们的混合物。若需要使用时,润滑剂以占低于药物组合物或剂型的约1重量%的用量合用。
[0310] 缓释剂型
[0311] 可通过控释方式或采用本领域普通人员公知的递药装置来给予本发明的活性组份。例子包括但不限于:美国专利3,845,770;3,916,899;3,536,809;3,598,123;和 4,008,719;5,674,533;5,059,595;5,591,767;5,120,548;5,073,543;5,639,476;
5,354,556和5,733,566中所描述的那些,所有这些专利都纳入本文供参考。这类剂型通过使用各种比例的下列物质而慢释放或控释一种或多种活性组份以得到所需的释放曲线,所述的物质是例如,羟丙基甲基纤维素、其它的聚合物基质、凝胶、可渗透膜、渗透系统、多层包衣、微颗粒、脂质体、微球或其组合。为本领域普通技术人员所公知的合适的控释制剂(包括本文所述的)可很容易地选来与本发明的活性组份共同使用。因此本发明涵盖了适合口服的单一单位剂型,例如,但不限于:用于控释的片剂、胶囊、凝胶胶囊和囊片。
[0312] 所有的控释药品所具有的一般目的是通过其非控制的配对物来促进药物疗效。理想的是,在药物治疗中使用最佳设计的控释制剂的特征在于在最短的时间里使用来治愈或控制病情的药物最小化。控释制剂的优点包括药物活性的延长、给药频度的降低、病人顺应性的增加。另外,控释制剂可用来影响开始作用的时间或其它特性,如药物的血药水平,并因此影响共同发生的副作用(例如,不良反应)。
[0313] 大多数控释制剂被设计成开始释放一定量的药物(活性组份)以迅速产生所需的治疗作用,然后逐渐和持续地释放其它量的药物以在一段延长的时间里维持治疗或预防作用的水平。为了在体内维持该稳定的血药水平,药物必须以代替代谢和排泄的药物的速率从剂型中释放。通过各种条件可刺激活性组份的控制释放,这些条件包括但不限于:pH、温度、酶、水或其它生理条件或化合物。
[0314] 非胃肠道剂型
[0315] 非胃肠道剂型可通过各种途径给予病人,包括但不限于:皮下、静脉内(包括推注)、肌内和动脉内给药。由于它们的给药通常绕过病人对污染物的天然防御,非胃肠道剂型优选的是无菌的,或在给予病人前能消毒。非胃肠道剂型的例子包括但不限于:备用的注射液、准备溶于或悬浮于供注射的药学上可接受的赋形剂的无水和/或冻干产品(可重构的粉末)、注射用悬浮液和乳剂。
[0316] 用于本发明非胃肠道剂型的合适的媒介物是为本领域技术人员所公知的。例子包括但不限于:注射USP用水;水性赋形剂,例如但不限于,氯化钠注射液、Ringer注射液、右旋糖注射液、右旋糖和氯化钠注射液、以及乳酸化的Ringer注射液;水混溶赋形剂,例如但不限于:乙醇、聚乙二醇和聚丙二醇;非水性赋形剂,例如但不限于:玉米油、棉籽油、花生油、芝麻油、油酸乙酯、肉豆蔻酸异丙酯和苯甲酸苄酯。
[0317] 能增加本文揭示的一种或多种活性组分的溶解度的化合物也可掺入本发明的非胃肠道剂型。
[0318] 透皮剂型
[0319] 透皮剂型包括“贮库型”或“基质型”贴剂,它可用于皮肤并佩带一段时间以使所需量的活性组分渗透。
[0320] 可用来提供本发明的透皮和局部剂型的合适的赋形剂(如载体和稀释剂)和其它材料是药学领域中的技术人员所公知的,可根据给予药物组合物或剂型的特定组织而定。出于这一考虑,典型的赋形剂包括但不限于:水、丙酮、乙醇、乙二醇、丙二醇、丁-1,3-二醇、肉豆蔻酸异丙酯、棕榈酸异丙酯、矿物油和它们的混合物。
[0321] 根据要处理的特定组织,在用本发明的活性组分处理前、处理中或处理后可使用其它的化合物。例如,可使用渗透促进剂帮助活性组分向组织渗透。合适的渗透促进剂包括但不限于:丙酮;各种醇,如乙醇、油基醇和四氢呋喃;烷基亚砜,如二甲亚砜;二甲基乙酰胺;二甲基甲酰胺;聚乙二醇;吡咯烷酮类,如聚乙烯吡咯烷酮:科利当(Kollidon)级(吡维酮、聚维酮);脲和各种水溶或水不溶的糖酯,如吐温80(聚山梨醇酯80)和司盘60(山梨糖单硬脂酸酯)。
[0322] 也可调节药物组合物或剂型的pH或药物组合物或剂型给予的组织的pH来改善一种或多种活性组分的递送。相似的是,可调节溶剂载体的极性、它的离子强度或张力来改善递送。诸如硬脂酸的化合物也可加到药物组合物或剂型中以有利地改变一种或多种活性组分的亲水性或亲脂性从而改进递送。就此而言,硬脂酸酯可作为制剂的脂质载体、作为乳化剂或表面活性剂、并可作为递送促进剂或渗透促进剂。活性组分的不同的盐、水合物或溶剂合物可用来进一步调节所得组合物的性质。
[0323] 局部给药剂型
[0324] 本发明的局部剂型包括但不限于:霜剂、洗液、膏剂、凝胶剂、溶液剂、乳剂、悬浮剂或为本领域技术人员所公知的其它剂型。参见,如Remington′s Pharmaceutical Sciences,第18版,Mack Publishing,美国宾夕法尼亚Easton(1990);和Introduction to Pharmaceutical Dosage Forms,第4版,Lea & Febiger,美国Philadelphia(1985)。
[0325] 本发明所涵盖的可用来提供透皮和局部剂型的合适的赋形剂(例如,载体和稀释剂)和其它材料是为药学领域技术人员所公知的,根据药物组合物或剂型给予的特定组织而定。出于这一考虑,典型的赋形剂包括但不限于:水、丙酮、乙醇、乙二醇、丙二醇、丁-1,3-二醇、肉豆蔻酸异丙酯、棕榈酸异丙酯、矿物油和其它的混合物。
[0326] 根据要处理的特定组织,可在用本发明活性组分处理前、处理中或处理后使用其它的组分。例如,可使用渗透促进剂帮助活性组分向组织渗透。合适的渗透促进剂包括但不限于:丙酮;各种醇,如乙醇、油醇和四氢呋喃;烷基亚砜,如二甲亚砜;二甲基乙酰胺;二甲基甲酰胺;聚乙二醇;吡咯烷酮类,如聚乙烯吡咯烷酮:科利当(Kollidon)级(吡维酮、聚维酮);脲和各种水溶或水不溶的糖酯,如吐温80(聚山梨醇酯80)和司盘60(山梨糖单硬脂酸酯)。
[0327] 粘膜给药剂型
[0328] 本发明的粘膜剂型包括但不限于:眼药溶液、喷雾剂和气溶胶或本技术领域技术人员已知的其它形式。参见,如Remington′s PharmaceuticalSciences,第18版,Mack Publishing,美国宾夕法尼亚Easton(1990);和Introduction to Pharmaceutical Dosage Forms,第4版,Lea & Febiger,美国Philadelphia(1985)。适合用来治疗口腔内粘膜组织的剂型可配制成口腔洗液或口腔凝胶。在某一实施方式中,气溶胶包含载体。在另一个实施方式中,气溶胶不含载体。
[0329] 本发明TLR7配体或TLR7配体前药也可通过吸入直接对肺部给药。对于吸入给药,本发明TLR7配体或TLR7配体前药可通过许多不同的设备对肺部进行常规的递送。例如,计量吸入器(“MDI”)使用含有合适的低沸点抛射剂的小罐直接将化合物递送到肺部,所述的抛射剂是如,二氯二氟甲烷、三氯氟甲烷、二氯四氟乙烷、二氧化碳或其它合适的气体。MDI设备可从许多供应商处购得,如3M Corporation、Aventis、Boehringer Ingleheim、Forest Laboratories、Glaxo-Wellcome、Schering Plough和Vectura。
[0330] 或者,可使用干粉吸入器(DPI)设备对肺部给予TLR7配体(参见,如Raleigh等,Proc.Amer.Assoc.Cancer Research Annual Meeting,1999,40,397,在此全文纳入供参考)。DPI设备典型地使用诸如气体爆发机制在容器中产生干粉烟雾,然后被病人吸入。DPI设备在该领域中也是公知的,可从许多供应商处购得,包括,如,Fisons、Glaxo-Wellcome、Inhale TherapeuticSystems、ML Laboratories、Qdose和Vectura。普及的变体是多剂量DPI(“MDDPI”)系统,它可递送一种以上的治疗剂量。MDDPI设备可购自,如AstraZeneca、GlaxoWellcome、IVAX、Schering Plough、SkyePharma和Vectura。例如,用于吸入器或吹药器的明胶胶囊和药筒可配制成含有化合物与用于这些系统的合适的粉末基质(如乳糖或淀粉)的粉末混合物。
[0331] 用来将本发明化合物递送到肺部的另一种设备是液体喷雾设备,如,Aradigm Corporation出产的设备。液体喷雾设备使用极小的喷嘴使液体药物制剂气溶胶化,然后可直接吸入肺部。
[0332] 在优选的实施方式中,喷雾装置被用来将本发明TLR7配体或TLR7配体前药递送到肺部。喷雾器通过使用,例如超声波能量形成易于吸入的细小颗粒,而从液体药物制剂中制造气溶胶(参见,如Verschoyle等,BritishJ.Cancer,1999,80,Suppl 2,96,在此纳入本文供参考)。喷雾器的例子包括Sheffield/Systemic Pulmonary Delivery Ltd.(参见,Armer等,美国专利No.5,954,047;van der Linden等,美国专利No.5,950,619;van der Linden等,美国专利No.5,970,974,在此纳入本文供参考);Aventis和BatellePulmonary Therapeutics提供的设备。
[0333] 在特别优选的实施方式中,电流体力学(“EHD”)气溶胶设备被用来向肺部递送本发明TLR7配体或TLR7配体前药。EHD气溶胶设备使用电能使气溶胶液体药物溶液或悬浮液气溶胶化(参见,如Noakes等,美国专利No.4,765,539;Coffee,美国专利No.4,962,885;Coffee,PCT申请,WO94/12285;Coffee,PCT申请,WO94/14543;Coffee,PCT申请,WO95/26234;Coffee,PCT申请,WO95/26235;Coffee,PCT申请,WO95/32807,在此纳入本文供参考)。当使用EHD气溶胶设备向肺部递送药物时,TLR7配体和TLR7配体前药制剂的电化学性质可能是需要最优化的重要参数,这类最优化可由本领域的技术人员常规地进行。EHD气溶胶设备可比现存的肺部递送技术更有效地向肺部递送药物。其它的肺内递送本发明TLR7配体和TLR7配体前药的方法是为本领域熟练技术人员所公知的,且也在本发明的范围内。
[0334] 适合用喷雾器和液体喷雾设备和EHD气溶胶设备使用的液体药物制剂通常包括TLR7配体或TLR7配体前药与药学上可接受的载体。优选的是,药学上可接受的载体是诸如醇、水、聚乙二醇或全氟碳的液体。任选的是,可加入另一种材料来改变TLR7配体或TLR7配体的前药溶液或悬浮液的气溶胶性质。优选的是,该材料是诸如醇、二醇、多元醇或脂肪酸的液体。配制适合用于气溶胶设备的液体药物溶液或悬浮液的其它方法是本领域技术人员所公知的(参见,如Biesalski,美国专利No.5,112,598;Biesalski,5,556,611,在此纳入本文供参考)。TLR7配体或TLR7配体前药也可配制成直肠组合物或阴道组合物,如栓剂或滞留灌肠剂,例如含有诸如可可豆酯或其它甘油酯的常规栓剂基质。
[0335] 除了前述的制剂外,TLR7配体或TLR7配体前药也可配制成贮库(depot)制剂。这类长期作用的制剂可通过(例如皮下或肌内)植入给予或通过肌内注射给予。由此,化合物可用合适的聚合物材料或疏水材料(例如,在可接受的油中的乳剂)或离子交换树脂配制,或者作为微溶的衍生物,例如作为微溶的盐。
[0336] 或者,可使用其它的药物递送系统。脂质体和乳剂是可用来递送本发明TLR7配体和TLR7配体前药的公知递送载体。可使用诸如二甲亚砜的某些有机溶剂,虽然通常会有较大的毒性。TLR7配体或TLR7配体前药也可在控释系统中递送。在一个实施方式中可使用泵剂(Sefton,CRC Crit.RefBiomed Eng,1987,14,201;Buchwald等,Surgery,1980,88,507;Saudek等,N.Engl.J.Med.,1989,321,574)。在另一个实施方式中可使用聚合物材料(参见Medical Applications of Controlled Release,Langer和Wise编,CRC Pres.,Boca Raton,Fla.(1974);Controlled Drug Bioavailability,DrugProduct Design 和Performance,Smolen和Ball编辑,Wiley,N.Y.(1984);Ranger和Peppas,J.Macromol.Sci.Rev.Macromol.Chem.,1983,23,61;也可参见Levy等,Science,1985,228,190;During等,Ann.Neurol.,1989,25,351;Howard等,1989,J.Neurosurg.71,105)。在另一个实施方式中,控释系统可位于本发明化合物的靶向物的周围,如肺部,这样只需要部分的全身剂量(参见,如,Goodson,in Medical Applications ofControlled Release,同上,第2卷,115页(1984))。其它的控释系统也可使用(参见,如Langer,Science,1990,249,1527)。
[0337] 可用来提供本发明的粘膜给药剂型的合适的赋形剂(如载体和稀释剂)和其它材料的是药学领域中技术人员所公知的,可以根据组合物或剂型给予的特定部位或方法而定。出于这点考虑,典型的赋形剂包括但不限于:水、乙醇、乙二醇、丙二醇、丁-1,3-二醇、肉豆蔻酸异丙酯、棕榈酸异丙酯、矿物油和它们的混合物,所述的赋形剂是无毒的且药学上可接受的。这类附加组分的例子是本技术领域公知的。参见,如,Remington′sPharmaceutical Sciences,第18版,Mack Publishing,美国宾夕法尼亚Easton(1990)。
[0338] 也可调节药物组合物或剂型的pH或施用药物组合物或剂型的组织的pH来改善一种或多种活性组分的递送。相似的是,可以调节溶剂载体的极性、溶剂载体的离子强度或张力以改善递送。诸如硬脂酸酯的化合物也可加到药物组合物或剂型中以有利地改变一种或多种活性组分的亲水性或亲脂性,从而改善递送。就此而言,硬脂酸酯可作为制剂的液体载体、作为乳化剂或表面活性剂,并作为递送促进剂或渗透促进剂。活性成分的不同的盐、水合物或溶剂合物可用来进一步调节所得组合物的性质。
[0339] 试剂盒
[0340] 本发明提供了包括一个或多个容器的药物包装或试剂盒,所述容器包含用于治疗或预防丙肝病毒感染的TLR7配体前药。在其它实施方式中,本发明提供了包括含有用于治疗或预防丙肝病毒感染的TLR7配体前药的一个或多个容器的药物包装或试剂盒,和含有其它治疗剂一个或多个容器,所述的其它治疗剂包括但不限于那些上述章节5.2.2所列的药物,特别是抗病毒剂、干扰素、抑制病毒酶的药剂或抑制病毒复制的药剂,优选的其它的治疗剂为HCV特异性或显示出抗HCV活性。
[0341] 本发明还提供了包括一个或多个容器的药物包装或试剂盒,其中包含一种或多种本发明的药物组合物的成分。与这类容器任选地关联的是一个由政府机构规定的药品或生物制品生产、使用或销售所需形式的说明书,该说明书显示对人体给予所述药品或生物制品的制造、使用或销售已获得政府机构许可。
