液晶显示装置转让专利

申请号 : CN200610108364.7

文献号 : CN1908789B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 郭相基朴正浚白范基李敬弼

申请人 : 三星电子株式会社

摘要 :

本发明公开了一种液晶显示器(LCD),该LCD包括栅极线、数据线和像素电极,像素电极包括施加有不同的电压的第一子像素电极和第二子像素电极。薄膜晶体管与栅极线和数据线结合,以向像素电极施加电压,存储电极与第一子像素电极和第二子像素电极部分地叠置。第一子像素电极布置在除了第二子像素电极的一边之外的所有边上,存储电极的第一侧部分与第一子像素电极和第二子像素电极的边界叠置,存储电极的第二侧部分突出并与第二子像素电极部分地叠置,存储电极包括存储电极延伸部分,存储电极延伸部分从越过第一子像素电极的存储电极的第二侧突出并与第二子像素电极叠置。

权利要求 :

1.一种液晶显示器,包括:

栅极线,布置在绝缘基底上;

数据线,与所述栅极线绝缘,并与所述栅极线交叉;

像素电极,包括施加有不同的电压的第一子像素电极和第二子像素电极;

薄膜晶体管,与所述栅极线和所述数据线电连接,以向所述像素电极施加电压,其中,所述第二子像素电极与所述第一子像素电极容性耦合;

存储电极,与所述第一子像素电极和所述第二子像素电极叠置,其中,所述第一子像素电极布置在除了所述第二子像素电极的一边之外的所有边上,所述存储电极的第一侧部分与所述第一子像素电极和所述第二子像素电极叠置,所述存储电极的第二侧部分与所述第一子像素电极和所述第二子像素电极叠置,所述存储电极包括存储电极延伸部分,所述存储电极延伸部分从越过所述第一子像素电极的所述存储电极的第二侧突出并与所述第一子像素电极和所述第二子像素电极叠置。

2.如权利要求1所述的液晶显示器,其中,所述第一子像素电极和所述第二子像素电极被间隙分开,并且所述存储电极包括:

一对存储电极垂直图案,沿着所述数据线布置;

一对存储电极倾斜图案,沿着所述间隙布置,并连接所述存储电极垂直图案。

3.如权利要求2所述的液晶显示器,其中,所述存储电极延伸部分从所述存储电极垂直图案中的一个突出,所述存储电极延伸部分比所述存储电极垂直图案中的所述一个宽。

4.如权利要求2所述的液晶显示器,还包括:

共电极基底;

偏振片,布置在所述共电极基底上,

其中,所述间隙包括与所述偏振片的透射轴形成大约45度的角度的第一间隙和与所述偏振片的透射轴形成大约负45度的角度的第二间隙。

5.如权利要求1所述的液晶显示器,其中,所述第二子像素电极和所述存储电极叠置的第一侧部分的面积与所述第二子像素电极和所述存储电极叠置的第二侧部分的面积基本上相同。

6.如权利要求5所述的液晶显示器,其中,凹进形成在所述第二子像素电极靠近所述数据线的一侧中。

说明书 :

                        技术领域

本发明涉及一种液晶显示器(LCD),更具体地讲,涉及一种垂直取向的LCD。

                        背景技术

液晶显示器(LCD)是最广泛使用的平板显示器之一。通常,LCD包括设置有场发生电极如像素电极和共电极的两个基底以及置于这两个基底之间的液晶(LC)层。LCD通过向场发生电极施加电压以在LC层中产生电场来显示图像,在LC层中产生的电场确定LC层的LC分子的取向,从而调节入射光的偏振。

在LCD中,垂直排列(VA)模式的LCD由于它的高对比度和宽参考视角(reference viewing angle)而流行,VA模式的LCD在没有电场的情况下,LC分子取向为LC分子的长轴垂直于基底,参考视角可被定义为使对比度等于1∶10时的视角或者可被定义为灰度间亮度反转的极限角度。

