用于钻探枯竭砂岩地层的流体损失控制和密封剂转让专利

申请号 : CN200480025304.8

文献号 : CN1852964B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : C·J·斯托二世R·G·布兰德D·克拉珀项涛S·贝奈萨

申请人 : 贝克休斯公司

摘要 :

已经发现了一种油基钻井流体,其含有能够在至少一部分地下砂岩地层上提供可变形的胶乳膜的聚合物胶乳,当在用于烃类回收操作的砂岩地层钻探中使用时,该聚合物胶乳可以抑制或控制流体损失和用作密封剂。典型地,该聚合物胶乳是由乳液聚合形成的颗粒的含水分散体,该聚合物胶乳又在烃基流体中被乳化。具有合适粒度的该聚合物颗粒沉淀在地下砂岩地层的孔隙上以利用可变形的聚合物膜至少部分地密封该地层。

权利要求 :

1.一种用于密封地下砂岩地层的油基钻井流体,其包括:a)能够在至少一部分地下砂岩地层上提供可变形的胶乳膜的聚合物胶乳,该胶乳包括在含水连续相中的聚合物颗粒,其中该聚合物颗粒选自聚乙酸乙烯酯共聚物、聚乙酸乙烯酯/氨乙烯/乙烯共聚物、聚乙酸乙烯酯/乙烯共聚物、和其混合物;

b)烃基流体;和

c)乳化剂。

2.根据权利要求1的油基钻井流体,其中该胶乳中的聚合物颗粒的平均粒度从0.8微米到小于10微米。

3.根据权利要求1的油基钻井流体,其中该烃基流体中的该聚合物胶乳颗粒呈大多数聚合物胶乳颗粒在从大于10微米到小于100微米的范围内的粒度分布。

4.根据权利要求1的油基钻井流体,其中该聚合物胶乳能够在至少一部分地下砂岩地层上提供可变形的胶乳密封。

5.根据权利要求1的油基钻井流体,其中该聚合物胶乳以0.1-10体积%的量存在于该钻井流体中,基于全部的油基钻井流体。

6.根据权利要求5的油基钻井流体,其中该胶乳中的聚合物颗粒包括平均粒度从1微米到小于100微米的颗粒。

7.一种用于密封地下砂岩地层的油基钻井流体,其包括:a)1-10体积%的聚合物胶乳,该聚合物胶乳具有在含水连续相中的聚合物颗粒,该聚合物颗粒选自聚乙酸乙烯酯共聚物、聚乙酸乙烯酯/氯乙烯/乙烯共聚物、聚乙酸乙烯酯/乙烯共聚物、和其混合物,其中该聚合物胶乳能够在至少一部分地下砂岩地层上提供可变形的胶乳膜;

b)烃基流体;和

c)乳化剂,其量可有效保持该聚合物胶乳悬浮在该油基钻井流体中。

8.一种抑制油基钻井流体在地下砂岩地层中流体损失的方法,该方法包括:a)提供油基钻井流体,其包括:

i)能够在至少一部分地下砂岩地层上提供可变形的胶乳膜的聚合物胶乳,所述胶乳包括在含水连续相中的聚合物颗粒,其中该聚合物颗粒呈大多数颗粒在从1微米到小于100微米的范围内的粒度分布,而且该聚合物颗粒选自聚乙烯、羧基化的苯乙烯/丁二烯共聚物、聚乙酸乙烯酯共聚物、聚乙酸乙烯酯/氯乙烯/乙烯共聚物、聚乙酸乙烯酯/乙烯共聚物、和其混合物;

ii)烃基流体;和

iii)乳化剂;和

b)使与地下砂岩地层中的井筒壁接触的油基钻井流体循环。

9.根据权利要求8的方法,其中在提供该油基钻井流体时,胶乳中该聚合物颗粒的平均粒度从1微米到10微米。

10.根据权利要求8的方法,其中在提供该油基钻井流体时,该聚合物胶乳能够在至少一部分地下砂岩地层上提供可变形的胶乳密封。

11.根据权利要求8的方法,其中在提供该油基钻井流体时,该聚合物胶乳以0.1-10体积%的量存在于该钻井流体中,基于全部的油基钻井流体。

12.一种抑制油基钻井流体在地下砂岩地层中流体损失的方法,该方法包括:a)提供油基钻井流体,其包括:

i)0.1-10体积%的聚合物胶乳,该聚合物胶乳包括在含水连续相中的聚合物颗粒,其中该聚合物颗粒选自聚乙烯、羧基化的苯乙烯/丁二烯共聚物、聚乙酸乙烯酯共聚物、聚乙酸乙烯酯/氯乙烯/乙烯共聚物、聚乙酸乙烯酯/乙烯共聚物、和其混合物,和该聚合物颗粒呈大多数颗粒在从1微米到小于100微米的范围内的粒度分布;

ii)烃基流体;和

iii)乳化剂;和

其中该比例基于全部的油基钻井流体;和

b)使与地下砂岩地层中的井筒壁接触的油基钻井流体循环。

说明书 :

发明领域

本发明涉及在石油开采操作期间使用的油基钻井流体,更具体地,在一个实施方案中,涉及使用包含添加剂的油基钻井流体来抑制在钻探枯竭砂岩地层(depleted sand formation)时的流体损失。