[0342] 分析
[0343] 通过多种本领域已知方法体外或体内测定本发明TLR7配体、TLR配体前药、组合物和剂型的活性。例如,参见,下述方法和整个实施例中所用的方法。
[0344] 已知多种评价TLR7活性的方法,如以下出版物所述,所有出版物被纳入本文作为参考:Hirota等,J.Med.Chem.,45,5419-5422(2002);和Akira S.等,Immunology Letters,85,85-95(2003)。例如,可用于分析TLR7配体的一种系统是,通过本领域技术人员已知方法克隆TLR7基因并将其转染入合适的细胞系中,使表达TLR7并偶联至NFkB-萤光素酶指示质粒。在该细胞系统中,细胞培养中接触TLR7配体产生可测定的荧光信号。例如,参见Lee等,Proc.Nat.Acad.USA,100,6646-6651(2003);Hemmi等,Nat.Immunol.,3,196-200(2002);和Jurk等,Nat.Immunol.,3,499(2002)(其中,Lee等,Hemmi等和Jurk等,全部内容被纳入本文作为参考)。
[0345] 体外方法的另一个例子是使人外周血单核细胞(PBMC)接触候选的TLR7配体前药,持续预定间隔(例如,2-24小时),然后测定免疫活性。免疫活性可包括诱导细胞因子的合成,这可由ELISA分析法测定培养上清液中的细胞因子蛋白来确定,例如1型干扰素(干扰素α,干扰素β)或2型干扰素(干扰素γ)。或者,可在与候选的TLR7配体前药孵育后收集PBMC,抽提PBMC RNA,并通过对抽提RNA进行RNA酶保护分析确定免疫系统基因的诱导水平。一般诱导的基因包括2’5’-OAS或干扰素γ,但可测定多种细胞因子。例如,参见Hirota等,J.Med.Chem.,45,5419-5422(2002)。
[0346] RNA酶保护分析(RPA)是本领域已知方法,其中,通过先将对分析RNA特异的放射标记RNA序列杂交至RNA分析物以定量,然后酶消化,选择性降解单链RNA。然后,在能分解杂交、保护的双链RNA的条件下对样品进行凝胶电泳。接着,对凝胶进行放射自显影,揭示电泳带的位置和强度。它们可通过本领域已知方法进行定量。如果保护片段的差异足以使它们通过凝胶电泳分离,可对多种分析RNA同时进行测定。将在细胞中表达水平相同的分析RNA和对照RNA类水平的比较作为内标,使得即使RNA总量变化也可检测分析RNA类的水平。这种RNA酶保护分析的过程如下:
[0347] 根据生产商的指示,使用“RNAeasy”试剂盒(Qiagen)纯化来自PMBC的RNA。成套模板可来自PharMingen(BD Biosciences);来自该供应商的一套市售有用的模板包含能够分析TNF-a、IL12p35、IP10、IL-1a、IL-1b、IL-6、干扰素γ和对照RNA类L32和GAPDH的物质。该模板套包含DNA,它适用于合成每种所列基因合适的RNA探针。
[0348] 使用试剂盒中提供的PharMingen体外转录试剂盒缓冲探针。反应物包含RNA酶抑制剂;转录缓冲液;50ng模板套;各0.1375mM rGTP、rCTP、rATP;0.003mM rUTP;10mM DTT、0.010mCi[α32P]UTP和20微升的20单位T7RNA聚合酶。将反应混合物在37℃下孵育1小时,然后加入2单位不含RNA酶的DNA酶,37℃下再孵育30分钟终止反应。上述孵育中合成的RNA探针用5.2mM EDTA,25μl Tris饱和苯酚,25μL氯仿和4μg酵母tRNA提取一次,然后再用50μL氯仿提取。加入50μL 4M醋酸铵和250μL 100%的冰乙醇使RNA沉淀,-80℃下孵育30分钟后,所述制剂高速离心30分钟。在100%乙醇中洗涤离心管,除去乙醇后,再悬浮探针,用于RNA酶保护分析。
[0349] RNA酶保护分析使用上述制备的探针物质和从PBMC提取的RNA。将PBMC RNA在100%乙醇中洗涤,260nm下通过吸收度进行定量。根据PharMingen RiboQuant试剂盒中的方案进行RPA。将8μL PBMC RNA样品与2μL探针套在薄壁试管中混合,很好地混合,短时间离心后用矿物油覆盖。然后,将试管置于90℃ PCR模块中,冷却至56℃,孵育16小时。然后将样品冷却至37℃,加入RNA酶A和RNA酶T1。将混合物在30℃下孵育45分钟,用蛋白酶K和酵母tRNA终止反应。用苯酚-氯仿提取RNA,然后用醋酸铵-乙醇使其从苯酚-氯仿中沉淀。用乙醇洗涤小管,并在缓冲液中进行再悬浮,用于进行电泳。根据分子生物学领域公知的方法,用凝胶电泳分析样品。
[0350] 本发明中可采用许多分析方法来测定本发明化合物的抗病毒活性,例如细胞培养、动物模型和人体试验。本文所述试验可用于测定病毒随时间的生长,以确定在本发明化合物存在下病毒的生长特征。
[0351] 在另一个实施方案中,将病毒和本发明化合物给予易受病毒感染的受试动物。可将感染的发病率、严重性、持续时间、病毒载量、死亡率等与只给予病毒(无本发明化合物)的受试对象时观察到的发病率、严重性、持续时间、病毒载量、死亡率作比较。本发明化合物抗病毒活性表现为在本发明化合物存在下的感染发病率、严重性、持续时间、病毒载量、死亡率等降低。在一个具体的实施方案中,将病毒和本发明化合物同时给予动物对象。在另一个具体的实施方案中,在给予本发明化合物之前将病毒给予动物对象。在另一个具体实施方案中,在给予病毒之前将本发明化合物给予动物对象。
[0352] 在另一个实施方式中,病毒生长率的测定可如下进行:在存在或不存在本发明化合物条件下,在感染后的多个时间点从人体或动物对象取出生物液体/临床样品(如,鼻呼出物、咽喉处的擦拭物、痰、支气管-齿槽灌洗物、尿液、唾液、血液或血清)并检测病毒的水平。在特定的实施方式中,病毒生长率的分析可如下进行:在样品中的病毒经细胞培养生长后、在生长培养基上生长后或在受试者中生长后,运用本技术领域公知的任何方法分析样品中病毒的存在,所述方法为例如但不限于,免疫分析(如ELISA;关于ELISA的讨论可参见,例如Ausubel等编,1994,Current Protocolsin Molecular Biology,第I卷,John Wiley & Sons,Inc.,纽约,11.2.1)、免疫荧光染色法或免疫斑点法分析,利用免疫特异性识别要被分析的病毒的抗体或检测病毒特异性的核酸(如,通过Southern blot或RT-PCR分析等)。
[0353] 在特定的实施方式中,病毒滴度的测定如下进行:从感染的细胞或感染的对象中得到生物液体/临床样品,制备该样品的一系列稀释物,并在能单个空斑(plagues)的病毒稀释度下感染对病毒易感的单层细胞(如原细胞、转化细胞系、病人组织样品等)。然后计算空斑数,病毒滴度表示为斑点形成单位/毫升样品。
[0354] 在一个特定的实施方式中,对象中的病毒生长率可通过抗体抗对象中的病毒的滴度进行评估。抗体血清滴度可通过本领域中周知的任何方法进行测定,例如但不限于,血清样品中抗体或抗体片段的量可通过如,ELISA进行定量。
[0355] 另外,TLR7配体或TLR7配体前药的体内活性可如下测定:直接给予试验动物以该化合物,收集生物液体(如鼻呼出物、咽喉处的擦拭物、痰、支气管-齿槽灌洗物、尿液、唾液、血液或血清)并测试液体的抗病毒活性。
[0356] 在要被分析病毒水平的样品是生物液体/临床样品(如鼻呼出物、咽喉处的擦拭物、痰、支气管-齿槽灌洗物、尿液、唾液、血液或血清)的实施方式中,样品可包含或不包含完整的细胞。来自含有完整细胞的对象的样品可直接进行处理,而不含完整细胞的分离物可首先经过或无需在易感细胞系(如原代细胞、转化细胞系、病人组织样品等)或生长培养基(如,LB肉汤/琼脂、YT肉汤/琼脂、血液琼脂等)上进行培养。可通过离心(如,室温++ ++下,300×g,5分钟),然后在相同的条件下用pH 7.4的PBS(无Ca 和Mg )洗涤使得细胞悬液变澄清。细胞团(cell pellet)可再悬浮于小体积PBS中供分析。含有完整细胞的原发性临床分离物可与PBS混合,并在室温下以300×g离心5分钟。用消毒滴管尖从交界面上除去粘液,并可将细胞团在相同条件下以PBS再次洗涤。然后将细胞团再悬浮于小体积的PBS中供分析。
[0357] 在另一个实施方式中,将本发明的化合物给予受病毒感染的人。受病毒感染且给予本发明化合物的人的易感率、严重程度、持续时间、病毒负载、死亡率等可与受到病毒感染但未给予本发明化合物或给予安慰剂的人体观察到的易感率、严重程度、持续时间、病毒负载、死亡率等进行比较。本发明化合物的抗病毒活性可通过本发明化合物的存在对感染的易感率、严重程度、持续时间、病毒负载、死亡率的降低来显示。本技术领域公知的任何方法都可用来测定在对象(例如,那些前述的对象)中的抗病毒活性。
[0358] 此外,TLR7配体或TLR7配体前药的体内活性可如下测定:直接给予动物或人体对象该化合物,收集生物液体/临床样品(如,鼻呼出物、咽喉处的擦拭物、痰、支气管-齿槽灌洗物、尿液、唾液、血液或血清),并测试生物液体/临床样品中的抗病毒活性(如,在病毒的存在下向培养中的细胞中加入本发明的化合物)。
[0359] 上文已叙述了本发明相关及重要特征。本领域技术人员将明白,可进行许多改变和实施方案。因此,应理解所附权利要求书涵盖了所有这种改变和实施方案。
[0360] 6.实施例
[0361] 下面的实施例仅仅是为了阐述,而不是对本发明范围的限制。
[0362] 6.1 TLR7配体检测
[0363] 已知三类TLR7配体:鸟苷类、咪唑并喹啉类和嘧啶类(见章节5.2)。如上所述,已知筛选方法已鉴定了其他TRL7配体。例如,采用下面的筛选步骤鉴定腺嘌呤类似物和衍生物为TLR配体,见表1和2。
[0364] 从Invivogen(San Diego,California)得到稳定的HEK293-hTLR7细胞系,用所选的pNiFty2-Luc、NF-kB诱导性萤光素酶指示质粒(Invivogen)和(双重)稳定转染子进行转染。通过折叠萤光素酶诱导试验,与无药物的对照样相比,功能性测定所得双重(hTLR7/pNiFty2-Luc)细胞系对洛索立宾和艾沙托立宾的响应。选择C23系是因为其与这些(和其它)TLR7激动剂令人满意的响应和敏感性特征。与TLR7匹配与NF-kB活化相关的生物学原理已被广泛接受(综述,参见Akira S.等,Immunol.Lett.,85,85-95(2003)),因此,HEK293-TLR-NF-kB诱导性报告系统作为标准试验,常用于分析TLR(7)激动剂,无论是暂时或稳定的系统模式。例如,参见Hemmi H.等,Nat.Immunol.,3,196-200(2002);Jurk M.等,Nat.Immunol.,3,499(2002);和Lee J.等,Proc.Natl.Acad.Sci.USA,100,
6646-51(2003).
[0365] 对于典型的C23试验,以6×104个细胞/孔将细胞接种于96孔培养板中,4-24小时后用各种浓度的化合物处理。接触2-48小时后,用被动溶解缓冲剂(Promega)溶解细胞单层,用萤光素酶分析试剂(Promega)进行萤火虫萤光素酶试验,如生产商所述。相对萤光素酶活性表示为与无药对照样相比的诱导倍数。认为超过背景两倍的诱导是真正的TLR7激动剂,由此显示统计学显著性增加。
[0366] 表1:存HEK293试验中艾沙托立宾激活人的TLR7
[0367] 表2:在HEK293试验中腺嘌呤衍生物激活人的TLR7
[0368] 在表1中,将艾沙托立宾加入到C23细胞中接触48小时,然后收集细胞,分析萤光素酶活性。每个时间点分析三次。所示数据表示与无药对照样相比的诱导倍数,以及括号内的标准差。
[0369] 在表2中,将腺嘌呤衍生物29加入到C23细胞中接触24小时,然后收集细胞,分析萤光素酶活性。每个时间点分析三次。所示数据表示与无药对照样相比的诱导倍数,以及括号内的标准差。
[0370] 6.2试验TLR7配体作为抗-HCV剂
[0371] HCV病毒载量降低
[0372] 提供包含在50mL试管中1毫克/毫升无菌生理盐水溶液形式的艾沙托立宾试验药物。静脉输注给予人体艾沙托立宾,每天一次,持续7天,剂量为200、400、600或800毫克/剂量。所有剂量在60分钟时间内恒速输注给予,除800毫克剂量是在80分钟的时间内给予。每种剂量的流速如下:200毫克剂量为3.33毫升/分钟;400毫克剂量为6.67毫升/分钟;500毫克剂量为8.33毫升/分钟;600毫克和800毫克剂量为10.0毫升/分钟。
[0373] 每个剂量组招募4-12位患者(200毫克,400毫克,600毫克和800毫克/剂量)每天静脉输注一次,持续7天。给药前,每位患者取血以评价其HCV病毒基因型。
[0374] 对于这些日(×7天)剂量组,在第2-7天开始每天静脉输注艾沙托立宾之前,测定血浆HCV RNA基线(前一天或预处理以及第一天的2次预处理测定的平均值)。参见图TM2。分支DNA法测定病毒载量(Versant v3.0bDNAassay,Bayer Diagnostics)。对于血浆HCV RNA,用log变换值估计从预处理基线的最大变化。
[0375] 在艾沙托立宾处理期间血浆HCV RNA降低,较大的变化一般发生在接受较高日剂量的患者中(图2)。12位接受艾沙托立宾800毫克QD×7天中的8位显示血浆病毒载量降低大于0.5log10单位,12位患者中的平均变化为-0.76log10单位,范围是-2.85到+0.21log10单位。800毫克QD剂量组中这种病毒载量的降低具有统计学显著性(p=
0.008)。停止处理期间血浆病毒载量的降低通常恢复。
[0376] 基于HCV复制子的病毒生物分析
[0377] 已显示HCV复制子对干扰素-α和干扰素-γ的抑制作用高度敏感。因此,HCV复制子成为非常有用的系统,用于测定来自由TLR7激动剂激动的人PBMC的上清液中生物学活性干扰素的量。进行定量分析,基于测定整合入HCV复制子的萤光素酶指示基因的活性。通过使用该系统,测定来自TLR7激动剂处理PBMC的干扰素,并用萤光素酶指示复制子评价其抑制活性。
[0378] 将分离自健康供体的人PBMC置于多细胞培养孔中(5×106细胞/孔)。在不含受试化合物,37℃、含5%CO2的潮湿环境下培养PBMC 24小时,以使培养条件稳定,然后将TLR7配体或不含药物的对照样加入到含有来自相同供体的PBMC的复孔中。可改变TLR7配体浓度以适合特定试验,然后将PBMC培养物在37℃、含5%CO2的潮湿环境中孵育8小时。在8小时的时间点(或对于洛索立宾及其取样是24小时的时间点),将来自TLR7配体处理和对照孔的细胞培养上清液取样,ELISA分析干扰素-α的生成。将来自化合物处理细胞和无药对照样的上清液以1∶10、1∶100和1∶1000稀释在RPMI培养液中,应用于含有萤光素酶指示复制子的Huh7肝细胞的96孔培养板中。在组织培养箱中37℃下培养细胞48小时。
[0379] 孵育后,用2×PBS洗96孔板,用被动溶解缓冲剂(Promega)溶解。室温下震摇培养板20分钟,通过注射将标准萤光素酶分析试剂(Promega)加入到每孔中,Lmax光度计(Molecular Devices)上读数。将原始相对光单位转化为相对于无药对照样的抑制百分数,以确定复制子试验中观察到的抑制水平。测定抑制HCV复制子复制所需的干扰素最大浓度的估计值为1∶10稀释的PBMC激动细胞的上清液,它落在一系列稀释的试验范围内。对于所有受试TLR7配体,在1∶10稀释时观察到对萤光素酶指示复制子系统的100%抑制。
