广播/多播内容的外部编码方法及其相关装置转让专利

申请号 : CN200480030786.6

文献号 : CN1871804B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : A·H·瓦亚诺斯F·格里尔里

申请人 : 高通股份有限公司

摘要 :

所提供的传输技术可以提高服务连续性和减少当用户设备(UE)从一个蜂窝移动到另一蜂窝时或者内容传送在同一服务蜂窝中从点到点(PTP)连接变成点到多点(PTM)连接或从点到多点(PTM)连接变成点到点(PTP)连接时出现的转换所导致的内容传送中断。这些传输技术能够实现跨越蜂窝边界和/或在诸如点到多点(PTM)和点到点(PTP)之类的不同传输方案之间的无缝内容传送。还提供了在这些转换期间调整不同流和从各数据块中恢复内容的机制,从而确保在转换期间不丢失数据。此外,还提供了在接收终端中在解码期间重新校准数据的机制。

权利要求 :

1.一种在无线链路控制(RLC)层之上提供的外部编码系统,包括:目的站,包括接收机;以及

发起站,包括发射机,所述发射机通过无线接口,经由公共逻辑信道,与所述接收机进行通信;

其中,所述发射机包括:

第一缓冲器,用于存储多行用户信息;

调度单元,用于:

确定在需要发送外部码块之前的最大持续时间,

基于所述第一缓冲器中存储的用户信息的量,确定信息块的最佳尺寸,该最佳尺寸使所述多行用户信息能够以减少所述信息块的未填充部分的方式占用所述信息块,以及生成一个请求,以启动所述多行用户信息的编码;

分割与串接单元,响应于来自所述调度单元的请求,将所述多行用户信息进行分割,以适合具有所述最佳尺寸的所述信息块,以及,在各信息块内生成长度指示符,所述长度指示符表示相对于该信息块的一行用户信息的末端;以及外部编码器,使用所述信息块,生成欲添加到所述信息块中的冗余块,以产生外部码块。

2.如权利要求1所述的外部编码系统,其中,当积累到一定量的用户平面信息时,所述调度单元开始编码。

3.如权利要求1所述的外部编码系统,其中,当分组传输延迟时间期满时,所述调度单元开始编码。

4.如权利要求1所述的外部编码系统,其中,所述发射机还包括:序号生成器,用于在每个信息块之外添加报头,其中,所述报头包括用于标识每个信息块被考虑的次序的序号。

5.如权利要求4所述的外部编码系统,其中,所述序号包括用于标识所述外部码块的部分和用于标识所述每个信息块在所述外部码块内的位置的部分。

6.如权利要求4所述的外部编码系统,其中,所述发射机还包括:发送缓冲器,用于存储所述信息块,并通过所述无线接口,经由公共逻辑信道,将所述信息块发送到MAC层。

7.如权利要求4所述的外部编码系统,其中,承载着来自第一信源的第一逻辑流中的用户信息的信息块和承载着来自第二信源的第二逻辑流中的相同用户信息的信息块具有相同的序号,以及其中,所述调度单元监视所述第一逻辑流的信息块的序号和所述第二逻辑流的信息块的序号,并根据所述第二逻辑流的信息块调整所述第一逻辑流的信息块的相对时间校准,从而将所述第一和第二流进行时间校准。

8.如权利要求1所述的外部编码系统,其中,所述多行用户信息的行尺寸基于应用而改变。

9.如权利要求1所述的外部编码系统,其中,所述调度单元确定所述外部码块的固定行尺寸,从而使各行在一个传输时间间隔(TTI)内以峰值数据速率发送,并且,在收到全部用户信息之前,启动所述信息块和长度指示符的传输。

10.如权利要求9所述的外部编码系统,其中,所述分割与串接单元分割所述多行用户信息以适合于固定尺寸的外部码块行中,将所述多行用户信息置入所述外部码块行中以生成信息块,用填补信息填充所有未占用的外部码块行,以及,向各外部码块行中增加至少一个长度指示符,以表示一行用户信息或填补信息结束于该信息块占用的外部码块行中。

11.如权利要求10所述的外部编码系统,其中,编码器分组包括所述信息块、填补信息和长度指示符,并且其中,所述外部编码器提取每个编码器分组的一部分以获得提取信息,对所述提取信息进行编码以生成多行冗余信息,以及,将所述多行冗余信息加到所述编码器分组中以生成具有所述固定行尺寸的外部码块。

12.如权利要求1所述的外部编码系统,其中,所述外部码块的行尺寸是可变的,并且其中,一旦收到全部行用户信息,所述调度单元就基于收到的用户信息量,确定所述外部码块行的可变行尺寸,并且其中,在一个传输时间间隔内发送的外部码块的尺寸基于所述外部码块行尺寸而改变。

13.如权利要求12所述的外部编码系统,其中,所述分割与串接单元分割多行用户信息以适合于可变尺寸的外部码块行中,从而使所述多行用户信息完全占用所述多个外部码块行,将所述多行用户信息置入所述外部码块行中以生成信息块,以及,向各外部码块行中增加至少一个长度指示符,以表示一行用户信息结束于该信息块占用的外部码块行中。

14.如权利要求12所述的外部编码系统,其中,所述编码器分组包括所述信息块和长度指示符,并且其中,所述外部编码器提取每个编码器分组的一部分以获得提取信息,对所述提取信息进行编码以生成多行冗余信息,以及,将所述多行冗余信息增加到所述编码器分组中以生成具有所述可变行尺寸的外部码块。

15.如权利要求1所述的外部编码系统,其中,一旦收到全部行用户信息或者确定将要生成所述外部码块,所述调度单元就基于收到的用户信息量,从多个预定的外部码块行尺寸中确定一个可变的外部码块行尺寸,该可变的外部码块行尺寸使非用户信息占用的外部码块的部分实现最小化,从而降低用户信息速率。

16.如权利要求1所述的外部编码系统,其中,一旦收到全部行用户信息,所述调度单元就基于收到的用户信息量,确定一个使所述多行用户信息完全占用所述编码器分组的可变外部码块行尺寸,其中,在一个传输时间间隔内发送的外部码块的尺寸基于所述外部码块行尺寸而改变。

17.如权利要求1所述的外部编码系统,其中,所述接收机包括:接收缓冲器,用于积累信息块,直到满足条件为止;

其中,序号标识每个信息块所属于的外部码块和所述信息块在所述外部码块内的位置;

重新排序单元,利用每个信息块中的序号,对乱序接收的所有信息块进行重新排序;以及重复检测单元,一旦所述信息块已经重新排序,就使用每个信息块中的所述序号检测重复信息块,并删除所有重复信息块;以及当对于给定的外部码块满足所述条件时,所述重复检测单元利用删除信息来替换未通过循环冗余检验的所有信息块,并生成一个请求,以开始外部解码。

18.如权利要求17所述的外部编码系统,其中,所述条件是:收到整个外部码块。

19.如权利要求17所述的外部编码系统,其中,所述条件是:不再有所述外部码块的重传。

20.如权利要求17所述的外部编码系统,还包括:

序号去除单元,从所述外部码块的每个信息块中去除所述序号;以及外部解码器,接收所述外部码块,并且,如果必要,就使用所述冗余块对所述外部码块中的所有删除信息进行解码,以重新生成丢失的信息块。

21.如权利要求20所述的外部编码系统,还包括:

重组单元,使用所述信息块和长度指示符,重建多行用户信息;以及发送缓冲器,通过无线载体发送所述多行用户信息,以将所述多行用户信息传送到较高层。

22.如权利要求20所述的外部编码系统,其中,所述接收缓冲器存储在对以前接收的信息块进行解码时接收的进入信息块,从而在解码期间实现信息块的连续接收。

23.如权利要求17所述的外部编码系统,其中,所述重新排序单元将所述解码延迟第一和第二逻辑流之间的时间偏移量,并在开始解码之前等待将接收的两个外部码块。

24.如权利要求17所述的外部编码系统,其中,所述接收缓冲器接收包括多行信息块的外部码块,其中,所述多行信息块各包括一行用户信息的至少一部分,其中,每行信息块的尺寸是固定的,且占用一个传输时间间隔(TTI)。

25.如权利要求20所述的外部编码系统,其中,所述外部解码器使用多行冗余信息,对所述外部码块进行解码,以生成包括信息块和长度指示符的完整编码器分组,其中,所述信息块是没有差错的。

26.如权利要求21所述的外部编码系统,其中,所述重组单元使用每个信息块中的至少一个长度指示符,以确定一行用户信息在所述信息块占用的外部码块行内结束于何处,并将所述信息块分成多行用户信息。

27.如权利要求17所述的外部编码系统,其中,所述接收缓冲器接收包括多行信息块的外部码块,其中,所述多行信息块各包括一行用户信息的至少一部分,其中,每行信息块的尺寸是可变的,并且,所述多行用户信息完全占用所述多行信息块。

28.一种用于外部编码的发起站,包括:

第一缓冲器,用于存储多行用户信息;

调度单元,用于:

确定需要发送外部码块之前的最大持续时间,

基于所述第一缓冲器中存储的用户信息量,确定信息块的最佳尺寸,该最佳尺寸使得所述多行用户信息能够以减少所述信息块的未填充部分的方式占用所述信息块,以及生成一个请求,以启动对所述多行用户信息的编码;

分割与串接单元,响应于来自所述调度单元的请求,将所述多行用户信息进行分割以适合具有所述最佳尺寸的信息块,以及,在每个信息块内生成长度指示符,以表示相对于该信息块的一行用户信息的末端;以及外部编码器,在无线链路控制(RLC)层之前接收信息块,并使用所述信息块生成欲添加到所述信息块中的冗余块,以产生外部码块。

29.如权利要求28所述的发起站,其中,当积累到一定量的用户平面信息时,所述调度单元开始编码。

30.如权利要求28所述的发起站,其中,当分组传输延迟时间期满时,所述调度单元开始编码。

31.如权利要求28所述的发起站,其中,所述发射机还包括:

序号生成器,用于在每个信息块之外添加报头,其中,所述报头包括用于标识每个信息块被考虑的次序的序号。

32.如权利要求31所述的发起站,其中,所述序号包括用于标识所述外部码块的部分和用于标识所述每个信息块在所述外部码块内的位置的部分。

33.如权利要求31所述的发起站,其中,所述发射机还包括:

发送缓冲器,用于存储所述信息块,并通过所述无线接口,经由公共逻辑信道,发送所述信息块。

34.如权利要求31所述的发起站,其中,承载来自第一信源的第一逻辑流中的用户信息的信息块和承载来自第二信源的第二逻辑流中的相同用户信息的信息块具有相同的序号,以及,其中,所述调度单元监视所述第一逻辑流的信息块的序号和所述第二逻辑流的信息块的序号,并根据所述第二逻辑的信息块流调整所述第一逻辑流的信息块的相对时间校准,从而对所述第一和第二流进行时间校准。

35.如权利要求28所述的发起站,其中,所述多行用户信息的行尺寸基于应用而改变。

36.如权利要求28所述的发起站,其中,所述调度单元确定所述外部码块的固定行尺寸,从而在一个传输时间间隔(TTI)内以峰值数据速率发送各行,并且,在收到全部用户信息之前,启动所述信息块和长度指示符的传输。

37.如权利要求36所述的发起站,其中,所述分割与串接单元分割所述多行用户信息以适合于固定尺寸的外部码块行中,将所述多行用户信息置入所述外部码块行中以生成信息块,用填补信息填充所有未占用的外部码块行,以及,向每个外部码块行中增加至少一个长度指示符,以表示一行用户信息或填补信息结束于该信息块占用的外部码块行中。

38.如权利要求37所述的发起站,其中,编码器分组包括所述信息块、填补信息和长度指示符,并且其中,所述外部编码器提取每个编码器分组的一部分以获得提取信息,对所述提取信息进行编码以生成冗余信息行,以及,将所述冗余信息行添加到所述编码器分组中以生成具有所述固定行尺寸的外部码块。

39.如权利要求28所述的发起站,其中,所述外部码块的行尺寸是可变的,并且其中,一旦收到所有行用户信息,所述调度单元就基于收到的用户信息量,确定所述外部码块的行的可变行尺寸,并且其中,在一个传输时间间隔内发送的外部码块的尺寸基于所述外部码块行尺寸而改变。

40.如权利要求39所述的发起站,其中,所述分割与串接单元分割多行用户信息以适合于可变尺寸的外部码块行中,从而使所述多行用户信息完全占用所述多个外部码块行,将所述多行用户信息置入所述外部码块行中以生成信息块,以及,向每个外部码块行中增加至少一个长度指示符,以表示一行用户信息结束于该信息块占用的外部码块行中。

41.如权利要求39所述的发起站,其中,所述编码器分组包括所述信息块和长度指示符,并且其中,所述外部编码器提取每个编码器分组的一部分以获得提取信息,对所述提取信息进行编码以生成多行冗余信息,以及,将所述多行冗余信息增加到所述编码器分组中以生成具有所述可变行尺寸的外部码块。

42.如权利要求28所述的发起站,其中,一旦收到所有行用户信息或者确定将要生成所述外部码块,所述调度单元就基于收到的用户信息量,从多个预定的外部码块行尺寸中确定一个可变的外部码块行尺寸,以使非用户信息占用的所述外部码块的部分实现最小化,从而降低用户信息速率。

43.如权利要求28所述的发起站,其中,一旦收到所有行用户信息,所述调度单元就基于收到的用户信息量,确定一个使所述多行用户信息完全占用所述编码器分组的可变外部码块行尺寸,其中,在一个传输时间间隔内发送的外部码块的尺寸基于所述外部码块行尺寸而改变。

44.一种用于外部解码的目的站,包括:

接收缓冲器,用于积累信息块,直到满足条件为止;

其中,序号标识每个信息块所属于的外部码块和每个信息块在所述外部码块内的位置;

重新排序单元,利用每个信息块中的序号,对乱序接收的所有信息块进行重新排序;以及重复检测单元,一旦所述信息块已经重新排序,就使用每个信息块中的序号检测重复信息块,并删除所有重复信息块;以及当对于给定的外部码块满足所述条件时,所述重复检测单元利用删除信息来替换未通过循环冗余检验的所有信息块,并生成一个请求,以开始外部解码;

序号去除单元,从所述外部码块的每个信息块中去除所述序号;以及外部解码器,位于无线链路控制层之上,用于接收所述外部码块,如果必要,使用所述冗余块对所述外部码块中的所有删除信息进行解码,以重新生成丢失的信息块。

45.如权利要求44所述的目的站,其中,所述条件是:收到整个外部码块。

46.如权利要求44所述的目的站,其中,所述条件是:不再有所述外部码块的重传。

47.如权利要求44所述的目的站,其中,还包括:

重组单元,使用所述信息块和长度指示符,重建多行用户信息;以及发送缓冲器,通过无线载体发送所述多行用户信息,以将所述多用户信息传送到较高层。

48.如权利要求44所述的目的站,其中,所述接收缓冲器存储在对以前接收的信息块进行解码时接收的输入信息块,从而在解码期间实现信息块的连续接收。

49.如权利要求44所述的目的站,其中,所述重新排序单元将所述解码延迟第一和第二逻辑流之间的时间偏移量,并在开始解码之前等待将接收的两个外部码块。

50.如权利要求44所述的目的站,其中,所述接收缓冲器接收包括多行信息块的外部码块,其中,所述多行信息块各包括一行用户信息的至少一部分,其中,每行信息块的尺寸是固定的,且占用一个传输时间间隔(TTI)。

51.如权利要求44所述的目的站,其中,所述外部解码器使用多行冗余信息,对所述外部码块进行解码,以生成包括信息块和长度指示符的完整编码器分组,其中,所述信息块没有差错。

