OFDM信号的调制与解调的方法及装置转让专利

申请号 : CN200480039711.4

文献号 : CN1902876B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : S·富雷尔J·耶利托W·肖特B·魏斯

申请人 : 国际商业机器公司

摘要 :

本发明涉及一种用于将副载波符号调制为具有偶样本和奇样本的中频OFDM信号的方法,该方法包括以下步骤:将N个副载波符号变换为经预处理的副载波符号;对经预处理的副载波符号执行复数离散傅里叶逆变换(IDFT)以生成复数输出符号;以及将所述复数输出符号变换为中频OFDM信号,其中所述副载波符号被变换,使得由复数输出符号的实部和虚部给出中频OFDM信号的偶样本和奇样本。

权利要求 :

1.一种用于将副载波符号F(k)调制为具有偶样本和奇样本的中频OFDM信号(f(n))的方法,该方法包括以下步骤:

-根据下述函数将N个副载波符号F(k)变换为经预处理的副载波符号Z(k):

Z(k)=12·[F(k)+F(N-k)*]+12·j·[F(k)-F(N-k)*]·e+jπk/N其中k=0…N-1;

-对经预处理的副载波符号Z(k)执行复数N点离散傅里叶逆变换以生成复数输出符号z(n);以及

-通过将复数输出符号z(n)的实部和虚部复用为中频OFDM信号(f(n))的偶样本和奇样本,将复数输出符号z(n)变换为中频OFDM信号(f(n))。

2.如权利要求1所述的方法,还包括以下步骤:

-执行将经预处理的-副载波符号Z(k)变换为复数输出符号z(n)=x(n)+j*y(n)的复数离散傅里叶逆变换;

其中,根据函数Z(k)=12·[F(k)+F(N-k)*]+12·j·[F(k)-F(N-k)*]·e+jπk/N将N个副载波符号F(k)变换为经预处理的副载波符号Z(k)的步骤包括以下步骤:-将所述副载波符号F(k)分配给中频OFDM信号(f(n))的频谱F(i),i=0…2N-1,其中负的频率含量可从实序列频谱的对称属性得到,F(i)=F(2N-i)*;

-通过使用实序列频谱的对称属性将所述副载波符号F(k),k=0…N-1,转换为经预处理的副载波符号Z(k),其中Z(k)=X(k)+j*Y(k),X(k)和Y(k)定义实序列x(n)和y(n)的频谱。

3.如前述任何一个权利要求所述的方法,其中所述复数离散傅里叶逆变换是作为快速傅里叶逆变换而被执行的。

4.一种用于将具有偶样本和奇样本的中频OFDM信号(f(n))解调为经后处理的副载波符号F(k)的方法,该方法包括以下步骤:

-通过将中频OFDM信号(f(n))的偶样本和奇样本解复用为复数输入符号z(n)=x(n)+j*y(n)的实部和虚部,其中x(n)=f(2n),y(n)=f(2n+1),并且n=0…N-1,将中频OFDM信号(f(n))变换为复数输入符号z(n);

-对所述复数输入符号z(n)执行复数离散傅里叶变换以生成复数离散傅里叶变换输出符号Z(k);以及

-根据下述函数将所述复数离散傅里叶变换输出符号Z(k)变换为经后处理的副载波符号F(k):

F(k)=12·[Z(k)+Z(N-k)*]+12·j·[Z(k)-Z(N-k)*]·e-jπk/N其中k=0…N-1。

5.如权利要求4所述的方法,其中所述复数离散傅里叶变换是作为快速傅里叶变换而被执行的。

6.如权利要求4或5之一所述的方法,还包括以下步骤:

-为经后处理的副载波符号F(k)分配进一步处理的顺序;

其中,对所述复数输入符号z(n)执行复数离散傅里叶变换以生成复数离散傅里叶变换输出符号Z(k)的步骤包括:

-将所述复数输入符号z(n)变换到复数离散傅里叶变换输出符号Z(k)=X(k)+j*Y(k),k=0…N-1的复数离散傅里叶变换,其中X(k)和Y(k)是实序列x(n)和y(n)的频谱;