[0380] 表3-8所示数据表示,PBMC细胞接触起始浓度的化合物持续所示孵育时间且如第一栏所指定稀释,HCV复制子系统的抑制率(“PBMC接触化合物”)。将收集自PBMC细胞,未接触化合物且如第一栏所示稀释的上清液用作对照(“空白上清液”)。PBMC细胞分离自单一血液供体。
[0381] 表3:体外HCV复制子生物分析中艾沙托立宾的抗病毒作用
[0382] 编号1
[0383] 孵育时间:8小时
[0384] 起始浓度:100μM
[0385] 供血编号:FL72035
1∶1000 0 94
[0386] 编号2
[0387] 孵育时间:8小时
[0388] 起始浓度:100μM
[0389] 供血编号:FL75287
[0390] 编号3
[0391] 孵育时间:24小时
[0392] 起始浓度:100μM
[0393] 供血编号:FL75864
[0394] 表4:体外HCV复制子生物分析中洛索立宾的抗病毒作用
[0395] 编号1
[0396] 孵育时间:24小时
[0397] 起始浓度:100μM
[0398] 供血编号:FL75864
[0399] 表5:体外HCV复制子生物分析中咪喹莫特的抗病毒作用
[0400] 编号1
[0401] 孵育时间:8小时
[0402] 起始浓度:3.2μM
[0403] 供血编号:FL75287
[0404] 编号2
[0405] 孵育时间:8小时
[0406] 起始浓度:3.2μM
[0407] 供血编号:FL75287
[0408] 表6:体外HCV复制子生物分析中瑞喹莫德的抗病毒作用
[0409] 编号1
[0410] 孵育时间:8小时
[0411] 起始浓度:10μM
[0412] 供血编号:FL75287
[0413] 编号2
[0414] 孵育时间:8小时
[0415] 起始浓度:10μM
[0416] 供血编号:FL75287
[0417] 表7:体外HCV复制子生物分析中溴匹立明的抗病毒作用
[0418] 编号1
[0419] 孵育时间:8小时
[0420] 起始浓度:100μM
[0421] 供血编号:FL72035
[0422] 编号2
[0423] 孵育时间:8小时
[0424] 起始浓度:100μM
[0425] 供血编号:FL72036
[0426] 表8:体外HCV复制子生物分析中腺嘌呤衍生物的抗病毒作用
[0427] 编号1
[0428] 孵育时间:8小时
[0429] 起始浓度:0.1μM
[0430] 供血编号:FL76418
[0431] 化合物形式:a TFA盐
[0432] 编号2
[0433] 孵育时间:8小时
[0434] 起始浓度:0.1μM
[0435] 供血编号:FL76418
[0436] 化合物形式:TFA盐
[0437] 6.3TLR7配体前药的制备
[0438] 根据上述方案1-18中所述方法合成本发明化合物。除非另有说明,所有的温度为摄氏度,所有的份数和百分数是以重量为基础的。试剂均购自商业化供应商,例如Aldrich Chemical Company或Lancaster Synthesis Ltd.,除非特别指出,所述的试剂不经纯化直接使用。四氢呋喃(THF)和N,N-二甲基甲酰胺(DMF)购自Aldrich,它们在安全密闭的瓶子中并可直接使用。除非特别指出,下列溶剂和试剂在干燥氮气下蒸馏。在Na-二苯甲酮羰游基(Na-benzophenone ketyl)中蒸馏THF和Et2O;在CaH2中蒸馏CH2Cl2、二异丙胺、吡啶和Et3N;在P2O5,然后是CaH2中蒸馏MeCN;从Mg中蒸馏MeOH;从CaH2中蒸馏PhMe、EtOAc和i-PrOAc;在干燥氩气下通过简单的常压蒸馏纯化TFAA。
[0439] 在氩气正压和室温下(除非特定指出)、于无水溶剂中进行下列反应,且将反应烧瓶用橡胶隔片固定以便于通过注射器引入底物和试剂。烘箱干燥和/或加热干燥玻璃器皿。反应用TLC分析,通过起始材料的消耗来判断反应的终止。分析用的薄层层析(TLC)是在铝背衬的硅胶60F2540.2毫米板(EM Science)上进行的,用UV光(254nm)显象,然后与市售的醇制磷钼酸一起加热。制备薄层层析(TLC)是在铝背衬硅胶60F2541.0mm板(EM Science)上进行的,用UV光(254nm)显象。HPLC是在Waters Micromass ZQ系统中进行的,该系统包括2525型二元梯度泵和Alltech型号800ELSD检测器和Waters型号996光(电)二极管矩阵检测器。
[0440] 除非特别指出,一般的是这样进行后处理:用反应溶剂或萃取溶剂使反应体积加倍,然后用萃取体积的25体积%的指定水性溶液洗涤。用无水Na2SO4和/或Mg2SO4干燥产物溶液,然后过滤并在旋转蒸发仪上减压蒸发溶剂,并注明“真空去除溶剂”。使用230-400目硅胶或50-200目中性氧化铝在正压下进行柱层析。在实施例指定的压力或环境压力下进行氢解。
[0441] 1H-NMR谱是在Varian Mercury-VX400仪上,在400MHz操作下记录的,而13C-NMR谱则在75MHz操作下记录的。NMR谱从CDCl3溶液(单位ppm)中得到,用氯仿作为参比的标准物(7.27ppm和77.00ppm),适当时为CD3OD(3.4和4.8ppm和49.3ppm),DMSO-d6,或内标的四甲基甲硅烷(0.00ppm)。其它的NMR溶剂可按需使用。若记录峰多重性时,使用下列缩写:s(单峰)、d(双峰)、t(三重峰)、q(四重峰)、m(多重峰)、br(加宽的峰)、dd(成对的双峰)、dt(成对的三重峰)。耦合常数记录为赫兹(Hz)。
[0442] 以纯的油或固体形式在Thermo Nicolet Avatar 370FT-IR上记录红外(IR)光-1谱,当报告所得结果时以波数(cm )记录。质谱记录为(+)-ESThermoFinnegan LCQ LC/MS,由Anadys药品股份有限公司的分析化学部进行。元素分析由Atlantic Microlab,Inc.(Norcross,GA)或San Diego,CA的NuMega进行。熔点(mp)的测定是在开口的毛细管装置中进行的,未经校正。
[0443] 所述的合成途径和实验过程中使用了许多常见的化学缩写:THF(四氢呋喃)、DMF(N,N-二甲基甲酰胺)、EtOAc(乙酸乙酯)、DMSO(二甲亚砜)、DMAP(4-二甲氨基吡啶)、DBU(1,8-二偶氮环[5.4.0]十一-7-烯)、DCM(4-(二氰基亚甲基)-2-甲基-6-(4-二甲氨基-苯乙烯基)-4H-吡喃)、MCPBA(3-氯过氧苯甲酸)、EDC(1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐)、HATU(O-(7-氮杂苯并三唑-1-基)-1,1,3,3-四甲基脲鎓六氟磷酸酯)、HOBT(1-羟基苯并三唑水合物)、TFAA(三氟乙酸酐)、pyBOP(苯并三唑-1-基氧基)三吡咯烷基_六氟磷酸酯)、DIEA(二异丙基乙胺)等等。
[0444] 实施例1:7-烯丙基-2-氨基-9-β-D-核呋喃糖基-7,9-二氢-嘌呤-8-酮(43)[0445]
[0446] 步骤1:制备7-烯丙基-2-氨基-9-(2’,3’,5’-三-O-乙酰基-β-D-核呋喃糖基)-7,9-二氢-1H-嘌呤-6,8-二酮(40)
[0447] 在无水乙腈(25毫升)中搅拌7-烯丙基-2-氨基-9-β-D-核呋喃糖基-7,9-二氢-1H-嘌呤-6,8-二酮17(1.00克,2.95毫摩尔,根据Reitz等,JMC,37,3561-3578(1994)制备),DMAP(0.036毫克,0.29毫摩尔)和NEt3(2.05毫升,14.74毫摩尔)的非均匀混合物。将醋酸酐(0.862毫升,9.13毫摩尔)缓慢加入到悬浮液中,室温下将该反应混合液搅拌16h。真空除去溶剂,将残留物溶解在二氯甲烷(DCM)。然后用饱和碳酸氢钠水溶液(NaHCO3)、盐水洗涤有机相,然后用无水硫酸镁(MgSO4)干燥。真空浓缩溶剂,室温下在高1
度真空中干燥。得到1.33克淡黄色固体40(97%):H NMR(400MHz,CDCl3)δ6.12(t,J=
6.0Hz,1H),6.01(d,J=3.6Hz,1H),5.89(m,1H),5.82(t,J=6.0Hz,1H),5.39(br s,2H),
5.21(m,2H),4.58(br s,2H),4.51(m,1H),4.32(m,2H),2.16(s,3H),2.15(s,3H),2.10(s,+
3H);MS(+)-ES[M+H]466.2m/z。
[0448] 步骤2:制备7-烯丙基-2-氨基-6-氯-9-(2’,3’,5’-三-O-乙酰基-β-D-核呋喃糖基)-7,9-二氢-嘌呤-8-酮(41)
[0449] 将化合物40(0.65克,1.39毫摩尔)溶解在三氯氧化磷(10毫升)中,加热至75℃持续16h。真空浓缩该反应混合物,将粗品溶解在DCM中。然后,用NaHCO3溶液洗涤混合物,盐水洗,干燥(MgSO4)并过滤。真空浓缩滤液。采用10-50%梯度的乙酸乙酯的己烷溶液进1
行快速色谱法纯化。除去溶剂,得到280毫克(41%)所需产物41:H NMR(400MHz,CDCl3)δ6.04(d,J=4.0Hz,1H),6.03(t,J=5.6Hz,1H),5.87(m,1H),5.86(t,J=5.6Hz,1H),
5.18(m,4H),4.59(d,J = 8.0Hz,2H),4.45(d,J = 7.6Hz,1H),4.31(m,2H),2.10(s,3H),+
2.08(s,3H),2.04(s,3H);MS(+)-ES[M+H]484.2m/z。
[0450] 步骤3:制备7-烯丙基-2-氨基-9-(2’,3’,5’-三-O-乙酰基-β-D-核呋喃糖基)-7,9-二氢-嘌呤-8-酮(42)
[0451] 将化合物41(0.27克,0.56毫摩尔)溶解在醋酸,在该溶液中加入Zn-Cu对。将该混合物加热至70℃,持续18h。滤去悬浮颗粒,真空浓缩滤液。采用10%-100%梯度乙1
酸乙酯的己烷溶液进行快速色谱法纯化。除去溶剂,得到150毫克米色固体(60%)42:H NMR(400MHz,CDCl3)δ6.05(t,J=4.0Hz,1H),6.03(d,J=4.0Hz,1H),5.87(t,J=6.0Hz,
1H),5.83(m,1H),5.48(br s,2H),5.33(s,1H),5.29(d,J=5.6Hz,1H),4.49(d,J=3.2Hz,
1H),4.46(d,J = 3.2Hz,1H),4.41(d,J = 5.6Hz,2H),4.27(m,2H),2.12(s,3H),2.10(s,+
3H),2.05(s,3H);MS(+)-ES[M+H]450.0m/z。
[0452] 步骤4:制备7-烯丙基-2-氨基-9-β-D-核呋喃糖基-7,9-二氢-嘌呤-8-酮(43)
[0453] 在42(0.13克,0.29毫摩尔)甲醇(4毫升)溶液中加入固体K2CO3(0.024克,0.17毫摩尔),室温下搅拌该反应液18h。在该混浊液中加入AmberliteCG-50(0.5克),搅拌至中性,过滤。浓缩滤液,得到米色固体,水洗,高度真空下干燥,得到一定产率的93.5毫克米色1
固体的纯43:H NMR(400MHz,d6-DMSO)δ7.88(s,1H),6.33(br s,2H),5.85(m,1H),5.66(d,J=6.0Hz,1H),5.30(d,J=5.6Hz,1H),5.20(s,1H),5.16(d,J=8.4Hz,1H),5.01(d,J=
4.8Hz,1H),4.89(q,J=5.6Hz,1H),4.75(br s,1H),4.35(d,J=5.2Hz,2H),4.10(t,J=+
8.4Hz,1)3.80(q,J=3.6Hz,1H),3.57(m,1H),3.44(m,1H).MS(+)-ES[M+H]324.1m/z。
[0454] 实施例2:7-烯丙基-2-氨基-6-乙氧基-9-β-D-核呋喃糖基-7,9-二氢-嘌呤-8-酮(45)
[0455]
[0456] 步骤1:制备7-烯丙基-2-氨基-6-乙氧基-9-(2’,3’,5’-三-O-乙酰基-β-D-核呋喃糖基)-7,9-二氢-嘌呤-8-酮(44)
[0457] 在40(0.30克,0.64毫摩尔)的无水THF(15毫升)溶液中,室温下加入聚合物支持的三苯膦(0.89克,1.93毫摩尔)和EtOH(0.11毫升,1.93毫摩尔)。在该搅拌的混合液中,加入偶氮二羧酸二乙酯(diethyl azodicarboxylate)(0.12毫升,0.77毫摩尔),继续搅拌18h。滤去消耗的聚合物支持物,真空除去溶剂。然后,采用10-50%梯度乙酸乙酯的己烷溶液进行快速色谱法纯化残留物。除去溶剂,得到85毫克(26%)澄清油形式的所需1
产物6:H NMR(400MHz,CDCl3)δ6.07(d,J=4.0Hz,1H),6.06(d,J=4.0Hz,1H),6.01(d,J=3.6Hz,1H),5.96(t,J=6.0Hz,1H),5.87(m,1H),5.14(d,J=2.2Hz,1H),5.15(m,1H),
4.80(br s,2H),4.46(m,4H),4.37(q,J = 7.2Hz,2H),4.29(m,2H),2.09(s,3H),2.08(s,+
3H),2.04(s,3H),1.35(t,J=7.6Hz,3H);MS(+)-ES[M+H]494.1m/z。
[0458] 步骤2:制备7-烯丙基-2-氨基-6-乙氧基-9-β-D-核呋喃糖基-7,9-二氢-嘌呤-8-酮(45)
[0459] 在44(0.084克,0.17毫摩尔)的甲醇(4毫升)溶液中,加入固体K2CO3(0.014克,0.17毫摩尔),室温下搅拌该反应液1h。在该混浊液中加入Amberlite CG-50(0.5克),搅拌至中性,过滤。浓缩滤液,采用100%DCM-10%甲醇的DCM溶液进行快速色谱法纯化。除去溶
1
剂,得到62毫克澄清油形式的7(99%):H NMR(400MHz,CDCl3)δ5.97(d,J=8.0Hz,1H),
5.93(m,1H),5.25(d,J=32.4,Hz,1H),5.21(s,1H),5.02(t,J=8.0Hz,1H),4.62(br s,
2H),4.47(d,J=5.6Hz,2H),4.25-4.45(m,3H),4.21(q,J=6.8Hz,2H),3.77(ABq,ΔυAB=+
0.14,JAB=12.4Hz,2H),1.37(t,J=6.8Hz,3H),1.27(t,7.6,2H);MS(+)-ES[M+H]368.0m/z。
[0460] 实施例3:5-溴-4-乙氧基-6-苯基-嘧啶-2-基胺(37)
[0461]
[0462] 步骤1:制备5-溴-4-乙氧基-6-苯基-嘧啶-2-基胺(37)
[0463] 以类似于实施例2中步骤2的方式,从2-氨基-5-溴-6-苯基-3H-嘧啶-4-酮35制备白色固体形式的标题化合物(Wierenga,等,JMC,23,239-240(1980)),产率13%:1H NMR(400MHz,CDCl3)δ7.61(m,2H0,7.42(m,3H),5.15(br s,2H),4.23(q,J = 7.2Hz,2H),