52.如权利要求47所述的目的站,其中,所述重组单元使用每个信息块中的至少一个长度指示符,确定一行用户信息在所述信息块占用的外部码块行内结束于何处,并将所述信息块分成多行用户信息。

53.如权利要求44所述的目的站,其中,所述接收缓冲器接收包括多行信息块的外部码块,其中,所述多行信息块各包括一行用户信息的至少一部分,其中,每行信息块的尺寸是可变的,并且,所述多行用户信息完全占用所述多行信息块。

54.一种用于创建具有多行的固定行尺寸外部码块的方法,包括:通过无线载体接收用户信息,其中,所述用户信息的行尺寸基于应用而改变;

基于信道状况,确定一个固定的外部码块行尺寸,该行尺寸使得各行在一个传输时间间隔(TTI)内能够以峰值数据速率发送;

将多行用户信息进行分割和串接,以适合于固定尺寸的外部码块行中;

将所述多行用户信息置入外部码块行中,以生成信息块,其中,利用填补信息填充所有未占用的外部码块行;

向每个外部码块行中增加至少一个长度指示符,以表示一行用户信息或填补信息结束于该信息块占用的外部码块行中,并且其中,编码器分组包括所述信息块、填补信息和长度指示符,在收到所有用户信息之前,启动所述信息块和长度指示符的传输;

提取每个编码器分组的一部分,以获得提取信息;

对所述提取信息进行编码,以生成多行冗余信息;以及

将所述多行冗余信息添加到所述编码器分组中,以生成具有所述固定行尺寸的外部码块。

55.一种用于创建具有多行的可变行尺寸外部码块的方法,包括:通过无线载体接收多行用户信息,其中,所述多行用户信息的行尺寸基于应用而改变;

一旦收到所有行用户信息,就基于收到的用户信息量,确定一个可变的外部码块行尺寸,其中,在一个传输时间间隔内发送的外部码块的尺寸基于所述外部码块行尺寸而改变;

将多行用户信息进行分割和串接,以适合于可变尺寸的外部码块行中;

将所述多行用户信息置入所述外部码块行中,以生成多个信息块;

向每个外部码块行中增加至少一个长度指示符,以表示一行用户信息结束于该信息块占用的外部码块行中,其中,所述多行用户信息完全占用所述多个外部码块行,并且其中,编码器分组包括所述信息块和长度指示符;

提取每个编码器分组的一部分,以获得提取信息;

对所述提取信息进行编码,以生成多行冗余信息;

将所述多行冗余信息增加到所述编码器分组中,以生成具有所述可变行尺寸的外部码块;以及发送所述编码器分组。

56.如权利要求55所述的方法,其中,基于收到的用户信息量确定可变的外部码块行尺寸包括:一旦收到所有行用户信息或者确定将要生成所述外部码块,就基于收到的用户信息量,从多个预定的外部码块行尺寸中确定一个可变的外部码块行尺寸,该可变的外部码块行尺寸使非用户信息占用的所述外部码块的部分实现最小化,从而降低用户信息速率。

57.如权利要求55所述的方法,其中,基于收到的用户信息量确定可变的外部码块行尺寸包括:一旦收到所有行用户信息,就基于收到的用户信息量,确定一个使所述多行用户信息完全占用所述编码器分组的可变外部码块行尺寸,其中,在一个传输时间间隔内发送的所述外部码块的尺寸基于所述外部码块行尺寸而改变。

58.一种用于接收用户信息的方法,包括:

接收包括多行信息块的外部码块,其中,所述多行信息块各包括一行用户信息的至少一部分,其中,每行信息块的尺寸是固定的,且占用一个传输时间间隔(TTI);

使用多行冗余信息,对所述外部码块进行解码,以生成包括信息块和长度指示符的完整编码器分组,其中,所述信息块没有差错;以及使用每个信息块中的至少一个长度指示符,确定一行用户信息在所述信息块占用的外部码块行内结束于何处,并将所述信息块分成多行用户信息。

59.一种用于接收用户信息的方法,包括:

接收包括多行信息块的外部码块,其中,所述多行信息块各包括一行用户信息的至少一部分,其中,每行信息块的尺寸是可变的,并且,所述多行用户信息完全占用所述多行信息块;

使用多行冗余信息,对所述外部码块进行解码,以生成包括信息块和长度指示符的完整编码器分组,其中,所述信息块没有差错;以及使用每个信息块中的至少一个长度指示符,确定一行用户信息在所述信息块占用的外部码块行内结束于何处;以及将所述信息块分成多行用户信息。

60.一种点到多点(PTM)传输系统,其能够实现可变速率传输、乱序接收以及对可变速率信源的点到多点(PTM)传输进行分割和串接,包括:网络,该网络包括:

接收机缓冲器,存储前向纠错FEC服务数据单元SDU;

分割与串接实体,将前向纠错FEC服务数据单元SDU分割和串接成编码器矩阵的多行,该编码器矩阵包括第一多个信息行,其中,所述编码器矩阵的每行占用一个独立的传输时间间隔;

调度实体,一旦收到预定量的数据,就生成一个启动编码的启动命令,从而减少在编码期间向编码器分组的每行中添加的填补信息;

异步外部编码器,响应于所述启动命令,生成编码器分组,其中,每个编码器分组包括第一多个信息行、第二多个奇偶校验行和位于所述编码器分组末端的填补信息;

序列发生器,在执行外部编码之后,向所述编码器分组的每行添加包括序号的外部报头;以及发送缓冲器,接收所述编码器分组,将它们格式化成混合码块,并通过无线接口发送所述混合码块。

61.如权利要求60所述的系统,还包括:

终端,接收所述混合码块,包括:

接收单元,积累多行所述编码器分组,并将解码延迟第一和第二逻辑流之间的时间偏移量;其中,所述接收单元响应于所述序号,确定每个前向纠错FEC协议数据单元PDU属于哪个编码器分组以及每个前向纠错FEC协议数据单元PDU在所述编码器分组中的位置,从而,所述接收单元使用所述序号,执行所述接收块的重复检测和重新排序;

去除单元,去除所述序号;

外部解码器,对所述信息行进行解码;以及

发送缓冲器,重组所述信息行。

62.如权利要求61所述的系统,其中,所述序号发生器添加一个内部报头,该内部报头提供用于重建所述服务数据单元SDU的信息,其中,将所述报头编入长度指示符LI,该长度指示符被包括在它所涉及的无线链路控制协议数据单元RLC-PDU中,其中,所述无线链路控制协议数据单元RLC-PDU的序号报头中的一个标志位表示是否存在第一长度指示符LI。

63.如权利要求62所述的系统,其中,所述内部报头添加在所述编码器分组的开始处。

64.如权利要求63所述的系统,其中,所述内部报头添加在每个编码器分组行的开始处。

65.如权利要求60所述的系统,其中,每个编码器分组行包括前向纠错FEC协议数据单元PDU、奇偶校验块和/或填补信息。

66.如权利要求60所述的系统,其中,所述编码器分组的行尺寸是可变的。

67.如权利要求60所述的系统,其中,所述编码器分组的行尺寸具有固定的尺寸。

68.如权利要求60所述的系统,其中,所述序号标识所述特定编码器分组EP以及该编码器分组EP内的协议数据单元PDU。

说明书 :

发明领域

本发明一般涉及通信系统,尤其涉及广播和多播内容的传送。

技术背景

过去,无线通信系统用来承载话音业务和低数据速率的非话音业务。今天,所实现的无线通信系统还需要承载高数据速率(HDR)多媒体业务,如视频、数据和其他类型的业务。多媒体广播多播服务(MBMS)信道可用来传输基于话音、音频和视频数据源的流式应用,如无线电广播、电视广播、电影以及其他类型的音频或视频内容。流式数据源可以容忍延迟和一定量的损失或比特差错,因为这些信源有时断断续续并且通常是压缩的。因此,到达无线接入网(RAN)的传输的数据速率可能变数很大。因为应用缓冲器通常是有限的,所以,需要支持可变信源数据速率的MBMS传输机制。

通常,基站通过发送信息信号,向用户站提供这样的多媒体通信服务,信息信号常可被组织成多个分组。一个分组可以是一组字节,包括排列成特定格式的数据(负荷)和控制元素。控制元素可以包括,例如,前导码和质量度量标准,质量度量标准可以包括循环冗余校验(CRC)、奇偶校验位和其他类型的度量标准。根据通信信道结构,通常将多个分组格式化成一条消息。该消息在发起终端和目的终端之间传播,并且,可能会受到通信信道特性的影响,例如信噪比、衰落、时间变化以及其他这样的特性。这些特性在不同的通信信道中对调制信号产生不同的影响。在其他考虑中,通过无线通信信道传输调制信息信号需要选择适当的方法,以便于保护调制信号中的信息。这样的方法包括,例如,编码、符号重复、交织以及本领域技术人员所知的其他方法。但是,这些方法会增加开销。因此,必须在消息传送的可靠性和开销量之间做出工程折衷。

运营商通常根据对接收MBMS内容感兴趣的用户站或用户设备(UE),在逐个蜂窝的基础上,选择点到点(PTP)连接或点到多点(PTM)连接。

点到点(PTP)传输使用专用信道,将服务发送给覆盖区域中所选的用户。“专用”信道承载来自单个用户站的信息/发往单个用户站的信息。在点到点(PTP)传输中,可以使用单个信道向每个移动站进行传输。在前向链路或下行链路方向,例如,通过名为专用业务信道(DTCH)的逻辑信道,可以发送一种用户服务的专用用户业务流。点到点(PTP)通信服务通常是最高效的,例如,如果覆盖区域内要求特定广播多播服务(MBMS)的用户不太多的话。在这种情况下,可以采用点到点(PTP)传输,其中,基站仅向请求了该服务的特定用户发送该服务。例如,在WCDMA系统中,在超过预定数量的移动站之前,使用专用信道或点到点(PTP)传输更高效。

“广播通信”或“点到多点(PTM)通信”是通过一条公共通信信道向多个移动站进行的通信。一条“公共”信道承载来自多个用户站的信息/发往多个用户站的信息,因此可同时由数个终端使用。在点到多点(PTM)通信服务中,例如,如果请求某一服务的用户数量超过了基站覆盖区域内的特定门限数量,则蜂窝基站可以在一条公共信道上广播多媒体通信服务。在CDMA 2000系统中,通常用广播或点到多点(PTM)传输来取代PtP传输,因为PtM无线载体(radiobearer)几乎与PtP无线载体一样地高效。来自一个特定基站的公共信道传输不必与来自其他基站的公共信道传输同步。在一个典型的广播系统中,一个或多个中央站向一个广播网内的用户提供内容。中央站可以向所有用户站或一组特定的用户站发送信息。对某一广播服务感兴趣的每个用户站监视公共前向链路信号。可以在下行链路或前向公共链路上发送点到多点(PTM)传输。该公共广播前向链路信号通常在单向信道上广播,如存在于前向链路或“下行链路”方向的公共业务信道(CTCH)。由于该信道是单向的,所以,用户站通常不与基站通信,因为允许所有用户单元向基站回传信息可能会使通信系统超载。因此,对于点到多点(PTM)通信服务,当用户站接收的信息中有差错时,用户站可能无法向基站回传信息。因此,其他信息保护手段可能会更好。

在CDMA 2000系统中,用户站可以在点到多点(PTM)传输中进行软组合(soft combine)。即使采取了保护信息信号的措施,通信信道的状况也可能下降,从而导致目的站无法对通过专用信道传输的一些分组进行解码。在这种情况下,一种解决办法是:通过使用目的(用户)站向发起站(基站)发出的自动重传请求(ARQ),简单地重传未解码的分组。重传有助于保证数据分组的传送。如果无法正确传送数据,则可以通知发送端中的RLC用户。

在很多情形中,用户站通常要进行转换。这些转换可以按照不同的方式进行分类。例如,转换可分为“交叉转换”和“直接转换”。转换也可以分为“蜂窝内”转换和“蜂窝间”转换。

蜂窝之间或传输机制之间的转换可能会导致服务中断,这不是用户所期望的。当用户站或用户设备(UE)从一个蜂窝移动到另一个蜂窝时或者多媒体广播多播服务(MBMS)内容传送在服务蜂窝内从一种模式变成另一种模式时,可能会出现问题。来自相邻蜂窝的传输彼此之间可能会有时间偏移量Δt1。此外,在转换期间可能会引入附加的延迟,因为移动站需要确定目标蜂窝中的系统信息,这需要特定量的处理时间At2。从不同蜂窝(或不同传输信道类型的点到点(PTP)/点到多点(PTM))传输的数据流相互之间存在偏移。因此,在从不同蜂窝进行点到多点(PTM)传输期间,移动站可能会两次收到相同的内容块,或者,可能会丢失有些内容块,就服务质量而言,这些不是所期望的。蜂窝之间和/或点到点(PTP)传输和点到多点(PTM)传输之间的转换,可能会导致服务的中断,这取决于转换的持续时间和传输之间的延迟或失准。

因此,本领域中需要能够提高服务连续性和减少在内容传送期间当用户设备(UE)从一个蜂窝移动到另一蜂窝时出现的转换所导致的或者内容传送在同一服务蜂窝从点到点(PTP)连接变成点到多点(PTM)连接和从点到多点(PTM)连接变成点到点(PTP)连接时出现的转换所导致的中断的传输技术。优选情况下,这些传输技术能够实现跨越蜂窝边界和/或在诸如点到多点(PTM)和点到点(PTP)之类的不同传输机制之间的无缝内容传送。人们还希望获得在这些转换期间调整不同流和从各数据块中恢复出内容从而确保在转换期间不丢失数据的机制。此外,人们还希望提供在接收终端中的解码期间重新校准数据的机制。

附图说明

图1是一个通信系统的示意图;
图2是UMTS信令协议栈的框图;
图3是UMTS协议栈的分组交换用户平面的框图;
图4是UMTS信令协议栈的接入层部分的框图;
图5A是UMTS信令协议栈的无线链路控制(RLC)层中使用的数据传输模式和各层中使用的不同信道的框图;
图5B是包括各种RLC数据传输模式的无线链路控制(RLC)层的体系结构的框图;
图5C是实现无线链路控制(RLC)确认模式(AM)的实体的框图;
图6是具有前向纠错层的修改UMTS协议栈的示意图;
图7A示出了包括前向纠错(FEC)层的接入层的协议结构的一个实施例;
图7B示出了包括前向纠错(FEC)层的接入层的协议结构的另一个实施例;
图8是信息块和与该信息块相对应的外部码块的示意图;
图9A是可应用于多媒体广播多播服务(MBMS)数据的外部码块结构的示意图;
图9B是图9A的外码码块结构的示意图,其中每个传输时间间隔(TTI)内发送多行;
图9C是图9A的外码码块结构的示意图,其中在多个传输时间间隔(TTI)内发送各行;
图10A和10B是前向纠错层生成的外部码块的示意图;
图11是在RLC UM+实体中使用的前向纠错(FEC)层的一个实施例;
图12A示出了根据外部码块的行尺寸固定的数据单元创建外部码块的编码过程;
图12B示出了图12A中的通过无线传输的信息示例;
图13示出了创建具有可变行尺寸的外部码块的过程;
图14是前向纠错(FEC)报头格式的一个实施例的示意图;
图15示出了使移动站将解码延迟不同逻辑流之间的时间偏移量的算法;
图16的示意图给出了当移动站在接收一个来自蜂窝A的点到多点(PTM)传输和接收另一个来自蜂窝B的点到多点(PTM)传输之间转换时移动站接收的外部码块之间的时间关系;
图17的示意图给出了当在点到多点(PTM)传输和点到点(PTP)传输之间出现转换时移动站接收的外部码块之间的时间关系;以及
图18的示意图给出了在一个来自无线网络控制器(RNC)A的点到点(PTP)传输和另一来自无线网络控制器(RNC)B的点到多点(PTM)传输之间进行转换或重新定位期间移动站收到的外部码块之间的时间关系。