其中,根据函数F(k)=12·[Z(k)+Z(N-k)*]+12·j·[Z(k)-Z(N-k)*]·e-jπk/N将所述复数离散傅里叶变换输出符号Z(k)变换为经后处理的副载波符号F(k)的步骤包括:-将复数离散傅里叶变换输出符号Z(k),k=0…N-1,后处理为中频OFDM信号(f(n))的经后处理的副载波符号F(k)=X(k)+e-jπk/N·Y(k)。

7.一种用于将副载波符号F(k)调制为具有偶样本和奇样本的中频OFDM信号(f(n))的正交频分复用调制器(1),该调制器包括:

-第一变换装置(10),用于将N个副载波符号F(k)变换为经预处理的副载波符号Z(k),适于执行下述函数:

Z(k)=12·[F(k)+F(N-k)*]+12·j·[F(k)-F(N-k)*]·e+jπk/N其中k=0…N-1;

-IDFT装置(4),用于对经预处理的副载波符号Z(k)执行复数离散傅里叶逆变换以生成复数输出符号z(n);以及

-第二变换装置(50),包括复用装置(52),用于将复数输出符号z(n)的实部和虚部复用为中频OFDM信号(f(n))的偶样本和奇样本。

8.如权利要求7所述的正交频分复用调制器(1),其中所述IDFT装置(4)呈现出执行快速傅里叶逆变换的功能。

9.如权利要求7或8之一所述的正交频分复用调制器(1),其中所述第一变换装置(10)还包括:

-分配装置(10a),用于将所述副载波符号F(k)分配给中频OFDM信号(f(n))的频谱F(i),i=0…2N-1,其中负频率含量可从实序列频谱的对称属性得到,F(i)=F(2N-i)*;

-转换装置(10b),用于通过使用实序列频谱的对称属性将所述副载波符号F(k),k=0…N-1,转换为经预处理的副载波符号Z(k),其中Z(k)=X(k)+j*Y(k),X(k)和Y(k)定义实序列x(n)和y(n)的频谱。

10.如权利要求7或8所述的正交频分复用调制器(1),其中所述IDFT装置(4)适于执行将经预处理的副载波符号Z(k)变换为复数输出符号z(n)=x(n)+j*y(n)的复数离散傅里叶逆变换。

11.如权利要求9所述的正交频分复用调制器(1),其中所述IDFT装置(4)适于执行将经预处理的副载波符号Z(k)变换为复数输出符号z(n)=x(n)+j*y(n)的复数离散傅里叶逆变换。

12.如权利要求7或8所述的正交频分复用调制器(1),其中所述第一变换装置(10)和所述IDFT装置(4)被集成在一个设备中。

13.如权利要求9所述的正交频分复用调制器(1),其中所述第一变换装置(10)和所述IDFT装置(4)被集成在一个设备中。

14.如权利要求10所述的正交频分复用调制器(1),其中所述第一变换装置(10)和所述IDFT装置(4)被集成在一个设备中。

15.如权利要求11所述的正交频分复用调制器(1),其中所述第一变换装置(10)和所述IDFT装置(4)被集成在一个设备中。

16.一种用于将具有偶样本和奇样本的中频OFDM信号(f(n))解调为经后处理的副载波符号F(k)的正交频分复用解调器(2),该解调器包括:-第三变换装置(13),包括解复用器装置(13a),用于将中频OFDM信号(f(n))的偶样本和奇样本解复用为复数离散傅里叶变换输入符号z(n)=x(n)+j*y(n)的实部和虚部,其中x(n)=f(2n),y(n)=f(2n+1),并且n=0…N-1;

-DFT装置(14),用于对所述复数离散傅里叶变换输入符号z(n)执行复数离散傅里叶变换以生成复数离散傅里叶变换输出符号Z(k);以及-第四变换装置(15),用于将复数离散傅里叶变换输出符号Z(k)变换为经后处理的副载波符号F(k),适于执行以下函数:

F(k)=12·[Z(k)+Z(N-k)*]-12·j·[Z(k)-Z(N-k)*]·e-jπk/N其中k=0…N-1。

17.如权利要求16所述的正交频分复用解调器(2),其中所述DFT装置(14)呈现出执行快速傅里叶变换的功能。

18.如权利要求16或17之一所述的正交频分复用解调器(2),其中所述DFT装置(14)适于执行将复数离散傅里叶变换输入符号z(n)变换到复数离散傅里叶变换输出符号Z(k)=X(k)+j*Y(k),k=0…N-1的复数离散傅里叶变换,其中X(k)和Y(k)是实序列x(n)和y(n)的频谱。