发明背景

在钻探地下油井和天然气井以及其它的钻井流体应用和钻井过程中使用的钻井流体是已知的。在旋转钻井时,有多种期望属于钻井流体(也被称为钻井泥浆或简称为“泥浆”)的功能和特性。期望钻井流体在冷却和清洁旋转钻井用钻头的同时,从钻头下方向上运送切屑、将它们输送到环带(annulus)之上并且使它们在表面分离。钻井泥浆在维持井筒的无套管部分的稳定性的同时还旨在减少钻柱和井侧壁之间的摩擦。配制钻井流体是为了避免来自被钻入的渗透性岩层的地层流体的非所需流入,也往往为了形成暂时密封孔隙、其它裂口和被钻头钻入的地层的薄的低渗透性滤饼。钻井流体还可以用来收集和解释从钻屑、岩心和电测井得到的信息。可以理解,在本文中请求保护的本发明的范围之内,术语“钻井流体”也包括“钻井液(drill-in fluid)”。
钻井流体通常是依照它们的基础材料分类的。在水基泥浆中,固体颗粒悬浮在水或盐水中。油可以在水或盐水中乳化。虽然如此,水是连续相。油基泥浆恰恰相反。固体颗粒悬浮在油中,而水或盐水在油中乳化,所以油是连续相。作为油包水乳液的油基泥浆也被称为逆乳液。当然,基于盐水的钻井流体是其中含水成分为盐水的水基泥浆。
由于逆乳液流体的各种限制,优化高性能水基泥浆的设计通常处在许多钻井流体服务和油业经营公司需要的最前沿。用传统的柴油、矿物油或较新的合成油配制的逆乳液流体就页岩抑制作用、井筒稳定性和润滑性而论是性能最高的钻井流体。然而,这些流体的各种限制(例如,环境问题、经济性、循环液漏失的倾向、井涌检测和地质评估问题)为高性能水基流体维持强大了的市场。日益增加的环境问题和责任继续形成对水基钻井流体的工业需求,以便补充或代替性能领先的逆乳液泥浆性能。
当用水基流体钻入到页岩地层中时,一个特殊问题是孔隙压力增加和由于流体对页岩的渗透而引起的地层变厚(swelling)。页岩稳定剂通常被添加到泥浆中以抑制这些现象和稳定页岩使之免受泥浆影响。
减少钻井流体压力对井筒壁的侵入在维持并筒稳定性方面是最重要的因素之一。人们认为充分的井筒压力将使页岩稳定以维持井筒的完整性。当泥浆或流体侵入页岩的时候,孔隙中的压力上升而泥浆柱和页岩之间的压差下降。在压差下降的情况下,页岩不再受到支撑而且会易于破裂和落进井筒。同样地,水侵入页岩基体增加了部分脱水的页岩岩体的水合作用或润湿性,从而使其软化和失去其结构强度。化学反应性也能导致不稳定。为了使页岩地层稳定,总是有对更好的组合物和方法的需求。
在从砂岩地层(尤其是枯竭砂岩地层)回收烃类的时候,存在类似的对于密封和避免流体损失控制的需求。枯竭砂岩地层是开采的、或先前开采的油气层,该油气层已被开采、消耗、或其储量已枯竭,从而形成的地层压力低于在井中可以使用的流体的压力。因为这个压差,部分或完全地密封砂岩地层以抑制或避免泥浆进入砂岩的流体损失是重要的。
对于为油和/或天然气勘探选择或使用钻井流体的那些人而言,显而易见的是选择的流体的主要成分是为实现所有最终特定应用必不可少的特性而被合适平衡的。因为要求钻井流体同时完成许多任务,所以这种所需的平衡是难以实现的。
如果组合物和方法可以为帮助和改善钻井流体同时完成这些任务的能力而设计,那么它将是符合需要的。
发明概述
因此,本发明的一个目标是提供在用油基钻井流体实施烃类回收操作的时候至少部分地密封地下砂岩地层的方法和组合物。
本发明的另一个目标是提供减少钻井流体压力侵入井筒壁的速率的油基钻井流体。
本发明的又一个目标是提供增加可用油基流体实现的砂岩地层密封的压力封锁和可靠性的组合物和方法。
在实现本发明的这些和其它目标时,以一种形式提供用于密封砂岩地层的油基钻井流体,该钻井流体包括能够在至少一部分地下地层上提供可变形的胶乳膜的聚合物胶乳。该胶乳包括在含水连续相中的聚合物颗粒。此外,该油基钻井流体还额外地包括烃基流体和乳化剂。
在本发明的另一个非限制性的实施方案中,以一种形式提供抑制油基钻井流体在砂岩地层中流体损失的方法,其中所述方法包括提供一种油基钻井流体。该油基钻井流体包括能够在至少一部分地下地层上提供可变形的胶乳膜的聚合物胶乳。所述胶乳本身又包括在含水连续相中的聚合物颗粒。该油基钻井流体还包括烃基流体和乳化剂。此外,所述方法还额外地包括使与井筒壁接触的油基钻井流体循环。
附图简要说明
图1显示使用各种中间体测试制剂进行压力侵入测试时地层压力随时间变化的图表;
图2是在20%NaCl/1磅/桶NEWDRILL PLUS/1磅/桶XAN-PLEXD/0.5磅/桶葡糖酸钠/3磅/桶NaAlO2/5体积%GENCAL 7463中表面活性剂对GENCAL 7463粒度的影响的图表;
图3是聚合物树脂(3磅/桶)对GENCAL 7463粒度分布的影响的图表,在150°F下热轧16个小时之后,在20%NaCl/0.75磅/桶XAN-PLEXD/0.5磅/桶D-葡糖酸钠/0.4磅/桶NEW-DRILL PLUS/2磅/桶BIO-PAQ/3磅/桶NaAlO2/3%GENCAL 7463/1磅/桶EXP-152中;