具体实施方式

这里使用的“示例性的”一词意味着“用作例子、例证或说明”。这里被描述为“示例性”的任何实施例或设计不应被解释为比其他实施例或设计更优选或有优势。
在这里,术语“移动站”可以与术语“目的站”、“用户站”、“用户单元”、“终端”和“用户设备(UE)”互换地使用,并且在这里用于指硬件,如基站,诸如UMTS陆地无线接入网(UTRAN)之类的接入网与其通信。在UMTS系统中,用户设备(UE)是一种使用户能够访问UMTS网络服务的装置,优选还包括USIM,其包含用户的订购信息。移动站可以是移动的或静止的,并且,通常可以包括任何通话装置、数据装置或终端,其通过无线信道或有线信道进行通信,例如,使用光纤或同轴电缆。移动站可以位于包括但不限于PC、小型闪卡、外置或内置调制解调器或无线或有线电话等装置中。
术语“连接建立状态”指的是移动站在与基站建立活动业务信道连接的过程中所处的状态。
术语“业务状态”指的是移动站已经与基站建立了活动业务信道连接所处的状态。
这里使用的术语“通信信道”用于根据上下文表示物理信道或逻辑信道。
这里使用的术语“物理信道”指的是通过空中接口承载用户数据或控制信息的信道。物理信道是提供无线平台的“传输媒介”,其实际传输信息,且用于通过无线链路承载信令和用户数据。物理信道通常包括频率加扰码和信道化码的组合。在上行链路方向,也可以包括相对相位。基于移动站试图干什么,可以在上行链路方向中使用多个不同的物理信道。在UMTS系统中,术语“物理信道”也可能指在Uu接口上分配用于不同目的的不同种类的带宽。物理信道构成了用户设备(UE)域和网络接入域之间的Uu接口的物理存在。物理信道可以通过物理映射和用于通过空中接口传输数据的属性来定义。
这里使用的术语“传输信道”指的是对等物理层实体之间数据传输的通信路线。传输信道涉及信息传输方式。通常,有两种类型的传输信道,即:公共传输信道和专用传输信道。传输信道可通过如何在物理层上通过空中接口传输数据及其特性来进行定义,例如,是否使用专用或公共物理信道,或,复用逻辑信道。传输信道可用作物理层的服务接入点(SAP)。在UMTS系统中,传输信道描述了如何传输逻辑信道以及将这些信息流映射成物理信道。传输信道可用来在媒体接入控制(MAC)层和物理层(L1)之间承载信令和用户数据()。无线网络控制器(RNC)监视传输信道。通过可映射到物理信道的多个传输信道中的任意之一,信息从物理层传递到MAC层。
这里使用的术语“逻辑信道”指的是专用于特定类型信息传输的信息流或无线接口。逻辑信道与正在传输的信息有关。逻辑信道可以通过传输信息的类型来定义,例如,信令或用户数据,并且,可理解为网络和终端应当在不同时间点执行的不同任务。可将逻辑信道映射到传输信道,后者在移动站域和访问域之间执行实际的信息传输。信息经过逻辑信道传输,逻辑信道可通过传输信道映射,传输信道可映射到物理信道。
这里使用的术语“专用信道”指的是通常专用于或预留给特定用户的信道,其承载信息发向或来自特定移动站、用户单元或用户设备。专用信道通常承载指向给定用户的信息,包括实际服务的数据以及高层控制信息。专用信道可用特定频率上的特定代码来标识。专用信道可以双向的,从而潜在地支持反馈。
这里使用的术语“公共信道”指的是承载发向/来自多个移动站的信息的传输信道。在公共信道中,信息可在多个移动站之间共享。公共信道可以在一个蜂窝中的所有用户或一组用户之间划分。
这里使用的术语“点到点(PTP)通信”指的是通过专用物理通信信道到单个移动站传输的通信。
这里使用的术语“广播通信”或“点到多点(PTM)通信”指的是通过公共通信信道到多个移动站的通信。
这里使用的术语“反向链路或上行链路信道”指的是一条通信信道/链路,移动站通过它向无线接入网中的基站发送信号。该信道也可用于从移动站向移动基站或从移动基站向基站传输信号。
这里使用的术语“前向链路或下行链路信道”指的是一条通信信道/链路,无线接入网通过它向移动站发送信号。
这里使用的术语“传输时间间隔(TTI)”指的是数据从高层到达物理层的时间。传输时间间隔(TTI)可以表示传输块集(TBS)的到达间隔时间,并且,约等于物理层在无线接口上传输TBS的周期。可以对在一个TTI内在传输信道上发送的数据一起进行编码和交织。一个TTI可能横跨多个无线帧,并且可以是最小交织周期的整数倍。对于单个连接,可以复用到一起的不同传输信道的TTI的开始位置进行时间校准。多个TTI有一个公共开始点。在每个TTI内,媒体接入控制将一个传输块集传递到物理层。映射到相同物理信道上的不同传输信道可以具有不同的传输时间间隔(TTI)持续时间。在一个TTI内,可以发送多个PDU。
这里使用的术语“分组”指的是一组比特,包括以特定格式排列的数据或负载和控制元素。例如,控制元素可以包括前导码、质量度量标准和本领域技术人员所知的其他。例如,质量度量标准包括循环冗余码校验、奇偶比特和本领域技术人员所知的其他。
这里使用的术语“接入网”指的是用于接入网络所需的设备。接入网包括多个基站(BS)和一个或多个基站控制器(BSC)。接入网在多个用户站之间传输分组。接入网还可连接到接入网之外的其他网络,如企业内部网或互联网,并且,可以在接入终端和这些外部网络之间传输分组。在UMTS系统中,接入网可被称为UMTS陆地无线接入网(UTRAN)。
这里使用的术语“核心网”指的是交换和路由能力,对于电路交换(CS)域内的电路交换呼叫,用于连接到公共交换电话网(PSTN),或者,,对于分组交换(PS)域内的分组交换呼叫,用于连接到分组交换数据网(PSDN)。术语“核心网”还表示路由能力,用于移动和用户位置管理和认证服务。核心网包括用于交换和用户控制所需的网络元素。
这里使用的术语“基站”指的是“发起站”,其包括与移动站进行通信的硬件。在UMTS系统中,术语“节点B”可以与术语“基站”互换地使用。基站可以是固定的,也可以是移动的。
这里使用的术语“蜂窝”指的是硬件或地理覆盖区域,这取决于使用该术语的上下文。
这里使用的术语“服务数据单元(SDU)”指的是使用相关协议之上的协议交换的数据单元。
这里使用的术语“负载数据单元(PDU)”指的使是用相关协议之下的协议交换的数据单元。如果相关协议的身份不明确,则需要在名字中具体指出。例如,FEC-PDU是FEC层的PDU。
这里使用的术语“软切换”指的是在用户站和两个或更多个扇区之间的通信,其中,各扇区属于不同的蜂窝。这两个扇区都可以接收反向链路通信可,前向链路通信可同时承载在两个或多个扇区的前向链路上。
这里使用的术语“更软切换”指的是在用户站和两个或更多个扇区之间的通信,其中,各扇区属于相同的蜂窝。这两个扇区都可以接收反向链路通信可,前向链路通信可同时承载在这两个或多个扇区中之一的前向链路上。
这里使用的术语“删除信息(erasure)”指的是未能识别某一消息,也可用于表示可能在解码时丢失的一组比特。
可将术语“交叉转换(cross transition)”定义为:从点到点(PTP)传输变成点到多点(PTM)传输或从点到多点(PTM)传输变成点到点(PTP)传输的转换。四种可能的交叉转换是:从蜂窝A中的点到点(PTP)传输到蜂窝B中的点到多点(PTM)传输、从蜂窝A中的点到多点(PTM)传输到蜂窝B中的点到点(PTP)传输、从蜂窝A中的点到点(PTP)传输到蜂窝A中的点到多点(PTM)传输、从蜂窝A中的点到多点(PTM)传输到蜂窝A中的点到点(PTP)传输。
可将术语“直接转换(direct transition)”定义为:从一个点到点传输到另一点到点传输的转换,以及,从一个点到多点传输到另一点到多点传输的转换。两种可能的直接转换是从蜂窝A中的点到点(PTP)传输到蜂窝B中的点到点(PTP)传输和从蜂窝A中的点到多点(PTM)传输到蜂窝B中的点到多点(PTM)传输。
术语“蜂窝间转换”用于表示跨越蜂窝边界的转换。四种可能的蜂窝间转换是:从蜂窝A中的点到点(PTP)传输到蜂窝B中的点到点(PTP)传输、从蜂窝A中的点到多点(PTM)传输到蜂窝B中的点到多点(PTM)传输、从蜂窝A中的点到点(PTP)传输到蜂窝B中的点到多点(PTM)传输、从蜂窝A中的点到多点(PTM)传输到蜂窝B中的点到点(PTP)传输。通常,最频繁的转换是跨越蜂窝边界的从点到多点(PTM)传输到点到多点(PTM)传输的转换。
术语“蜂窝内转换”用于表示在一个蜂窝内从一种模式到另一种模式的转换。两种可能的蜂窝内转换是:从蜂窝A中的点到点(PTP)传输到蜂窝A中的点到多点(PTM)传输和从蜂窝A中的点到多点(PTM)传输到蜂窝A中的点到点(PTP)传输。
术语“无线载体(radio bearer)”用于表示第二层提供的一种服务,用于在用户设备(UE)和UMTS陆地无线接入网(UTRAN)之间传输用户数据。
在下面将要讨论的本发明实施例中,上面讨论的方面实现在WCDMA或UMTS通信系统中。图1-5C示出了传统UMTS或WCDMA系统的一些方面,其中,这里描述的本发明的方面只是出于说明、而非限制目的。应当理解的是,本发明的各方面也适用于其他承载话音和数据的系统,如GSM系统和CDMA 2000系统,其遵从“第三代合作伙伴计划(3GPP)”,包括在一组文档中,包括文档3G TS 25.211、3G TS 25.212、3G TS 25.213和3G TS 25.214(W-CDMA标准)或“TR-45.5 Physical Layer Standard for cdma2000 SpreadSpectrum Systems”(IS-2000标准)和GSM规范,如TS 04.08(theMobile radio interface layer 3 specification)和TS 05.01(Physical Layeron the Radio Path(General Description))。
例如,尽管在说明书指出无线接入网20可用通用陆地无线接入网(UTRAN)空中接口来实现,但是,在GSM/GPRS系统中,接入网20可能是GSM/EDGE无线接入网(GERAN),或者,在系统间情况下,它可以包括UTRAN空中接口的蜂窝和GSM/EDGE空中接口的蜂窝。
UMTS网络拓扑
图1是根据UMTS网络拓扑的通信系统的框图。UMTS系统包括用户设备(UE)10、接入网20和核心网30。UE 10连接到接入网20,接入网20连接到核心网30,核心网30可以连接到外部网络。
UE 10包括移动设备12和通用用户识别模块(USIM)14,包含用户的订购信息。Cu接口(未显示)是USIM14和移动设备12之间的电气接口。UE 10通常是让用户能够访问UMTS网络服务的设备。UE 10可以是诸如蜂窝电话之类的移动站、固定站或其他数据终端。例如,移动设备可以是无线终端,用于通过无线接口(Uu)进行无线通信。Uu接口是UE访问系统的固定部分所要经过的接口。USIM通常是驻留在“智能卡”或包括微处理器在内的其他逻辑卡上的应用。智能卡保存用户身份、执行认证算法,并存储加密密钥中的认证和终端所需的订购信息。
接入网20包括用于访问网络的无线设备。在WCDMA系统中,接入网20是通用陆地无线接入网(UTRAN)空中接口。UTRAN至少包括一个无线网络子系统(RNS),其包括至少一个基站或“节点B”22,连接到子少一个无线网络控制器(RNC)24。
RNC控制着UTRAN的无线资源。接入网20的RNC 24通过Iu接口,与核心网30通信。Uu接口26、Iu接口25、Iub接口和Iur接口可以实现来自不同厂商的设备间互联,且在3GPP标准中做了规定。无线网络控制器(RNC)的实现随厂商而变化,因此,会在下面做概括性的介绍。
无线网络控制器(RNC)24用作UMTS陆地无线接入网(UTRAN)的交换和控制单元,且位于Iub接口和Iu接口25之间。RNC是UTRAN向核心网30提供的所有服务的服务接入点,例如,到用户设备的连接的管理。Iub接口23连接节点B 22和无线网络控制器(RNC)24。Iu接口将UTRAN连接到核心网。无线网络控制器(RNC)提供Iu载体和基站之间的交换点。用户设备(UE)10可能有多个无线载体,位于它自己和无线网络控制器(RNC)24之间。无线载体涉及用户设备(UE)上下文,是Iub为安排用户设备(UE)和无线网络控制器(RNC)之间的公共连接和专用连接而需要的一组定义。各RNC 24通过可选的Iur接口可以相互通信,从而支持连接到不同节点22的蜂窝之间的软切换。因此,Iur接口可实现RNC间连接。在这种情况下,服务RNC维持到核心网30的Iu连接25,并执行选择器和外环功率控制功能,而偏移RNC经由一个或多个基站22,向移动站10传输可通过Iur接口交换的帧。
控制着一个节点B 22的RNC可被称为节点B的控制RNC,它控制着其蜂窝的负载和拥塞,还执行准入控制,以及对于要在这些蜂窝内建立的新无线链路分配代码。
RNC和基站(或节点B)可通过Iub接口23进行连接和通信。RNC控制着连接到特定RNC 24的各基站22的无线资源使用情况。各基站22控制着一个或多个蜂窝,并向移动站10提供无线链路。基站可执行接口处理,如信道编码和交织、速率适应和扩频。基站还执行基本的无线资源管理操作,如内环功率控制。基站22转换Iub接口23和Uu接口26之间的数据流。基站22还参与无线资源管理。空中接口Uu 26将各基站22连接到移动站10。这些基站负责一个或多个蜂窝中到移动站10的无线传输,以及,一个或多个蜂窝中来自移动站10的无线接收。
核心网30包括所有交换和路由能力,用于:(1)如果存在电路交换呼叫,则连接到PSTN 42,如果存在分组交换呼叫,则连接到分组数据网(PDN);(2)移动和用户位置管理;(3认证服务。核心网30可能包括本地位置寄存器(HLR)32、移动交换服务中心/拜访位置寄存器(MSC/VLR)34、网关移动交换中心(GMSC)36、服务通用分组无线服务支持节点(SGSN)38和网关GPRS支持节点(GGSN)40。
核心网30可以连接到外部的电路交换(CS)网络42,后者提供电路交换连接,如公共交换电话网(PSTN)或(ISDN),如果存在分组交换呼叫的话,或者,可以连接到PS网络44,如提供分组数据服务连接的互联网,其,如果存在分组交换呼叫的话。
UMTS信令协议栈
图2是UMTS信令协议栈110的框图。UMTS信令协议栈110包括接入层和非接入层(NAS)。
接入层(access statum)通常包括物理层120、第二层130以及无线资源控制(RRC)层160,第二层130包括媒体接入控制(MAC)层140和无线链路控制(RLC)层150。下面将详细说明接入层的各层。
UMTS非接入层(non-access statum)与GSM高层基本上相同,可分为电路交换部分170和分组交换部分180。电路交换部分170包括连接管理(CM)层172和移动管理(MM)层178。CM层172处理电路交换呼叫,且包括各种子层。呼叫控制(CC)子层174执行建立和释放等功能。补充业务(SS)子层176执行的功能如呼叫转移和三路呼叫。短消息服务(SMS)子层177执行短消息服务。MM层178处理电路交换呼叫的位置更新和认证。分组交换部分180包括会话管理(SM)子层182和GPRS移动管理(GMM)子层184。会话管理(SM)子层182通过执行建立和释放等功能,处理分组交换呼叫,还包括短消息服务(SMS)183。GMM子层184处理分组交换部件的位置更新和认证。