19.如权利要求18所述的正交频分复用解调器(2),其中所述第四变换装置(15)还包括:

-后处理装置(15a),用于将复数离散傅里叶变换输出符号Z(k),k=0…N-1,后处理为中频OFDM信号(f(n))的经后处理的副载波符号F(k)=X(k)+exp(-j*π*k/N)*Y(k);

-分配装置(15b),用于为经后处理的副载波符号F(k)分配进一步处理的顺序。

20.如权利要求16或17所述的正交频分复用解调器(2),其中所述DFT装置(14)和所述第四变换装置(15)被集成在一个设备中。

21.如权利要求18所述的正交频分复用解调器(2),其中所述DFT装置(14)和所述第四变换装置(15)被集成在一个设备中。

22.如权利要求19所述的正交频分复用解调器(2),其中所述DFT装置(14)和所述第四变换装置(15)被集成在一个设备中。

说明书 :

技术领域

本发明涉及用于调制与解调OFDM信号的方法与设备。

背景技术

正交频分复用(OFDM)已经成为一种用于高速宽带通信系统的有吸引力的信令方案。在基于OFDM的系统中,用户数据流被分为速率减小的并行流。每个获得的子流随后调制单独的副载波。通过适当地选择副载波之间的频率间隔,载波被正交,并且允许副载波之间的某些频谱重叠,这带来了高的频谱效率。近来的无线标准例如IEEE 802.11a/g、ETSIHiperlan/2和ETSI DAB/DVB-T将OFDM应用于利用适中的接收器复杂度来应对多路衰减,而诸如ANSI xDSL的有线标准在个体副载波上利用OFDM动态位分配和功率控制的潜力。
遵从IEEE 802.11a的发送器的OFDM相关部分的典型实现方式包括调制映射单元、快速傅里叶逆变换(IFFT)单元和并行到串行单元。进入数据位通过使用相移键控(BPSK、QPSK)或正交幅度调制(16-QAM、64-QAM)被编码并被映射到N=64个副载波中的48个数据副载波上。复数基带(BB)OFDM信号包括同相(in-phase)(I)和正交(Q)分量,并且由被实现为快速傅里叶逆变换(IFFT)的64点离散傅里叶逆变换(IDFT)所生成,随后在并行到串行单元中进行循环前缀扩展和并行到串行的转换。例如,通用的OFDM调制器可以从US 6,304,611B1知晓。
在对获得的复数BB OFDM信号进行数模转换(DAC)和低通滤波之后,由振荡器提供的载波信号驱动的模拟I/Q调制器生成OFDM带通信号。在模拟滤波和放大之后,信号在射频(RF)频带中通过空气被发送。可选地,在外差无线前端中应用从中频(IF)频带到RF频带的附加混频级。
替代性的实现方式将DAC移动到IF频带,并且使用数字I/Q调制器。该方法避免了由模拟I/Q调制分支中的滤波器和时钟相位缺陷引起的幅度、相位和延迟的不均衡,但是增加了所需的采样频率。额外的数字内插滤波器通过增加(未用)副载波的数目可以被实现为有限脉冲响应(FIR)滤波器或者被包括在较大的IFFT单元中。
OFDM接收器反向执行发送器的操作。再一次地,模拟或数字I/Q解调是可行的。此外,前FFT(pre-FFT)同步算法在接收器侧被使用以估计并调整无线前端中的可变增益放大器(VGA)的正确增益设置、发送和接收时钟之间的频率偏移以及OFDM符号计时。
模拟I/Q调制与解调的一个缺点是需要两个模拟分支来处理模拟复数基带信号。这需要可导致同相和正交分量之间的不平衡的模拟分量。I/Q不平衡的估计和补偿是昂贵的,并且导致实际性能和理论性能之间的差异。
数字I/Q调制的缺点是采样速率高于模拟I/Q调制,并且混频级的数字部分的复杂度增加。
本发明的目的是提供一种用于调制与解调OFDM信号的新方法,从而避免上述缺点。本发明的另一目的是提供用于调制与解调OFDM信号的设备。