1.44(t,6.8Hz,3H);MS(+)-ES[M]+294.1[M+2]+296.0m/z.元素分析C12H12BrN3O:计算值:C,
49.00;H,4.11;N,14.29;实测值:C,48.94;H,4.18;N,14.01。
[0464] 实施例4:4-(2-氨基-5-溴-6-苯基-嘧啶-4-基氧甲基)-5-甲基-[1,3]间二氧杂环戊-2-酮(dioxol-2-one)(46)
[0465]
[0466] 步骤1:制备4-(2-氨基-5-溴-6-苯基-嘧啶-4-基氧甲基)-5-甲基-[1,3]间二氧杂环戊-2-酮(46)
[0467] 以类似于实施例2中步骤2的方式,从2-氨基-5-溴-6-苯基-3H-嘧啶-4-酮351
制备白色固体形式的标题化合物,产率4%:H NMR(400MHz,CDCl3)δ7.62(m,2H),7.45(m,+ +
3H),5.18(s,2H),5.07(s,2H),2.26(s,H);MS(+)-ES[M]378.2[M+2]380.1m/z.元素分析C15H12BrN3O4:计算值:C,47.64;H,3.20;N,11.11;实测值:C,46.98;H,3.23;N,10.70。
[0468] 实施例5:5-溴-4-苯基-嘧啶-2-基胺(48)
[0469]
[0470] 步骤1:制备4-苯基-嘧啶-2-基胺(47)
[0471] 在-78℃下,在溴苯(4.43毫升,42.06毫摩尔)的无水THF(100毫升)溶液中加入BuLi(394毫升,63.08毫摩尔),将该混合液在-78℃下搅拌2h。在15分钟的时间内,在该混合液中加入2-氨基嘧啶(2.0克,21.03毫摩尔)的热甲苯(80毫升)溶液。将该混合液回流16h,冷却至室温,用NaHCO3水溶液小心淬灭。过滤混合液,真空浓缩滤液。然后将残留物溶解在DCM中,用NaHCO3水溶液、盐水洗涤,干燥(MgSO4)。除去溶剂,得到3501
毫克淡黄色固体47(10%):H NMR(400MHz,CDCl3)δ8.32(d,J=4.8Hz,1H),7.97(m,2H),+
7.45(m,3H),7.02(J=4.8Hz,1H).5.27(br s,2H);MS(+)-ES[M+H]172.2m/z。
[0472] 步骤2:制备5-溴-4-苯基-嘧啶-2-基胺(48)
[0473] 将化合物47(0.30克,1.75毫摩尔)溶解在冰醋酸(15毫升)中,加热至45℃,缓慢加入Br2(0.09毫升,1.75毫摩尔)。然后,将所得混合液在室温下搅拌3h。真空除去溶剂,得到固体残留物。然后,将残留物转移到过滤漏斗上,用DCM洗涤,再用水洗。然后,高1
度真空下干燥残留固体16h,得到197毫克淡黄色固体13(45%):H NMR(400MHz,d6-DMSO)+ +
δ8.40(s,1H),7.61(m,2H),7.45(m,3H),6.96(s,2H);MS(+)-ES[M]250.0[M+2]252.0m/z.元素分析C10H8BrN3:计算值:C,48.02;H,3.22;Br,31.95;N,16.80;实测值:C,47.91;H,
3.28;Br,32.15;N,16.80。
[0474] 实施例6:(5-溴-6-氧-4-苯基-1,6-二氢-嘧啶-2-基)-氨基甲酸乙酯(36)[0475]
[0476] 步骤1:制备(5-溴-6-氧-4-苯基-1,6-二氢-嘧啶-2-基)-氨基甲酸乙酯(36)
[0477] 在35(0.25克,0.94毫摩尔)的DMF(8毫升)溶液中,加入NEt3(0.14毫升,0.99毫摩尔)和焦碳酸二乙酯(0.27毫升,1.89毫摩尔)。将该反应混合液保持在65℃,持续20h。除去溶剂并用DCM处理残留物。过滤所得混合液以除去残留的起始物质35,滤液用NaHCO3水溶液洗,盐水洗,干燥(MgSO4)。浓缩滤液,HPLC纯化(Thomson ODS-A 100A5μ150×21.2mm柱;流速=30毫升/分钟;含0.05%TFA的CH3CN(A),含0.05%TFA的水(B);补充泵流速=0.9毫升/分钟;补充泵流动相;含0.05%TFA的MeOH采用如下梯度系统:t=0;15%A,85%B;t=3.0分钟;15%A,85%B;t=9.5分钟;70%A,30%B;t=10.0分钟;100%A,0%B;t=12.0分钟;100%A,0%B;t=12.5分钟;15%A,
1
85%B;t=15.0分钟;15%A,85%B.),得到54毫克澄清油36(17%):H NMR(400MHz,CDCl3)δ7.66(m,1H),7.44(m,3H),4.26(q,J = 7.6Hz,2H),1.32t,J = 6.8Hz,3H);
+ +
MS(+)-ES[M]338.1[M+2]340.0m/z.元素分析C13H12BrN3O3:计算值:C,46.17;H,3.58;N,
12.43;实测值:C,46.43;H,3.74;N,11.95。
[0478] 实施例7:(5-溴-6-氧-4-苯基-1,6-二氢-嘧啶-2-基)-氨基甲酸戊酯(49)[0479]
[0480] 步骤1:制备(5-溴-6-氧-4-苯基-1,6-二氢-嘧啶-2-基)-氨基甲酸戊酯(49)
[0481] 以类似于实施例6中步骤1的方式从35和焦碳酸二戊酯制备澄清油的标题化合物,HPLC纯化(Thomson ODS-A 100A 5μ150×21.2mm柱;流速=30毫升/分钟;含0.05%TFA的CH3CN(A),含0.05%TFA的水(B);补充泵流速=0.9毫升/分钟;补充泵流动相;含0.05%TFA的MeOH,梯度系统如下:t=0;35%A,65%B;t=3.0分钟;35%A,65%B;t=
10分钟;100%A,0%B;t=12.0分钟;100%A,0%B;t=12.5分钟;35%A,65%B;t=
1
15.0分钟;35%A,65%B.)后产率为9%:H NMR(400MHz,CDCl3)δ7.69(br s,1H),7.67(m,
2H),7.43(d,J=2.0Hz,3H),4.17(t,J=7.2Hz,2H),1.64(t,J=6.8Hz,2H),1.34(m,4H),+ +
0.92(t,J=6.4Hz,3H);MS(+)-ES[M]380.1[M+2]382.1m/z。
[0482] 实施例8:(1-异丁基-1H-咪唑并[4,5-c]喹啉-4-基)-氨基甲酸戊酯(34)[0483]
[0484] 步骤1:制备(1-异丁基-1H-咪唑并[4,5-c]喹啉-4-基)-氨基甲酸戊酯(34)[0485] 在1-异丁基-1H-咪唑并[4,5-c]喹啉-4-基胺31(0.15克,0.62毫摩尔,根据WO94/17043所述方法制备)的CHCl3(5毫升)悬浮液中,加入NEt3(0.09毫升,0.65毫摩尔)和焦碳酸二戊酯(0.231克,0.94毫摩尔)。40℃下将该混合液搅拌60h。反应混合液用NaHCO3水溶液洗涤,盐水洗并用MgSO4干燥。浓缩滤液,采用10%-70%梯度乙酸乙酯1
的己烷溶液的快速色谱法纯化,得到50.5m克白色固体34(23%):H NMR(400MHz,CDCl3)δ8.31(brs,1H),8.15(t,J=8.0Hz,2H),7.85(t,J=7.2Hz,1H),7.77(t,J=8.0Hz,1H),
4.43(d,J = 7.6Hz,2H),4.36(t,J = 7.2Hz,2H),2.31(m,1H),1.75(t,J = 6.8Hz,2H),+
1.36(m,4H),1.06(d,J=6.4Hz,6H),0.89(t,J=6.8Hz,2H);MS(+)-ES[M+H]355.3m/z。
[0486] 实施例9:(1-异丁基-1H-咪唑并[4,5-c]喹啉-4-基)-氨基甲酸乙酯(50)[0487]
[0488] 步骤1:制备(1-异丁基-1H-咪唑并[4,5-c]喹啉-4-基)-氨基甲酸乙酯(50)以类似于实施例8中步骤1的方式,从31和焦碳酸二乙酯制备白色固体的标题化合物,产率67%:1H NMR(400MHz,CDCl3)δ9.32(br s,2H),8.2(d,J=8.0Hz,2H)8.12(d,J=8.0Hz,1H),7.83(t,J=7.2Hz,1H),7.74(t,J=8.0Hz,1H)4.43(m,4H),2.35(m,1H),1.39(t,J=
7.2Hz,3H),1.08(d,J=6.4Hz,6H);MS(+)-ES[M+H]+313.2m/z。
[0489] 实施例10:碳酸6-氨基-9-苄基-2-(2-甲氧基-乙氧基)-9H-嘌呤-8-基酯乙酯(51)
[0490]
[0491] 步骤1:制备碳酸6-氨基-9-苄基-2-(2-甲氧基-乙氧基)-9H-嘌呤-8-基酯乙酯(51)
[0492] 将6-氨基-9-苄基-2-(2-甲氧基-乙氧基)-9H-嘌呤-8-醇,29(11.75毫克,0.027毫摩尔,根据Kurimota,等,Bioorg.Med.Chem.,12,1091-109(2004)所述方法制备)悬浮在CH2Cl2(0.6毫升)中,并冷却至0℃。然后将DIEA(11.96微升,0.068mmol)和氯甲酸乙酯(3.86毫克,0.036毫摩尔,以10体积%的二氯甲烷溶液加入)加入到悬浮液中。0℃下将反应混合液搅拌10分钟,然后加热至室温保持15分钟。反应混合液的TLC显示存在起始物质。将反应混合液加热至35℃,加入DMAP(催化量),甲醇(60μL部分)以溶解29,再加入氯甲酸乙酯(3.86毫克,0.036毫摩尔,以10体积%的二氯甲烷溶液加入)直到反应完全。采用0-100%梯度乙酸乙酯的己烷溶液进行快速色谱法纯化粗的混合物。收集所需
1
的峰,真空浓缩得到8.5毫克(80%)白色固体化合物51:H NMR(400MHz,CDCl3)δ7.45(d,J= Hz,2H),7.27(m,3H),4.98(s,2H),4.46(m,4H),3.74(m,2H),3.42(s,2H),1.46(t,3H);
MS[M+H]+m/z 388.3。
[0493] 实施例11-20是根据实施例10所述方法,从6-氨基-9-苄基-2-(2-甲氧基-乙氧基)-9H-嘌呤-8-醇,29与合适的氯甲酸酯制备的。
[0494] 实施例11:碳酸6-氨基-9-苄基-2-(2-甲氧基-乙氧基)-9H-嘌呤-8-基酯丙酯(52)
[0495]
[0496] 产率86%的白色固体:1H NMR(400MHz,CDCl3)δ7.45(d,J=6.4Hz,2H),7.27(m,3H),4.98(s,2H),4.46(m,4H),3.74(t,J = 5.2Hz,2H),3.42(s,3H),1.46(t,J = 7.6Hz,+
3H);MS[M+H]m/z 402.2。
[0497] 实施例12:碳酸6-氨基-9-苄基-2-(2-甲氧基-乙氧基)-9H-嘌呤-8-基酯异丁酯(53)
[0498]1
[0499] 产率92%的白色固体:H NMR(400MHz,CDCl3)δ7.45(d,J=6.4Hz2H),7.27(m,3H),4.99(s,2H),4.45(m,2H),4.17(d,J=7.4Hz,2H),3.73(t,J=4.8Hz,2H),3.4(s,3H),
2.15(m,1H),1.06(d,J=6.8Hz,6H);MS[M+H]+m/z 416.3。
[0500] 实施例13:碳酸6-氨基-9-苄基-2-(2-甲氧基-乙氧基)-9H-嘌呤-8-基酯戊酯(54)
[0501]1
[0502] 产率92%的白色固体:H NMR(400MHz,CDCl3)δ7.45(d,J=6.4Hz,2H),7.27(m,3H),4.99(s,2H),4.45(t,J=4.8Hz,2H),4.39(t,J=7.2Hz,2H),3.73(t,J=5.2Hz,2H),
3.4(s,3H),2.15(m,1H),1.82(m,2H),1.40(m,4H),0.93(t,J = 6.8Hz,3H);MS[M+H]+m/z
430.2。
[0503] 实施例14:碳酸烯丙酯6-氨基-9-苄基-2-(2-甲氧基-乙氧基)-9H-嘌呤-8-基酯(55)
[0504]1
[0505] 产率93%的白色固体:H NMR(400MHz,CDCl3)δ7.46(d,J=6.0Hz,2H),7.25(m,3H),6.0(m,1H),5.5(m,1H),5.35(m,1H),4.99(s,2H),4.89(d,J=2.4Hz,2H),4.46(t,J=
4.8Hz,2H),3.74(d,J=5.2Hz,2H),3.42(s,3H);MS[M+H]+m/z 400.2。
[0506] 实施例15:碳酸6-氨基-9-苄基-2-(2-甲氧基-乙氧基)-9H-嘌呤-8-基酯4-氯-丁酯(56)
[0507]1
[0508] 产率98%的白色固体:1H H NMR(400MHz,CDCl3)δ7.44(d,J=6.0Hz,2H),7.25(m,3H),4.98(s,2H),4.45(m,4H),3.63(t,J = 5.2Hz,2H),3.42(s,3H),1.99(m,4H);
MS[M+H]+m/z 450.2。
[0509] 实施例16:碳酸6-氨基-9-苄基-2-(2-甲氧基-乙氧基)-9H-嘌呤-8-基酯丁酯(57)
[0510]
[0511] 产率100%的白色固体:1H NMR(400MHz,CDCl3)δ7.45(d,J=6.0Hz,2H),7.27(m,3H),4.99(s,2H),4.46(m,2H),4.41(t,J = 4.4Hz,2H),3.73(t,J = 7.2Hz,2H),3.42(s,
3H),1.79(m,2H),1.48(m,2H),0.96(t,J=7.6Hz,3H);MS[M+H]+m/z 416.2。
[0512] 实施例17:碳酸6-氨基-9-苄基-2-(2-甲氧基-乙氧基)-9H-嘌呤-8-基酯苯酯(58)
[0513]
[0514] 产率100%的白色固体:1H NMR(400MHz,CDCl3)δ7.52(d,J=6.8Hz,2H),7.41(m,2H),7.30(m,3H),7.25(m,3H),4.99(s,2H),4.47(t,J = 4.8Hz,2H),3.75(t,J = 4.8Hz,
2H),3.43(s,3H);MS[M+H]+m/z 436.2。
[0515] 实施例18:碳酸6-氨基-9-苄基-2-(2-甲氧基-乙氧基)-9H-嘌呤-8-基酯2,2-二甲基-丙酯(59)
[0516]
[0517] 产率100%的白色固体:1H NMR(400MHz,CDCl3)δ7.43(d,2H),7.25(m,3H),4.99(s,2H),4.47(t,2H),4.08(s,2H),3.75(t,2H),3.42(s,3H),1.07(s,9H);MS[M+H]+m/z
430.2.
[0518] 实施例19:碳酸6-氨基-9-苄基-2-(2-甲氧基-乙氧基)-9H-嘌呤-8-基酯庚酯(60)
[0519]1
[0520] 产率100%的白色固体:H NMR(400MHz,CDCl3)δ7.45(d,J=6.0Hz,2H),7.27(m,3H),4.99(s,2H),4.46(t,J = 5.2Hz,2H),4.39(t,J = 7.2Hz,2H),3.74(t,J = 5.2Hz,
2H),3.42(s,3H),1.8(m,2H),1.4(m,2H),1.3(m,6H)0.87(t,J = 7.2Hz,3H);MS[M+H]+m/z
458.3.