图3是UMTS协议栈的分组交换用户平面的框图。该栈包括访问层(AS)和非访问层(NAS)。NAS层包括应用层80和分组数据协议(PDP)层90。应用层80是在用户设备(UE)10和远程用户42之间提供的。PDP层90,如IP或PPP,是在GGSN 40和用户设备(UE)10之间提供的。低层分组协议(LLPP)39是在远程用户42和SGSN 38之间提供的。Iu接口协议25是在无线网络控制器(RNC)24和SGSN 38之间提供的,Iub接口协议是在无线网络控制器(RNC)24和节点B 22之间提供的。下面将描述AS层的其他部分。
接入层(AS)
图4是UMTS信令协议栈的接入层的框图。传统的接入层包括物理层(L1)120、数据链路层(L2)130(具有媒体接入控制(MAC)层140、无线链路控制(RLC)层150、分组数据会聚协议层156、广播/多播控制(BMC)层158等子层)以及无线资源控制(RRC)层160。下面进一步详细描述这些层。
无线载体在应用层和第二层(L2)130之间承载用户数据。控制平面信令161可用于所有UMTS特定控制信令,且包括信令载体中用于传输应用协议消息的应用协议。应用协议可用于建立到UE 10的载体。该用户平面传输由用户发送和接收的所有用户平面信息163,如话音呼叫中的编码话音或互联网连接中的分组。用户平面信息163承载数据流和这些数据流的数据载体。每个数据流可由专用于该接口的一个或多个帧协议来描述。
无线资源控制(RRC)层160是接入层的总体控制器,并配置接入层中的其他所有层。RRC层160生成控制平面信令161,后者控制无线链路控制单元152、物理层(L1)120、媒体接入控制(MAC)层140、无线链路控制(RLC)层150、分组数据会聚协议(PDCP)层156和广播/多播控制(BMC)层158。无线资源控制(RRC)层160确定要进行测量的类型,并报告这些测量结果。RRC层160还用作非接入层的控制和信令接口。
更具体地讲,RRC层160向所有用户设备(UE)10广播系统信息消息,系统信息消息包括接入层和非接入层信息元素。RRC层160建立、维护和释放UTRAN 20和UE 10之间的无线资源控制(RRC)连接。UE RRC请求连接,而UTRAN RRC建立和释放连接。RRC层160还建立、重新配置和释放UTRAN 20和UE 10之间的无线载体,由UTRAN 20启动这些操作。
RRC层160还处理用户设备(UE)10移动的各个方面。这些过程取决于UE状态、呼叫是电路交换还是分组交换呼叫以及新蜂窝的无线接入技术(RAT)。 RRC层160还寻呼UE 10。UTRAN RRC寻呼UE,而不管该UE正在监听的是寻呼信道还是寻呼指示信道。UE的RRC通知核心网(CN)30的上层。
数据链路层(L2)130包括媒体接入控制(MAC)子层140、无线链路控制(RLC)子层150、分组数据会聚协议(PDCP)子层156和广播/多播控制(BMC)子层158。
广播/多播控制(BMC)158通过适应来自无线接口上广播域的广播/多播服务,在无线接口上传送从蜂窝广播中心发出的消息。BMC协议158提供名为“无线载体”的服务,并存在于用户平面中。BMC协议158和RNC存储通过CBC-RNC接收的蜂窝广播消息,以进行受调度传输。在UTRAN一端,BMC 158基于可通过CBC-RNC接口(未显示)接收的消息,计算蜂窝广播服务所需的传输速率,并从RRC请求适当的CTCH/FACH资源。BMC协议158还通过CBC-RNC接口,接收调度信息以及各蜂窝广播消息。基于该调度信息,在UTRAN一端,BMC相应地生成受调度的消息和受调度的BMC消息序列。在用户设备一端,BMC估计调度消息,并向RRC指示调度参数,调度参数可被RRC用来配置低层的不连续接收。BMC还根据计划发送BMC消息,如调度和蜂窝广播消息。可以将不间断蜂窝广播消息传递到高层。UE 10和UTRAN 20之间的控制信令的一部分可以是无线资源控制(RRC)160消息,其承载着建立、修改和释放第二层协议130和第一层协议120实体所需的所有参数。RRC消息在它们的负载中承载着所有高层信令。无线资源控制(RRC)通过如测量、切换和蜂窝更新等信令,控制着用户设备在已连接模式下的移动。
分组数据会聚协议(PDCP)156存在于用户平面中,用于从PS域提供服务。PDCP提供的服务被称为无线载体。分组数据会聚协议(PDCP)提供报头压缩服务。对于通过无线发送IP分组的服务,分组数据会聚协议(PDCP)156包含的压缩方法可提供更好的频谱效率。可使用任何一种报头压缩算法。PDCP在发送实体中压缩冗余协议信息,并在接收实体中进行解压缩。报头压缩方法可以针对特定网络层、传输层或高层协议组合,例如TCP/IP和RTP/UDP/IP。PDCP还传输它从非接入层接收的形式为PDCP服务数据单元(SDU)的数据,并将其转发给RLC实体,反之亦然。PDCP还支持无损SRNS再定位。当PDCP使用具有顺序传递的确认模式(AM)RLC时,可以被配置为支持无损RSRNS再定位的PDCP具有协议数据单元(PDU)序号,在重定位期间,序号可以与未确认的PDCP分组一起转发到新的SRNC。
RLC层150通过服务接入点(SAP),为高层(例如,非接入层)提供服务,服务接入点(SAP)可被UE端的高层协议使用,也可被UTRAN端的[URNAP协议使用。服务接入点(SAP)描述RLC层如何处理分组。所有的高层信令,如移动管理、呼叫控制、会话管理等,都可以封装在RLC消息中,以便于经由无线接口传输。RLC层150包括各种无线链路控制实体152,它们经由承载信令信息和用户数据的逻辑信道连接到MAC层140。
在控制平面161上,RLC层可以使用RLC服务进行信令传输。
在用户平面163上,特定服务协议层PDCP或BMC或其他高层用户平面功能可以使用RLC服务。对于不使用PDCP 156或用户平面协议的服务,可将RLC服务称为控制平面161中的信令无线载体和用户平面163中的无线载体。换言之,RLC层150提供的服务在控制平面161中被称为信令无线载体(SRB),而在用户平面163中被称为无线载体(RB),如果该服务不能使用PDCP或BMC协议的话。否则,RB服务可由PDCP层156或BMC层158提供。
无线链路控制(RLC)层150对用户数据和控制数据执行组帧功能,其包括分割/串接和填充功能。对于控制平面161中的控制数据,RLC层150通常向无线资源控制(RRC)层160提供分割和重传服务,对于用户平面163中的用户数据,向应用层提供分割和重传服务。RLC层通常将变长高层协议数据单元(PDU)分割成更小的RLC协议数据单元(PDU),或者,将更小RLC协议数据单元(PDU)重组成变长高层协议数据单元(PDU)。一个无线链路控制(RLC)协议数据单元(PDU)通常承载一个PDU。例如,可以根据使用无线链路控制(RLC)的服务的最小可能比特率,设定无线链路控制(RLC)PDU尺寸。对于变速率服务,当使用的任何比特率高于最低比特率时,在一个传输时间间隔(TTI)内可传输多个无线链路控制(RLC)PDU,下面将对此进行讨论。RLC发送实体也执行串接。如果无线链路控制(RLC)服务数据单元(SDU)的内容没有填满整数个无线链路控制(RLC)PDU,则可以把下一无线链路控制(RLC)SDU的第一部分置入无线链路控制(RLC)PDU中,与前一RLC SDU的最后一段串接起来。RLC发送实体通常还执行填充功能。当待发送的剩余数据不能填满给定尺寸的无线链路控制(RLC)PDU时,该数据字段的剩余可用填补比特填满。根据下面结合图11-13所讨论的本发明的方面,例如,可以提供降低或消除所使用的填充量的技术。
RLC接收实体检测收到的重复无线链路控制(RLC)PDU,以确保将高层PDU中的结果传递曾经到高层。RLC层还控制RLC发送实体可以向RLC接收实体发送信息的速率。
图5A是在UMTS信令协议栈的无线链路控制(RLC)层中使用的数据传输模式的框图,该图示出了逻辑、传输和物理UMTS信道相对于接入层的可能映射。本领域技术人员应当理解,对于给定的用户设备(UE),不必同时定义所有的映射,可以同时执行一些映射的多个实例化。例如,话音呼叫可能使用三个专用业务信道(DTCH),这三个专用业务信道(DTCH)映射到三个专用信道(DCH)传输信道。此外,图5中所示的一些信道,如CPICH、SCH、DPCCH、AICH和PICH,存在于物理层环境中,并且,不承载高层信令或用户数据。这些信道的上下文可在物理层120(L1)中进行定义。
无线链路控制(RLC)层中的每个RLC实例可由无线资源控制(RRC)层160进行配置,从而工作于以下三种模式之一:透明模式(TM)、无确认模式(UM)或确认模式(AM),下面将结合图5B对其做出详细描述。这三种数据传输模式表示在哪种模式下为逻辑信道配置无线链路控制(RLC)。透明和无确认模式RLC实体被定义为单向的,而确认模式实体是双向的。通常,对于所有RLC模式,对物理层执行CRC差错检测,并将CRC检查结果与实际数据一起传递给RLC。根据各种模式的具体要求,这些模式执行RLC层150的一些或全部功能,包括分割、重组、串接、填充、重传控制、流量控制、重复检测、有序传递、错误检测和加密。这些功能还将在下面结合图5B和图5C做出更详细的说明。根据这里讨论的本发明的一个方面,可以提供一种新的无线链路控制(RLC)数据传输模式。
MAC层140通过逻辑信道为RLC层150提供服务,这些逻辑信道由所传输数据类型进行表征。媒体接入控制(MAC)层140将逻辑信道映射和复用成传输信道。MAC层140识别处于公共信道上的用户设备(UE)。MAC层140还将高层PDU复用成传输块,以通过公共信道传递到物理层,或者,将通过公共信道从物理层传递来的传输块解复用为高层PDU。MAC处理公共传输信道的业务复用,因为这不能在物理层中完成。当公共信道承载来自专用类型逻辑信道的数据时,媒体接入控制(MAC)报头包括UE的标识。MAC层还将高层PDU复用成传输块集,以通过专用传输信道传递到物理层,或者,将通过专用传输信道从物理层传递来的传输块集解复用为高层PDU。
MAC层140接收RLCPDU以及与RLC发送缓冲器中的数据量有关的信息。MAC层140将与传输信道相对应的数据量与RRC层160设定的门限进行比较。如果数据量太高或太低,则MAC向RRC发送关于业务流量状态的测量报告。RRC层160也可以请求MAC层140周期性地发送这些测量结果。RRC层160使用这些报告,触发无线载体和/或传输信道的重新配置。
MAC层还根据逻辑信道的瞬时信源速率,为每个传输信道选择合适的传输格式(TF)。通过为不同数据流选择“高比特率”和“低比特率”传输格式(TF),MAC层140提供数据流的优先级处理。分组交换(PS)数据内在就是突发式的,因此要发送的数据量随帧而变化。当有较多数据时,MAC层140可以选择一种较高的数据速率,但是,当信令和用户数据都存在时,MAC层140在它们之间进行选择,以提高从较高优先级信道发送的数据量。可以根据传输格式组合(TFC)选择传输格式(TF),根据传输格式组合(TFC)可由每个连接的接纳控制来定义。
媒体接入控制(MAC)层还执行加密。可以对每个无线载体进行单独地加密。3GPP TS 33.102中对加密做了详细说明。
在诸如WCDMA之类的系统中,有三种类型的传输信道可用于传输分组数据。这些信道是公共传输信道、专用传输信道和共享传输信道。在下行链路中,传输信道分组数据是由分组调度算法来选择的。在上行链路中,传输信道由移动站10根据分组调度算法设定的参数来选择。
公共信道可以是,例如,上行链路中的随机接入信道RACH和下行链路中的前向接入信道FACH。它们都承载信令数据和用户数据。公共信道具有很低的建立时间。因为在连接建立之前公共信道就可用于传输信令,所以,公共信道可用于立即发送分组,而没有任何长的建立时间。通常,每个扇区都有几个RACH或FACH。公共信道没有反馈信道,因此,通常使用开环功率控制或固定功率。此外,公共信道不能使用软切换。因此,公共信道的链路等级性能不如专用信道,并且,会比专用信道产生更多的干扰。因此,公共信道更适合传输小的单独分组。在公共信道中使用的应用如短消息服务和短文本电子邮件等应用。向网页发送单个请求也适合公共信道的概念,但是,对于较大的数据量,公共信道的无线性能很差。
专用信道可以使用快速功率控制和软切换特征,从而提高无线性能,并且,产生的干扰通常少于公共信道。但是,建立专用信道所花费的时间多于接入公共信道。专用信道可以具有可变的比特速率,从每秒数K字节到高达每秒2M字节。因为在传输期间比特速率会变化,所以,必须根据最高比特率来分配下行链路正交码。因此,可变比特率专用信道消耗宝贵的下行链路正交码空间。
物理层(L1)120通过承载有信令信息和用户数据的传输信道连接到MAC层140。物理层120通过传输信道向MAC层提供服务,其特征在于如何传输数据及其特征。
物理层(L1)120经由物理信道,通过无线链路接收到信令和用户数据。物理层(L1)通常执行复用和信道编码,包括CRC计算、前向纠错(FEC)、速率匹配、交织传输信道数据和复用传输信道数据,以及其他的物理层过程,如获取、接入、寻呼和无线链路建立/失败。物理层(L1)还负责扩频和加扰、调制、测量、发射分集、功率加权、切换、压缩模式和功率控制。
图5B是无线链路控制(RLC)层的体系结构的框图。如前所述,无线资源控制(RLC)层150可将无线链路控制(RLC)层150中的每个RLC实体或实例152配置为工作于三种数据传输模式之一:透明模式(TM)、无确认模式(UM)或确认模式(AM)。用户数据的数据传输模式由服务质量(QoS)设置进行控制。
TM是单向的,包括发送TM实体152A和接收TM实体152B。在透明模式下,不向高层数据中添加协议次序。可以丢弃出错的协议数据单元(PDU)或将其标为出错。可使用流式传输,其中,高层数据通常不是分段的,但在特殊情形中,也可实现传输有限分割/重组能力。当使用分割/重组时,可以在无线载体建立过程中协商这一点。
UM也是单向的,包括发送TM实体152C和接收TM实体152D。UM RLC实体被定义为单向的,因为上行链路和下行链路之间不需要任何关联。在UM中,数据传递是没有保证的。例如,UM可用于特定的RRC信令过程,其中,确认和重传不是RRC过程的一部分。利用无确认模式RLC的用户服务的例子是蜂窝广播服务和VOIP。可以标注出错的数据,或将其丢弃,这取决于配置。可以应用没有明确信令功能的基于计时器的丢弃,从而可以从发送缓冲器中简单地删除在特定时间内无法发送出去的RLC PDU。在无确认数据传输模式下,PDU结构包括序号,因此可以执行序号检查。序号检查有助于保证重组PDU的完整性,因此,提供了一种检测手段,当将无线链路控制(RLC)PDU重组成一个无线链路控制(RLC)SDU时,通过检查无线链路控制(RLC)PDU中的序号,检测出错的无线链路控制(RLC)SDU。可以丢弃任何出错的无线链路控制(RLC)SDU。在无确认模式(UM)下也可以提供分割和串接。
