发绿光的发光二极管转让专利

申请号 : CN200480027591.6

文献号 : CN1856561B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : H·布伦纳T·费德勒F·耶曼M·查肖B·布劳纳

申请人 : 奥斯兰姆奥普托半导体有限责任公司电灯专利信托有限公司

摘要 :

氧氮合硅酸盐类型的发光材料,具有用二价铕掺杂的阳离子M,并具有基本式M(1-c)Si2O2N2∶Dc,其中以M=Sr或者M=Sr(1-x-y)BayCax使用,其中0≤x+y<0.5,且其中氮氧合硅酸盐全部或者主要由高温稳定性变体HT构成。

权利要求 :

1.一种发绿光的LED,其被设计为发光转换LED,由初级辐照光源和在其之前设置的发光材料层构成,其中所述初级辐照光源是在UV或者蓝光辐照范围进行发射的芯片,所述发光材料层将芯片的辐照部分或者全部转化为主波长λdom为550-570nm的绿光,其特征在于,所述发光材料属于氮氧合硅酸盐类型,具有阳离子M和基本式M(1-c)Si2O2N2:Dc,其中D表示用二价铕掺杂,且其中M包括Sr作为成分,且M以全部为Sr或者M=Sr(1-x-y)BayCax使用,式中0≤x+y<0.5,且其中氮氧合硅酸盐全部或者主要由高温稳定性变体HT构成,其中Eu含量c占M的0.1-20mol%。

2.权利要求1的LED,其特征在于,M=Sr(1-x-y)BayCax,其中Ba和Ca总计占不超过

30mol%。

3.权利要求1的LED,其特征在于,所述初级发射具有340-430nm范围的峰值波长。

4.权利要求3的LED,其特征在于,所述初级发射具有380nm-430nm范围的峰值波长。

5.权利要求1的LED,其特征在于,所述绿光发射具有556-564nm范围内的主波长。

6.权利要求1的LED,其特征在于,所述初级辐照完全被转换。

7.权利要求1的LED,其特征在于,所述芯片是峰值发射波长在430-465nm范围内的InGaN芯片。

8.权利要求1的LED,其特征在于,该LED是可调暗的。

说明书 :