[0521] 实施例20:碳酸6-氨基-9-苄基-2-(2-甲氧基-乙氧基)-9H-嘌呤-8-基酯己酯(30)
[0522]
[0523] 产率74%的白色固体:1H NMR(400MHz,CDCl3)δ7.45(d,J=5.6Hz,2H),7.27(m,3H),4.98(s,2H),4.45(t,J=4.8Hz,2H),4.41(t,J=6.8Hz,2H),3.73(t,J=4.4Hz,2H),
3.42(s,3H),1.81(m,2H),1.34(m,2H),1.31(m,2H),1.26(m,2H),0.89(t,J = 2Hz,3H);
MS[M+H]+m/z444.4。
[0524] 实施例22和23是从9-苄基-2-(2-甲氧基-乙氧基)-9H-嘌呤-6-基胺,62,通过9-苄基-8-溴-2-(2-甲氧基-乙氧基)-9H-嘌呤-6-基胺,63以及乙醇钠或甲醇钠制备的,上述原料各自根据Kurimota等,Bioorg.Med.Chem.,12,1091-1099(2004)所述方法制得。
[0525] 实施例21:9-苄基-2-(2-甲氧基-乙氧基)-9H-嘌呤-6-基胺(62)
[0526]
[0527] 产率100%的棕色固体:1H NMR(400MHz,CDCl3)δ7.59(s,1H),7.27(m,5H),5.83(s,2H),5.26(s,2H),4.49(t,J = 4.8Hz,2H),3.75(t,J = 5.2Hz,2H),3.43(s,3H);
+
MS[M+H]m/z 300.2。
[0528] 实施例22:9-苄基-8-乙氧基-2-(2-甲氧基-乙氧基)-9H-嘌呤-6-基胺(64)[0529]
[0530] 产率91%的棕色固体:1H NMR(400MHz,d6-DMSO)δ7.24(m,2H),7.24(m,3H),5.00(s,2H),4.42(m,2H),4.27(t,J = 4.8Hz,2H),3.58(t,J = 4.8Hz,2H),3.26(s,3H),
1.32(t,J=7.2Hz,3H);MS[M+H]+m/z344.1。
[0531] 实施例23:9-苄基-8-甲氧基-2-(2-甲氧基-乙氧基)-9H-嘌呤-6-基胺(65)[0532]
[0533] 产率91%的棕色固体:1H NMR(400MHz,d6-DMSO)δ7.28(m,2H),7.22(m,3H),6.86(s,2H),5.01(s,2H),4.26(t,J = 4.4Hz,2H),4.02(s,3H),3.58(t,J = 4.8Hz,2H),+
3.25(s,3H);MS[M+H]m/z 330.2。
[0534] 实施例24:7-烯丙基-2-氨基-9-(5’-O-L-缬酰基-β-D-核呋喃糖基)-7,9-二氢-1H-嘌呤-6,8-二酮(68)
[0535]
[0536] 步骤1:制备7-烯丙基-2-氨基-9-(2’, 3’-O-异亚丙基-β-D-核呋喃糖基)-7,9-二氢-1H-嘌呤-6,8-二酮(66)
[0537] 将化合物17(0.17克,0.49毫摩尔)溶解在DMF(4.0毫升)中,并将丙酮(3.0毫升)加入到该溶液中。在混合液中加入2,2-二甲氧基丙烷(0.18毫升,1.47毫摩尔)和MeSO3H(0.02毫升,0.05mmol)。室温下将该反应混合液与饱和NaHCO3水溶液搅拌20h。然后用CH2Cl2萃取水相(4×)。将合并的有机相干燥(MgSO4),过滤,真空浓缩,得到130m克白色固体66,产率70%:1H NMR(400MHz,CD3OD)δ5.97(d,J=2.4Hz,1H),5.93(m,1H),5.34(dd,J=4.4,2.0Hz,1H),5.15(m,1H),5.12(dd,J=7.6,1.2Hz,1H),4.98(m,1H),4.52(d,J=+5.6,2H),4.16(m,1H),3.71(m,2H),1.56(s,3H),1.36(s,3H);MS(+)-ES[M+H]380.0m/z。
[0538] 步骤2:制备7-烯丙基-2-氨基-9-(2’, 3’-O-异亚丙基-5’-N叔丁氧基羰基-L-缬酰基)-β-D-核呋喃糖基)-7,9-二氢-1H-嘌呤-6,8-二酮(67)
[0539] 将66(0.13克,0.34毫摩尔)、BOC-缬氨酸(0.08克,0.36毫摩尔)、EDC(0.07克,0.38毫摩尔)、DMAP(0.05克,0.38毫摩尔)的THF(8.0毫升)和吡啶(0.8毫升)混合液在室温下N2环境中搅拌16h。真空除去溶剂,并将残留物溶解在EtOAc中。有机相用饱和NaHCO3水溶液洗涤,盐水洗,干燥(MgSO4)并过滤。真空浓缩滤液,采用2%-5%梯度MeOH
1
的CH2Cl2溶液进行快速色谱法纯化,得到180毫克淡黄色固体67(91%):H NMR(400MHz,CDCl3)δ6.07(s,1H),5.80(m,1H),5.56(br s,2H),5.41(d,J = 5.6Hz,1H),5.15(m,3H),
4.97(br s,1H),4.53(br s,2H),4.46(m,1H),4.32(m,2H),4.20(m,1H),2.11(m,1H),
1.56(s,3H),1.44(s,9H),1.36(s,3H),0.93(d,J = 6.8Hz,3H),0.84(d,J = 6.8Hz,3H);
+
MS(+)-ES[M]578.9m/z。
[0540] 步骤3:7-烯丙基-2-氨基-9-(5’-O-L-缬酰基-β-D-核呋喃糖基)-7,9-二氢-1H-嘌呤-6,8-二酮(68)
[0541] 在67(0.18克,0.311毫摩尔)的MeOH(10毫升)溶液中,N2环境下加入AcCl(0.86毫升,12.07毫摩尔)。室温下将该反应混合液搅拌18h后,小心地用饱和NaHCO3水溶液中和。在该混合液中加入硅胶,真空浓缩。采用10%-20%梯度MeOH的CH2Cl2进行快速色1
谱法纯化残留物,得到80m克白色固体68(59%):H NMR(400MHz,d6-DMSO)δ6.72(br s,
2H),5.84(m,1H),5.59(d,J=4.8Hz,1H),5.43(d,J=5.6Hz,1H),5.15(brs,1H),5.07(d,J=12Hz,1H),5.0(d,J=18.8Hz,1H),4.77(q,J=4.8Hz,1H),4.36(m,3H),4.26(t,J=
4.4Hz,1H),4.20(m,1H),3.93(m,1H),3.57(br s,1H),2.01(m,1H),0.86(d,J=4.4Hz,3H),+
0.85(d,J=5.2Hz,3H);MS(+)-ES[M+H]439.1m/z。
[0542] 实施例25:7-烯丙基-2-氨基-9-β-D-核呋喃糖基-6-(5-甲基-2-氧-[1,3]间二氧杂环戊-4-基(dioxolyl)甲氧基)-7,9-二氢-嘌呤-8-酮(71)
[0543]
[0544] 步骤1:制备7-烯丙基-2-氨基-9-(2’,3’,5’-三-O-三乙基甲硅烷基-β-D-核呋喃糖基)-7,9-二氢-1H-嘌呤-6,8-二酮(69)
[0545] 在17(0.46克,1.36毫摩尔)和咪唑(0.93克,13.64mol)的DMF(13毫升)溶液中,逐滴加入氯代三乙基甲硅烷(0.92毫升,5.46毫摩尔),室温下搅拌2.5h。用饱和NaHCO3水溶液处理反应混合液,分离所得两相。用二乙醚(2×)洗涤水相。合并有机相并用水洗涤,干燥(MgSO4),过滤后浓缩。采用2%-10%梯度MeOH的CH2Cl2溶液进行快速1
色谱法纯化,得到830毫克淡黄色油的69(89%):H NMR(400MHz,CDCl3)δ5.92(m,1H),
5.85(d,J=6.8Hz,1H),5.3(m,1H),5.15-5.23(m,2H),5.09(br s,2H),4.54(d,J=4.4Hz,
2H),4.33(m,1H),3.98(m,1H),3.67-3.80(m,2H),0.85-1.02(m,26H),0.48-0.71(m,19H):
+
MS(+)-ES[M]682.6m/z。
[0546] 步骤2:制备7-烯丙基-2-氨基-9-(2’,3’,5’-三-O-三乙基甲硅烷基-β-D-核呋喃糖基)-6-(5-甲基-2-氧-[1,3]间二氧杂环戊-4-基甲氧基)-7,9-二氢-嘌呤-8-酮(70)
[0547] 以类似于实施例2步骤1的方式,从化合物69和4-羟甲基-5-甲基-[1,3]间二氧杂环戊-2-酮(根据Alepegiani,Syn.Comm.,22(9),1277-82(1992)所述方法制备)制备化合物70,产率5%,HPLC纯化(Thomson ODS-A 100A 5u50×21.2mm柱;流速=30毫升/分钟;含0.05%TFA的CH3CN(A),含0.05%TFA的水(B);补充泵流速=1.0毫升/分钟;补充泵流动相;含0.05%TFA的MeOH,梯度系统如下:t=0;50%A,50%B;t=2.0分钟;
50%A,50%B;t=5.0分钟;100%A,0%B;t=9.5分钟;100%A,0%B;t=10.0分钟;
+
50%A,50%B;t=13.0分钟;50%A,50%B)。纯化后得到白色固体:MS(+)-ES[M]794.1m/z.
[0548] 步骤3:制备7-烯丙基-2-氨基-9-β-D-核呋喃糖基-6-(5-甲基-2-氧-[1,3]间二氧杂环戊-4-基甲氧基)-7,9-二氢-嘌呤-8-酮(71)
[0549] 在70(9.0毫克,0.012毫摩尔)的MeOH(1.5毫升)溶液中,加入3HF·NEt3(0.01毫升,0.07毫摩尔),并在室温下搅拌16h。真空除去溶剂并用快速色谱法纯化残留物。1
所需产物用2%-5%梯度MeOH的CH2Cl2溶液洗脱,得到3.26m克白色固体71(64%):H NMR(400MHz,CDCl3)5.96(d,J=7.6Hz,1H),5.85(m,1H),5.17(m,4H),4.96(t,J=7.2Hz,
1H),4.47(d,J=6.0Hz,2H),4.25(J=5.2Hz,1H),4.24(s,1H),3.81(ABq,ΔυAB=0.17,+
JAB=11.6Hz,2H),2.22(s,3H):MS(+)-ES[M+H]452.4m/z。
[0550] 实施例26:(7-烯丙基-2-氨基-9-β-D-核呋喃糖基-8-氧-8,9-二氢-7H-嘌呤-6-基氧甲基)-甲基-氨基甲酸乙酯(73)
[0551]
[0552] 步骤1:制备(7-烯丙基-2-氨基-9-(2’3’5’-三-O-三乙基甲硅烷基-β-D-核呋喃糖基)-8-氧-8,9-二氢-7H-嘌呤-6-基氧甲基)-甲基-氨基甲酸乙酯(72)
[0553] 以类似于实施例2步骤1的方式,从化合物69和N-甲基-N-(羟甲基)氨基甲酸1
乙酯(Kelper,JOC,52,1987,p.453-455)制备化合物72,产率4%,HPLC纯化后白色固体:H NMR(400MHz,CDCl3)δ5.94(m,1H),5.82(d,J=6.4Hz,1H),5.53(br s,1H),5.23-5.29(m,
2H),5.15(t,J=9.6Hz,1H),4.57(d,J=5.2Hz,2H),4.35(br s,1H),4.21(m,2H),3.96(br s,1H),3.73(m,2H),3.06(s,3H),1.30(m,4H),0.87-1.01(m,24H),0.57-0.68(m,19H):
+
MS(+)-ES[M+H]797.7m/z。
[0554] 步骤2:制备(7-烯丙基-2-氨基-9-β-D-核呋喃糖基-8-氧-8,9-二氢-7H-嘌呤-6-基氧甲基)-甲基-氨基甲酸乙酯(73)
[0555] 以类似于实施例25中步骤3的方式,制备化合物73,产率64%,HPLC纯化(Thomson ODS-A 100A 5μ50×21.2mm柱;流速=30毫升/分钟;含0.05%TFA的CH3CN(A),含0.05%TFA的水(B);补充泵流速=1.0毫升/分钟;补充泵流动相;含0.05%TFA的MeOH,梯度系统如下:t=0;50%A,50%B;t=2.0分钟;50%A,50%B;t=5.0分钟;100%A,0%B;t=9.5分钟;100%A,0%B;t=10.0分钟;50%A,50%B;t=
1
13.0分钟;50%A,50%B)后为白色固体。H NMR(400MHz,CDCl3)δ5.92(m,1H),5.92(d,J=7.6Hz,1H),5.51(m,2H),5.22(d,J=15.6Hz,1H),5.16(d,J=9.2Hz,1H),4.92(t,J=
7.2Hz,1H),4.57(d,J=6.0,2H),4.40(d,J=6.0,1H),4.21(m,3H),3.79(ABq,ΔυAB=+
0.178,JAB=14.0Hz,2H),3.06(s,3H),1.31(t,J=7.2Hz,3H):MS(+)-ES[M]455.4m/z.[0556] 实施例27:二盐酸5-氨基-3-(5’-O-L-缬酰基-β-D-核呋喃糖基)噻唑并[4,
5-d]嘧啶-2,7-二酮(24)
[0557]
[0558] 步骤1:制备5-氨基-3-(2’,3’-O-异亚丙基-β-D-核呋喃糖基)噻唑并[4,5-d]嘧啶-2,7-二酮(22)
[0559] 250mL Morton长颈烧瓶中,在21(5.37克,17.0毫摩尔,根据美国专利5,041,426中所述方法制备(实施例2),其内容被纳入本文作为参考)的丙酮(40毫升)非均匀混合液中,室温下相继加入2,2-DMP(6.26毫升,50.9毫摩尔)、DMSO(6.6毫升)和MeSO3H(220微升,3.39毫摩尔)。剧烈搅拌反应混合液,随着二酮的消耗变得均质且金黄。TLC分析(SiO2,10%MeOH-CHCl3)表明6小时后反应完全。使用带凹槽的Whatman 1型滤纸重力过滤未溶解的固体。然后,将滤液倒入10体积的冰水中(~400毫升),使白色固体直接沉淀。短时间搅拌后,加入溶解在水(10毫升)中的NaHCO3(285毫克,3.39毫摩尔),以中和MeSO3H。
在Morton反应器中继续剧烈搅拌15分钟,将混合液过滤通过粗烧结的剥离漏斗。固体物质用冰水(100毫升)洗涤,空气干燥,然后65℃高度真空下进一步干燥,得到5.36克(88%)
1
白色固体缩酮22:mp 280-81℃;H(DMSO-d6)1.28(s,3H),1.47(s,3H),3.43-3.55(m,2H),
3.95-3.99(m,1H),4.77-4.80(m,1H),4.88-4.91(m,1H),5.24-5.26(m,1H),5.99(s,1H),
6.97(br s,2H),11.25(s,1H)。
[0560] 步骤2:制备5-氨基-3-(2’, 3’-O-异亚丙基-5’-N-叔丁氧基羰基-L-缬酰基)-β-D-核呋喃糖基)-噻唑并[4,5-d]嘧啶-2,7-二酮(23)
[0561] 0℃下,在N-丁氧基羰基-(L)-缬氨酸(671毫克,2.81毫摩尔)的THF(9毫升)溶液中,加入EDC(588毫克,3.07毫摩尔)。0℃下搅拌所得均质混合液45分钟后,混合液变得非均匀,加入一部分来自上述步骤1的固体丙酮化合物2(1.00克,2.81毫摩尔)。然后加入固体DMAP(522毫克,4.27毫摩尔)。使反应混合液恢复至室温,再搅拌5小时,25℃下旋转蒸发浓缩,得到黄色浆状物。将残留物溶解在EtOAc(50毫升)中,与1N HCl(10毫升)分配,然后用饱和NaHCO3水溶液(10毫升)中和酸。酸性水相进一步用EtOAc(2×50毫升)萃取,然后与碱性水相分配。将合并的有机相用Na2SO4干燥,通过短填料SiO2过滤,浓缩,得到1.480克泡沫形式(96%)Boc-保护的氨基酸酯23:熔点(mp)158℃(dec);1
H(CDCl3)0.86(d,J = 7.0,3H),0.95(d,J = 7.0,3H),1.35(s,3H),1.44(s,9H),1.56(s,
3H),1.75(brs,1H),2.08-2.19(m,1H),4.20-4.24(m,2H),4.30-4.37(m,1H),4.56(dd,J =
11.0,5.9,1H),4.96(dd,J=6.2,3.7,1H),5.11(br d,J=8.8,1H),5.29(br d,J=6.6,
1H),5.88(br s,2H),6.23(s,1H)。
[0562] 步骤3:制备二盐酸5-氨基-3-(5’-O-L-缬酰基-β-D-核呋喃糖基)噻唑并[4,5-d]嘧啶-2,7-二酮(24)
[0563] HCl气体通过浓H2SO4气泡器后,0℃下(通过玻璃分离管)导入含有无水醋酸异丙酯(80毫升)的250mL三颈Morton烧瓶中,直到获得饱和溶液。在该溶液中,加入来自上述步骤2的Boc-氨基酸酯(5.53克,9.95毫摩尔)的醋酸异丙酯(30毫升)溶液,5分钟内形成白色固体沉淀。加入10%(体积/体积)IPA(11毫升)。将该反应混合液加热至室温,再搅拌12小时。用无水甲苯(100毫升)稀释异质反应混合液。用中等孔径的烧结(scintered)玻璃漏斗在N2下过滤,得到米色无定形固体。在无水THF中研磨固体,过滤,65℃真空干燥,得到3.677克白色固体(81%)标题化合物24:mp 166-68℃(dec);1
H(DMSO-d6)0.90(d,J=7.0,3H),0.94(d,J=7.0,3H),2.14-2.18(m,1H),3.83-3.85(m,
1H),3.96-4.00(m,1H),4.23-4.28(m,2H),4.42(dd,J=11.7,3.4,1H),4.75(dd,J=10.3,
5.5,1H),5.81(d,J=4.4,1H),6.46(br s,3H),7.23(br s,2H),8.47(s,3H),11.5(br s,
1H).元素分析C15H21N5O7S·2HCl:计算值:C,36.89;H,4.75;Cl,14.52;N,14.34;S,6.57;实测值:C,37.03:H,4.74;Cl,14.26;N,14.24;S,6.42。
[0564] 实施例28:5-乙酰基氨基-3-(2’,3’,5’-三-O-乙酰基-β-D-核呋喃糖基)噻唑并[4,5-d]嘧啶-2,7(6H)-二酮(74)
[0565]
[0566] 步骤1:制备5-乙酰基氨基-3-(2’,3’,5’-三-O-乙酰基-β-D-核呋喃糖基)噻唑并[4,5-d]嘧啶-2,7(6H)-二酮(74)
[0567] 将无水21(8.0克,39.5毫摩尔)溶解在无水吡啶(65毫升)中。相继加入DMAP(3.1克,25.3毫摩尔)和醋酸酐(19.1mL 202.4毫摩尔)。室温下进行反应2小时后,用饱和NaHCO3(100毫升)水溶液终止反应,用DCM(3×200毫升)萃取。浓缩有机相,然后用醚研磨。得到12.5克(103%)略微不纯的白色固体5-乙酰基氨基-3-(2,3,5-三-O-乙酰基-β-D-核呋喃糖基)噻唑并-[4,5-d]嘧啶-2,7(6H)-二酮74:mp 246.7-248.1℃;
1
Rf=0.20(SiO2,50%EtOAc-CHCl3);H NMR(400MHz,d6-DMSO)12.23(s,1H),11.85(s,1H),
5.97(m,2H),5.48(t,J = 6,1H),4.35-4.40(m,1H),4.25-4.31(m,1H),4.08-4.18(m,1H),
2.49(s,3H),2.07(s,3H),2.01(s,3H),2.00(s,3H)。
[0568] 实施例29:5-氨基-3-(2’,3’,5’-三-O-乙酰基-β-D-核呋喃糖基)噻唑并[4,5-d]嘧啶-2,7(6H)-二酮(75)
[0569]
[0570] 步骤1:制备5-氨基-3-(2’,3’,5’-三-O-乙酰基-β-D-核呋喃糖基)噻唑并[4,5-d]嘧啶-2,7(6H)-二酮(75)
[0571] 0℃下,在21(5.00克,15.8毫摩尔)的乙腈(160毫升)悬浮液中,相继加入Et3N(11.0毫升,79.0毫摩尔)、DMAP(195毫克,1.59毫摩尔)和Ac2O(4.47毫升,47.4毫摩尔)。室温下将该反应混合液搅拌2小时后,浓缩得到棕色浆状物。残留物用快速柱色谱法纯化(二氧化硅,MeOH/CHCl3=1-10%),得到6.22克(89%)白色固体75的三乙酸盐:1
mp 198-199℃;H(400MHz,d6-DMSO).11.34(s,1H),7.02(br s,2H),5.90(m,2H),5.51(t,J=6.0Hz,1H),4.36(dd,J=12.4,3.2Hz,1H),4.21(m,1H),4.08(q,J=6.0Hz,1H),2.06(s,+
3H),2.06(s,3H),2.00(s,3H);MS(+)-ES[M+H]m/z 443.3。
[0572] 实施例30:5-氨基-7-乙氧基-3-β-D-核呋喃糖基-噻唑并[4,5-d]嘧啶-2-酮(77)
[0573]
[0574] 步骤1:制备5-乙酰基氨基-7-乙氧基-3-(2’,3’,5’-三-O-乙酰基-β-D-核呋喃糖基)-噻唑并[4,5-d]嘧啶-2-酮(76)
[0575] 以类似于实施例2,步骤1的方式,从74和乙醇制备白色泡沫76,产率72%:MS(+)-ES[M+H]+m/z513.Rf=0.45(75%乙酸乙酯-CHCl3).
