燃气轮发动机的涡轮机的空心转子叶片及其“浴形槽”转让专利

申请号 : CN200610079184.0

文献号 : CN1861988B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 帕斯卡尔·德斯彻普斯彻恩特尔·盖奥特托马斯·波蒂尔

申请人 : 斯奈克玛

摘要 :

本发明涉及一种空心叶片,该空心叶片具有内冷却通道(24)和开式腔(30),开式腔(30)位于叶片(10)的自由端(14),由在叶片(14)的整个端部上延伸的端壁(26)和在前缘(20)和后缘(22)间至少沿吸入侧壁(18)延伸的边缘(28)定义。以独特的方式,压力侧壁(16)呈现出突出端部部分(34),突出端部部分(34)的外表面相对于压力侧壁(16)的外表面倾斜,所述冷却槽(32)设于所述端部部分(34)中,与所述端部部分(34)的外表面平行,使冷却槽(32)在朝着叶片(10)自由端(14)的方向伸展进入所述端部部分(34)的尖端中。该叶片可应用于没有跟部(heel)的高压涡轮机中。

权利要求 :

1.一种用于燃气轮发动机的涡轮机的空心转子叶片(10),该叶片包括内冷却通道(24)、开式腔(30)和冷却槽(32),开式腔(30)位于叶片(10)的自由端(14),由在叶片(14)的整个端部上延伸的端壁(26)和在前缘(20)和后缘(22)之间至少沿吸吸入侧壁(18)延伸的边缘(28)定义,冷却槽(32)连接所述内冷却通道(24)和压力侧壁(16)的外表面,所述冷却槽(32)相对于压力侧壁(16)是倾斜的,压力侧壁(16)呈现出突出端部部分(34),突出端部部分(34)的外表面相对于压力侧壁(16)的外表面倾斜,连接到压力侧壁(16)的端壁(26)在所述端部部分(34)的位置处,所述冷却槽(32)设于所述端部部分(34)中,与所述端部部分(34)的外表平行,使冷却槽(32)在朝着叶片(10)自由端(14)的方向伸展进入所述端部部分(34)的尖端中,该叶片特征在于:端部部分(34)的尖端与端壁(26)的外表面处于同一表面,使得所述冷却槽(32)伸展进入开式腔(30)前面的压力侧壁(16)中,吸入侧壁(18)的所述边缘(281)的内表面倾斜,朝着叶片(10)自由端(14)的方向使所述边缘(281)变大。

2.根据权利要求1所述的涡轮机叶片(10),其特征在于:端壁(26)的外表面(26b)大致垂直于压力侧壁(16)和吸入侧壁(18)。

3.根据权利要求1所述的涡轮机叶片(10),其特征在于:端壁(26)的外表面(26b)相对于压力侧壁(16)和吸入侧壁(18)倾斜,与腔的边缘(281)构成锐角,腔穴的边缘(281)是吸入侧壁(18)的延伸。

4.根据权利要求1至3中的任何一项所述的涡轮机叶片(10),其特征在于:

·在叶片前部,端部部分(34)的尖端与端壁(26)的外表面处于同一平面,吸入侧壁(18)的所述边缘(281)的内表面是倾斜的以加大所述边缘(281);同时·在叶片后部,在压力侧壁(16)旁边,有凸出端部部分(34),凸出端部部分(34)具有压力侧边缘(282),压力侧边缘(282)在其尖端(28b)变大,在吸入侧壁(18)旁边有入口边缘(281),入口边缘(281)在其尖端并不变大。

5.根据权利要求1至3中的任何一项所述的涡轮机叶片(10),其特征在于:通孔(15)在内冷却通道(24)和吸入侧壁(18)的边缘(281)的底部之间穿过端壁(26)。

6.根据权利要求4所述的涡轮机叶片(10),其特征在于:多个通孔(15)在内冷却通道(24)和吸入侧壁(18)的边缘(281)的底部之间穿过端壁(26)。

7.根据权利要求1至3所述的涡轮机叶片(10),其特征在于:它用于高压涡轮机。

8.根据权利要求4所述的涡轮机叶片(10),其特征在于:它用于高压涡轮机。

9.根据权利要求5所述的涡轮机叶片(10),其特征在于:它用于高压涡轮机。

10.根据权利要求6所述的涡轮机叶片(10),其特征在于:它用于高压涡轮机。

说明书 :