发绿光的发光二极管

技术领域

[0001] 本申请与下列申请具有紧密联系:2003P14657、2003P14656和2003P14655。 [0002] 本发明基于发绿光的发光二极管(LED)。术语发绿光在此尤其理解为560nm附近的光发射。
[0003] 背景技术
[0004] 通常发色光的LED通过相应适配的芯片得以实现。在发绿光的情况下却存在困难,这是因为由于效率不足不能采用现有技术例如InGaN芯片(蓝色)或者InGaAlP芯片(红色)。取而代之的是必须使用其他解决方案。这种解决方案的实例在EP 574599、DE19806536和DE 10024924中可以找到。但是它们均仍具有相对低的效率。此外,它们显示出发射颜色位置的相对强的温度漂移。
[0005] 因此,已经开发出基于发光转化LED的发绿光LED作为替代物。这可以在WO01/89001和EP 1150361中找到实例。但是,与直接发射LED相比目前还不能由此实现更高的效率。这可归因于迄今可为此使用的发光材料(BAM衍生物和硫化物)和它们的可激发性。
[0006] 氮氧合硅酸盐(Oxinitridosilikat)类型的发光材料由缩写式MSiON是已知的;参见例如“On new rare-earth doped M-Si-Al-O-N materials”,J.van Krevel,TU Eindhoven 2000,ISBN90-386-2711-4,第六章。其用Tb进行掺杂。发射在经365nm或254nm激发的条件下实现。
[0007] 从尚未公开的EP-PA 02021117.8(Docket 2002P15736)中还已知一种新型的发光材料。该发光材料由Eu或者Eu、Mn共同活化的式MSi2O2N2(M=Ca、Sr、Ba)的氮氧合硅酸盐构成。
[0008] 发明内容
[0009] 由“Phase Relationships in the Sr-Si-O-N System”,W.H.Zhu等人,J.Mat.Sci.Lett.13(1994),第560-562页中已知主晶格的基本结构,其中结合陶瓷材料进行了讨论。已证实这种结构存在有两种变体,即低温相X1和高温相X2。低温相,在下文中简称为NT,主要在约1300℃下产生,而下面简称HT的高温相随温度不断上升到约1600℃的较高温度时产生。但是该两相基本上难以分开,因为其具有相同的基本结构, 只是晶格常数有所不同。该两相的准确化学计算量可偏离式MSi2O2N2。
[0010] 本发明的任务在于提供一种根据权利要求1前序部分的发绿光LED,其效率尽可能高。另一任务在于使颜色位置稳定化。
[0011] 本发明的任务通过权利要求1的特征得以实现。特别有利的构造在从属权利要求中提出。
[0012] 迄今为止,还没有具有高效率同时对于外部影响不敏感并可用于 [0013] 根据本发明提供了一种发光材料,其是在可能还添加Mn作为共活化剂的条件下用二价Eu活化的式MSi2O2N2(M=Ca、Sr、Ba)的氧氮合硅酸盐,其中该发光材料主要或者全部(即大于发光材料的50%的含量)由HT相构成。这种HT变体(Modifikation)的特征在于,其是宽频带可激活的(即由20-480nm的宽范围),其对于外部影响具有极高的稳定性,即在150℃也不会出现可测得的劣化,且在波动条件下显示出非常好的颜色位置稳定性(在2-100℃仅可检出低的漂移)。这种发光材料在下文中通常称为Sr-Sion:Eu。 [0014] 在制备所述新型发光材料时尤其要考虑的是在合成范围内为1300-1600℃的高温。另一决定因素是起始组分的反应性。该反应性应尽可能高。
[0015] 这种发光材料尤其可以由LED、特别是InGaN型LED有效地激发。 [0016] 由EP-PA 02021117.8已知的发光材料MSi2O2N2:Eu(M=Ca、Sr、Ba)在Sr占主要地位的实施方式的情况下(其中M=Sr或者M=Sr(1-x-y)BayCax(其中x+y<0.5),在下文中称为Sr-Sion)仅能困难地进行控制。尽管在个别测试条件得出了优异的结果,但至今没有给出能够可靠地得到理想结果的准则。对此确定的趋势是,在高温负载时发光材料的效率降低且颜色位置变化增强。
[0017] 现在已经以令人惊奇地方式表明,所述两种相上在其作为发光材料的适用性上存在根本性的区别。NT相仅有限地用作Eu掺杂的发光材料,并倾向于发射橙红色光,而HT相则显示出特别适合作为发绿光的发光材料。通常存在两种变体的混合物,该混合物可以具有宽频带的两种发射。因此理想的是,HT相尽可能地纯,占至少50%含量,优选至少70%含量,尤其优选至少85%含量。
[0018] 为此要求在至少1300℃、但不超过1600℃下进行的退火步骤。优选的温度范围为约1450-1580℃,因为在较低温度下产生增加的NT相,而在较高的温度下发光材料的可加工性持续变差,从约1600℃起形成为硬质烧结陶瓷或者熔体。最优的温度范围取决于原材料的精确组成和性质。
[0019] 对于制备Sr-Sion型高效发光材料来说特别重要的是起始产物添 加料,该添加料基本上为化学计量,使用基础组分SiO2、SrCO3以及Si3N4。Sr在此示例性地代表M。偏差特别不应超过理想化学计量添加量的10%,优选不超过5%,其中还包括可能添加的熔融助剂,而这经常是常规的。特别优选的是最大偏差为1%。此外还有一种用于掺杂的铕部分的前体,其例如以氧化物Eu2O3实现。这些认识与迄今为止的工序(即以明显化学欠量地添加基础组分SiO2)相反。这些认识由于下面的原因也是特别让人吃惊的,因为根据EP-PA02021117.8的教导,其他作为发光材料推荐的Sion例如Ba-Sion恰恰应当以SiO2欠量制备。
[0020] 因此,Si-Sion MSi2O2N2的相应添加料使用11-13重量%的SiO2、27-29重量%的Si3N4,余量的SrCO3。在M中Ba和Ca份额相应地作为碳酸盐添加。根据所需的掺杂,铕例如作为氧化物或氟化物替代SrCO3进行添加。其中添加料MSi2O2N2在此也应理解为对精确化学计量的可能偏差,只要其在电荷保持方面得到补偿。
[0021] 经证实特别有利的是,主晶格的起始组分,尤其是Si3N4,具有尽可能高的纯度。因此,尤其优选的是由液相例如由四氯化硅出发进行合成的Si3N4。经证实,尤其是钨和钴的污染是特别关键的。对此,杂质应当尽可能少,特别是它们均应当低于100ppm、尤其是低于50ppm,以所述前体物质计。此外,具有尽可能高的反应活性是有利的,反应活性可以用反应
2 2
性表面积(BET)来量化。该反应性表面积应当至少为6m/g,有利地至少为8m/g。杂质铝和镉也应当尽可能低于100ppm所述前体物质Si3N4计。