[0576] 步骤2:制备5-氨基-7-乙氧基-3-β-D-核呋喃糖基-噻唑并[4,5-d]嘧啶-2-酮(77)
[0577] 以类似于实施例2,步骤2的方式,从76制备白色固体的标题化合物,产率65%:1
H NMR(400MHz,d6-DMSO)6.87(s,2H),5.85(d,J = 4.8Hz,1H),5.27(d,J = 5.6Hz,1H),
4.96(d,J = 5.2Hz,1H),4.78(m,1H),4.66(m,1H),4.36(m,2H),4.09(m,1H),3.74(m,+ +
1H),3.58(m,1H),3.40(m,1H),1.29(m,3H);MS(+)-ES[M+H]m/z445,[2M+H]m/z689.Rf =
0.2(50%THF-CHCl3).元素分析C12H16N4O6S·0.25H2O:计算值:C,41.31;H,4.77;N,16.06;
S,9.19.实测值:C,41.24;H,4.71;N,15.89;S,9.06。
[0578] 实施例31:5-氨基-7-甲氧基-3-β-D-核呋喃糖基-噻唑并[4,5-d]嘧啶-2-酮(79)
[0579]
[0580] 步骤1:制备5-乙酰基氨基-7-甲氧基-3-(2’,3’,5’-三-O-乙酰基-β-D-核呋喃糖基)-噻唑并[4,5-d]嘧啶-2-酮(78)
[0581] 以类似于实施例2,步骤1的方式,从74和甲醇制备白色泡沫的77,产率65%:MS(+)-ES [M+H]+499.Rf=0.5(75%乙酸乙酯-CHCl3)。
[0582] 步骤2:制备5-氨基-7-甲氧基-3-β-D-核呋喃糖基-噻唑并[4,5-d]嘧啶-2-酮(79)
[0583] 以类似于实施例2,步骤2的方式,从78制备白色固体的标题化合物,产率78%:1H NMR(400MHz,d6-DMSO)6.91(s,2H),5.86(d,J = 5.2Hz,1H),5.28(d,J = 5.2Hz,1H),
4.96(d,J = 5.2Hz,1H),4.77(m,1H),4.66(m,1H),4.09(m,1H),3.90(s,3H),3.75(m,
1H),3.56(m,1H),3.43(m,1H);MS(+)-ES[M+H]+331.Rf=0.2(50%THF-CHCl3).元素分析C11H14N4O6S·0.25H2O:计算值:C,39.46;H,4.37;N,16.73;S,9.58.实测值:C,39.59;H,
4.17;N,16.55;S,9.52。
[0584] 实施例32:(5-氨基-2-氧-3-β-D-核呋喃糖基-2,3-二氢-噻唑并[4,5-d]嘧啶-7-基氧甲基)-氨基甲酸乙酯(82)
[0585]
[0586] 步骤1:制备5-氨基-3-(2’,3’,5’-三-O-三乙基甲硅烷基-β-D-核呋喃糖基)-噻唑并[4,5-d]嘧啶-2,7-二酮(80)
[0587] 室温下,在21(1.00克,3.16毫摩尔)的DMF(20毫升)悬浮液中,相继加入咪唑(753毫克,11.06毫摩尔)、DMAP(39毫克,0.32毫摩尔)和氯代三乙基甲硅烷(1.64毫升,9.80毫摩尔)。室温下将反应混合液搅拌2小时后,用饱和NaHCO3水溶液(20毫升)终止反应。混合液用CHCl3(3×20毫升)萃取,MgSO4干燥,浓缩。残留物用快速柱色谱法(二氧
1
化硅,MeOH/CHCl3=1-5%)纯化,得到1.91克白色固体(92%)的化合物80:H(400MHz,d6-DMSO).5.99(s,1H),5.62(br s,2H),5.19(dd,J=4.4,6.0Hz,1H),4.35(dd,J=2.8,
4.4Hz,1H),3.99(m,1H),3.77(dd,J = 7.6,10.8Hz,1H),3.68(dd,J = 4.8,10.4Hz,1H),
1.10(t,J= 7.1Hz,3H),0.96(t,J =7.1Hz,3H),0.89(t,J = 7.1Hz,3H),0.68(q,J =+
7.1Hz,2H),0.61(q,J=7.1Hz,2H),0.54(m,2H);MS(+)-ES[M+H]m/z 660.0。
[0588] 步骤2:制备5-氨基-3-(2’,3’,5’-三-O-三乙基甲硅烷基-β-D-核呋喃糖基)-2,3-二氢-噻唑并[4,5-d]嘧啶-7-基氧甲基)-氨基甲酸乙酯(81)
[0589] 以类似于实施例2中步骤1的方式,从80和N-乙基氨基甲酸乙酯制备白色固体的+ 1化合物81,产率31%:[M+H]760.5;H NMR(400MHz,CDCl3)δ6.43(br s,2H),6.09(t,J=
7.6Hz,1H),5.94(d,J=6.0Hz,1H),5.31(d,J=4.8Hz,2H),5.19(dd,J=6.0,4.8Hz,1H),
4.35(dd,J=4.8,2.8Hz,1H),4.19(q,J=6.4Hz,2H),3.98(m,1H),3.76(dd,J=10.8,
7.6Hz,1H),3.68(dd,J=10.4,4.8Hz,1H),1.29(t,J=6.8Hz,3H),1.02(t,J=8.0Hz,
3H),0.96(t,J=7.6Hz,3H),0.90(t,J=8.0Hz,3H),0.69(q,J=8.0Hz,2H),0.61(q,J=+
8.0Hz,2H),0.55(m,2H);[M+H]760.5。
[0590] 步骤3:制备(5-氨基-2-氧-3-β-D-核呋喃糖基-2,3-二氢-噻唑并[4,5-d]嘧啶-7-基氧甲基)-氨基甲酸乙酯(82)
[0591] 室温下,将81(244毫克,321μmol),5M HF的吡啶(321微升,1.60毫摩尔)和THF(3.20毫升)溶液搅拌5小时。真空除去溶剂,将所得残留物用快速色谱法纯化(SiO2,1
10%MeOH-CHCl3),得到白色固体82(119毫克,90%):H NMR(400MHz,d6-DMSO)δ8.43(br s,1H),7.76(br s,2H),5.82(d,J = 5.2Hz,1H),5.78(s,2H),5.32(d,J = 5.6Hz,1H),
5.24(dd,J=6.0,4.8Hz,1H),5.00(d,J=5.6Hz,1H),4.82(q,J=5.6Hz,1H),4.68(t,J=
6.0,1H),4.11(q,J=5.2Hz,1H),4.09(q,J=7.2Hz,2H),3.78(q,J=5.6Hz,1H),3.60(m,+
1H),3.46(m,1H),1.21(t,J=7.2Hz,3H);[M+H]418.2。
[0592] 实施例33:(5-氨基-2-氧-3-β-D-核呋喃糖基-2,3-二氢-噻唑并[4,5-d]嘧啶-7-基氧甲基)-甲基-氨基甲酸乙酯(84)
[0593]
[0594] 步骤1:制备(5-氨基-2-氧-3-(2’,3’, 5’-三-O-乙酰基-β-D-核呋喃糖基)-2,3-二氢-噻唑并[4,5-d]嘧啶-7-基氧甲基)-甲基-氨基甲酸乙酯(83)
[0595] 以类似于实施例2,步骤1的方式,从75和N-甲基-N-(羟甲基)氨基甲酸乙酯制1
备白色固体的化合物83,产率24%:Rf=0.4(33%EtOAc-CHCl3);H NMR(400MHz,CDCl3)δ11.49(br s,1H),6.08(d,J=4.0Hz,1H),5.75(t,J=6.0Hz,1H),5.53(s,2H),4.49(dd,J = 13.5,8.4Hz,1H),4.30(m,5H),3.62(q,J = 7.2Hz,2H),2.30(s,3H),2.12(s,3H),+
2.09(s,3H),2.08(s,3H),1.36(t,J=6.8Hz,3H),1.20(t,J=6.8Hz,3H);[M+H]614.2。
[0596] 步骤2:制备(5-氨基-2-氧-3-β-D-核呋喃糖基-2,3-二氢-噻唑并[4,5-d]嘧啶-7-基氧甲基)-甲基-氨基甲酸乙酯(84)
[0597] 以类似于实施例1,步骤4的方式,从83制备白色固体的标题化合物,产率20%:1
H NMR(400MHz,d6-DMSO)δ7.86(br s,2H),5.82(d,J=4.8Hz,1H),5.47(s,2H),5.31(d,J=5.2Hz,1H),5.00(d,J=5.6Hz,1H),4.82(q,J=5.2Hz,1H),4.67(q,J=5.6Hz,1H),
4.18(q,J = 6.4Hz,2H),4.12(m,1H),3.78(q,J = 6.0Hz,1H),3.60(m,1H),3.47(m,1H),+
3.30(s,3H),1.27(t,J=6.8Hz,3H);[M+H]432.3。
[0598] 实施例34:5-氨基-7-(5-甲基-2-氧-[1,3]间二氧杂环戊-4-基甲氧基)-3-(2’,3’,5’-三-O-乙酰基-β-D-核呋喃糖基)-噻唑并[4,5-d]嘧啶-2-酮(85)[0599]
[0600] 步骤1:制备5-氨基-7-(5-甲基-2-氧-[1,3]间二氧杂环戊-4-基甲氧基)-3-(2’,3’,5’-三-O-乙酰基-β-D-核呋喃糖基)-噻唑并[4,5-d]嘧啶-2-酮(85)[0601] 0℃下,在75的三乙酸盐(1.55克,3.50毫摩尔)的THF(50毫升)溶液中,加入聚合物支持-三苯膦(4.95克,10.50毫摩尔,Argonaut)。在该混合液中加入4-羟甲基-5-甲基-[1,3]间二氧杂环戊-2-酮(0.91克,7.00毫摩尔)(根据Alepegiani,Syn.Comm.,
22(9),1277-82(1992)所述方法制备)。然后逐滴加入偶氮二羧酸二乙酯(0.73毫升,4.60毫摩尔)。室温下将所得混合液搅拌48小时,过滤,用MeOH和CHCl3洗涤。浓缩滤液,快速柱色谱法纯化(二氧化硅,丙酮/CHCl3=10-20%),得到白色固体的间二氧杂环戊酮衍生
1
物85(1.38克,71%):H(400MHz,d6-DMSO);7.06(s,2H),6.00(d,J=4.0Hz,1H),5.92(dd,J=6.6,4.4Hz,1H),5.56(t,J=6.4Hz,1H),5.30(s,2H),4.38(dd,J=11.6,3.6Hz,1H),
4.25(t,J = 3.6Hz,1H),4.10(q,J = 6.0Hz,1H),2.23(s,3H),2.08(s,3H),2.07(s,3H),+
2.00(s,3H);MS(+)-ES[M+H]m/z555.3。C21H22N4O12S·Me2CO的元素分析,计算值:C,47.06;
H,4.61;N,9.15;S,5.23.实测值:C,47.25;H,4.37;N,9.53;S,5.52。
[0602] 实施例35:5-氨基-7-(5-甲基-2-氧-[1,3]间二氧杂环戊-4-基甲氧基)-3-β-D-核呋喃糖基-噻唑并[4,5-d]嘧啶-2-酮(87)
[0603]
[0604] 步骤1:制备5-氨基-7-(5-甲基-2-氧[1,3]间二氧杂环戊-4-基甲氧基)-3-(2’,3’,5’-三-O-三乙基甲硅烷基-β-D-核呋喃糖基)-噻唑并[4,5-d]嘧啶-2-酮(86)
[0605] 以类似于实施例34的方式,从80和4-羟甲基-5-甲基-[1,3]间二氧杂环1
戊-2-酮制备白色固体的化合物86,产率45%:H NMR(400MHz,CDCl3)δ6.06(d,J=6.0Hz,
1H),5.21(dd,J=6.0,4.8Hz,1H),5.18(d,J=3.2Hz,2H),4.94(br s,2H),4.38(dd,J=
4.8,2.8Hz,1H),4.00(m,1H),3.79(dd,J = 11.2,8.0Hz,1H),3.69(dd,J = 10.8,5.2Hz,
1H),2.23(s,3H),1.02(t,J=8.0Hz,3H),0.96(t,J=7.6Hz,3H),0.89(t,J=8.4Hz,3H),+
0.70(q,J=7.6Hz,2H),0.61(q,J=8.0Hz,2H),0.53(m,2H);[M+H]771.5。
[0606] 步骤2:制备5-氨基-7-(5-甲基-2-氧-[1,3]间二氧杂环戊-4-基甲氧基)-3-β-D-核呋喃糖基-噻唑并[4,5-d]嘧啶-2-酮(87)
[0607] 以类似于实施例32中步骤3的方式,从86制备白色固体的标题化合物,产率89%:1
H NMR(400MHz,d6-DMSO)δ7.03(br s,2H),5.90(d,J=5.2Hz,1H),5.33(s,2H),5.02(d,J=4.8Hz,1H),4.83(q,J=5.6Hz,1H),4.71(t,J=6.0Hz,1H),4.14(q,J=5.2Hz,1H),+
3.80(q,J=4.8Hz,1H),3.62(m,1H),3.47(m,1H),2.27(s,3H);[M+H]429.2。
[0608] 实施例36:5-氨基-3-β-D-核呋喃糖基-3H-噻唑并-[4,5-d]嘧啶-2-酮(90)[0609]
[0610] 步骤1:制备5-氨基-7-硫代-3-(2’,3’,5’-三-O-乙酰基-β-D-核呋喃糖基)-噻唑并[4,5-d]嘧啶-2-酮(88)
[0611] 室温下,在75(1克,2.26毫摩尔)的吡啶(50毫升)溶液中,加入P2S5(2.13克,4.79毫摩尔)。轻缓回流该溶液(水浴温度130-140℃)29小时。真空中将该反应混合液蒸发至干。60℃下通过加入H2O(40毫升)使过多的P2S5分解。60℃下将该混合液搅拌1小时后,冷却至室温。用CHCl3(3×40毫升)萃取该混合液。蒸发干燥的(MgSO4)有机层,得到浆状物,快速柱色谱法纯化(二氧化硅,丙酮/CHCl3=15%),得到0.93克黄色固体
1
的(90%)88:H(400MHz,d6-DMSO).12.50(s,1H),7.35(br s,2H),5.89(m,2H),5.51(t,J=
6.4Hz,1H),4.36(dd,J=12.0,4.0Hz,1H),4.24(m,1H),4.10(q,J=6.0Hz,1H),2.07(s,+
3H),2.06(s,3H),2.01(s,3H);MS(+)-ES[M+H]m/z 459.3。
[0612] 步骤2:制备5-氨基-3-(2’,3’,5’-三-O-乙酰基-β-D-核呋喃糖基)-3H-噻唑并[4,5-d]嘧啶-2-酮(89)
[0613] 将Raney_2800镍(3大刮刀,预先用H2O、MeOH和丙酮洗涤)的丙酮(50毫升)悬浮液回流搅拌1小时。然后在回流下将88的三乙酸盐(0.93克,2.03毫摩尔)加入到上述悬浮液中。将该混合液搅拌5分钟,30分钟后冷却至室温。将H2S(克)通入混合液_中2h,终止反应。将所得混合液过滤通过Celite 短填料并用EtOH洗涤。浓缩滤液,快速柱色谱法纯化(二氧化硅,MeOH/CHCl3=1-2%),得到0.52克白色固体的(60%)89:mp
1
121-123℃;H(400MHz,d6-DMSO)8.38(s,1H),6.93(s,2H),6.03(d,J=3.6Hz,1H),5.93(dd,J = 6.4,3.6Hz,1H),5.58(t,J = 6.0Hz,1H),4.38(dd,J = 11.6,3.6Hz,1H),4.26(m,+