图4是在12磅/加仑的泥浆中,EXP-154和ALPLEX对泥浆性质的影响的图解式对比;基础泥浆是20%NaCl/0.5磅/桶XAN-PLEXD/2磅/桶BIO-LOSE/1磅/桶NEW-DRILL PLUS/3%EXP-155/150磅/桶MIL-BAR/27磅/桶Rev Dust;
图5是针对ALPLEX流体、EXP-154/EXP-155流体和ISO-TEQ流体的PPT测试结果的曲线图;
图6是显示循环对EXP-154/EXP-155泥浆性能影响的曲线图;
图7是显示250°F(121℃)热轧16个小时之后,在9.6磅/加仑的20%NaCl流体中,胶乳对泥浆性质的影响图表;基础流体是20%NaCl/1磅/桶XAN-PLEX D/0.4磅/桶NEW-DRILL PLUS/2磅/桶BIO-PAQ/5磅/桶EXP-154/10磅/桶MIL-CARB/27磅/桶Rev Dust;
图8是显示在250°F(121℃)下热轧16小时之后,在12磅/加仑的流体中,胶乳对泥浆性质影响的图表;基础流体是20%NaCl/0.75磅/桶XAN-PLEX D/0.4磅/桶NEW-DRILL PLUS/3磅/桶BIO-PAQ/5磅/桶EXP-154/150磅/桶MIL-CARB/27磅/桶Rev Dust;
图9是针对在12磅/加仑的流体中,实验产品的96小时Mysidopsisbahia测距仪结果的图表,其中基础流体是20%NaCl/0.5磅/桶XAN-PLEX D/0.4-1磅/桶NEW-DRILL PLUS/2磅/桶MIL-PAC LV(或BIO-PAQ)/150磅/桶MIL-BAR;
图10是MAX-SEAL在聚烯烃烃基流体中的聚合物粒度分布的曲线图;
图11是针对在不同渗透性的圆盘上,14磅/加仑的SYN-TEQ泥浆,在250°F(121℃)下MAX-SEAL对PPA测试结果的影响的图表,其中泥浆样品已在250°F(121℃)下热轧16小时;
图12是就14ppg SYN-TEQ泥浆而言,在250°F(121℃)下,在0.4Darcy圆盘上,MAX-SEAL对PPA流体损失的影响的曲线图,其中泥浆样品已在250°F(121℃)下热轧16小时。
发明详述
业已发现,添加到水基钻井流体中的聚合物胶乳能在钻井期间降低钻井流体压力侵入地下地层的井筒壁的速率。聚合物胶乳优选能够在至少一部分地下地层上提供可变形的胶乳膜或密封。在本发明的上下文中,术语“膜”或“密封”不旨在表示完全不可渗透的层。密封被看作是半可渗透的,然而尽管如此,流体传输的至少部分的阻断足以导致渗透效率的显著改善。在一个特定的非限制性的实施方案中,添加到包含非必要的(但优选结合)沉淀剂(例如,铝络合物)的高盐水基泥浆中的亚微米聚合物胶乳将实质上减少泥浆压力渗透到页岩地层之中的速率。压力封锁、可靠性、量度(magnitude)和能被阻塞的孔径大小全都由于添加胶乳而被提高。抑制钻井流体压力侵入井筒壁是维持井筒稳定性的最重要的因素之一。
另外,业已发现,本发明的聚合物胶乳体系能被结合到油基钻井流体中。然而,已经发现,在这些流体中,在水相中不需要沉淀剂、表面活性剂或任何盐,就能形成聚合物胶乳密封。通常以水或其它含水成分作为连续相的胶乳又悬浮在烃基流体之中,该烃基流体至少有足以使聚合物胶乳悬浮在其中的一定量的乳化剂。在本发明的一个非限制性实施方案中,聚合物胶乳可以简单地与烃基流体混合,不需要添加任何比通常存在于该流体中的乳化剂更多的乳化剂。
本发明的水基钻井流体的成分是聚合物胶乳和水,水构成该流体的主体部分。当然,许多其它的常用钻井流体添加剂也可以被使用以帮助平衡该流体的性质和任务。
聚合物胶乳在一个非限制性的实施例中优选是羧基化的苯乙烯/丁二烯共聚物。一种特定的非限制性的羧基化的苯乙烯/丁二烯共聚物是购自Omnova Solution Inc.的GENCAL 7463。其它合适的聚合物胶乳包括,但不限于,聚甲基丙烯酸甲酯、聚乙烯、聚乙酸乙烯酯共聚物、聚乙酸乙烯酯/氯乙烯/乙烯共聚物、聚乙酸乙烯酯/乙烯共聚物、天然胶乳、聚异戊二烯、聚二甲基硅氧烷和其混合物。稍微较少优选的聚合物胶乳是聚乙酸乙烯酯共聚物胶乳,更明确地说是乙烯氯乙烯/乙酸乙烯酯共聚物。尽管聚乙酸乙烯酯共聚物胶乳将在本发明的方法中使用,但是它们的表现通常不及羧基化的苯乙烯/丁二烯共聚物。聚合物胶乳的平均粒度在本发明的一个非限制性的实施方案中是小于1微米或亚微米,而在另一个非限制性的实施方案中有大约0.2微米或0.2微米或更小的直径。在分散相中可能发现有其它的聚合物在起作用。预计可以同时使用多于一种类型的聚合物胶乳。基于流体的总量,在钻井泥浆中的聚合物胶乳的比例可以从大约0.1体积%变化到大约10体积%,优选从大约1体积%到大约8体积%,最优选从大约2体积%到大约5体积%。这些范围也应用于油基钻井流体的实施方案。