发明内容

上述缺点被用于调制与解调OFDM信号的方法和设备所克服。本发明的优选实施例在从属权利要求中被指出。
根据本发明的第一方面,提供了一种用于将副载波符号调制为具有偶样本和奇样本的中频OFDM信号的方法。首先,N个副载波符号被变换为经预处理的副载波符号。随后对经预处理的副载波符号执行复数离散傅里叶逆变换(IDFT)以生成复数输出符号。复数输出符号随后被变换为中频OFDM信号。副载波符号被变换,使得由复数输出符号的实部和虚部给出中频OFDM信号的偶样本和奇样本。
本发明的一个思想在于以下述方式预处理副载波符号:离散傅里叶逆变换(也被称为变换)生成输出符号,其中实部和虚部可以被解释为是中频OFDM信号的一系列实样本。从而,可以避免在将复数输出符号变换为中频OFDM信号时由复数输出信号的同相和正交分量之间的不平衡引起的缺点。副载波符号的预处理以下述方式被执行,其中复数输出符号由现有技术公知的IDFT生成,但是其中复数输出符号的实部和虚部被复用为中频OFDM信号的实样本。
优选地,副载波符号到经预处理副载波符号的变换是根据下述函数执行的:
Z ( k ) = 1 2 · [ F ( k ) + F ( N - k ) * ] + 1 2 · j · [ F ( k ) - F ( N - k ) * ] · e + jπk / N
其中F(k)是副载波符号并且Z(k)是经预处理副载波符号,k=0…N-1。该函数是用于执行副载波符号的预处理的优选函数,并且允许获得如根据本发明所期望的中频OFDM信号。
复数离散傅里叶逆变换通常被执行为快速傅里叶逆变换,快速傅里叶逆变换是公知的并且是优选的,因为可以高效地执行处理。
优选地,从副载波符号到中频OFDM信号的调制包括:副载波符号被分配给实值中频OFDM信号f(n)(n=0…2N-1)的频谱F(i)(i=0…2N-1),其中负的频率含量可以得自实序列频谱的对称属性F(i)=F(2N-i)*。此外,频谱F(k)(k=0…N-1)通过使用实序列频谱的对称属性被转换为经预处理复数副载波符号Z(k),其中Z(k)=X(k)+j·Y(k),X(k)和Y(k)定义实序列x(n)和y(n)的频谱。离散傅里叶逆变换将经预处理的复数副载波符号Z(k)变换为复数输出符号z(n)=x(n)+j·y(n)。优选地,复数输出符号的变换是通过将复杂复数输出符号的实部和虚部复用为中频OFDM信号的偶样本和奇样本流来执行的。
根据本发明的另一方面,提供了一种用于将具有偶样本和奇样本的中频OFDM信号解调为副载波符号的方法。该中频OFDM信号被变换为复数输入符号,其中所述偶样本和奇样本与复数输入符号的实部和虚部相关联。执行复数输入符号的复数离散傅里叶变换以生成复数DFT输出符号。复数DFT输出符号进一步被变换为经后处理(post-processed)的副载波符号。
用于解调中频OFDM信号的方法提供了与上述调制方法相关的反向操作。进入的中频OFDM信号的偶样本和奇样本与用于离散傅里叶变换的复数输入符号的实部和虚部相关联。离散傅里叶变换的结果被后处理为副载波符号。
所述后处理优选地根据下述函数执行:
F ( k ) = 1 2 · [ Z ( k ) + Z ( N - k ) * ] - 1 2 · j · [ Z ( k ) - Z ( N - k ) * ] · e - jπk / N
离散傅里叶变换可以被执行为快速傅里叶变换。
优选地,从实中频信号到副载波符号的解调是通过以下步骤执行的。首先,中频OFDM信号f(n)的偶样本和奇样本被解复用为复数DFT输入符号z(n)=x(n)+j×y(n)的实部和虚部,其中x(n)=f(2n),y(n)=f(2n+1),并且n=0…N-1。复数输入符号z(n)到复数输出符号Z(k)=X(k)+j Y(k)(k=0…N-1)的复数离散傅里叶变换被执行,其中X(k)和Y(k)是实序列x(n)和y(n)的频谱。复数输出符号Z(k)(k=0…N-1)被后处理为实值中频OFDM信号f(n)的频谱 F ( k ) = X ( k ) + e - · k N Y ( k ) . 实值IF信号f(n)的频谱F(k)(k=1…N-1)被分配给关联的副载波符号。
根据本发明的另一方面,提供了一种用于将副载波符号调制为具有偶样本和奇样本的中频OFDM信号的正交频分复用调制器。该调制器包括用于将N个副载波符号变换为经预处理的副载波符号的第一装置。它还包括用于执行经预处理副载波符号的复数离散傅里叶逆变换(IDFT)以生成复数输出符号的DFT装置。此外,提供了用于将复数输出符号变换为中频OFDM信号的第二装置。副载波符号在用于变换的装置中被变换,使得由复数输出符号的实部和虚部给出中频OFDM信号的偶样本和奇样本。
从而,提供了一种用于将副载波符号调制为中频OFDM信号的调制器,其根据本发明的调制方法而工作。
优选地,用于变换的第一装置包括用于将副载波符号分配给实值OFDM信号的频谱的装置,其中负的频率含量可以得自实序列频谱的对称属性。用于变换的第一装置还包括用于通过使用实序列频谱的对称属性将频谱转换为经预处理的复数副载波符号的装置。
根据本发明的优选实施例,用于变换的第一装置和IDFT装置被集成在一个设备中。
根据本发明的另一方面,提供了一种用于将具有偶样本和奇样本的中频OFDM信号解调为副载波符号的正交频分复用解调器。该解调器包括用于将中频OFDM信号变换为复数输入符号的装置,其中偶样本和奇样本与复数输入符号的实部和虚部相关联。通过使用DFT装置,对复数输入符号执行复数离散傅里叶变换,以生成复数DFT输出符号。利用用于变换复数DFT输出符号的装置,生成了经后处理的副载波符号。
从而,所述解调器包括执行根据本发明的解调方法的装置。