[0022] 在加入过低的SiO2添加量时,在上述工艺过程相对于化学计量添加料发生偏差和在温度控制的情况下,出现作为不理想的异相的程度增加的氮合硅酸盐MxSiyNz如M2Si5N8,由此产生了氮过量。尽管这种化合物本身是有用的发光材料,但在Si-Sion的合成方面来看,其和其他氮合硅酸盐一样是严重干扰性的,因为这种异相吸收Sr-Sion的绿光辐照和可能转换成已知的氮合硅酸盐的红光辐照。相反地,如果添加了过多的SiO2,则由于产生了氧过量而产生了Sr的硅酸盐例如Sr2SiO4。两种异相都吸收可利用的绿光发射或者至少引起晶格缺陷(例如空穴),这严重影响了发光材料的效率。作为根据使用下面的准则,即异相含量应当尽可能低于15%,优选甚至低于5%。这相当于 在合成的发光材料的XRD光谱中的如下要求:即XRD衍射角2θ在25-32°范围内的所有异相峰的强度小于HT变体在约31.8°的特征主峰强度的1/3,优选小于1/4,尤其优选小于1/5。这尤其适用于SrxSiyNz型,特别是Sr2Si5N8型异相。
[0023] 在优化的工艺过程的情况下,可以可靠地达到80%至显著高于90%的量子效率。与之相反,在非特异性的工艺过程中,该效率通常在最高50-60%的量子效率范围内。 [0024] 根据本发明可以由此制备发光材料,该发光材料表示为式MSi2O2N2(M=Ca、Sr、Ba)的氮氧合硅酸盐,其在可能地另外添加Mn作为共活化剂的条件下用二价Eu激活,其中发光材料主要或者全部(即超过50%的发光材料、优选超过85%的发光材料)由HT相构成。这种HT变体的特征在于,其是宽频带可激发的,即在50-480nm、优选150-480nm、尤其优选250-470nm的宽范围内可激发,其对于外部影响具有极高的稳定性,即在150℃下在空气中没有出现可测得的劣化,并在波动条件下显示出非常好的颜色位置稳定性。其他的优点在于其在红色内的低吸收,这对于发光材料混合物来说是特别有利的。这种发光材料在下文中通常称为Sr-Sion:Eu。占主导地位的HT变体尤其可以如此辨认:即XRD光谱中在约28.2°下,NT变体特征峰具有的强度相对于XRD光谱中在25-27°下HT变体的三个反射峰的最高强度峰强度的比值至少为1∶1,优选至少1∶2。在此进行的XRD光谱在各种情况下由已知Cu-Kα谱线激发。
[0025] 在相同活化剂浓度下,这种发光材料与相同化学计量的NT变体相比显示出不同的发射性能。在优化的HT变体情况下,该HT变体的半高宽相对于在简单含异相和缺陷混合物的情况下显著较低,并处于70-80nm范围内,而含异相或缺陷的简单混合物显示出约110-120nm的半高宽。在HT变体情况下主波长通常较短,通常比显著含有异相的样品短
10-20nm。此外,与NT占主导地位或者高异相含量的混合物相比,高纯度HT变体的效率通常要高至少20%,有时明显更高。
[0026] 足够低NT变体和异相含量的区别性特征是发射的半高宽(FWHM)小于90nm。异相的含量越低,富异相变体(特别是氮合硅酸盐异相Sr-Si-N-Eu例如首先是Sr2Si5N8:Eu)的橙红特征发射的份额就越小。
[0027] 除了较窄的半高宽之外,对于特征化有用的是上述在XRD光谱中的与其他晶体结构明显不同的典型反射。
[0028] 在HT变体的XRD光谱中主峰是在约31.7°的峰。其他的突出峰是在25-27。之间(25.3和26.0和26.3°)大致相同强度的三个峰,其中具有最小偏差的峰是最强峰。另一强峰为12.6°。
[0029] 这种发光材料主要以在555-565nm间的主波长发绿光。
[0030] 也可以向式MSi2O2N2的氧氮合硅酸盐分子中添加少量的基团AlO替换基团SiN,特别是替换直到最大30%的SiN份额。
[0031] Sr-Sion:Eu两相可以类似于两种结构不同的主晶格变体进行结晶,并均利用添加料化学计量SrSi2O2N2:Eu进行制备。对于该化学计量可以有少量偏差。用Eu掺杂的主晶格令人意外地在蓝光或者UV的激发下都发光,不过根据主晶格变体发射不同的色光。NT变体显示出发橙色光,HT变体以原则上显著较高的效率在约λdom=560nm处发绿光。根据掺杂含量和掺杂材料(Eu或者Eu、M)以及HT变体和NT变体的相对份额,可以精确调节发光材料的理想性能。
[0032] HT相的优点在于其在非常宽光谱范围内同样好的可激发性,而只有微小变化的量子效率。
[0033] 此外,HT变体的发光在宽温度范围内仅在较弱程度上与温度相关。由此首次发现了发绿光的发光材料(尤其是用于LED用途),其不需要特别的措施来进行稳定化就能使用。这使其显著区别于迄今对于这种任务作为最有前景的备选物(即镓化锢发光材料或者氯硅酸盐)的发光材料。
[0034] 优选不含Ba或者Ba含量不超过10%的具有M=(Sr、Ba)的Sion化合物构成具有宽范围发射最大值的高效发光材料。这相对于纯Sr-Sion而言通常具有较短的波长,优选在520-565nm之间。此外,通过少量添加(优选不超过30mol%)的Ca和/或锌以及通过用Ge和/或Sn部分取代(不超过25mol%)Si可使可以实现的颜色空间变宽;由此发射最大值相对于纯Sr-Sion来说向长波区域迁移。
[0035] 另一实施方式是用三价或者一价离子例如La3+或者Li+部分取代M、特别是Sr。这些离子的含量优选最大为M的20mol%。
[0036] 令人吃惊的是用HT相的Sr-Sion发现了可以精确调节为发射波长λdom=560nm(主波长)的发光材料。该发光材料以明显高于80%的 量子效率转换蓝光LED或者UV-LED的光。这种由发光决定的效率是与基于YAG:Ce的典型白光LED堪相比较的。由此,纯“绿光”转换LED效率几乎比纯半导体变型方案高一个数量级。
[0037] 作为另一优点是发光转换LED的发光色实际上与操作温度无关,由此该LED可以在不同外部温度下操作和可以颜色位置稳定地调暗。
[0038] 此外,本发明还涉及具有如上所述的LED的发光系统,其中该发光系统还含有其他的电子元件,这些电子元件例如赋予可调暗性。这些电子元件的另一任务是驱动单个LED或者LED组。这一功能可以由已知的电子元件实现。
[0039] 附图
[0040] 在下面本发明参照两个实施例进行详细阐述。
[0041] 图1是第一氮氧合硅酸盐的发射光谱;
[0042] 图2是这种氮合硅酸盐的反射光谱;
[0043] 图3为半导体构件,其作为绿光光源用作发光转换LED;
[0044] 图4为以四边形示出的具有对于纯绿光可用区域的色图。
[0045] 图5示出了发光转换LED的光谱分布。