非必要的盐可以是用于盐水基(含水的)钻井流体中的任何常见的盐,包括但是不必限于:氯化钙、氯化钠、氯化钾、氯化镁、溴化钙、溴化钠、溴化钾、硝酸钙、甲酸钠、甲酸钾、甲酸铯和其混合物。所谓“高盐含量”意味着至少20wt%,而且在一个非限制性的实施方案中,饱和盐水溶液是优选的。可以理解,由于饱和点取决于许多因素,包括但不限于,水基流体中各种成分的类型和比例,所以预先预测特定饱和盐水溶液的盐含量是不可能的。盐是非必要的,因为本发明将在没有它(即,使用淡水)的情况下完成任务。
另一种非必要的成分是沉淀剂。合适的沉淀剂包括,但不限于:硅酸盐、铝络合物和其混合物。合适的铝络合物包括,但不限于:铝酸钠(NaAl2O2,有时被写作Na2OAl2O3)、氢氧化铝、硫酸铝、乙酸铝、硝酸铝、铝酸钾等,以及它们的混合物(尤其在pH值>9时,这些化合物在水中是可溶解的)。基于流体总量,在钻井泥浆中的沉淀剂比例可以从大约0.25磅/桶到大约20磅/桶,优选从大约1磅/桶到大约10磅/桶,和最优选从大约2磅/桶到大约7磅/桶。不局限于特定的理论,沉淀剂被认为与井筒的粘土表面化学结合并提供了高活性的极性表面。
本发明组合物的另一种非必要成分是表面活性剂。如果表面活性剂存在,经表面活性剂处理的胶乳强烈地润湿表面并聚积起来形成密封页岩中的裂缝和缺陷的膜或涂层。合适的润湿性表面活性剂包括,但不限于:甜菜碱、碱金属亚烷基乙酸盐、磺基甜菜碱、醚羧酸盐和其混合物。业已确定,当盐存在于钻井流体中时,表面活性剂是特别有益的,但在淡水流体体系中不是优选的。
基于总的水基钻井流体,这些成分的比例是:大约0.1到10体积%的聚合物胶乳、至少1wt%的盐(如果存在)、大约0.25到20磅/桶的沉淀剂(如果存在)、大约0.005到大约2体积%的表面活性剂(如果存在),余量是水。在更优选的实施方案中,该比例是:大约1体积%到8体积%的聚合物胶乳、至少1wt%的盐(如果存在)、大约1磅/桶到10磅/桶的沉淀剂(如果存在)、大约0.01体积%到大约1.75体积%的润湿性表面活性剂(如果存在),余量是水。
希望铝酸钠或其它沉淀剂以亚稳态形式存在于泥浆中,这意味着它是处于悬浮液或溶液中,但沉淀到井筒壁上。通常,铝化合物是在现场添加到泥浆中的。如果更早地添加到泥浆制剂中,它们倾向于不稳定和过早地沉淀。
自从开展孔隙压力传输(PPT)测试以来,各种化学添加剂对孔隙压力传输速率的影响已被评估。测试已主要集中在盐、二醇和诸如硅酸盐和铝络合物的沉淀剂的性能上。PPT测试仪器和方法的改进伴随着对接近逆乳液流体的PPT测试性能的提高的更有效的水基泥浆体系的广泛兴趣和搜寻。尽管其它的研究者已发现硅酸盐流体对于降低不良的压力传输速率是特别有效的,但是由于这些流体的限制,硅酸盐流体尚未被广泛地使用。虽然较低的孔隙压力传输速率对于盐、二醇和铝络合剂已被证实,但是这些产品仍然未接近逆乳液流体的性能。
为了提高水基泥浆体系的性能,曾结合使用新的配制方法和改进的PPT测试过程来证实一种可选方法的效能。选择水可分散的聚合物来提供可变形的小颗粒的来源以在页岩上提供密封和阻断效应。这些聚合物首先在含有其它产品的流体中进行PPT测试。
在本发明的另一个实施方案中,聚合物胶乳悬浮在也被称为油基流体的烃基流体中。烃相可以是在钻井流体应用中使用的任何合适的烃类,包括但不必限于柴油、合成的烃类(例如,异构化的聚烯烃等)。作为钻井泥浆使用的烃基流体通常包含为实现泥浆的多样功能而必需的乳化剂。这些乳化剂全都适合于使胶乳悬浮在烃基流体中。胶乳本身是作为“颗粒”悬浮在烃基流体相之中。这些颗粒的尺寸通常大于胶乳中聚合物颗粒的尺寸,并且在本发明的一个非限制性实施方案中可以多至100微米,而在一个替代实施方案中从大约10微米到大约100微米或小于100微米。在另一个非限制性的替代实施方案中,聚合物颗粒本身在一个非限制性的实施方案中可以从大约1微米到100微米,而且可以从大约0.3微米到10微米或更小,在另一个非限制性实施方案中可以从大约0.8微米到小于10微米,其中在另一个非限制性实施方案中,该颗粒具有介于大约1微米和10微米之间的平均粒度,而且更优选从大约1微米到大约7微米。
本发明将就下面的实施例予以进一步举例说明,这仅仅意味着进一步阐明本发明,而不是以任何方式限制它。
实施例1
流体中间体制备
下面的实施例是本发明的中间体组合物的第一种制备。除非另有说明,实施例中的胶乳是728胶乳,一种聚乙酸乙烯酯胶乳。
  成分   克/桶   克/7桶   自来水   310   2170   铝酸钠   2   14   LIGCO   2   14   AIRFLEX 728   10.5   73.5(75cc)
混合物被热轧。在6天之后,pH值是11.51。广口瓶的底部被1/32″细粒覆盖大约75%。然后,再一次以克/桶和克/7桶的比例分别添加给出的下列成分:
  NEWDRILL PLUS   0.4   2.8   NaCl(20%)   77.5   540   MILPAC LV   2   14
含有胶乳和NEWDRILL+的流体有淡褐色的颜色。添加LD8以控制起泡。所获得的混合物在150°F下热轧四小时。最后的pH值是10.75。
实施例2
页岩压力渗透测定
孔隙压力传输(PPT)装置是以设计用于长度从2.5cm到7.5cm、直径2.5cm的岩心棒的1500psi的Hassler单元为基础。Hassler单元是有活塞插在每个末端中的圆筒。岩心被夹放在两个活塞之间。橡胶套筒环绕岩心和活塞放置以便在岩心周围密封和防止岩心周围的流动。在套筒外面施加压力以形成良好的密封。这些测试使用25mm直径和25mm长度的岩心。
岩心的低压侧(地层侧)配备有1升、2000psi的不锈钢蓄压器以提供反压。岩心的高压侧与两个相似的蓄压器连接,一个用于孔隙流体,而另一个用于测试流体。每个蓄压器中的压力采用手动调节器控制,手动调节器由2200psi的氮气瓶供气。
所有的压力都是用Heise传感器监测的。传感器压力按照预先设定的间隔被计算机自动记录。
该单元被封闭在绝缘室中,而且温度是用200瓦的加热器维持的。该加热器是用驱动Control Concepts相角SCR控制单元的Dwyer温度控制器控制的。温度控制精确到+/-0.05℃。
压力被施加到岩心的一端并且测量通过岩心的流动。活塞在低压侧被装满液体并且被阻塞,因此测量的是液体压力的增加而不是流动。非常少量的液体流过岩心将引起压力大幅度上升,从而使该单元对于测量通过页岩的流动足够敏感。页岩有非常低的渗透性,所以流体通过它的流动非常小。压力对时间作图。结果被表达成地层压力(FP)。如果FP随着时间推移增加,则有压力渗透;如果地层压力随着时间推移降低,则没有压力渗透,而且后者是希望的。
使用实施例1的流体。三个50cc的50%移位(displacement)各自都是在测试单元加热期间和刚刚加热之后进行的。一次试验是以100%移位开始的,而且温度难以控制,因此决定以50%开始比较好。
温度=155°F
井筒侧压=250psi
封闭压力=370psi
  时间,小时:分钟   地层压力,psi   0   48.1
  时间,小时:分钟   地层压力,psi   1:30   47.9   2:00   47.6   7:15   50.9
最后,50cc流体在2°F的温度变化之内被移位多至50%。压力升到52.7psi。地层热(formation heat)被切断,温度是147°F。移位把地层压力向下拉到36psi,然后在接下来的两天回升到80.2。最初的地层压力降低证实了本发明的制剂抑制了压力渗透。
实施例3
流体中间体制备-除非另有说明,比例以克为单位
  成分   每桶   每7桶   自来水   310   2170cc   铝酸钠   2   14   LIGCO   2   14   AIRFLEX 728胶乳   10.5   75cc   NEWDRILL PLUS   0.4   2.8   NaCl(20%)   77.5   540   MILPAC LV   2   14
铝酸钠和AIRFLEX 728胶乳被混合在一起,并且使其放置度过周末。然后,将混合物在150°F下热轧两小时。然后添加盐和聚合物。对铝酸钠/胶乳混合物的添加顺序是:添加PHPA(部分水解的聚丙烯酰胺;NEWDRILL PLUS),随后混合;然后添加一半盐,再添加MILPAC LV,随后添加另一半盐。混合物被热轧过夜。
实施例4
页岩压力渗透测定
井筒侧压=250psi
封闭压力=370psi
  时间,小时:分钟   地层压力,psi   0   46.3   5:49   2.3   7:36   0.6*   50:00   65.0
*在这个点,封闭压力上升到410psi,而井筒压力上升到300psi。
实施例5和6,对比例A-F
两个本发明的其它制剂(实施例5和6)和六个对比例(A-F)被制备和测试。结果显示在图1中。如图所示,本发明的实施例5和6都给出了随着时间推移地层压力逐渐降低的所需结果。对比例非所需地给出随着时间推移地层压力逐渐增加。组合物本体在图1本身上给出。名称“岩心:P2 PARALLEL”代表岩心是平行取向的Pierre页岩。
这些结果证实了具有以下所有的三种成分的必要性:盐、胶乳和铝酸钠(实施例5和6)。单独使用胶乳(对比例A)、仅仅使用盐(对比例B)、胶乳仅仅与盐一起使用(对比例C)、仅仅使用铝酸钠和盐(对比例D)、仅仅使用铝酸钠和盐(对比例E)和铝酸钠仅仅与盐一起使用(对比例F)全部被发现是无效的,或至少的确不如本发明的组合物那样有效。