附图说明

结合附图更详细地描述了本发明的实施例,其中:
图1示出了现有技术的OFDM调制器;
图2示出了根据本发明一实施例的OFDM调制器;
图3示出了用于将副载波符号分配给实值中频OFDM信号的频谱的步骤的例示图;以及
图4是根据本发明另一实施例的OFDM解调器。

具体实施方式

在图1中,描述了根据现有技术的OFDM调制器的典型实现方式。OFDM调制器包括调制映射单元3。进入数据位流S通过使用相移键控(BPSK、QPSK)或正交幅度调制(16-QAM、64-QAM)被编码为多个复数符号,并且被调制映射单元3映射到N个副载波中的K个数据副载波上。额外的副载波可以被预留用于导频(训练)音,而DC副载波通常未被使用以避免转换器偏移的困难。剩余的副载波未被使用并且产生频谱保护带以减少带外干扰并且放宽对无线前端滤波器的要求。
这些所谓的副载波符号随后被馈送到IFFT单元4中以执行N点离散傅里叶逆变换(IDFT),从而生成包括复数输出符号的同相(I)和正交(Q)分量的复数基带(BB)OFDM信号。离散傅里叶逆变换通常作为快速傅里叶变换而被执行,随后进行循环前缀扩展。复数输出符号被馈送到并行到串行转换器5以获得包括实部I和虚部Q的复数数字基带信号的串行流。
复杂复数数字基带信号的实部I和虚部Q随后每个被转发到数模转换单元6,以将它们中的每个从数字值转换为相应的模拟值,随后在滤波器7中进行低通滤波,并且在模拟I/Q调制器8中被调制,模拟I/Q调制器8被振荡器提供的载波信号C驱动。I/Q调制器8的输出生成OFDM带通信号。在模拟滤波和放大之后,信号在射频(RF)频带中通过空气被发送。可选地,在外差无线前端中应用从中频(IF)频带到RF频带的附加混频级。
替代性的实现方式将数模转换单元移动到中频频带,并且使用数字I/Q调制器。该方案避免了由模拟I/Q调制分支中的滤波器和时钟相位缺陷引起的幅度、相位和延迟的不均衡的缺点,但是增加了所需的采样频率。额外的数字内插滤波器通过增加未用副载波的数目可以被实现为FIR滤波器或者被包括在较大的IFFT中。
通用OFDM解调器反向执行调制器的操作。再一次地,模拟或数字I/Q解调是可行的。此外,在解调器处需要同步算法以估计并调整无线前端中的可变增益放大器的正确增益设置、发送和接收时钟之间的频率偏移以及OFDM符号计时。
图2示出了根据本发明的OFDM调制器的优选实施例。根据本发明的OFDM调制器基本上包括与通用OFDM调制器中所包括的类似部件,例如用于将进入的数据位流编码并映射到复数副载波符号的调制映射单元3,如现有技术所公知的那样。同样,从传统OFDM调制器中所公知的IFFT单元4被用来生成复数IDFT输出符号z(n)。相同的参考标号被用来指示相同的功能块或单元。由于调制和解调的设置近似对称,所以说明书中所选择的对应公式符号等同。
第二变换装置50包括并行到串行单元51和复用器52,它们顺序串行化复数IDFT输出符号z(n)并且将z(n)的实部和虚部复用为中频OFDM信号的偶样本和奇样本。
在调制映射单元3和IFFT单元4之间,预处理单元10被引入以执行对调制映射单元3的输出处的复数副载波符号的预处理,并且生成要被馈送到IFFT单元4的经预处理的复数副载波符号。预处理单元10包括分配装置10a,分配装置10a基本上是分配单元10a,其将副载波符号分配给中频OFDM信号的频谱F(i)(i=0…2N-1)。负频率含量得自实序列频谱的对称属性,即,F(i)=F(2N-i)*。预处理单元10还包括转换器装置10b,即,通过使用实序列频谱的对称属性而将副载波符号转换为经预处理的复数副载波符号的转换器。