技术领域

本发明涉及一种用于燃气轮发动机的涡轮机的空心转子叶片,尤其是用于高压型涡轮机的空心转子叶片。

背景技术

更准确地说,本发明涉及制造一种空心叶片,该叶片包括内冷却通道,开式腔和冷却槽,开式腔位于所述叶片自由端,由在叶片整个端部延伸的端壁和至少沿吸入侧壁(suction side wall)在前缘和后缘之间延伸的边缘构成;冷却槽连接所述内冷却通道和压力侧壁的外表面,所述冷却槽相对于压力侧壁倾斜。
这种类型的冷却槽意用于冷却所述叶片的自由端,这是由于它们可把注入的冷却空气从内冷却通道送向位于压力侧壁外表面高端的所述叶片端部。注入的空气用作“抽取热量”,例如,通过从金属壁中心吸收热量来减小金属的温度,它也生成一层保护在压力侧的叶片端部的冷空气膜。
由于这种叶片端部的高工作速度和叶片工作时所经受的温度,所以有必要将它们冷却以使它们的温度保持低于它们工作所处的空气的温度。
这就是为什么传统的叶片是空心的原因,目的是使它们被内冷却通道中的空气冷却。
在叶片端部设有开式腔,该开式腔也称为“浴形槽”,这也是众所周知的:叶片端部的这种形状限制了叶片端部和涡轮机壳体相应环形表面间彼此相对的区域,使得叶片本体免于由于叶片与环形部分的可能性接触而造成的损坏。
专利文件US 6 231 307、EP 0 816 636和FR 2 858 650展示了这样一种空心叶片,它也设有冷却通道,该冷却通道把内冷却通道与压力侧壁旁的所述腔的边缘的外侧表面连接在一起,这些冷却通道的出口朝着所述边缘的尖端展开于压力侧壁外侧表面。
那些位于压力侧壁旁的冷却槽使得注入的空气从内冷却通道中流出,所述冷却通道要比包围压力侧壁的空气要冷,所述注入气体形成一层冷却空气膜停留在压力侧壁的外表面,并且朝着吸入侧壁被抽吸,穿过叶片的端部。
在专利文件US 6 231 307中,这些倾斜的冷却槽通过这样的方式被设置(见该文件图2)把内冷却通道与压力侧壁上的腔的边缘的外表面连接在一起,以使穿过腔的端壁和穿过与压力侧壁同高的腔的边缘,穿过所述腔穴。
为了避免降低叶片尖端处高温强度性能,因此该解决方案要求很厚的材料,要么用于腔的端壁,要么用于腔边缘。此外,该解决方案还对到达边缘尖端的冷却空气流有严格的限制,这是由于该流的主要部分通过冷却槽的首要部分离开内冷却通道并直接穿入该腔而不会到达压力侧壁的外表面。
文件EP 0 816 636的解决方案,从该文件中的图5能够看出,其在于把那些冷却槽以这样的方式设置:它们穿过向外敞开的的压力侧壁进入与腔边缘底部同高的所述压力壁外表面。
这种解决方案同样需要很厚的材料,要么用于腔的端壁,要么用于腔边缘,以避免叶片尖端处降低高温强度性能。
文件FR 2 858 650提出一种解决方案(见图5),它在边缘和腔的端壁之间至少沿压力侧壁的一部分提供了材料加强,籍此所述边缘在其邻近于所述端壁的底部变大,因此,靠近边缘尖端冷却槽展开,同时不会降低叶片的高温强度。在该方法中,通过加强材料,冷却槽可在靠近边缘尖端且不改变所述冷却槽和该腔端壁之间的距离的情况下展开。
然而,如果涡轮机工作温度一直增加,这些方法就不能再以令人满意的方式为空心叶片在叶片端部带来冷却。
为了在冷却槽周围保持充分的高温强度,采用大的壁厚会导致涡轮机的转动轮更为沉重。结果是,由于材料厚度很大,由于冷却不是很快,温度上升的越高,叶片尖端的充分冷却就越受到这些大厚度的材料的阻碍,使得涡轮机不能以期望的温度工作。
可以观察到如果叶片端部的冷却不够充分,就可能发生局部燃烧,导致金属材料的损失,籍此增加了间隙,因此损害了涡轮机空气动力效率。同样,当腔边缘的温度过度增加时,就会看到有损害金属壁的燃烧危险。