进一步的实验证据表明一些胶乳产品与铝络合物呈现出导致改善的孔隙压力传输特性的协同效应。稳定的钻井流体体系已采用在高浓度盐水(高盐含量)流体中保持分散和挠性的胶乳配制。本发明的钻井流体提供了比当前铝基钻井流体所呈现的更接近于油基流体的孔隙压力传输性能。这个体系的两个以下特征被认为是对页岩稳定性的主要贡献因素。第一,超细的可变形胶乳颗粒(有大约0.2微米的优选直径)机械密封了页岩的微裂缝,并且从物理上避免了钻井流体进一步侵入敏感的页岩区域。第二,胶乳与诸如铝络合物的沉淀剂(如果存在)共沉淀,在页岩表面上产生了半渗透膜,其从化学上提高了流体和井筒之间的渗透效率。
三种实验添加剂已被发现适合于本发明的流体:EXP-153、EXP-154和EXP-155。EXP-153是用来在该体系中控制HTHP流体损失的磺化的聚合物树脂。EXP-154被看作是铝络合物产品ALPLEX的替代品。与ALPLEX相比,EXP-154与胶乳流体呈现出好得多的相容性。EXP-155是一种改性的胶乳产品。与市场上买得到的其它胶乳相比,EXP-155对电解液呈现较低的敏感性,而且在高达300°F(149℃)的温度下在20%氯化钠流体中不絮凝。此外,由于在它的玻璃化转变温度(Tg)和熔点(Tm)之间宽的温度范围,EXP-155颗粒在大多数应用温度下仍然是可变形的而且能够堵塞页岩的微裂缝。所有这些产品的毒性都满足墨西哥湾的流体处理要求。
制剂和流体性质
所有的流体都是依照确定的Baker Hughes INTEQ混合步骤混合的。塑性粘度、屈服点、十秒胶凝(gel)和十分钟胶凝的起始和最后的Bingham Plastic流变性质都是用Fann 35粘度计在120°F(49℃)下测量的。起始和最后的pH值和API滤出液被记录下来。在250°F(121℃)下的HTHP流体损失是在250°F(121℃)下静态和动态老化16小时之后测量的。
胶乳稳定性
胶乳样品的稳定性是首先按照下列步骤在20%和26%的NaCl溶液中评估的:
1.把332毫升20%(或26%)的NaCl水溶液添加到混合杯中,然后开始混合。
2.把18毫升测试胶乳样品慢慢地添加到溶液中,并且用自耦变压器和转速计将Prince Castle混合器调节到4000rpm。
3.在搅拌5分钟之后,把3克NaAlO2慢慢地添加到上述溶液中而且总共混合20分钟。在混合期间,如果观察到泡沫,添加大约5滴消泡剂(LD-8)是必要的。
4.把这种流体放进广口瓶,并在150°F(66℃)下静态老化16小时。
5.从烘箱中取出广口瓶并使之冷却到室温。观察流体的絮凝和分离。
6.如果没有分离或絮凝,用100目(0.150mm)[如果可能,请检查这个换算]的筛子将该流体过筛。观察筛子以确定保留的胶乳颗粒的量。
附加的评估仅仅对那些已通过上述筛分测试的样品进行。使用Malvern Mastersizer粒度分析仪测量胶乳在配制的流体中的粒度分布。小型的样品分散装置和标准的折射指数50HD(颗粒R.I.=1.5295,0.1000和分散剂R.I.=1.3300)被用在所有的粒度分布测试中。将20%NaCl水溶液的pH值调整到11.5。
页岩抑制测试
页岩抑制特性是用包括静态晶片测试(static wafer test)的页岩分散性测试和孔隙压力(PPT)测试确定的。在PPT测试中,保存的PierreII页岩岩心(1英寸直径乘0.9英寸长(2.54cm×2.29cm长))被放置在两个活塞之间,如同先前在实施例2中描述那样。页岩和活塞的圆周是用橡胶套筒密封的。塞子与层面一起沿着平行的或高渗透性的方向定向。300psi压力的钻井流体是经过上游活塞(井筒侧)移位的,而50psi压力的海水是经过下游活塞(地层侧)移位的。下游活塞中的海水是用阀门包围的。当泥浆滤出液进入塞子的井筒端时,页岩中的原生水被移位到地层活塞之中。
胶乳稳定性
如上所述,最初的实验表明一些胶乳产品(乳液聚合物)与铝络合物一起产生了协同效应,其导致流体的孔隙压力传输特性得以改善。这个结果揭示了一种设计高阻化性的水基流体的新途径。然而,胶乳通常被看作是亚稳态体系。颗粒的大表面在热力学上是不稳定的而且任何影响使聚合物分散体稳定的平衡力的扰动都导致颗粒聚集动力学的改变。大多数为生产合成橡胶或为油漆/涂料应用设计的市售胶乳对逐渐增加的电解质浓度和温度是敏感的。
如表I所示,在26%和20%的NaCl溶液中测试的16个胶乳样品当中,没有一个在26%的NaCl中是稳定的,和只有AIRFLEX 728和GENCAL 7463在20%的NaCl中是相对稳定的。显然,为了在钻井流体中成功地应用胶乳,胶乳在高盐环境中和在升高的温度下的稳定性必须得到改善。通常用来提高胶乳在电解质溶液中的稳定性的技术是添加一些表面活性剂。图2比较了EXP-152对AIRFLEX 728的粒度分布的影响和对GENCAL7463的粒度分布的影响。这些结果表明GENCAL 7463和EXP-152的共混物可以是一种适合钻井流体应用的稳定产品。
表I
胶乳产品在NaCl溶液中的稳定性测试