在确认模式下,RLC AM实体是双向的,并且能够在相反方向中将链路状态指示捎带到用户数据中。图5C的框图中所示的实体用于实现无线链路控制(RLC)确认模式(AM)实体以及如何构建AMPDU。可将经由AM-SAP从高层接收的数据分组(RLC SDU)分割和/或串接514成固定长度的协议数据单元(PDU)。协议数据单元的长度是在无线载体建立过程中确定的半静态值,可通过RRC无线载体重新配置过程来改变。出于串接或填补目的,可将承载长度和扩展有关信息的比特插入最后一个协议数据单元的开始或可以包括来自SDU的数据。如果多个SDU填满一个PDU,则可以把它们串接起来,将一个合适的长度指示符(LI)插入PDU的开始。然后,可以将PDU置入发送缓冲器520中,发送缓冲器520还负责重传管理。
从发送缓冲器520中取出一个PDU,为其添加报头,就可以构造出PDU。如果PDU中的数据没有填满整个RLC PDU,可以添加填补字段或捎带状态消息。捎带状态消息可以来自接收端或发送端,以指示RLC SDU丢弃。报头包含RLC PDU序号(SN)、可用于从对等方实体请求状态的轮询比特(P),可选地还包括长度指示符(LI),如果在RLC PDU中串接SDU、填补信息或捎带PDU,则可以使用它。
确认模式(AM)通常用于分组类型服务,如互联网浏览和电子邮件下载。在确认模式中,可使用自动重复请求(ARQ)机制来进行差错检测。可以重传任何有错的分组。通过配置由RLC提供的多次重传,RRC可以控制RLC的质量与延迟性能。如果RLC无法正确传递数据,例如,如果已经达到了重传的最大数量或者如果超过了传输时间,则通知高层,可以丢弃无线链路控制(RLC)SDU。通过在一个状态消息中发送滑动接收窗口命令,也可以将SDU丢弃操作通知对等方实体,从而,接收机也删除所有属于被丢弃无线链路控制(RLC)SDU的PDU。
可将RLC配置用于有序(in-sequence)传送和乱序(out-of-sequence)传送。对于有序传送,可以维持高层PDU的次序,而乱序传递一旦完全接收到高层PDU,就将其转发出去。RLC层提供高层PDU的有序传递。该功能保存RLC提交以进行传输的高层PDU的次序。如果不使用该功能,则可以提供乱序传送。除数据PDU传送之外,也可以在对等RLC实体之间传送状态和复位控制过程。控制过程甚至还可以使用独立的逻辑信道,从而,一个AM RLC实体可使用一个或两个逻辑信道。
对于确认和无确认RLC模式,可以在RLC层中进行加密。在图5C中,除了包括PDU序号和轮询比特的前两个比特,对AM RLCPDU进行加密540。PDU序号是加密算法的一个输入参数,对于对等实体来说,它必须是可读的,从而执行加密。3GPP规范TS33.102描述了加密。
然后,可以通过逻辑信道,将PDU转发到MAC层140。在图5C中,额外的逻辑信道(DCCH/DTCH)用虚线表示,这说明一个RLC实体可被配置为使用不同逻辑信道发送控制PDU和数据PDU。AM实体的接收端530通过一条逻辑信道,从MAC层接收RLC AMPDU。用物理层CRC可以检查差错,物理层CRC可通过对整个RLCPDU计算而得出。实际的CRC检查可以在物理层中执行,并且,在对整个报头进行解密之后,RLC实体接收CRC检查结果以及数据,可能的捎带状态信息可以从RLC PDU中提取出来。如果收到的PDU是强消息或者如果状态信息被捎带到AM PDU中,则可将控制信息(状态消息)传递到发送端,发送端检查发送缓冲器,将其与收到的状态信息对比。来自RLC报头的PDU号用于解密550,还在当将加密的PDU存储到接收缓冲器中时使用。一旦属于完整SDU的全部PDU都处于接收缓冲器中时,就可以重组出SDU。尽管图中没有显示,但在将RLC SDU传送到高层之前,也可以执行有序传递的检查和重复检测。
当用户设备(UE)或移动站在PTM传输和点到点(PTP)传输之间转换(或改变蜂窝)时,重新初始化RLC实体152。这可能很不利地导致无线链路控制(RLC)缓冲器中所有数据的丢失。如上所述,当移动站从一个蜂窝移动到另一蜂窝时或者当多媒体广播多播服务(MBMS)内容传递在服务蜂窝中从点到点(PTP)传输模式改变为点到多点(PTM)传输时,可能会出现问题。
所期望的是,保持多媒体广播多播服务(MBMS)在点到点(PTP)传输和点到多点(PTM)传输之间的转换期间的连续性,或在不同蜂窝之间(如,切换)出现的转换期间的连续性,并避免提交重复信息。为了保持MBMS服务的连续性和避免提交重复信息,第二层150应该能够对来自两个流的数据进行重新校准。物理层无法提供这种同步,因为网络终结点可能在各种模式下不同。如果在RLC层150之下执行前向纠错(FEC),在3GPP2中就如此,则数据在点到点(PTP)传输和点到多点(PTM)传输之间的任何转换期间都可能丢失,反之亦然。此外,这需要物理层同步和在多个蜂窝(如具有共同调度)之间共享相同的媒体接入控制(MAC)。因此,在这样的假设不适用的3GPP2中,这可能会导致问题。
点到点(PTP)传输
假设应用具有很强的延迟容忍,则用于点到点(PTP)传输的最高效数据传输模式为无线链路控制(RLC)确认模式(AM)。例如,RLC确认模式(AM)通常用于专用逻辑信道(PTP)上的分组交换数据传输。RLC工作于专用逻辑信道上的确认模式(AM)。如图5A所示,可以通过名为专用业务信道(DTCH)的逻辑信道,发送下行链路方向中一个用户业务的专用用户业务。
在确认模式(AM)下,如果数据出现差错,反向链路可用于重传请求。RLC发送业务数据单元(SDU),并通过重传,确保传输到其对等实体。如果RLC无法正确传递数据,则通知发送端的RLC用户。工作于RLC AM下通常是明显省电的,但代价却是会引入附加的延迟。
点到多点(PTM)传输
公共业务信道(CTCH)是存在于下行链路方向中的单向信道,当向所有终端或一组特定终端发送信息时,可以使用它。两种数据传输模式都使用单向公共信道,单向公共信道没有反向链路信道建立。
所期望的是提供一种能够使MBMS服务在点到点(PTP)和点到多点(PTM)传输模式之间透明地切换的结构。为了在点到点(PTP)和点到多点(PTM)传输模式之间转换时获得良好的性能,还期望提供一种实现不同无线链路控制(RLC)模式之间切换的结构。例如,这可能有助于降低功率要求。
下面结合图6至图19所示的实施例,描述本发明的各个方面。通过使用新的前向纠错(FEC)层,这些特征有助于保证在这些转换期间的服务连续性。
图6是具有前向纠错层的修改UMTS协议栈的示意图,其工作于前向纠错(FECd)模式和前向纠错(FECc)模式下。当用户设备(UE)从点到点(PTP)传输改变为点到多点(PTM)传输时,前向纠错(FEC)层使得下面的无线链路控制(RLC)实体152能够从一种无线链路控制(RLC)数据传输模式改变到另一种无线链路控制(RLC)数据传输模式,同时维持服务的连续性。根据该实施例,FEC可以工作于第一模式(FECc)或第二模式(FECd)下。在一种实现方式中,第一模式(FECc)可以利用奇偶块,而第二模式(FECd)可以在没有奇偶块的情况下工作。在FECd和FECc模式之间改变的影响可能远低于在RLC模式之间改变,并且可以是无缝的,从而在转换期间不发生数据丢失。
为了保护用户数据,前向纠错(FECc)模式可以利用外部编码技术。这在公共信道上尤其有效。前向纠错(FECc)模式通常能够在无线链路控制(RLC)层之上实现无确认模式(UM)下的功能,如组帧(分割和串接)以及序号添加。因此,无线链路控制(RLC)层可以使用透明模式(TM)进行点到多点(PTM)传输,因为,可以在前向纠错(FEC)层中执行传统的无确认模式(UM)功能。尽管在无线链路控制(RLC)确认模式(AM)下该功能可能是重复的,但由ARQ所得的好处弥补该重复。
通过将前向纠错(FEC)层或外部编码层置于无线链路控制(RLC)层之上,可以将序号添加在独立于无线链路控制(RLC)的层中。将附加的开销,例如序号,用于未确认传输,可以将协议数据单元(PDU)和编码器分组(EP)在MBMS数据的异步传输期间进行重新校准。因为序号所添加到的层高于无线链路控制(RLC),所以,点到点(PTP)传输和点到多点(PTM)传输的序号是相同的,因此,当从点到多点(PTM)传输转换为点到点(PTP)传输时,可以维持序号的连续性。这使得数据能得到重新校准,从而可以避免数据的重复和/丢失数据。
外部编码也可用于点到多点(PTM)传输,它能够潜在地为系统节省一些功率和/或降低重传的延迟。多媒体广播多播服务(MBMS)数据在一定程度上可以容忍延迟。在点到点(PTP)传输中,提供了一条反馈路径。由于在必要情况下使用了ARQ重传,这使得使用无线链路控制(RLC)确认模式(AM)更高效,重传通常在无线电效率方面高于FEC机制,在FEC机制中,一直发送附加的奇偶块。因此,在诸如点到点(PTP)之类的专用逻辑信道上,不必向MBMS负荷数据添加奇偶块。
图7A和7B示出了接入层的协议结构的实施例,其包括设置在无线链路控制(RLC)层150之上的前向纠错(FEC)层157。后面还将结合图11描述前向纠错(FEC)层的实施例。
前向纠错(FEC)层157直接通过用户平面无线载体接收用户平面信息163。因为前向纠错(FEC)层位于无线链路控制(RLC)层之上,所以,FEC协议数据单元(PDU)对应于RLC服务数据单元
(SDU)。FEC层优选支持任意SDU尺寸(限于8比特的整数倍)、可变速率信源、来自低层的分组的乱序接收和来自低层的重复分组的接收。可将FEC PDU尺寸限于8比特的整数倍。
FEC层157将用户数据的高层块,如SDU,分割和串接成相同尺寸行,下面还将结合图9A对此做出更详细描述。每行也可被称为内部块。每个协议数据单元(PDU)可以包括开销。开销可以包括长度指示符(LI),长度指示符(LI)表示最后一个协议数据单元(PDU)的开始,由此可以定位来自用户数据特定块的数据,如服务数据单元(SDU)。PDU的集合构成一个编码器分组(EP)或“编码器矩阵”。编码器分组(EP)中包括的PDU的数量取决于所使用的外部码等。将每个编码器“矩阵”行打包到一个独立或分离的传输时间间隔(TTI)中,能够增强物理层性能。为了降低缓冲负担,可以使用较短的传输时间间隔(TTI)持续时间。
然后,可以通过外部码编码器传递编码器分组(EP),以生成奇偶行。FEC层157通过在UMTS陆地无线接入网(UTRAN)20中提    供里德-索罗门(RS)编码器的功能,可以执行外部编码,并且通过在用户设备(UE)10中提供里德-索罗门解码器的功能,可以执行外部解码,下面还将结合图9A对此做出更详细的说明。
可以把外部编码器产生的奇偶行添加到编码器分组(EP)中,并置入发送缓冲器中,作为一组内部块。每个内部块都有添加到其中从而产生协议数据单元(PDU)的信息。然后,可以传输该组PDU。
该FEC层157还能够恢复属于单个EP的数据,即使收到的不同内部块来自不同蜂窝。这可以通过在每个协议数据单元(PDU)的报头中发送序号(SN)来实现。在一个实施例中,系统帧编号(SFN)有助于相对编码器分组(EP)维持数据校准。例如,下面还将结合图10A和10B,对贯穿全文的序号做出更详细的说明。
FEC层157还可以执行填补和重组、用户数据的传输,以及执行高层PDU的有序传送、重复检测和序号检查。
在图6至图7A所示的实施例中,前向纠错(FEC)层157位于分组数据会聚协议(PDCP)层156和无线链路控制(RLC)层150之间(例如,与BMC层处于相同的层,且在分组数据会聚协议(PDCP)层之下)。通过将前向纠错(FEC)层157刚好设置在无线链路控制(RLC)层150之上,可以优化外部码的性能,因为,内部块尺寸与通过无线发送的分组的“金(gold)”分组尺寸相匹配。然而,应当理解的是,这里给出的前向纠错(FEC)层仅仅出于说明目的、而不具有限制性意味。为了其报头压缩能力,可以在前向纠错(FEC)层157之上使用分组数据会聚协议(PDCP)层156。应当注意的是,分组数据会聚协议(PDCP)层156是为使用专用逻辑信道的点到点(PTP)传输而当前定义的。如图7B所示,前向纠错(FEC)层可以位于接入层中的任何地方,在无线链路控制(RLC)层上或应用层中。前向纠错(FEC)层可以在分组数据会聚协议(PDCP)层之上或之下。如果在应用层80中执行FEC,则其同样适用于GSM和WCDMA,即便这二者的“金”分组尺寸不同。
外部码设计
新的前向纠错(FEC)层能够对用户平面信息执行外部编码。图8中的信息块91和外部码块95示出了外部块码结构的概念。图9A示出了如何将外部码块结构应用于多媒体广播多播服务(MBMS)数据91的示例。当在整个蜂窝内广播容忍延迟的内容时,外部编码可以提高物理层性能。例如,外部码能够有助于避免蜂窝转换期间和在点到多点(PTM)传输模式和点到点(PTP)传输模式之间转换期间的数据丢失。
外部码块95可用矩阵形式来表示,其包括k个协议数据单元91和N-k个奇偶行93。在外部块编码中,可以按照以下步骤,将数据组合成较大的编码器分组或信息块91:通过分割、串接和填补数据(包括将开销插入内部块中),将用户数据组织成k个负载行;然后,将所得的信息块91编码,以产生N-k个奇偶行93,可以把这N-k个奇偶行93添加到信息块91中,从而生成外部码块95。奇偶块93向信息块91添加了冗余信息。然后,外部码块的各行可通过单个或多个传输时间间隔(TTI)传输。该组协议数据单元(PDU)的冗余信息使得能够重建原始信息,即便在传输期间丢失了一些PDU。
图9A给出的示例性编码结构名为里德-索罗门(RS)块码。里德-索罗门(RS)码可用来检测和校正信道差错。图9A所示的外部码是一个系统的(n,k)块码,其中,每个里德-索罗门(RS)码符号包括用行和列定义的一个字节的信息。每个列包括一个里德-索罗门(RS)码字。如果要恢复n个丢失的分组,则需要至少n个奇偶块。因此,当奇偶块的数量增加时,所需的存储量也增加。在里德-索罗门(RS)编码中,可以向k个系统符号添加N-k个奇偶符号,从而产生一个码字。换言之,里德-索罗门(RS)码[N,k]的一个码字有k个信息或“系统”符号和N-k个奇偶符号。N是码长,k是码维数。对于每k个信息字节,该编码产生n个码符号,其中的前k个码符号与信息符号相同。每行可被称为一个“内部块”,并且表示每个传输时间间隔(TTI)内的负载。在常规的WCDMA系统中,例如,可以在20毫秒帧(TTI)的基本WCDMA结构上进行传输。奇偶符号可以使用生成矩阵Gk×N从系统符号中导出,如下定义:
m1×k·Gk×N=c1×N           (公式1)
m1×k=信息字=[m0m1...mk-1]  (公式2)
c1×N=码字=[c0c1...ck-1]    (公式3)
其中,mi、ci属于任意伽罗瓦域(Galois Field)。例如,如果一个里德-索罗门(RS)码字的符号是一个比特,则二维伽罗瓦域(GF(2))将用于描述解码操作。在一个实施例中,如果符号是一个字节,则256维的伽罗瓦域GF(256)可用于描述解码操作。在这种情况下,每个信息列包括每行中的一个字节。各信息列可用一个[N,k]里德-索罗门(RS)码在二维伽罗瓦域(GF(2))内进行编码。如果每行有M个字节,则对外部块编码M次。因此,每个外部块95有N*M个字节。
删除信息解码
外部码结构能够进行删除信息(erasure)校正。如果解码器已经知道哪些符号出错,则重建出错的系统符号需要较少的计算量。编码器分组(EP)或矩阵指的是外部编码器的输出端处的整个数据集。从每行中逐列地取出冗余信息,所传输的每行都附加有一个,必须检查CRC以确保数据是正确发送的。对于MBMS传输而言,每个传输信道块中都必须使用CRC,以表明内部块91是否出错,如果CRC失败,则可以认为该块中的所有符号都出错了。在一个实施例中,如果给定的内部块97出错,则可删除该块的所有比特。属于“删除信息”指的是CRC失败的出错块中的每一个符号。不是删除信息的符号可以被认为是正确的。忽略CRC未检测到差错的概率,每个N×1列包含正确的符号和删除的符号。
接收向量r可表示为:
r1×N=[c0,e,e,c3,e,c6,c8…cN-1]    (公式4)
其中,e表示删除信息。
删除信息编码能够校正最多N-k个出错符号。因为,不是删除信息的符号可以被认为是正确的,所以,RS码的纠错特性通常远好于典型的RS码。每个内部块中使用的CRC的尺寸应当大到足以确保未检测到的差错的概率不超过剩余外部块的概率。例如,如果内部块中使用的是16比特的CRC,则剩余外部块出错率的下界将是2-16=1.5.10-s。如果前k个内部块中没有差错,则不需要执行RS解码,因为系统符号与信息符号相同。
应当注意的是,一旦收到具有良好CRC的k个块,就可以立即执行外部块的解码,而不等待接收所有N个内部块。为了执行删除信息解码,通过删除所有与删除或不必要块相对应的列,可以从生成  矩阵Gk×N中导出修改后的生成矩阵Ωk×k,例如,只有前k个良好的接收符号可用于标识修改后的生成矩阵Ωk×k。原始的信息字m可如下恢每出来:
m1×k=[Ωk×k]-1·r1×k(公式5)
其中,是修改后的接收向量,它是用前k个良好符号获得的。因此,删除信息解码复杂度可以降低到k×k矩阵倒置。所以,使用RS删除信息解码能够极大地简化RS解码的计算复杂度。
数据打包对外部码性能的影响
就如同下面参照图11-13所讨论的那样,如果填补信息量和通过无线发送的开销由特定的外部编码机制限制,则外部编码可与变速率数据源结合起来使用,而不会导致太大的开销。在上述外部编码机制中,可以将数据打包成给定尺寸的块,并且,一个缩短的里德-索罗门码可以穿过这些块。可以按照至少两种不同的方式,将编码后的分组数据打包进TTI,下面将参照图9A和9B对此进行描述。
图9B是图9A的外码码块结构的示意图,其中在每个传输时间间隔(TTI)内可以发送多行。根据本发明的另一方面,来自一行的数据在一个TTI内传输。在另一实施例中,来自一个编码器分组(EP)的数据被放入一个TTI中,从而每个TTI包含来自该编码器分组(EP)的数据。因此,每行都可以在一个独立的WCDMA帧或传输时间间隔(TTI)内传输。在一个TTI内传输每行,将提供更好的性能。在图9B中,k和n都由每个TTI内的行数相除,一行中的误差可以被全部相关起来。当观察EP出错率相对TTI出错率时,这产生明显的差异。
图9C是图9A的外码码块结构的示意图,其中在多个传输时间间隔(TTI)内发送各行。应当理解的是,图9C示出了在四个TTI(TTI0-TTI3)内发送每行编码器分组(EP),但实际上,每行都可以通过任何数量的TTI发送。由于每列都是一个外部码码字,所以,四个不同传输阶段(TTI0-TTI3)中的每一个都得到一个独立的外部码。为了恢复整个分组,必须正确地对所有这些独立的外部码进行解码。
图10A和10B是由前向纠错层生成的外部码块的示意图。
通过向MBMS负载数据91添加奇偶行或块9 3,可以在公共或点到多点(PTM)逻辑信道上使用FECc模式来构建外部码块95。每个外部块95包括多个内部块91、93。通过识别内部块的序号及其相对于编码器分组的位置,可以将每个可用内部块放入正确的位置,从而可以正确地进行外部解码。在一个实施例中,每个内部块包括报头94,其用内部块编号m和外部块编号n来标识内部块。例如,外部块n包括:数据部分91,具有m个内部多媒体广播多播服务(MBMS)负载块;冗余部分93,具有M-(m+1)个内部奇偶块。根据该实施例,MBMS的序号空间可以得到优化,并可由多个不同的序号进行定义,如0至127。序号空间应当足够大,从而,在任何类型的转换导致的接收中断之后,不会出现相同的序号。接收UE应当能够确定内部块的次序,即便在有些块丢失的情况下。如果UE丢失的内部块太多而无法被整个序号空间识别,则UE无法对内部块进行正确重新排序。在FECd块和FECc块中,相同内部块的序号是相同的。FECd块不包括FECc中使用的冗余部分93。FECd实体和FECc实体可以使用通过无线的相同比特率。
发射端
发送前向纠错(FEC)实体410包括:服务数据单元(SDU)缓冲器412,用于接收SDU;分割和串接单元414;外部编码器416,其执行里德-索罗门(RS)编码;序号生成器418,其向编码的PDU添加序号;发送缓冲器420,其通过逻辑信道406发送PDU;调度单元422。
服务数据单元(SDU)缓冲器412通过无线载体402,接收用户数据(FEC SDU),其形式为服务数据单元(SDU),如箭头所示,并且,存储来自高层的FEC SDU。接收缓冲器412告诉调度单元422将要传输多少数据。
如上所述,填满编码器分组(EP)所需花费的时间量通常变化,因为信源数据速率通常变化。如图13所示,如果能够灵活地确定何时开始打包数据,则可以提高帧填充效率。基于接收FEC实体430的抖动容限,通过尽可能地延迟EP的创建,可以减少所引入的填补信息量。
调度实体422可以决定何时开始编码。优选情况下,调度器422基于特定服务的QoS情况,确定在需要发送一个分组之前可能要等待多久。一旦调度器422确定已经积累了足够的数据或者已经消耗了最大可接受分组传输延迟,就触发编码器分组(EP)91的创建。分割和串接单元414将服务数据单元(SDU)分割成多行,并生成长度指示符(LI)。
调度单元422优选决定EP或协议数据单元(PDU)的最佳行尺寸,从而使SDU正好填满这些数量的行(例如12)。当然,调度器422也可以从RRC配置的那些尺寸中选择将会导致最小可能填补的FEC PDU尺寸,并请求分割和串接功能单元414将SDU格式化成k块,尺寸为PDU_size-FEC_Header_size。这种格式化可以改变。下面参照图12-13讨论不同类型格式化的例子。要考虑的数据总量应当包括由串接和分割功能单元414加入的开销。为了生成编码器分组(EP),调度器422请求串接和分割功能单元414产生k个该尺寸的PDU。该尺寸包括重组信息。在一个实施例中,PDU的尺寸可以为8比特的整数倍,并且,连续PDU的数据对应于码字中不同符号。
然后,这k个PDU块可以经过外部编码器416,后者执行里德-索罗门(RS)编码。通过向编码器分组(EP)矩阵中生成和附加冗余或奇偶信息,外部编码器416对编码器分组(EP)矩阵中的数据进行编码,从而创建外部码块。在一个实施例中,可以假设外部码是一个(n,k)删除信息解码块码,并且外部编码器生成n-k个奇偶块。编码器对相同长度的k行信息执行编码,并将n个该尺寸的协议数据单元(PDU)传递到较低的子层。前k个块与它接收的块相同,后面的n-k个块对应于奇偶信息。
调度器422还监视PTM流的时间校准或相对时间,并执行传输,以调整不同逻辑流的校准。例如,在重新配置期间,可以调整PTP和PTM逻辑流之间的时间校准,以保证服务连续性。当这些流完全同步时,可以获得最佳的性能。
不同的基站(或不同传输模式,PTP、点到多点(PTM))传输相同的内容流,但是这些流可能没有校准。然而,如果这些数据流的编码器分组(EP)格式相同的话,则各流有关信息完全相同。通过向每个外部块添加序号,用户设备(UE)能够将两个流组合起来,因为用户设备(UE)知道这两个流之间的关系。
序号生成器418按照与在编码器416中用来创建PDU相同的顺序,在每个块的前面添加一个序号。在一个实施例中,例如,序号生成器在每个块的前面添加一个8比特序号,从而生成PDU。也可以向外部码块添加额外的开销信息。序号空间应当足够大,从而容纳流之间最坏情况的时间差异。因此,在另一实施例中,可以使用序号空间20,在序号的每个报头中至少预留5个比特。在执行里德-索罗门(RS)编码之后,可以向外部码块中添加该报头,因此该“外部”报头不受外部码的保护。优选情况下,还为奇偶块添加序号,即便它们无法被传送。在一个实施例中,序号相位可以与编码器分组边界对齐。序号翻滚(roll-over)对应于接收新的编码器分组。
前向纠错(FEC)报头格式
如上所述,数据流的同步可以通过引入序号来实现,所述序号包括与PDU排序相关联的信息。除了重新排序和重复检测,序号还能重新校准来自各编码器分组中包括的相应信源的数据。该序号可以明确标识各分组应当被考虑的次序。该序号可以构成一个“FEC报头”,在执行编码之后,可以将其添加到信息负载单元(PDU)和奇偶块中。序号不应当由外部码保护,因为它需要用于解码。
图14示出了前向纠错(FEC)报头格式的一个实施例。为了便于将数据和编码器分组(EP)校准,可以分割序号,以包括:预留部分(R)402;编码器分组(EP)部分404,其标识该EP(EPSN);附加的编码器分组,其标识编码器数据内特定内部块(IEPSN)406的位置。
所期望的是,FEC层400能够与所有无线链路控制(RLC)模式互操作。因为无线链路控制(RLC)AM和无线链路控制(RLC)UM都要求服务数据单元(SDU)的尺寸为8比特的整数倍,所以,FEC层400也应当遵循该要求。由于FEC层400基于数据的字节尺寸增量而工作,所以编码器分组(EP)行尺寸也需要是整数个字节。因此,FEC报头尺寸401也应当是8比特的整数倍,以使无线链路控制(RLC)可以接受FEC协议数据单元(PDU)尺寸。在一个实施例中,前向纠错(FEC)报头尺寸401是一个字节,其中,预留部分(R)402包括一个比特,标识EP的部分(EPSN)404包括3个比特,标识编码器分组内的PDU位置的IEP部分(IEPSN)406包括4个比特。在该实施例中,使用了8个比特的序号,因为,希望一个PDU在每个TTI内发送,并且因为,不希望不同蜂窝的传输时机偏差超过100毫秒。
发送缓冲器420存储PDU,直到积累了一帧数据为止。当请求PDU时,发送缓冲器420在无线接口(Uu)上,通过逻辑信道,向MAC层逐一地传输各帧。然后,MAC层通过传输信道,将PDU传送到物理层,在那里,最终将PDU传送到UE 10。
接收端
仍参照图11,接收前向纠错(FEC)实体430包括:接收缓冲器/重新排序/重复检测单元438;序号去除单元436;外部解码器434,其执行里德-索罗门(RS)解码;重组单元/服务数据单元(SDU)发送缓冲器432。
EP矩阵的信息行对应于PDU。为了支持外部编码,在触发外部解码之前,接收前向纠错(FEC)实体430积累一定数量的FEC PDU。为了实现连续的接收,尽管需要对编码器分组进行解码,用户设备(UE)缓存进入的协议数据单元(PDU),同时执行解码。
接收缓冲器438可以积累PDU,直到收到全部编码器分组(EP)为止,或者,直到调度单元(未显示)满意不存在编码器分组(EP)的重传为止。一旦确定不会再收到给定编码器分组的数据,就可以将丢失的PDU标识为删除信息。换言之,在解码过程中,未通过CRC测试的PDU将由删除信息代替。
因为有些块可能在传输过程中会被丢弃,并且还因为不同数据流可能具有不同的延迟,所以,接收前向纠错(FEC)实体430执行重复检测,并可能要在接收缓冲器/重新排序/重复检测单元438中将接收的块重新排序。可以使用每个FEC协议数据单元(PDU)中的序号,来协助进行重新排序/重复检测。在接收缓冲器438中可以使用序号,对收到的乱序数据进行重新排序。一旦对PDU进行了重新排序,重复检测单元就基于序号,检测编码器分组(EP)中的重复PDU,并去除所有重复。
然后,可以去除序号。序号去除单元436从编码器分组(EP)中去除序号,因为序号不能是发送给里德-索罗门(RS)解码器的块的一部分。
然后,可以将数据传递到外部解码功能部件434,以恢复丢失的信息。外部解码器434接收编码器分组(EP),并且,如果必要的话,通过使用奇偶信息,对编码器分组(EP)进行里德-索罗门(RS)解码,从而重新生成所有出错或丢失的行。例如,如果包含信息的所有k个协议数据单元(PDU)都未被正确接收或者n个PDU中少于k个未被正确接收,最多是奇偶PDU尺寸的协议数据单元(PDU),那么,可以执行外部解码,以恢复出丢失的信息PDU。只要执行外部解码,在接收机中就会有至少一个奇偶PDU可供使用。如果包含信息的所有k个协议数据单元(PDU)都被正确接收或者n个PDU中少于k个被正确接收,则解码是不必要的。然后,可以将信息协议数据单元(PDU)传递到重组功能部件432。
不管外部解码成功与否,都可以将信息行传递到重组单元/功能部件432。重组单元432使用长度指示符(LI),根据编码器分组(EP)的信息行,重组或重建SDU。一旦将SDU成功放在一起,协议数据单元(SDU)发送缓冲器432就通过无线载体440,将协议数据单元(SDU)传递给高层。
在接收前向纠错(FEC)实体430中,使UE延迟解码不同逻辑流之间的时间偏移量,这样可以使系统充分利用潜在的由于逻辑流之间缺乏同步所导致的乱序数据接收。这样,可以使切换期间的以及PTP和PTM之间的转换期间的服务很平滑。下面参照图15讨论如何让UE将解码延迟不同逻辑流之间的时间偏移量。    
编码器分组(EP)选项:固定或可变行尺寸
由于协议数据单元(PDU)不必在每个传输时间间隔(TTI)内连续发送,所以FEC或外部编码实体在何时构建协议数据单元(PDU)具有一定的灵活性。这样,可以提高帧填充效率和降低填补开销。
如果需要的话,外部编码实体可以在每个传输时间间隔(TTI)生成负载。因为可以从高层接收服务数据单元(SDU),所以可以实时地构建协议数据单元(PDU)。如果构建协议数据单元(PDU)的数据不够,则RLC可以增加填补信息。
固定行尺寸的编码器分组(EP)
当对SDU 201-204进行编码时,所期望的是,尽可能减少被传输的填补信息量。