发明内容

本发明旨在解决上述问题。
相应地,本发明的一个目的是提供一种用于燃气轮发动机的涡轮机的空心转子叶片,它具有上述的类型,该转子叶片使得叶片端部以一种充分的方式冷却,从而在不降低叶片空气动力和高温强度性能的条件下增加其可靠性。
为了实现这个目的,根据本发明,压力侧壁呈现凸出端部部分,该凸出端部分的外表面相对于压力侧壁的外表面倾斜,端壁与压力侧壁在所述端部部分连接,所述冷却槽置于所述端部部分中,与所述端部部分的外表面平行,因此冷却槽朝着叶片的自由端在所述端部部分的尖端内伸展;该叶片的特征在于:端部部分的尖端与端壁外表面位于同一表面(或平面)上,这样,所述冷却槽在腔前面的压力侧壁中伸展,吸入侧壁的所述边缘的内表面倾斜,朝着叶片自由端得所述边缘加大。
以这种方式,可以这样理解,相对于压力侧壁凸出的端部部分的采用,且冷却槽直接伸展进入所述端部部分的尖端,使得冷却空气立即从开式腔或“浴形槽”上游直接被送进叶片的自由端。
该解决方案同时带来另外的优点,它不但把冷却槽的出口开在叶片的自由端,而且,由于端部部分的外表面是倾斜的,该方案能够为叶片提供在叶片尖端凹陷的压力侧表面。
该特定形状最好从前缘到后缘沿整个轮廓来呈现。它使得防止气流穿过叶片尖端的间隙成为可能。在叶片尖端壁朝着压力侧倾斜导致在叶片尖端边界层的强烈分离。结果是,叶片尖端和壳体间见到的气流部分通过在尺寸上增加的边界层分离来变得更小:这减小了消失在叶片尖端与壳体间的气流。
因此,该具有倾斜外表面的凸出的端部部分使得不仅能获得热量方面的提高还可以获得液压发面的提高,而且机械地加强了位于开式腔穴或“浴形槽”位置的叶片尖端。
因此,通过本发明的解决方案,可以提高涡轮机的整体性能。
可以观察到端壁可以设计成不同的方位。
在第一个变体中,端壁的外表面大致垂直于压力侧壁和吸吸入侧壁,即,端壁的外表面呈现出与叶片轴平行的方向,叶片轴可以参考认为是水平的。
在第二变体中,端壁的外表面相对于压力侧壁和吸入侧壁倾斜,与腔的边缘形成锐角,腔的边缘是吸入侧壁的延伸。这种情况时,端壁的外表面倾斜离开叶片的自由端——或者朝着叶片的轴——从压力侧壁开始,朝着吸入侧壁的走向。

附图说明

本发明的其他优点和特点通过实例结合附图出现在下面的描述中,其中:
图1是用于燃气轮机的传统的空心转子叶片的透视图;
图2是图1叶片自由端的较大比例的透视图;
图3是展示叶片的自由端,图2沿III方向的简化视图;
图4是叶片后缘由纵向剖面截取,类似于图2的视图;
图5是沿图3或图4的V-V的纵向剖面视图;
图6和图7分别为类似图3和图5的视图,展示本发明中叶片所作的修改;
图8是展示稍微不同的版本,类似图7的视图;
图9是类似图3的简化端视图,用于结合不同形状的叶片,包括依照本发明的一种形状;用于叶片自由端视图;
图10和图11类似于图5,是图9中的X-X和XI-XI方向的视图,展示图9叶片的端部的其他两种形状;
图12是图7的变体,具有在剖面侧边缘的底部下偏移的通孔。