铝络合物
虽然ALPLEX与胶乳对稳定页岩的协同效应已被PPT测试结果确认,但是这个体系是脆弱的,而且对逐渐增加的盐浓度和温度非常敏感。发现在20%NaCl溶液中,3%AIRFLEX 728或3%GENCAL 7463通过添加4磅/桶的ALPLEX在几分钟之内就被絮凝。ALPLEX在淡水中或添加一些表面活性剂(例如,EXP-152)时的预水合确实改善了这个体系在低温下的稳定性,但是胶乳粒度仍然受ALPLEX的很大影响。在包含ALPLEX的流体中,那些大于100微米的颗粒可能部分地源于不可溶的褐煤(ALPLEX的一种成分)。类似的效应在用GENCAL 7463时也被观察到。褐煤在高盐浓度下的低劣溶解性和缓慢的溶解速率或许是对胶乳稳定性降低起作用的主要因素。
为了找到与胶乳体系相容的聚合物树脂,进行了附加的测试。图3显示了不同的聚合物树脂对EXP-155的粒度分布的影响。在被测试的样品当中,EXP-153呈现出与该胶乳体系最好的相容性。
一种新的铝络合物产品,EXP-154(45%NaAlO2、45%EXP-153和10%D-葡糖酸钠的共混物)是为该胶乳体系发明的。图4比较了在12磅/加仑的20%NaCl/NEW-DRILL/EXP-155流体中ALPLEX和EXP-154对泥浆性质的影响。实验的铝络合物呈现出与胶乳和生物聚合物的改善的相容性。此外,对于API和HTHP,发现EXP-154控制泥浆失水(filtration)比ALPLEX更好。
孔隙压力传输测试
实验的胶乳体系对井筒稳定性的影响是用先前描述过的孔隙压力传输(PPT)测试装置评估的。保存的Pierre II页岩塞子(1英寸直径乘0.9英寸长(2.54cm×2.29cm长))被放置在两个活塞之间,如同先前在实施例2中描述的那样。页岩和活塞的圆周用橡胶套筒密封。塞子与层面一起沿着平行的或高渗透性的方向定向。300psi压力的钻井流体经过上游活塞(井筒侧)被移位,而50psi压力的海水经过下游活塞(地层侧)被移位。下游活塞中的海水是用阀门包围的。当泥浆滤出液进入塞子的井筒端时,页岩中的原生水被移位到地层活塞之中。该附加的水压缩活塞里面的水,从而引起压力上升。地层活塞水中的压力增加是作为地层压力(FP)上升测量的。
如图5所示,EXP-154/EXP-155流体产生了迄今最好的PPT结果。最高的曲线是标准的盐/聚合物。下面一条是ALPLEX,下一条曲线是EXP-154/AIRFLEX 728制剂,在下面的是EXP-154/EXP-155制剂,和最后在底部的是80/20 ISOTEQ流体,25%CaCl2、6ppb CARBO-GEL和10ppbOMNI-MUL。没有必要局限于一种解释,EXP-154/EXP-155流体的优异性能被认为是至少部分地由于它的小粒度。如同先前讨论的那样,GENCAL7463被EXP-152更有效地分散,从而导致小于1微米的颗粒的更高的百分比。
胶乳和铝络合物之间的协同效应在这些测试中也被观察到。这样的结果可能与EXP-155和EXP-154的共沉淀行为有关。发现EXP-154在pH值<10时变成不溶解的。在这种情况下,EXP-155不会单独地沉淀。然而,当EXP-154存在于这个体系中的时候,EXP-155将会与EXP-154共沉淀。因为它们的共沉淀行为,沉积在页岩表面上的颗粒由亲脂性成分和亲水性成分组成。这个多相体系能够形成半渗透膜,从而导致显著提高的渗透效率。EXP-155的另一个特性是它的超细颗粒在宽广的温度范围内呈类似弹性体状。当经受不同的水压时,这些超细颗粒不发生切变或破碎,而是发生变形并且渗透入发丝般的裂缝中,形成不可渗透的密封。在Tg(玻璃化转变温度)和Tm(熔点)之间的温度下,大多数聚合物将呈现类似橡胶般的弹性。EXP-155的玻璃化转变温度是52°F。从再现在Billmeyer著的“Textbook of Polymer Science(聚合物科学教科书)(第二版,Wiley-Interscience,纽约,1971)”的第230页中的Boyer于1963年绘制的Tg和Tm之间的关系,我们能估计出EXP-155的Tm大约是300°F(422°K)。这个温度范围覆盖了钻井流体的大多数应用。
流体的循环已被发现是胶乳填塞机制的重要元素。这是在采用EXP-155测试时探究的。因为该制剂只有按体积计1.5%的胶乳颗粒(EXP-155有50%活性),在泥浆中可得的是不足以在静态条件下产生填塞的胶乳。然而,在循环的情况下,胶乳在表面上累积并且形成填塞膜。标准程序是让泥浆循环大约7小时,然后静态暴露过夜。在早晨开始测试之前,四或五小时在没有循环的情况下逝去。这个静态周期通过允许温度在从循环到平衡间变化而消除了由温度效应造成的压力漂移。
当测试开始的时候,地层压力从50psi掉到零,从而使差压从250psi增加到300psi,如图6所示。大约30小时,塞子开始泄漏,而且地层压力上升。然而,再次循环一小时密封泄漏之后,压力再一次回落到零。在早先的测试中,循环是在1小时之后停止的,而且塞子是在另一个30小时之后再一次开始泄漏。在这个测试中,在压力在70个小时内上升到60psi之后,重新开始循环(图6)。然而,循环被维持5个小时而不是前面说的1小时。通过在更高的压差建立之后继续循环几个小时,密封将更稳定。压力在45小时内只上升了数个psi。
塞面的显微照片表明胶乳沿着页岩中的微裂缝积聚。因为进入这些裂缝的渗滤流的体积和速度非常小,所以渗滤不能独自解释胶乳积聚在裂缝狭窄部位。在这些裂缝内部,粘土表面积与滤出液体积之比是非常大的,从而导致大量的EXP-154沉淀。这个原因可能与早先讨论的EXP-154和EXP-155的共沉淀行为有关,而不局限于任何特定的解释。铝络合物在pH值<19时的沉淀明显地增强了胶乳在裂缝狭窄部分的积聚。当足够的胶乳沉积以连接裂缝开口时,裂缝被密封,而且胶乳两侧的压差建立起来。差压将胶乳沉积物压实成坚硬的密封。增大差压显然将使这个密封随着时间推移(在图6结果的情况下大约30小时)而变形和/或使页岩中的额外裂缝扩大,于是页岩开始泄漏,虽然本发明人当然不希望受这种解释的限制。然而,附加的循环快速地将该泄漏密封,并重建密封。在达到完全的压差之后,循环形成只有小幅度压力上升的稳定密封。
胶乳对泥浆性质的影响
早先的结果和讨论处理了胶乳在钻井流体中的稳定性和它在改善泥浆对页岩地层的填满性(inhabitability)方面与铝络合物的协同作用。此外,借助胶乳产品实现的改进的性能参数也被确认。两个胶乳样品,胶乳A(8∶1共混的AIRFLEX 728和EXP-152)和EXP-155(8∶1共混的GENCAL 7463和EXP-152)在9.6磅/加仑的20%NaCl的流体和12磅/加仑的20%NaCl的流体中被评估。按体积计添加3%的这些胶乳产品的效果在图7和8中举例说明。在对流体流变特性没有明显影响的情况下,在250°F(121℃)下,HTHP流体损失凭借Latex A和EXP-155在9.6磅/加仑的泥浆中分别减少了45%和52%,而在12磅/加仑的泥浆中分别减少了35%和40%。EXP-155再一次表现出比AIRFLEX 728更好的结果。采用EXP-155的附加测试被列在表II中。
表II
12磅/加仑的20%NaCl/EXP-155流体的典型性能参数