1H),4.11(q,J = 6.0Hz,1H),2.08(s,3H),2.07(s,3H),2.00(s,3H);MS(+)-ES[M+H]m/z 427.2.C16H18N4O8S的元素分析计算值:0.5CH3OH·0.25H2O:C,44.34;H,4.62;N,12.54;S
7.17.实测值:C,44.54;H,4.88;N,12.16;S,7.17。
[0614] 步骤3:制备5-氨基-3-β-D-核呋喃糖基-3H-噻唑并[4,5-d]嘧啶-2-酮(90)[0615] 在89(0.52克,1.22毫摩尔)的MeOH(20毫升)溶液中,加入K2CO3(25毫克,0.18毫摩尔)。室温下将反应液搅拌过夜,然后用AcOH(21微升,0.36毫摩尔)中和。室温下将所得混合液继续搅拌30分钟,浓缩,用H2O(2毫升)研磨,得到0.33克白色固体的化合1
物90(89%):mp 220℃(Dec);H(400MHz,d6-DMSO).8.34(s,1H),6.85(s,2H),5.90(d,J=4.8Hz,1H),5.31(d,J=5.6Hz,1H),4.98(d,J=5.6Hz,1H),4.81(q,J=5.2Hz,1H),
4.67(t,J=6.0Hz,1H),4.11(q,J=5.2Hz,1H),3.77(dd,J=10.8,4.8Hz,1H),3.58(m,+
1H),3.44(m,1H);MS(+)-ES[M+H]m/z301.1。C10H12N4O5S的元素分析计算值:0.3H2O:C,
39.29;H,4.15;N,18.33;S 10.49.实测值:C,39.51;H,4.18;N,17.95;S,10.27。
[0616] 实施例37:5-氨基-3-(2’,3’-二-O-乙酰基-β-D-核呋喃糖基)-3H-噻唑并[4,5-d]嘧啶-2-酮(93)
[0617]
[0618] 步骤1:制备5-氨基-3-(5’-O叔丁基-二甲基甲硅烷基-β-D-核呋喃糖基)-3H-噻唑并[4,5-d]嘧啶-2-酮(91)
[0619] 在90(0.68克,2.28毫摩尔)的DMF(10毫升)溶液中,相继加入咪唑(0.54克,7.93毫摩尔)和叔丁基二甲基甲硅烷基氯(0.68克,4.56毫摩尔)。室温下将该反应混合液搅拌2小时后,浓缩,快速柱色谱法纯化(二氧化硅,MeOH/CHCl3;梯度=5-20%),得
1
到0.49克白色固体的(52%)91:H(400MHz,d6-DMSO).8.33(s,1H),6.87(s,2H),5.90(d,J=4.0Hz,1H),5.33(d,J=5.6Hz,1H),5.00(d,J=5.2Hz,1H),4.79(q,J=5.2Hz,1H),
4.16(q,J=5.2Hz,1H),3.77(m,2H),3.64(dd,J=12.0,7.2Hz,1H),0.84(s,9H),0.00(s,+
6H);MS(+)-ES[M+H]m/z415.4。
[0620] 步骤2:制备5-氨基-3-(2’,3’-二-O-乙酰基,5’-O叔丁基-二甲基甲硅烷基-β-D-核呋喃糖基)-3H-噻唑并[4,5-d]嘧啶-2-酮(92)
[0621] 0℃下,在91(0.20克,0.48毫摩尔)的乙腈(5毫升)溶液中,相继加入Et3N(0.26毫升,1.86毫摩尔)和Ac2O(91微升,0.96毫摩尔)。室温下将该反应混合液搅拌24小时后,浓缩,快速柱色谱法纯化(二氧化硅,丙酮/CHCl3:梯度=5-10%),得到0.22克白色1
固体的(92%)92:H(400MHz,d6-DMSO).8.36(s,1H),6.90(s,2H),6.00(m,2H),5.57(t,J=6.0Hz,1H),4.07(q,J=5.2Hz,1H),3.77(m,2H),2.07(s,3H),2.06(s,3H),0.83(s,9H),+
0.00(d,J=2.4Hz,6H);MS(+)-ES[M+H]m/z 499.5。
[0622] 步骤3:制备5-氨基-3-(2’,3’-二-O-乙酰基-β-D-核呋喃糖基)-3H-噻唑并[4,5-d]嘧啶-2-酮(93)
[0623] 在塑料试管中,在92(0.22克,0.44毫摩尔)的THF(5毫升)溶液中,加入HF/吡啶(0.70毫升)。将该反应液搅拌2h小时,浓缩,快速柱色谱法纯化(二氧化硅,MeOH/CHCl3:1
梯度=5-10%),得到0.17克白色固体的(100%)标题化合物:mp 109-111℃;H(400MHz,d6-DMSO).8.37(s,1H),6.91(s,2H),6.00(m,2H),5.48(t,J = 6.0Hz,1H),4.91(t,J =
6.0Hz,1H),4.04(dd,J=10.4,6.0Hz,1H),3.64(m,1H),3.52(m,1H),2.08(s,3H),2.05(s,+
3H);MS(+)-ES[M+H]m/z385.3.C14H16N4O7S·0.5CH3OH·0.2的元素分析,计算值:C,41.61;
H,4.32;N,13.21;S 7.56:实测值:C,41.73;H,4.29;N,12.86;S,7.33.[0624] 实施例38:[2-乙氧基甲基-1-(2-羟基-2-甲基-丙基)-1H-咪唑并[4,5-c]喹啉-4-基]-氨基甲酸乙酯(39)
[0625]
[0626] 步骤1:制备[2-乙氧基甲基-1-(2-羟基-2-甲基-丙基)-1H-咪唑并[4,5-[0627] 除用MeOH作为溶剂外,以类似于实施例8中步骤1的方式,从1-(4-氨基-2-乙氧基甲基-咪唑并[4,5-c]喹啉-1-基)-2-甲基-丙-2-醇(38)(根据国际
公开号WO 94/17043所述方法制备)和焦碳酸二乙酯制备油状标题化合物,产率39%:
1
H NMR(400MHz,CDCl3)δ8.36(d,J= 8.0Hz,1H),8.05(d,J = 8.0Hz,1H),7.70(t,J =
7.2Hz,1H),7.61(t,J=8.0Hz,1H),4.96(br s,2H),4.80(s,2H),4.39(q,J=7.2Hz,2H),
3.62(q,J=7.2Hz,2H),1.40(t,J=7.2Hz,3H),1.36(br s,6H),1.24(t,J=6.8Hz,3H);
+
MS(+)-ES[M+H]387.4m/z。
[0628] 6.4TLR7配体前药的掩蔽作用
[0629] 典型的实验将使用从健康供体分离并置于细胞培养复孔中的人外周血单核细胞6 6
(PBMC);一般,每孔中接种2×10 到5×10 的细胞。在37℃、含5%CO2的潮湿环境中,将PBMC在不含试验化合物的条件下培养24小时,以稳定培养条件,然后将100微摩尔艾沙托立宾,TLR7配体和相应的TLR7配体前药分别加入到含有来自相同供体PBMC的各孔中;包括未处理的对照样。可改变TLR7配体和TLR7配体前药的浓度以适合特定实验,然后将PBMC培养物在37℃、含5%CO2的潮湿环境中培养2-48小时。培养期间细胞培养基上清液取样。
ELISA.分析细胞因子的产生。LC-MS法分析孵育结束时残留的TLR7配体和TLR7配体前药的量。相对于艾沙托立宾对照样中的产生,计算细胞因子的产生,然后减去未处理对照样中细胞因子的产生。比较细胞因子的结果,以确定TLR7配体大于相应的TLR7配体前药的活性的程度。
[0630] 因此,如果在相似的接触时间和浓度后,TLR7配体比相应的TLR7配体前药产生更多剂量的干扰素α(容易测定的细胞因子),则认为TLR7配体前药是“掩蔽”的TLR7配体前药。构成“掩蔽”的细胞因子产生降低的幅度可小到比母体TLR降低25%,因此,对于给定的耐受水平可相应地增加给药剂量。
[0631] 表9-14提供的数据显示,可掩蔽多种化学类型的TLR7配体。所示实施例显示相对于母体TLR7配体具有相当的掩蔽作用。所示化学取代基是示例性的,绝不是对本发明的限制,因此其它化学取代基也可显示掩蔽作用且包括在本发明范围内。可提供在TLR7配体的多个位置引入取代基实现掩蔽作用,如表所示可包含许多化学键。应理解,对于不同的母体TLR7配体,优选的取代基和化学键可不同。
[0632] 表9:艾沙托立宾前药的掩蔽母体分子及其前药 化合物编号 相对于100μM艾沙托立宾诱导
的INFa的量,%
母体分子: 21 100
艾沙托立宾
前药: 24 1
氨基酸酯
前药: 93 0
脱氧
前药: 77 0
6-乙氧基
前药: 79 0
6-甲氧基
前药: 84 0
缩醛胺
前药: 82 0
缩醛胺
前药: 85 0
间二氧杂环戊酮
[0633] 可用PBMC试验研究艾沙托立宾前药的掩蔽性质。PBMC试验的结果(表9)显示了接触起始浓度100μM的母体化合物及其前药8小时(缬氨酸-艾沙托立宾,24)或24小时(其它前药)后释放的INFa的量。100μM下,在相同血样中,相同接触时间下,将释放的INFa的量校准至100μM艾沙托立宾诱导的量。
[0634] 表10:洛索立宾前药的掩蔽母体分子及其前药 化合物编号 相对于100μM艾沙托立宾
诱导的INFa的量,%
母体分子:
洛索立宾 17 50
前药: 45 0
6-乙氧基
前药: 43 0
脱氧
前药: 68 0
缬氨酸酯
[0635] 可用PBMC试验研究洛索立宾前药的掩蔽性质。PBMC试验的结果(表10)显示了接触起始浓度100μM的母体化合物及其前药24小时后释放的INFa的量。在100μM下,相同血样中,相同接触时间下,将释放的INFa的量校准至100μM艾沙托立宾诱导的量。
[0636] 表11:咪喹莫特前药的掩蔽相对于100μM艾沙托立宾诱
母体分子及其前药 化合物编号 导的INFa的量,%
母体分子:
咪喹莫特 31 60-76*
前药: 34 0
氨基甲酸戊酯
前药: 50 0
氨基甲酸乙酯
*
[0637] 对三个不同供体进行两次实验的结果
[0638] 可用PBMC试验研究咪喹莫特前药的掩蔽性质。PBMC试验的结果(表11)显示了接触起始浓度100μM的母体化合物及其前药24小时后释放的INFa的量。在100μM下,相同血样中,相同接触时间下,将释放的INFa的量校准至100μM艾沙托立宾诱导的量。
[0639] 表12:瑞喹莫德前药的掩蔽
[0640] 可用PBMC试验研究瑞喹莫德前药的掩蔽性质。PBMC试验的结果(表12)显示了接触起始浓度1或100μM的母体化合物及其前药24小时后释放的INFa的量。在100μM下,相同血样中,相同接触时间下,将释放的INFa的量校准至100μM艾沙托立宾诱导的量。
[0641] 表13:溴匹立明前药的掩蔽母体分子及其前药 化合物编号 相对于100μM艾沙托立宾诱
导的INFa的量,%
母体分子: 35
溴匹立明 22
前药: 48 0
脱氧
前药: 37 0
乙氧基
前药: 36 0
氨基甲酸乙酯
前药: 49 0
氨基甲酸戊酯
[0642] 可用PBMC试验研究溴匹立明前药的掩蔽性质。PBMC试验的结果(表13)显示了接触起始浓度100μM的母体化合物及其前药24小时后释放的INFa的量。在100μM下,相同血样中,相同接触时间下,将释放的INFa的量校准至100μM艾沙托立宾诱导的量。
[0643] 表14:腺嘌呤前药的掩蔽母体分子及其前药 化合物编号 相对于100μM艾沙托立宾
诱导的INFa的量,%
母体分子 29 128@0.1μM
前药: 65 0@100μM
甲氧基
前药: 64 0@10μM
乙氧基
前药: 62 0@0.1μM
脱氧
前药: 51 18@32μM
碳酸乙酯
前药: 54 15@10μM
碳酸戊酯
[0644] 可用PBMC试验研究腺嘌呤前药的掩蔽性质。PBMC试验的结果(表14)显示了接触不同起始浓度的母体化合物及其前药24小时后释放的INFa的量。在100μM下,相同血样中,相同接触时间下,将释放的INFa的量校准至100μM艾沙托立宾诱导的量。
[0645] 也可对TLR7配体前药转化为活性母体TLR7配体进行体外评价。这可通过将前药在血液、血浆或肝细胞的细胞培养中孵育来测定。在选定的时间间隔取样,以测定前药的残留量和TLR7配体的产生量。通过使用本领域已知分析工具如LC-MS可容易地进行测定。测定掩蔽的TLR7配体前药转化为母体TLR7配体的程度,用于解释数据,其中在所述PBMC试验中,孵育时间越短则掩蔽明显,而孵育时间长则掩蔽消失。测定前药到TLR7配体的转化速率,以确保细胞因子结果显著增加,这是由于接触前药,而不是由于接触在试验条件下前药快速转化产生的TLR7配体。
[0646] 6.5TLR7配体前药的生物学试验
[0647] 口服利用度增加且副作用降低
[0648] 口服利用度
[0649] 通过体内试验评价TLR7配体前药改善的生物利用度。在该实验中,将候选前药口服给药小鼠、大鼠、猴和/或狗,在选定时间间隔取血样。分析血样中的前药和所需的TLR7配体。其它血或肝样品可用于分析表示体内TLR7途径功能激活的干扰素和其它细胞因子的存在。基于摩尔测定,所需候选化合物将显示血接触前药并显示所需TLR7配体的血接触量是所应用剂量的10%-99%。
[0650] 代表性例子是用TLR7配体前药缬氨酸-艾沙托立宾(24)获得的结果,如下所述在小鼠和狗的血中产生显著量的母体TLR7配体艾沙托立宾(21)。参见,美国专利申请号10/305,061(纳入本文作为参考)。
[0651]
[0652] 小鼠中干扰素α(Mu-IFN-α)的浓度
[0653] 正常小鼠提供了有用的系统,用于评价本发明物质对21(艾沙托立宾)口服递送的改善程度。不仅可测定口服所述前药后艾沙托立宾的血浆浓度,而且小鼠中进行的广泛的免疫学研究提供了适用于测定干扰素α(一种反映艾沙托立宾所需生物学活性中的一种的感兴趣细胞因子)水平的试剂。
[0654] 在一系列实验中使用鼠系统,表明24,即21(缬氨酸-艾沙托立宾)5’-缬氨酸酯可诱导大大超过给予艾沙托立宾本身的干扰素应答。
[0655] 表15记录了口服给予浓度50毫克/千克,配制成碳酸氢盐形式的艾沙托立宾两次,鼠干扰素α在小鼠血浆中的试验结果。结果显示检测不到干扰素,即使是4小时后重复给药也检测不到。
[0656] 表15:间隔4小时后两次口服50毫克/千克剂量的艾沙托立宾,小鼠中干扰素α(Mu-IFN-α)的血浆浓度(皮克/毫升)
[0657] BQLn-低于计量上限<n pg/mL
[0658] 表16记录了首先给予碳酸氢盐,并在4小时后口服给予浓度50毫克/千克,配制成碳酸氢盐形式的艾沙托立宾,鼠干扰素α在小鼠血浆中的试验结果。四只小鼠的血浆中存在干扰素,包括两只给予碳酸氢钠载体的小鼠。本实验中记录的所有值都较低,并且记录的干扰素水平与每个时间点记录的所有三只小鼠不一致,提示这些信息是由于接近分析下限而导致的误差。
[0659] 表16:一次载体剂量和4小时后一次50毫克/千克剂量的艾沙托立宾,小鼠中干扰素α(Mu-IFN-α)的血浆浓度(皮克/毫升)
[0660]
[0661] BQLn-低于计量上限<n pg/mL.