具体实施方式

图1示出了用于燃气轮机的传统空心转子叶片10的透视图。冷却空气(未示出)从叶片根部12的底部沿径向方向(垂直方向)至叶片的自由端14(图1上部)流入叶片10内,然后冷却空气通过出口排出,加入到主气流中。
特别地,从图2至图5能够看出,该冷却空气流进位于叶片10内部的冷却通道24,穿过通孔15,中止于叶片的自由端14。
叶片本体的形状应具有压力侧壁16(在所有图中的左边)和吸入侧壁18(在所有图中的右边)。压力侧壁16通常是凹的,第一面朝向热气流,即气流的压力侧,而吸入侧壁18是凸出的,它是随后呈现给热气流的,即气流的入口。
压力侧壁16和吸入侧壁18在前缘20和后缘22处相交,前缘20和后缘22径向地在叶片自由端14和叶片根部12的顶部间延伸。
如在图2、图4和图5的放大视图所见的那样,在叶片的自由端14,内冷却通道24由在压力侧壁16和吸入侧壁18间、从前缘20到后缘22、沿叶片的整个自由端14延伸的端壁26的内表面26a定义。
通孔15以优化冷却的方式分布,从前缘20到后缘22,径向穿过端壁26的整个厚度。
在叶片的自由端14,压力侧壁16和吸入侧壁18构成“浴形槽”或者腔30的边缘28,腔30偏离内冷却通道24展开,即径向向外(所有图中是向上)。
边缘28由入口边缘281和压力侧边缘282构成,吸入侧边缘281和压力侧边缘282分别沿径向向外延伸吸入侧壁18和沿压力侧壁16(在所有图中是向上),超过端壁26到达叶片的自由端14。
从图2、图4和图5能够看出,该腔30在侧面由边缘28的内表面定义,腔30在底部由端壁26的外表面26b定义。
因此,边缘28沿叶片的轮廓形成一个薄壁,保护叶片10的自由端14免于与涡轮机壳体的相应环形表面接触。
从图5的剖面图中可以更为详细地看到,倾斜的冷却槽32穿过压力侧壁16,在压力侧边缘282的外表面28a下方,把内冷却通道24连接到压力侧壁16的外表面。
这些冷却槽32倾斜的目的是为了向着压力侧边缘282的尖端28b伸展,以沿压力侧壁16尽可能地冷却边缘28b,或者更准确地,沿压力侧边缘282的外表面28a。
从图5能够看出,在冷却槽32出口的箭头33表示沿压力侧壁16朝着压力侧边缘282的尖端28b流动的气流。
在已知的叶片中,如图5中详细所示,为了确保叶片的自由端14在高温时具有足够的强度,在冷却槽32(参考点在每个槽的轴上)的出口和交叉点(B1)间留出充足的距离B是合理的,交叉点(B1)是在与压力侧壁16同高的压力侧边缘282的内表面28c和朝着所述腔30的端壁26的外表面26b之间。
这种由机械结构要求导致的情形意味着:远远大于上面提到的距离B的在冷却槽32的出口和压力侧壁旁边的边缘28的尖端28b间测量的距离A对于要充分冷却的尖端28a来说太大了。
为了减小这个缺陷,压力侧壁16呈现凸出的端部部分34,端部部分34外表面相对于压力侧壁16的外表面倾斜,冷却槽35穿过该端部部分34延伸。
此外,根据本发明,还作了如下的设置:
端部部分34的尖端与端壁26的外表面位于同一平面,这样所述冷却槽32从腔30前面的压力侧壁16伸展:这意味着依照本发明,由于凸出的端部部分34在与端壁26的外侧面26b同一高度中止,叶片的端部14和压力侧壁16不包括压力侧边缘282;和
吸入侧壁18的所述边缘281的内表面28c是倾斜的以便朝着叶片10的自由端14的方向加大所述边缘281。
特别是从图7和图8能够看出,压力侧壁16在位于叶片的自由端14的端部部分34的位置向外凸出,这样端部部分34的外表面倾斜并与压力侧壁16其余外侧面的径向方向(图7和图8中为竖直方向)构成锐角α,该角α最好在0°到45°的范围内,尤其是在10°到35°的范围内,有利地在15°到30°的范围,最好在30°左右。