在预处理单元10中,执行根据以下程序的操作。给定中频的频率为fIF=nfC,其中代表整数值,并且定义向下取整运算符,fC是副载波频率分隔,B是OFDM信号带宽,根据本发明的方法可以去除数字I/Q调制,并且一起使用IFFT单元4和预处理单元10及并行到串行单元5a来直接生成中频OFDM信号(也被称为IF信号)。该信号还被预期为实值中频OFDM信号。
以下段落中描绘了本发明通过使用IFFT装置直接创建实值中频OFDM信号的一个概念。
图3a所示的频谱是周期性的,具有由采样频率fs给定的周期性。覆盖一个周期的N点IFFT单元被用来将复数BB OFDM信号从频域变换到时域。通过首先对采样时钟频率加倍f’s=2fs,然后将初始频谱的中心频率移位到fIF,以及最后将分量引入到所得的频谱中以实施实序列x(n)所需的对称属性,可以在没有数字I/Q调制的情况下获得图3b所示的频谱。如果输入侧上的频谱包括根据FFTN(x,f)=FFTN(N-k,x)*的对称,则傅里叶逆变换的输出仅仅包含实值。
为了转换该频谱,所使用的IFFT单元的大小大致上被增加到2N。
假定低IF频率被选中,即,则可以生成包括2N实值的中频OFDM信号。
如下所述,具有额外蝶形级(butterfly stage)的单个N点复数快速傅里叶变换(FFT)可以被用来对两个N点实FFT或一个2N点实FFT进行求值。序列z(n)的N点FFT被定义为:
Z ( k ) = FFT N ( k , z ) = 1 N Σ n = 0 N - 1 z ( n ) e - j 2 πkn / N
其中k=0…N-1。在该结果中,FFT的两个对称属性将是有用的。对于复数(或实数)序列z(n),属性
FFTN(k,z*)=FFTN(N-k,z)*
保持,而实序列x(n)的傅里叶变换还是共扼对称的,即
FFTN(k,x)=FFTN(N-k,x)*→X(k)=X(N-k)*
单个N点复数FFT可以被用来同时对两个实序列x(n)和y(n)的N点FFT进行求值。复数序列由下式定义:
z(n)=x(n)+jy(n)
对x(n)和y(n)求解,得到
x ( n ) = 1 2 [ z ( n ) + z ( n ) * ]
y ( n ) = - 1 2 j [ z ( n ) - z ( n ) * ]
对FFT求值以及应用对称属性得到结果
X ( k ) = FFT N ( k , x ) = 1 2 [ FFT N ( k , z ) + FFT N ( N - k , z ) * ]
Y ( k ) = FFT N ( k , y ) = - 1 2 j [ FFT N ( k , z ) - FFT N ( N - k , z ) * ]
因此,在FFT之后由简单蝶形级可以方便地提取所述变换。
为了扩展该方案以使用N点复数FFT对实序列f(n)的2N点FFT求值,x(n)=f(2n)被定义为偶样本并且y(n)=f(2n+1)被定义为奇样本,并且再次地,z(n)=x(n)+jy(n)。从FFT的线性和时移属性,可以得到
F(k)=FFT2N(k,f)=X(k)+e-jπk/NY(k)
其最后给出蝶形函数:
F ( k ) = 1 2 [ { Z ( k ) + Z ( N - k ) * } - j { Z ( k ) - Z ( N - k ) * } e - jπk / N