毒性测试
AIRFLEX 728、GENCAL 7463、EXP-152、EXP-154和EXP-155在12磅/加仑的20%NaCl/NEW-DRILL流体中的96小时测距仪生物鉴定结果示于图9。所有的产品都满足墨西哥湾中流体处理的要求(30,000ppm)并且变得毒性较小,排在固体物质污染之后。
聚合物胶乳在油基流体中的使用
在本发明的另一个非限制性实施方案中,已经发现在本发明的范围内诸如MAX-SEAL的聚合物胶乳可以在钻探泥浆漏失可能发生的枯竭砂岩地层时作为油基流体中的密封剂使用。本发明的这个实施方案也可以在其它的烃类回收操作期间用于至少部分地密封地下砂岩地层。
图10显示MAX-SEAL在ISO-TEQ合成聚烯烃钻井流体中的粒度分布。MAX-SEAL可分散在油中。大多数MAX-SEAL颗粒在从0.5微米到10微米的范围中。10微米以上的颗粒可能来自MAX-SEAL中的水。
MAX-SEAL与油基泥浆的相容性已在14磅/加仑(1700kg/m3)的SYN-TEQ泥浆中测试。表III给出有和没有MAX-SEAL的泥浆制剂。在250°F(121℃)下老化16小时之后,含有3%MAX-SEAL的泥浆样品是均质的。MAX-SEAL的密封能力已分别使用0.4、2和20达西的水泥圆盘在250°F(121℃)和1000psi(7000kPa)压差下用颗粒填塞装置(PPA)测试进行评估和结果显示在图11中。
MAX-SEAL的密封能力随着渗透性减少而增加。当钻探一些低渗透性的枯竭砂岩地层的时候,MAX-SEAL或许可以最优的效率使用。因为这种可变形性,MAX-SEAL能密封非常小的孔隙并减少油基泥浆在其它的堵漏材料(LCM)不可能有效工作的低渗透性枯竭砂岩地层中的流体损失。如图12所示,没有MAX-SEAL,通过0.4达西的圆盘的流体损失速率在两个小时之后达到某个常数。反之,有3%MAX-SEAL的泥浆的流体损失速率随着时间流逝不断地降低并且最后达到零。
表III
有和没有MAX-SEAL的14磅/加仑(1700kg/m3)的
SYN-TEQ的制剂和性质


在前面的说明书中,本发明已参照其特定的实施方案予以描述,而且已被证明在提供能有效地降低钻井流体压力侵入井筒壁的速率或能部分地或全部地密封地下砂岩地层的水基或油基钻井流体方面是有效的。然而,在不脱离在权利要求书中陈述的本发明的较宽广的精神或范围的情况下能进行各种不同的修改和变化将是显而易见的。因此,本说明书将被视为说明性的而不是限制性的。举例来说,落在请求保护的范围之内、但是在减少泥浆压力渗入页岩地层或砂岩地层的特定组合物中未被明确地识别或经过试验的盐水或烃基流体和胶乳以及非必要的乳化剂、沉淀剂和/或润湿性表面活性剂或盐的特定组合都被预期将在本发明的范围之内。
术语表