[0662] NR-检测不到
[0663] 表17记录了口服给予缬氨酸-艾沙托立宾,溶解在碳酸氢盐中,基于摩尔的剂量相当于50毫克/千克的艾沙托立宾,鼠干扰素α在小鼠血浆中的试验结果。很明显,给药后1.0小时、1.5小时和2.0小时可容易地检测出干扰素。给定时间点所有小鼠都检测出干扰素,提示给予缬氨酸-艾沙托立宾后作用的可靠性。因此,单次给予缬氨酸-艾沙托立宾要优于单剂量或多剂量艾沙托立宾。
[0664] 表17:单次给予73.0毫克/千克剂量的缬氨酸-艾沙托立宾后,小鼠中干扰素α(Mu-IFN-α)的血浆浓度(皮克/毫升)
[0665] BQL-低于计量限<12.5pg/mLn
[0666] BQL-低于计量上限<n pg/mL
[0667] NR-检测不到
[0668] 也可从可测定的干扰素水平的发生率的角度考虑表15、16和17中所列数据。在艾沙托立宾的试验中,114只小鼠中只有4只的血浆中可测出干扰素,而给予缬氨酸-艾沙托立宾,30只小鼠中有10只的血浆中可测出干扰素。因此,前药可将显示干扰素响应的小鼠比例从4%增加至30%,并且均值和峰响应值都增加两倍(100%)。
[0669] 在其他实施方式中,静脉途径给予艾沙托立宾,测定小鼠中艾沙托立宾和干扰素α的血浆水平,将这些血浆水平与口服给予缬氨酸-艾沙托立宾后艾沙托立宾和干扰素α的水平进行比较。这些数据总结在图1中。如图所示,口服缬氨酸-艾沙托立宾(“val-isator”)(50毫克/千克艾沙托立宾摩尔当量)所诱导的干扰素α的水平类似于静脉给予25毫克/千克艾沙托立宾(“isator”)的水平。因此,口服缬氨酸-艾沙托立宾提供的艾沙托立宾和干扰素水平大约是静脉给予艾沙托立宾本身后所观察到的50%。
[0670] Beagle狗
[0671] 研究了口服给予beagle狗后,前药(缬氨酸-艾沙托立宾,24)艾沙托立宾(21)全身水平的作用。在碳酸氢钠溶液中制备艾沙托立宾。将缬氨酸-艾沙托立宾和艾沙托立宾制备成如下制剂,选择这些制剂以保证溶解性:
[0672] 制剂1:艾沙托立宾的碳酸氢钠溶液,1和4毫克/毫升。
[0673] 制剂2:缬氨酸-艾沙托立宾的磷酸盐缓冲盐水,1.62和6.48毫克/毫升,以摩尔计,相当于1和4毫克/毫升的艾沙托立宾。
[0674] 研究开始时使用重15-27kg、约1-2岁大的四只雄性和四只雌性成年beagle狗。将动物分成2组,每组2雄2雌。第1天和第8天强饲给予试验物质,两次给予间存在7天的清除期。每次给药后,将预剂量、15分钟、30分钟、1、2、3、4、6、8和10小时下每只动物的血样(2毫升)收集到锂肝素管中。将血浆冷冻在-70℃直到分析。HPLC-MS/MS法分析血浆中的艾沙托立宾。
[0675] 每只狗中来自艾沙托立宾或缬氨酸-艾沙托立宾的艾沙托立宾的药动学参数总结在表18和19中。将前药和50毫克/千克剂量的碳酸氢盐溶液的最大浓度(Cmax)和时间-浓度曲线下面积(AUC)计算的总量的关键药动学参数的比率总结在表20中。对于前药24,Cmax比为2.98±0.695和AUC比为2.38±0.485。结果提示在50毫克/千克剂量下,前药缬氨酸-艾沙托立宾比艾沙托立宾的碳酸氢盐溶液具有显著更高的Cmax和更大的生物利用度。
[0676] 前药与10毫克/千克剂量的碳酸氢盐溶液的Cmax和AUC比率总结在表21中。对于前药,Cmax比为2.24±0.249,AUC比为1.82±0.529。这些结果提示,在10毫克/千克剂量下,前药缬氨酸-艾沙托立宾比艾沙托立宾的碳酸氢盐溶液具有更高的Cmax和更大的生物利用度。
[0677] 因此,在10和50毫克/千克剂量下,与艾沙托立宾本身相比,口服给予前药缬氨酸-艾沙托立宾后艾沙托立宾的最大浓度至少翻一倍,艾沙托立宾的全身水平提高约2倍。
[0678] 表18:50毫克/千克剂量下狗中艾沙托立宾的药动学参数
[0679]
[0680] 表19:10毫克/千克剂量下狗中艾沙托立宾的药动学参数
[0681]
[0682] 表20:50毫克/千克剂量下狗中艾沙托立宾的药动学参数的比率
[0683]
[0684] 表21:10毫克/千克剂量下狗中艾沙托立宾药动学参数的比率
[0685] 优选前药缬氨酸-艾沙托立宾是基于以下原因。第一,容易制备该前药以提供高比率的活性剂。这使得可制备给定剂量的小胶囊,对于口服药物来说有利。第二,在试验剂量下,口服给药后缬氨酸-艾沙托立宾所提供的艾沙托立宾血浆浓度很好地落在所需生物学效应的范围内,而对于艾沙托立宾本身却不是这样。
[0686] 短尾猴
[0687] 本动物试验中使用2-4只雄性或雌性短尾猴。将试验化合物配制在适于动物口服或静脉给予的媒介物中。使用的媒介物是水性缓冲液或含聚氧乙烯蓖麻油的溶液。每只动物通过口服强饲或静脉推注给药。在预定的时间点(通常,预剂量、给药后15分钟、30分钟、45分钟、1、1.5、2、2.5、3、4、8和24小时)收集血样(约0.5毫升),将血样置于含EDTA二钠的试管中。取样后将样品置于冰浴上且尽可能快地分离血浆。将血浆样品分配至单一试验管中,约-20℃冷冻保存直到在干冰上运输至发起者。给药后约4小时,给药动物食物和水。
[0688] 采用公知的LCMS/MS定量技术,通过三重四极装置如Sciex API3000,分析血浆样品的取样和母体化合物。使用口服给予母体化合物本身或口服给予其前药递送母体化合物的定量结果,计算从时间零点到24小时的曲线下面积(AUC)值(PO AUC0-24h)。比较母体化合物递送入全身循环的母体化合物的AUC值与前药的AUC值,计算前药的相对口服利用度。结果见表22-26。若静脉给予母体化合物本身后其递送母体化合物的AUC数据(AUCIV)已知,通过将前药的PO AUC(0-24h)除以母体分子的IV AUC(0-24h),计算绝对口服生物利用度。
[0689] 表22:猴中艾沙托立宾及其前药的口服生物利用度
[0690]托立宾
前药:
氨基酸酯 24 7-9*
前药:
脱氧 93 80
前药:
6-乙氧基 77 28
前药:
6-甲氧基 79 21
前药:
缩醛胺 84 14
前药:
缩醛胺 82 4
前药:
间二氧杂 85 17
环戊酮
[0691] *不同剂量下多次实验的平均值
[0692] 表23:猴中洛索立宾及其前药的口服生物利用度
洛索立宾
前药:
6-乙氧基 45 9
前药:
脱氧
43 13
[0693] 表24:猴中咪喹莫特及其前药的口服生物利用度母体分子 短尾猴中的口服生物
及其前药 化合物编号 利用度,%
母体分
子:咪喹 31 100
AUC(0-24h)=9.0
莫特
前药:
氨基甲酸 34 555
戊酯 AUC(0-24h)=50
前药:
50 234
氨基甲酸 AUC(0-24h)=21.1
乙酯
[0694] 表25:猴中溴匹立明及其前药的口服生物利用度
[0695] *口服生物利用度超过100%可能与性别差异有关,因为母体化合物是在雄猴中研究而前药是在雌猴中研究。
[0696] 表26:猴中腺嘌呤前药的口服生物利用度
[0697] 胃肠道刺激性的降低
[0698] 本发明TLR7配体前药还显示意料之外的毒性作用大大降低,尤其是GI刺激性降低。
[0699] 胃肠道(“GI”)上排列有许多免疫组织(例如,Peyer’s斑等)。随着试剂通过胃肠道内的淋巴组织,TLR7配体前药可掩蔽活性结构,使淋巴组织的激活最小从而降低GI刺激性。
[0700] Robins等说明,除去艾沙托立宾核苷的5’-羟基则活性消失。参见Robins等,Adv.Enzyme Regul.,29,97-121(1989)。不受任何特定理论的限制,假定用酯取代基封闭该羟基位点将类似地消除活性但允许全身循环中的转运,全身循环中将清除缬氨酸酯而暴露艾沙托立宾。
[0701] 发现上述假定被证实。在beagle狗中进行静脉给予艾沙托立宾和口服给予艾沙托立宾和缬氨酸-艾沙托立宾的毒性研究。口服给予艾沙托立宾的毒性结果来自ICN/Nucleic Acid Research Institute进行的研究。
[0702] 在狗中比较21和24的口服毒性以及21的静脉毒性。观察到,比起口服21,口服24的毒性更接近静脉21。具体地说,口服3的剂量限制性毒性性质上类似于静脉21,当血浓类似于静脉给予21后观察到的水平时发生。相反,口服21具有不同的限制性毒性(胃肠道损伤),该毒性在低于静脉21或口服24的毒性剂量下可观察到。并且,在低于导致呕吐的口服24的剂量下用口服21处理的狗中可观察到呕吐。参见表27。还已知评价呕吐的其它系统,例如雪貂,以比较口服和静脉给予化合物。例如,参见Strominger N.等,Brain Res.Bull,5,445-451(2001)。
[0703] 每只动物给予溶液形式的化合物,通过强饲或通过静脉输注。常规和毒性研究中评价多种参数。在提高较高的潜在艾沙托立宾水平的研究中,LC/MS法评价艾沙托立宾的能讲能读。对观察到的GI现象评分,列于表27中。
[0704] 表27:在毒性研究中,给予艾沙托立宾(21)或缬氨酸-艾沙托立宾(24)后对狗中GI耐受性的影响,以艾沙托立宾的全身水平(AUC)计分
[0705] 对于口服给予艾沙托立宾,主要发现与GI耐受性有关,如测定GI刺激性。表27中所示临床表现是呕吐和/或拉稀。这些临床表现在10毫克/千克中更常见,并且该剂量下一只动物还出现血便。胃肠道粗略的组织病理学评价发现,10毫克/千克下8只狗中的4只肠粘膜上由许多散在的红斑,显微镜评价发现细胞充血和出血,提示局部炎症的存在。
GI的影响确定NOAEL为5毫克/千克。
[0706] 静脉给予艾沙托立宾可导致狗中常见的呕吐和/或拉稀;在比口服给予艾沙托立宾高很多的应用剂量下才出现这种作用。组织解剖或组织病理学评价都未发现胃肠道损伤。GI毒性不会响应NOAEL,根据其它发现,NOAEL已确定为12.5毫克/千克。
[0707] 口服给予缬氨酸-艾沙托立宾显示类似于静脉给予艾沙托立宾的毒性特征。在较高的应用剂量下,观察到呕吐和拉稀。未发现GI损伤,虽然这是本研究评价的焦点。对于静脉给予艾沙托立宾,根据其它发现确定NOAEL。所观察到的毒性与艾沙托立宾的全身水平是本研究所关心的;观察到呕吐和拉稀的艾沙托立宾AUC的域值类似于静脉给予艾沙托立宾和口服给予缬氨酸-艾沙托立宾(表27)。
[0708] 表27中的数据提示口服给予缬氨酸-艾沙托立宾提供超过口服给予艾沙托立宾的改善的毒性特征,且与以下假设一致:通过在核苷的5’-位羟基化学取代酯可实现艾沙托立宾活性的化学掩蔽。如表9-14所示,可使用多种取代基化学掩蔽任何TLR7配体。使上述取代基进入体内后被清除,提供有用的化合物活性的全身水平而没有胃肠道解剖结构导致的GI毒性限制。如表22-25所示,在掩蔽的TLR7配体上可设计给予后可被清除的化学取代基。这样,掩蔽的配体前药可用于任何TLR7配体。与仅给予母体“未掩蔽”的化合物相比,这使得以摩尔计的给予剂量可大大高于可接受的剂量,产生更强的效力和降低的副作用。
[0709] 6.6口服组
[0710] 表28显示了含有100毫克缬氨酸-艾沙托立宾的一批制剂和单剂量单位制剂[0711] 表28:100毫克片剂材料 重量百分比 量(mg/片) 量(kg/批)
缬氨酸-艾沙托立 40% 100.00 20.00

微晶纤维素,NF 53.5% 133.75 26.75
Pluronic F-68表 4.0% 10.00 2.00
面活性剂
交联羧甲基纤维 2.0% 5.00 1.00
素钠A型,NF
硬脂酸镁,NF 0.5% 1.25 0.25
总量 100.0% 250.00mg 50.00kg
[0712] 使微晶纤维素、交联羧甲基纤维素钠和缬氨酸-艾沙托立宾组分通过#30目筛(约430μ-655μ)。使Pluronic F-68_(JRH Biosciences,Inc.,Lenexa,KS制造)表面活性剂通过#20目筛(约457μ-1041μ)。将Pluronic F-68_表面活性剂和0.5kg交联羧甲基纤维素钠装入16qt.双壳翻滚混合器(twin shelltumble blender)混合约5分钟。任何将混合物转移至3立方英尺的双壳翻滚混合器中,加入微晶纤维素混合约5分钟。加入沙利度胺再混合25分钟。将此预混合物通过滚筒式压制机,滚筒式压制机的出口处带有锤磨机,然后再回到翻滚混合器中。将剩下的交联羧甲基纤维素钠和硬脂酸镁加入到翻滚混合器中,搅拌约3分钟。将最终混合物在旋转压片机使压制,每片250(每批200,000片)。
[0713] 6.7粘膜组合物
[0714] 将艾沙托立宾和12.6kg三氯单氟甲烷在带有高剪切混合器的密封不锈钢容器中混合,制备浓缩物。混合约20分钟。然后,在密封容器中将浓缩物与批量产物罐中一定量的推进剂混合,温度控制在21-27℃,压力控制在2.8-4.0,制备大量悬浮液。设计具有计量阀的17ml气雾剂容器,以使可100次吸入本发明组合物。每一容器具有以下成分:
[0715] 缬氨酸-艾沙托立宾 0.0120g
[0716] 三氯一氟甲烷 1.6960g
[0717] 二氯二氟甲烷 3.7028g
[0718] 二氯四氟乙烷 1.5766g
[0719] 总量 7.0000g
[0720] 6.8静脉组合物
[0721] 用合适的液体介质,如注射用水(WFI)或5%葡萄糖溶液,重建本发明化合物,制备静脉制剂。使适量的本发明化合物与适当体积的液体介质重建,获得静脉制剂的所需浓度。静脉制剂的所需浓度可提供给需要静脉药物制剂的患者,优选哺乳动物,更优选人,治疗有效量的本发明化合物,并在患者中维持本发明化合物的治疗优选水平。治疗有效剂量将取决于静脉制剂递送入患者的速率和静脉制剂的浓度。
[0722] 例如,将一小瓶含有组合物(例如,50mg本发明化合物/瓶)与5%葡萄糖溶液(14ml 5%的葡萄糖溶液/瓶)重建,共产生25mL溶液。将重建的溶液掺入输液袋的葡萄糖溶液中,定量至50毫升,得到适合于静脉输注给予的含有1mg/ml本发明化合物溶液。液体介质,输液袋中本发明化合物的优选浓度约为0.001-3毫克/毫升,优选约为0.75-1mg/ml。
[0723] 前述内容阐述了本发明的相关和重要特征。不背离本发明精神和范围,可对本发明进行许多改变和变化,如本领域技术人员所明白的那样。本文所述具体实施方案仅是示例性的,本发明仅受所附权利要求书及这些权利要求所要求的等价范围的限制。
[0724] 本文引用的所有参考文献的内容被纳入本文作为参考,类似地,特定和独立地提及的各个出版物或专利或专利申请的内容被纳入本文作为参考。