在一个实施例中,编码器分组(EP)矩阵205的行尺寸是固定尺寸。根据编码器分组(EP)矩阵205的先验知识,能够将数据校准回到它们的原始配置。因为要发送的SDU 201-204的行尺寸是预先知道的,所以,只要收到数据,就可以启动传输,而不必等着看要发送多少数据。
图12A的例子示出了根据数据单元201-204创建外部码块214的编码过程,其中,外部码块214的行尺寸是固定的。在该例子中,用户数据的形式为多个服务数据单元(SDU)201-204,它们包括任意尺寸的比特块,其尺寸取决于具体的应用(视频、话音等)。
为了能够传输任意尺寸的FEC SDU,可以在FEC一级执行分割、串接和填补。尽管严格地讲,串接不是必须的,但缺少它将导致高层数据吞吐量的明显降低。
可以先把高层SDU 201-204格式化成该固定PDU尺寸。在该实施例中,分割/串接功能部件生成固定尺寸的内部块,可将其指示到用户单元。在步骤220中,可以将这组内部块进行分割和串接,而成为编码器分组矩阵205的一部分,其包括:内部块;必要程度的填补信息208;长度指示符(LI)206,可用于指向服务数据单元(SDU)201-204的末端,以表明多少个SDU结束于该EP的给定行中。下面讨论的外部编码器使用这些内部块来生成冗余块。
在无线链路控制(RLC)中,长度指示符(LI)表明每个服务数据单元(SDU)相对于协议数据单元(PDU)、而不是服务数据单元(SDU)的末端。这有助于降低开销,因为PDU尺寸通常小于服务数据单元(SDU)的尺寸。例如,长度指示符(LI)可用于表明在负载数据单元(PDU)内结束的每个FEC服务数据单元(SDU)的最后一个字节。可以将“长度指示符”设置成FEC报头结尾和FEC SDU段最后一个字节之间的字节数量。长度指示符(LI)优选包括在该长度指示符(LI)所指的PDU中。换言之,长度指示符(LI)优选指向相同的负载数据单元(PDU),并且,优选与长度指示符(LI)所指的FEC SDU具有相同的次序。
当接收到外部块时,诸如长度指示符(LI)之类的信息可用于让接收机知道服务数据单元(SDU)和/或填补信息开始于哪里和结束于哪里。
因为不可能用FEC报头中的一个比特来指明是否存在长度指示符(LI),所以,FEC层在负载内添加一个固定报头,其指明是否存在长度指示符(LI)。内部报头或LI提供重建SDU 201-204所需的全部信息。LI可以包括在它所指的RLC-PDU中。是否存在第一个LI可通过RLC-PDU的序号报头中包括的标记来指示。每个LI中的比特可用来指示其扩展。为了使长度指示符(LI)的长度随FEC PDU而改变,可以为一个字节长度指示符(LI)引入一个新特殊值,以表示前一SDU还差一个字节就能填满最后一个PDU。长度指示符(LI)存在比特可用多种方式来实现,下面介绍其中的两种。
在一个实施例中,可以在每个协议数据单元(PDU)中提供一个长度指示符(LI)存在比特。例如,可以在每个编码器分组(EP)行的开始处添加一个字节,该字节中的一个比特表示是否存在LI。每个协议数据单元(PDU)的第一个字节的全部都可以为该“存在比特”而预留。为了容纳该存在比特,长度指示符数据可以缩短1个比特。通过在每个协议数据单元(PDU)中提供一个存在比特,当EP解码失败时也能够对SDU进行解码,即便第一个PDU丢失。这可以降低剩余差错率。在每个PDU中提供存在比特可实现实时的串接/分割。
在另一实施例中,可以在第一个PDU中提供长度指示符(LI)存在比特。不在每个PDU的开始处添加开销,而是在该EP的第一个PDU开始处添加所有k个信息PDU的存在比特。当具有很大的SDU和/或很小的PDU时,在编码器分组(EP)的开始处提供存在比特,可以降低开销。
在分割和串接之后,EP 205包括多行,这些行由多个服务数据单元(SDU)201-204中的至少一个和填补块占用。可以设计外部块的行尺寸,从而,在一个传输时间间隔(TTI)内以峰值数据速率传输每个行。服务数据单元(SDU)通常不能与传输时间间隔(TTI)内发送的数据量校准。因此,如图11所示,第二SDU 202和第四SDU204并未分别填充在EP的第一和第二行传输时间间隔(TTI)中。在该例子中,EP有12行可用于数据,可将四个SDU 201-204打包到这12行的前三行中。EP 205的其余行可由填补块208占用。因此,可以分割第二个SDU 202,从而,使第二个服务数据单元(SDU)202的第一部分开始于信息块的第一行,第二个SDU 202的第二部分结束于第二行中。同样,可以分割第三个SDU,从而,使第三个服务数据单元(SDU)203的第一部分开始于第二行,第三个SDU 203的第二部分结束于第三行中。第四个服务数据单元(SDU)204填在第三行中,第三行的剩余部分可用填补块208来填充。在该例子中,编码器分组(EP)213主要由填补信息208构成。
编码器使用该EP生成冗余或奇偶信息。在步骤240中,通过添加外部奇偶块214,编码器将中间的分组矩阵205进行编码,从而生成外部码块213,其长度是16块。编码器从每块的每列中提取8比特数据,从而创建结果数据210。里德-索罗门(RS)编码器对结果数据210进行编码,从而得到四行冗余或奇偶信息212。奇偶信息212可用来生成外部奇偶块214,可以把外部奇偶块214添加到EP矩阵205中,从而生成16块外部码块213。
图12B示出了通过无线传输的上述信息的例子。在步骤160中,在向EP 205的每行添加包括序号的附加开销之后,这16块外部码块213作为协议数据单元(PDU)214,可通过无线传输。在下行链路上发送的协议数据单元(PDU)214中没有传输全部编码器分组(EP)矩阵213。相反,协议数据单元(PDU)包括信息位201-204和编码器分组(EP)矩阵213的长度指示符(LI)206。由于编码器分组(EP)213的行尺寸是固定的,因此,在接收机中是已知的,所以,不必通过无线实际传输填补信息208。填补信息208不通过下行链路传输,因为填补值是已知的,所以,不必传输填补信息208。例如,如果填补信息由已知的比特序列构成,如全0、全1或0和1的交替模式,则接收机能够填充协议数据单元(PDU)214,最多达到额定的编码器分组(EP)213行尺寸。因此,在传输期间,不用选择PDU尺寸等于EP行尺寸,可以使用承载所有信息位201-204和重组开销(如LI)206的最小可用EP尺寸。
尽管编码器矩阵的行尺寸是固定的,但在每次发送时都可以从给定集合中选择FEC PDU尺寸,从而,使每一个都包括一个编码器矩阵行的所有信息部分(可以排除填充信息)。当收到的PDU的尺寸小于编码器矩阵行尺寸时,UE可用已知的比特序列填补到该尺寸。这样,内部块尺寸保持固定,而不增加空中接口上的负担。因此,通过使用固定行尺寸的编码器分组(EP)213,在开始发送协议数据单元(PDU)之前不必等到所有数据可用,并且还可以不必发送填补信息。
如果用上面实现的算法来处理变速率传输,则可以使用速率均衡机制,其中,所有编码器分组矩阵行具有恒定尺寸。当填补信息构成PDU的一部分时,可使用较小的PDU。填补信息可由特定的比特序列构成,并可以位于数据的末端。在接收机中,通过在末端附加填补信息,从低层接收的块的尺寸可以被平均到基本线尺寸。
如果使用预定的比特序列来进行填补,则该填充信息不经过无线传输。接收机不必知道实际的编码器分组行尺寸,除非接收机需要执行外部解码。基本的SDU重组不需要知道位于PDU末端的填补信息量。如果收到了包含来自前k个编码器分组(EP)行的信息的所有PDU,则外部解码是不必要的。相比之下,如果包含来自前k个编码器分组(EP)的信息的至少一个PDU丢失,则需要至少一个包含来自一个奇偶行的数据的PDU。由于奇偶行通常不是填补的,所以,对于需要假定的实际编码器分组尺寸,该尺寸可用作参考。
可变行尺寸编码器分组(EP)
图13示出了创建具有可变行尺寸的外部码块313的编码过程。
本发明的这一方面涉及对通过无线接口传输的数据进行灵活的外部块编码。该编码过程可以降低传输的填补信息,从而提高帧填充效率。编码器分组(EP)305行可以是可变尺寸,并且,在每个传输时间间隔(TTI)中可以发送不同尺寸的外部块。优选情况下,编码器分组(EP)305的行尺寸改变,从而,使SDU正好填满编码器分组(EP)305的这些数量(如12)的行。在该实施例中,在构建EP之前,FEC层必须等待所有数据成为可用,从而FEC可以确定最佳行尺寸。可以基于可用的数据量,从多个不同尺寸中选择行尺寸,从而限制填补信息。可以将编码器分组(EP)的行尺寸链接到为S-CCPCH而配置的PDU尺寸集合。根据需要生成编码器分组305时可用的数据量,可以选择产生最小填补信息的行尺寸。通过减小外部块313的尺寸,从而使每帧中的块尺寸更小,可以按照更低的传输速率来发送数据,因为通过相同TTI持续时问发送的数据较少。使用编码器分组(EP)305的可变行尺寸,有助于在编码器分组(EP)的所有传输内稳定功率要求,并且还利用了更少的奇偶开销314。该实施例适用于诸如WCDMA等系统中的点到多点(PTM)传输,其中,下面的无线协议允许每个传输时间间隔(TTI)内发送的传输块尺寸变化。
在步骤320中,可以将多个服务数据单元(SDU)201-204进行分割和串接,从而生成一个编码器分组(EP)矩阵305,其中,长度指示符(LI)206用于指向服务数据单元(SDU)201-204的一端。长度指示符(LI)可以包括在每个服务数据单元(SDU)所终止的最后一行中。
在步骤330中,在列的基础上,通过从每个数据块中提取8个比特的数据,生成冗余或奇偶信息,所得数据310可被发送到里德-索罗门(RS)编码器,从而获得奇偶信息312。因为编码器分组(EP)矩阵305的行比较小,所以会产生较少的冗余信息。
在步骤340中,编码继续,奇偶信息312用于生成可添加到12块编码器分组(EP)矩阵305中的外部奇偶块314,从而生成一个外部码块,在该例子中其长度是16块。该实施例避免了填补信息传输,这改善了传输性能,因为整个码块313由SDU、长度指示符(LI)206和/或冗余信息314占用。在该具体示例中,不需要填补。但是,应当理解的是,在有些情况下,由于PDU的配置尺寸的数量是有限的,故需要一些填补信息,但只是需要较少量的填补信息。这样,可以提高帧填充效率,还可以在整个编码器分组(EP)内维持更稳定的功率。在使用功率控制方案的CDMA系统中,这是人们所期望的。
尽管图中没有显示,但PDU通过无线传输的方式类似于上面结合图12的步骤260所讨论的方式。
图11是外部编码或前向纠错(FEC)层400的一个实施例,在无线链路控制(RLC)层之上有RLC无确认模式(UM)+实体(RLCUM+)。通常,无线链路控制(RLC)为高层提供组帧操作。这里,位于无线链路控制(RLC)之上的FEC层执行组帧操作。
外部编码层400包括一个发送前向纠错(FEC)实体410,其通过无线接口(Uu)404,经由逻辑信道406,与接收前向纠错(FEC)实体430进行通信。
重新排序/重复检测
图15是重新排序协议或算法,它能够使移动站10将编码延迟不同逻辑流之间的时间偏移量。
接收前向纠错(FEC)实体430使用序号,确定EP矩阵内给定PDU的位置。例如,序号的一部分(PSN)标识PDU在编码器分组(EP)中的位置。
该算法假设:在可以启动解码之前,最多收到来自两个编码器分组(EP)的数据。在下面的描述中,编码器分组(EPd)是按顺序要解码的下一编码器分组(EP),而编码器分组(EPb)是正被缓存的编码器分组(EP)。编码器分组(EPb)跟随着编码器分组(EPd)。需要完全编码器分组传输时间来执行RS解码的UE实现需要进行两次缓存,从而能够对连续分组进行解码。因此,UE存储编码器矩阵的最大尺寸行的至少n+k个(k和n,分别是信息行的数量和包括奇偶行的行的总数量)。具有较快解码引擎的UE可以降低该要求,但不小于n+1。例如,如果UE的特定量的缓冲空间(XtraBffr)超过基于其解码能力接收连续分组所需,并且,如果采用64kbps的流,则在不增加计算要求的情况下将解码延迟100毫秒需要缓冲器尺寸增加800个字节。
在框1410中,可以判断是否收到一个新的前向纠错(FEC)协议数据单元(PDU)。如果没有收到新的前向纠错(FEC)协议数据单元(PDU),则流程从框1410重新开始。如果收到了新的前向纠错(FEC)协议数据单元(PDU),则在框1420中,可以判断该新的前向纠错(FEC)协议数据单元(PDU)是否属于下一按顺序要解码的编码器分组(EPd)。
如果前向纠错(FEC)协议数据单元(PDU)不属于下一按顺序要解码的编码器分组(EP),那么,在框1421中,判断该前向纠错(FEC)协议数据单元(PDU)是否属于正被缓存的编码器分组(EPb)。如果该前向纠错(FEC)协议数据单元(PDU)不属于正被缓存的编码器分组(EPb),那么,在框1440中,可以丢弃该协议数据单元(PDU)。如果该前向纠错(FEC)协议数据单元(PDU)属于正被缓存的编码器分组(EPb),那么,在框1423中,可以将协议数据单元(PDU)添加到Epb的缓冲器中的关联位置。在框1425中,可以判断Epb的数据量是否超过XtraBffr。如果在框1426中判定Epb的数据量不超过XtraBffr,则流程从框1410重新开始。如果Epb的数据量超过XtraBffr,则在框1428中,发送实体试图传送来自Epd的全部SDU。然后,在框1430中,可以从缓冲器中清除Epd的剩余部分,然后在框1434中,可以将Epb设置成Epd。
如果在框1420中判定该前向纠错(FEC)协议数据单元(PDU)属于Epd,则在框1422中,可以将协议数据单元(PDU)添加到EPd的缓冲器中的关联位置。在框1424中,可以判断缓冲器是否有Epd的k个单独PDU。如果缓冲器没有Epd的k个单独PDU,则在框1426中,流程重新开始于框1410。如果缓冲器有Epd的k个单独PDU,则在框1427中,解码器执行Epd的外部解码,然后在框1428中,发送实体试图传送来自Epd的全部SDU。然后,在框1430中,可以从缓冲器中清除Epd的剩余部分,接着在框1434中,可以将Epb设置成Epd。
图16示出了当移动站在接收来自蜂窝A 99的点到多点(PTM)传输和来自蜂窝B 99的点到多点(PTM)传输之间转换时移动站接收的外部码块之间的时间关系。由Grilli等在2002年8月21提交的美国专利申请US-2004-0037245-A1和US-2004-0037246-A1以及由Willenegger等在2002年5月6日提交的美国专利申请US-2003-0207696-A1中对图16的一些方面做了进一步的说明,故将其全部以引用方式并入此处。