以这种方式,如果压力侧壁16的外表面是从叶片10的根部向着自由端14,压力侧壁16的大致方向是径向的(竖直的),那么在端部部分34以与锐角α互补的钝角构成一广口凹陷端部外形。
该端部部分34延伸一定高度直至端壁26与压力侧壁16在端部部分34的位置连接,端壁26的尖端与端部部分34的尖端对齐。因此,与远离自由端14的端部部分34的底部径向地处在端壁26的内表面26a和压力侧壁16从叶片根部12开始75%的高度之间的位置。
此外,冷却槽32总是倾斜的,但在依照本发明的这种结构中,由于它们穿过端部部分34,通过穿过端部部分34的全部高度,它们可以直接伸展进入浴形槽敞开的腔30的底部。
以这种方法,穿过槽32的冷却空气(箭头33)进入敞开的腔穴30中,因此,较冷的空气流连续保持在叶片尖端,与自由端14平行,从开式腔30的上游,籍此有助于提高叶片高温强度。
此外,在端部部分34内设置冷却槽32使得通过导热冷却材料的这些区域成为可能。
图8所示的变体与图7所示唯一的不同之处在于:端壁26相对于压力侧壁16和吸入侧壁18不再垂直(水平),改为端壁26是倾斜的。更准确的说,开式腔30的端壁26的外表面26b相对于入口边缘281的外表面28a或者实际上是吸入侧壁18构成锐角(即小于90°的角)。
以这种方式,从压力侧壁16向吸入侧壁18,外侧面26b远离叶片自由端14。
这种结构允许来自于槽32(箭头33)的冷却空气直接导向开式腔30的内部,直至端壁26,该冷却空气与来自孔15的冷却空气混合。
在图7的实施例中,端部部分34的尖端,在平行于入口边缘281的方向上,与压力侧壁16和吸入侧壁18是垂直的。
入口边缘281也形成一径向地位于与吸入侧壁18位于一条直线上的壁,它的外表面28a是竖直(图7和图8)。
相反,从图7和图8能够看出,入口边缘281具有朝着压力侧壁16和朝着开式腔30的内表面28c,该壁不是垂直的而是以倾斜方式延伸,与端壁26的外表面26b或者与吸入侧壁形成锐角(即小于90°的角)。
在这种环境下,因此入口边缘281比其尖端28b要宽一些。
入口边缘281的内表面28c朝着压力侧壁16倾斜使得进入间隙的流速限制得到改善。该流速限制是由相对于压力侧壁16凸出的端部部分34所产生的流速限制之外的流速限制。
此外,由于在图7和图8所示的实施例中没有压力侧边缘(见于图11中282),入口边缘281的内表面28c朝着压力侧壁16的倾斜,使得在没有凸出通过空气动力循环定义的形状的凸出物的情况下限制流速成为可能。
可以观察到,参照图7和图8所示和描述的实施例可以与其他形状结合在单片叶片上。
因此,通过实例,图9展示了叶片10的自由端14,在其前缘20和后缘22间带有多种结构:
·在叶片前部,从前缘20的下游,可以看到图7中的结构,带有端部部分34,端部部分34在压力侧壁16旁边凸出,不带有压力侧边缘,带有在其尖端28b变大的入口边缘281;
·朝着叶片后部,从后缘22上游,如图11中所示的那样,在压力侧壁16旁边,凸出端部部分34具有在其尖端28b变大的压力侧边缘282(实际上有倾斜的压力侧边缘282的外表面28a和垂直的压力侧边缘282的内表面28b),在吸入侧壁18旁边,在其尖端没有变大的入口边缘281,垂直于压力侧壁16和吸入侧壁18的竖直方向的压力侧边缘282和入口边缘281的尖端。
此外,从图10能够看出,图9的叶片的前部和后部之间的中间部分有所不同:
·在压力侧壁16旁边,该中间部分与图7结构或者图9的叶片前部是相同的,即,没有压力侧边缘,突出端部部分34在与端壁26的外表面26b的同高时中止;
·在吸入侧壁旁边,入口边缘281是竖直的,其外表面28a和内表面28c彼此平行,如图11的结构。
在图12所示的变体实施例中,图7的结构作了不同的布置,孔15朝着吸入侧壁18偏移,在入口边缘281的底部下面,在倾斜的内侧表面28c内伸展。