附图说明

[0046] 在图1中示出了对于根据本发明的发光材料的具体实施例。其涉及在HT变体中2+
发光材料SrSi2N2O5:(5%Eu )的发射,其中Eu含量占由Sr占据的晶格位置的5mol%。最大发射值为540nm,平均波长λdom为558nm。颜色位置为x=0.357;y=0.605。其中激发在460nm进行。FWHM为76nm。量子效率为约90%,颜色位置x=0.357,y=0.605。 [0047] 图2示出了这种发光材料的漫反射光谱。该图表明显著最小值在小于440nm范围内,这表明在该范围内优良的可激发性。
[0048] 在图3中明确示出了用于白光的光源结构。该光源是具有InGaN型芯片1的半导体元件,该芯片具有在UV区域从例如405nm直到430nm的峰值发射波长,将该芯片嵌入到凹陷9范围内的不透光基体外壳8中。该芯片1经焊接线14与第一引线3和直接与第二电子引线2连接。凹陷9用灌注体5填充,其含有注塑环氧树脂(80-90重量%)和发光材料颜料6(低于20重量%)作为主要组分。该凹陷具有壁17,其用作芯片1与颜料6的初级辐照和次级辐照的反射体。UV-LED的 初级辐照被发光材料全部转化为绿光。所用的发光材料是上述的氮氧合硅酸盐。
[0049] 作为在此力求达到的可使用的纯绿光范围(“纯绿”),在此被认为是在色图中通过具有下面的角的四边形大致确定的范围:
[0050] (l):x/y=0.22/0.595;
[0051] (2):x/y=0.37/0.46;
[0052] (3):x/y=0.41/0.59和
[0053] (4):x/y=0.225/0.755,参见图4。
[0054] 图5示出了峰值为405nm的基于UV初级发射LED的发光转换LED的发射的光谱分布。