其中k=0…N-1。k=N…2N-1的剩余(冗余)值由实序列的对称属性确定。
因此,具有附加蝶形级的单个N点复数FFT可以被用来对两个N点实FFT或一个2N点实FFT求值。
根据本发明的OFDM调制器的预处理级10优选地执行下述操作,其进而可以作为上述蝶形函数的逆运算而被获得:
Z ( k ) = 1 2 · [ F ( k ) + F ( N - k ) * ] + 1 2 · j · [ F ( k ) - F ( N - k ) * ] · e + jπk / N
其中k=0…N-1,并且F(k)是要被调制到副载波k上的数据符号。
IFFT单元4的输出具有实部和虚部,其中复数输出符号z(n)的实部被解释为偶样本,并且虚部被解释为奇样本。这可以由复用器执行,复用器优选地被包括在并行到串行单元5a中。复用器的输出被连接到单个数模转换器单元11,数模转换器单元11通过使用两倍的采样速率直接生成中频OFDM信号。
在图4中,示出了OFDM信号的解调器。接收到的中频OFDM信号被模数转换器单元12转换为信号流f(n),信号流f(n)被馈送到第三变换器13,第三变换器13将中频OFDM信号变换为复数输入符号。第三变换器13包括解复用器(de-multiplexer)13a,解复用器13a将中频OFDM信号的偶样本和奇样本解复用到复数DFT输入符号的实部和虚部。换句话说,具有解复用器13a的第三变换器13将偶样本和奇样本与复数输入符号z(n)的实部I和虚部Q相关联。复数输入符号随后被馈送到FFT单元14以对复数输入符号执行快速傅里叶变换,进而获得副载波符号Z(k)。
基本上,第四变换器15例如根据如上确定的函数来执行将复数DFT输出符号Z(k)后处理为经后处理的副载波符号F(k):
F ( k ) = 1 2 · [ Z ( k ) + Z ( N - k ) * ] - 1 2 · j · [ Z ( k ) - Z ( N - k ) * ] · e - jπk / N
第四变换器15包括后处理装置15a,后处理装置15a将复数DFT输出符号Z(k)(k=1…N-1)后处理为中频OFDM信号的频谱F(k)=X(k)+exp(-j*pi*k/N)*Y(k)。第四变换器15还包括分配装置15b,分配装置15b为经后处理的副载波符号分配进一步处理的顺序。分配装置15b可以包括参考标准化符号的表。
在解调解映射单元16中,经后处理的副载波符号F(k)被串行化并且被解码,从而可以实现数据输出位流S。
根据本发明用于调制和解调的方法具有下述优点:可以避免由数字I/Q调制或解调引起的任何I/Q不平衡,同时减少了单元或设备的复杂度。与模拟Q调制方案相比,仅仅使用了具有两倍时钟速率的单个数模转换器单元。对于解调方案也是这样,其中仅仅应用了单个模数转换器单元。
IFFT单元4和FFT单元14可以分别与附加的预处理级10和后处理级15相结合。IFFT单元4和预处理级10可以被结合在定制的IFFT中,该定制IFFT可操作来执行IFFT和复数输入符号的预处理。按照相同的方式,FFT单元14和后处理级15可以被结合在定制的FFT单元中,该定制FFT单元可操作来执行FFT和后处理以实现经后处理的输出符号。定制IFFT单元和定制FFT单元可以被设计为集成电路。
可以在N倍副载波间隔fC的栅格上选择中频fIF,其中N>[B/(2fc)]为整数。这允许在模拟和数字滤波器的复杂度之间进行折衷。同样,可以实现放宽滤波器要求的过采样体系结构。