所描述的情形满足特定的UMTS陆地无线接入网(UTRAN)20和用户设备(UE)10要求。例如,如果UTRAN 20在不同蜂窝内使用相同的外部块编码来发送内容,则在相邻蜂窝中,在承载相同数据或负载的块上应当使用相同的编号。具有相同编号的外部块的发送时间比较一致。跨越这些蜂窝的PTM传输的最大失准由无线网络控制器(RNC)24控制。UTRAN 20控制不同蜂窝的点到多点(PTM)传输上的延迟抖动。UE 10在接收下一块时应当能够对外部块进行解码。因此,UE中的缓冲器空间应当优选容纳至少两个外部块95A-95C,因为容纳当前的外部块需要一个外部块的存储器。存储器还应当能够容纳多行外部块,如果里德-索罗门(RS)解码期间的外部块,以及,补偿基站22之间的时间对准的不准确。
在蜂窝A 98中,在外部块n 95A传输过程中,转换发生在第二个内部多媒体广播多播服务(MBMS)负载块传输期间。箭头96示出的用户设备(UE)10从蜂窝A 98到蜂窝B 99的转换不是水平的,因为在转换期间流逝了一些时间。在用户设备(UE)10到达蜂窝B 99之前,正在发送的是第五块多媒体广播多播服务(MBMS)负载数据。因此,由于相应传输的时间失准和转换期间流逝的时间,用户设备(UE)10会错过第二至第四块。如果在蜂窝B 99中收到足够的块,则照样可以对外部块n 95A进行解码,因为可以使用奇偶块来重建丢失的块。
此后,在发送外部块n+2 95C期间,用户设备(UE)10经历了从蜂窝B 99到蜂窝A98的另一次转换,其发生于外部块n+295C的第五个多媒体广播多播服务(MBMS)负载块。在这种情况下,转换期间丢失的内部块较少,故仍可以恢复外部块。
使用外部码块有助于降低任何服务中断的概率。为了确保差错恢复顺利工作,应当在各传输路径上发送相同的块,这意味着,奇偶块在每个传输路径中的构建方式应当相同。(多媒体广播多播服务(MBMS)负载块在各路径中需要相同,因为这是广播传输)。在上面的应用层80中执行前向纠错(FEC)有助于确保各传输路径中的奇偶块相同,因为编码是在前向纠错(FEC)层157中完成的,因此对于各外部块都相同。相比之下,如果编码是在低层完成的,例如,在各无线链路控制(RLC)实体152中完成,则需要一些协调,因为各传输路径中的奇偶块不相同。
从点到多点(PTM)到点到点(PTP)的转换
图17示出了当出现点到多点(PTM)传输和点到点(PTP)传输之间转换时移动站10接收的外部码块之间的时间关系。例如,图17所示的方案适合利用了点到点(PTP)传输的系统,如WCDMA和GSM系统。
本发明的一个方面涉及前向纠错,在PTM传输期间,这通过添加奇偶信息或块到内部MBMS负载或数据块而实现。在PTM传输期间发送的每个外部码块包括至少一个内部负载块和至少一个内部奇偶块。例如,当UE从一个蜂窝转换到另一蜂窝时或者当MBMS内容传送在统一服务蜂窝内从PTM连接改变为PTP连接或反过来时,外部码块的纠错能力会明显降低,并消除或转换期间MBMS内容或“负载”的丢失。
如上所述,给定的蜂窝能够使用PTP或PTM传输方案向用户10发送。例如,在PTM传输模式下通常发送广播服务的蜂窝可以选择建立专用信道,然后在PTP模式下发送(只向特定用户10),如果该蜂窝中对于该服务的要求降低到特定门限之下的话。同样,通常在专用信道(PTP)上发送内容的蜂窝也可以决定通过广播信道向多个用户广播内容。此外,一个给定蜂窝可能在PTP传输模式下发送内容,而另一蜂窝可能在PTM传输模式下发送相同的内容。当移动站10从一个蜂窝转移到另一蜂窝时,或者,当一个蜂窝内的用户数量改变时,会出现转换,从而触发从PTP到PTM或从PTM到PTP的改变。
在外部块n 95A进行点到多点(PTM)传输期间,转换出现在第四个内部多媒体广播多播服务(MBMS)负载块的传输过程中。表示用户设备(UE)从点到多点(PTM)传输转换到点到点(PTP)传输的箭头101的斜率不是水平的,因为在转换期间会流逝一些时间。当出现从PTM 101到PTP的转换时,无线传输比特率保持大约相同。点到点(PTP)传输的误码率通常低于1%(例如,在传输期间,每100个负载块中有一个差错或更少)。相比之下,在点到多点(PTM)传输中,误码率可能较高。例如,在一个实施例中,基站在每16个传输时间间隔(TTI)内生成一个外部块,这些TTI中的12个可由负载块占用,另4个TTI可由奇偶块占用。所能容忍的最大数量块差错是16中的4个内部块(12个基本块+4个奇偶块)。因此,最大容忍块出错率为1/4。
当移动站从点到多点(PTM)传输转换101到点到点(PTP)传输时,可能会丢失有些内部块。假设点到多点(PTM)传输和点到点(PTP)传输在物理层中具有大约相同的比特率,那么,PTP传输使得MBMS负载块的发送比PTM传输块,因为,平均来说,重传的块的比例通常低于奇偶块的比例。换言之,点到点(PTP)传输通常远快过点到多点(PTM)传输,因为,统计地讲,奇偶块的数量远大于无线链路控制(RLC)重传(Re-Tx)的数量。因为转换101是从点到多点(PTM)传输变成通常快很多的点到点(PTP)传输的,所以,当用户设备(UE)10转换101到点到点(PTP)传输时,第一块多媒体广播多播服务(MBMS)负载数据被发送。因此,各传输的时间失准以及转换101期间流逝的时间,都不会导致任何块的丢失。因此,当从点到多点(PTM)传输变成点到点(PTP)传输时,一旦在目标蜂窝中建立了PTP链路,就可以通过简单从当前外部块的开始重启而弥补丢失的负载块。通过从相同外部块的开始处启动传输,即,使用第一内部块,可由网络来补偿。然后,网络可以恢复由于所有外部块的更快传递导致的转换所引入的延迟。通过降低转换期间的数据丢失,可以降低这样的转换可能导致的MBMS内容传送中断。
然后,在外部块n+2的PTP传输期间,用户设备(UE)10发生了到点到多点(PTM)传输模式的另一次转换103。在图12中,从点到点(PTP)传输到点到多点(PTM)传输的该转换103发生在外部块n+2中的最后一个内部多媒体广播多播服务(MBMS)负载块处。在这种情况下,除最后一个内部块以外,外部块n+2中的很多内部多媒体广播多播服务(MBMS)负载块已经被发送出去。在不提供反馈的情况下,通常使用FEC。因为PTP传输使用专用信道,因此,在反向链路上有反馈能力,所以,使用FEC并非很有益。在交叉转换中,为了减少或消除数据丢失,UMTS陆地无线接入网(UTRAN)20优选基于PTP传输中的RLC确认模式(AM)的低残留块出错率,恢复出在转换到PTM传输期间可能丢失的所有内部块。换言之,可以使用常规的第二层重传,把在原始传输中检测到差错的任何分组进行重传。因此,如图17所示,PTP传输中不需要奇偶块。如果在点到点(PTP)传输过程中负载块出现差错,则不必对外部块进行解码,因为,无线链路控制(RLC)将会请求重传所有出错块。也就是说,当PTP传输期间出现错误时,移动站10请求重传,或者,当所以块都正确时,不发生重传,并可以利用传输格式零(TF0)。外部编码优选在协议栈的第二层中完成,从而,使每个内部块97的尺寸正好填入一个传输时间间隔(TTI),因为这可以提高编码效率。
如果前向纠错(FEC)外部编码是在协议栈的高层中完成的,例如,在应用层中,则发送奇偶块,而不管传输方案(点到点(PTP)或点到多点(PTM))。因此,也可以向点到点(PTP)传输添加奇偶块。
如上所述,在PTP传输中不必使用奇偶块,因为可以用更高效的重传方案取代前向纠错。由于优选情况下不在PTP传输中发送奇偶块,所以,平均而言,全部外部块的传送快于PTM,假设无线传输比特率相同。这样,UE就能够补偿从点到多点(PTM)到点到点(PTP)转换所导致的中断,因为可以根据PTM传输来预测PTP传输。用户设备(UE)可以正确地恢复外部块,通过组合以下块:(1)在新蜂窝中或转换后,在点到点(PTP)传输中接收的内部块;(2)在老蜂窝中或转换前,在点到多点(PTM)传输中接收的内部块。用户设备(UE)可以把转换前收到的内部块和转换后收到的内部块(它们属于相同外部块)进行组合。例如,用户设备(UE)10可以把通过点到点(PTP)传输接收的外部块n+2中的内部多媒体广播多播服务(MBMS)负载块和通过点到多点(PTM)传输接收的外部块n+2中的内部多媒体广播多播服务(MBMS)负载块组合起来。UMTS陆地无线接入网(UTRAN)20根据PTM链路上的传输轻微地“预测”发向接收来自PTP链路MBMS内容的所有用户的外部块传输,能够使该处理更顺利。
由于UTRAN根据PTM传输来预测外部块的传输,所以,从PTP到PTM的无缝转换是可能的。因此,跨越蜂窝边界和/或在诸如PTM和PTP之类的不同传输方案之间的MBMS内容传送也是无缝的。“时间预期”可用内部块数量来表示。当用户设备(UE)10转换到PTM传输时,即使转换时间内不存在通信链路,用户设备(UE)10最多可能丢失“时间预期”数量的内部块,而不会伤害MBMS的接收质量。如果UE直接在PTP中启动MBMS接收,则UTRAN可以在PTP传输开始时立即应用“时间预期”,因为UTRAN 20能通过避免空内部块(TF0)而慢慢地预期外部块的传输,直到该预期达到所需“时间预期”数量的内部块为止。从这点开始,UTRAN可以保持“时间预期”恒定。
在点到多点(PTM)中,不能依靠无线网络控制器(RNC)中可用的UE特定反馈信息。在点到点(PTP)传输中,UE 10可以告知RNC在转换之前正确接收的最后一个外部块的编号。这应当适用于(从PTM或从PTP)到PTP的任何转换。如果该反馈不被认为是可接受的,则UTRAN 20可以估计用户设备(UE)10在状态转换之前可能接收到的最后一个外部块。该估计可以基于不同蜂窝传输之间可预测的最大时间误差,以及,基于当前正在发送的或在目标蜂窝中很宽就要发送的外部块。
可以执行前向纠错(FEC),从而能够恢复转换期间丢失的所有块。这样可以降低转换期间内容丢失的概率,从而实现“无缝的”转换。该方案假设当相同的外部块从每个信源传输时发生从点到点(PTP)到点到多点(PTM)传输的转换,这通常在假定外部块的持续时间相对于转换的持续时间的情况下发生。
UE 10中的存储量可以与跨越相邻蜂窝的PTM传输的时间校准精确度进行折衷。通过放宽对用户设备(UE)10中的存储器要求,可以提高PTM UTRAN 20传输的时间精确度。
图18示出了在来自无线网络控制器(RNC)A的点到点(PTP)传输和来自无线网络控制器(RNC)B的点到点(PTP)传输之间的转换或重定位过程中移动站10接收的外部码块之间的时间关系。术语“RNC”可与术语“基站控制器(BSC)”互换地使用。在“重定位”期间,用户设备(UE)10从由第一RNC A 124控制的区域中的内容流的点到点(PTP)传输转换到由第二RNC B 224控制的区域中的相同内容流的点到点(PTP)传输。可使用重传(re-Tx)来补偿所有丢失的MBMS负载块。在蜂窝之间从点到点(PTP)到点到点(PTP)的直接转换的执行方式类似于版本99的软切换或硬切换。即使没有两个RNC A、B之间的协作,目标RNC A 124也应当能够计算出UE10接收的最近完整外部块。该估计可能基于由RNC 24在Iu接口25上接收的MBMS内容的时机。当使用PTP传输时,RNC 24可以弥补初始延迟,并且,MBMS内容不会有任何部分丢失,而不需要无损的SRNS重定位。
本领域技术人员应当理解,尽管这里为便于理解而画出了有序的流程图,但在实际实现方式中,有些步骤可以并行地执行。此外,除非明确指示,方法步骤可以互换,而不偏离本发明的保护范围。
本领域技术人员应当理解,信息和信号可用多种不同技术和方法来表示。例如,在上面说明书中提及的数据、指令、命令、信息、信号、比特、符号和码片可用电压、电流、电磁波、磁场或粒子、光场或粒子或其任意组合来表示。
本领域技术人员还会明白,这里结合所公开的实施例描述的各种示例性的逻辑框、模块、电路和算法步骤均可以实现为电子硬件、计算机软件或二者的结合。为了清楚地示出硬件和软件之间的可交换性,以上对各种示例性的组件、框、模块、电路和步骤均以其功能性的形式进行总体上的描述。这种功能性是以硬件实现还是以软件实现取决于特定的应用和整个系统所施加的设计约束。熟练的技术人员能够针对每个特定的应用以多种方式来实现所描述的功能性,但是这种实现的结果不应解释为导致背离本发明的范围。
利用通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程的逻辑器件、分立门或者晶体管逻辑、分立硬件组件或者它们之中的任意组合,可以实现或执行结合这里公开的实施例描述的各种示例性的逻辑框图、模块和电路。通用处理器可能是微处理器,但是在另一种情况中,该处理器可能是任何常规的处理器、控制器、微控制器或者状态机。处理器也可能被实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、一个或者更多结合DSP核心的微处理器或者任何其他此种结构。
结合这里公开的实施例所描述的方法或者算法的步骤可直接体现为硬件、由处理器执行的软件模块或者这二者的组合。软件模块可能存在于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域熟知的任何其他形式的存储媒质中。一种典型存储媒质与处理器耦合,从而使得处理器能够从该存储媒质中读信息,且可向该存储媒质写信息。在替换实例中,存储媒质是处理器的组成部分。处理器和存储媒质可能存在于一个ASIC中。该ASIC可能存在于一个用户站中。在一个替换实例中,处理器和存储媒质可以作为用户站中的分立组件而存在。
所述公开的实施例的上述描述可使得本领域的技术人员能够实现或者使用本发明。对于本领域技术人员来说,这些实施例的各种修改是显而易见的,并且这里定义的总体原理也可以在不脱离本发明的范围和主旨的基础上应用于其他实施例。例如,尽管在说明书指出无线接入网20可用通用陆地无线接入网(UTRAN)空中接口来实现,但是,在GSM/GPRS系统中,接入网20可能是GSM/EDGE无线接入网(GERAN),或者,在系统间情况下,它可能包括UTRAN空中接口的蜂窝和GSM/EDGE空中接口的蜂窝。因此,本发明并不限于这里示出的实施例,而是与符合这里公开的原理和新颖特征的最广范围相一致。
本专利文档公开内容的一部分包含受版权保护的材料。版权所有者并不反对专利文档或专利公开出现在专利商标局专利文件或记录中时的传真复制,但在其他情况下保留所有的版权权利。
根据35 U.S.C§119的优先权要求
本专利申请要求2003年8月21日提交的、题为“Method andApparatus for Seamless Delivery of Broadcast and Multicast ContentAcross Cell Borders and/or Between Different Transmission Schemes”的临时申请No.60/497,457和2003年8月21日提交的、题为“L2 Designfor Outer Coding Scheme”的临时申请No.60/497,456的优先权,这两篇申请都可以转让给本申请的受让人,故以引用方式并入此处。