另外,已经开发了畴划分(domain division)型LCD,在畴划分型LCD中,畴被划分成多组,不同的数据电压被施加到各畴组。具体地讲,通过连接电极的耦合,一个像素可被划分成至少两个畴组,使得不同的数据电压可被施加到各畴组。

在这样的传统的LCD中,为了均匀地保持施加到像素电极的电压电平,像素电极可被形成为与施加有共电压的存储电极布线稍微叠置。然而,如果当在存储电极布线之上形成像素电极时出现叠置误差,则像素电极和存储电极布线的叠置面积在畴与畴之间会不期望地出现差异。在这种情况下,在一对相邻的畴之间的电压比会不规则,因而,会在LCD的屏幕上形成黑条纹和白条纹。

                        发明内容

本发明提供了一种LCD,即使当在存储电极布线之上形成像素电极时出现叠置误差,该LCD也可具有优良的显示特性。

在下面的描述中将阐述本发明的其它特征,部分从描述中将是清楚的,或者部分可通过本发明的实施来了解。

本发明公开了一种液晶显示器,包括:栅极线,布置在绝缘基底上;数据线,与栅极线绝缘,并与栅极线交叉;像素电极,包括施加有不同的电压的第一子像素电极和第二子像素电极;薄膜晶体管,与栅极线和数据线电连接,以向像素电极施加电压;存储电极,与第一子像素电极和第二子像素电极叠置。第一子像素电极布置在除了第二子像素电极的一边之外的所有边上,存储电极的第一侧部分与第一子像素电极和第二子像素电极的边界叠置,存储电极的第二侧部分与第一子像素电极的边界叠置,存储电极包括存储电极延伸部分,存储电极延伸部分从越过第一子像素电极的存储电极的第二侧突出并与第二子像素电极叠置。

应该理解,上面的总体描述和下面的详细描述都是示例性和解释性的,意在提供如权利要求的本发明的进一步解释。

                            附图说明

附图示出了本发明的实施例,并与描述部分一起用来解释本发明的原理,包括这些附图以提供对本发明的进一步理解,附图结合在本说明书中并构成本说明书的一部分。

图1A是根据本发明示例性实施例的LCD的薄膜晶体管(TFT)基底的版图,图1B是沿着图1A中的线Ib-Ib′截取的剖视图,图1C是沿着图1A中的线Ic-Ic′和Ic′-Ic″截取的剖视图;

图2是根据本发明示例性实施例的LCD的共电极基底的版图;

图3A是包括图1A中的TFT基底和图2中的共电极基底的版图,图3B是沿着图3A中的线IIIb-IIIb′截取的剖视图;

图4是根据本发明示例性实施例的LCD的电路图;

图5A是根据本发明另一示例性实施例的LCD的TFT基底的版图,图5B是根据本发明示例性实施例的包括图5A中的TFT基底的LCD的版图。

                        具体实施方式

通过参照下面对示例性实施例和附图的详细描述,本发明的优点和特征及实现其的方法可更易于理解。然而,本发明可以以多种不同的方式实施,不应理解为限于这里阐述的实施例。提供这些实施例以使本公开是透彻的和完全的,并将本发明的原理完全传达给本领域技术人员,本发明只由权利要求限定。整个说明书中,相同的标号表示相同的元件。

应该理解,当元件诸如层、膜、区域或基底称为“在”另一元件“上”时,这个元件可以直接在另一元件上,或者也可存在中间元件。相反,当元件称为“直接”在另一元件“上”时,不存在中间元件。

现在,将参照附图更加全面地描述根据本发明示例性实施例的LCD。

LCD包括:TFT基底,包括由栅极线和数据线限定的像素和TFT;共电极基底,面对TFT基底并包括滤色器。液晶层置于TFT基底和共电极基底之间。液晶层包括其长轴基本上垂直于TFT基底和共电极基底取向的液晶分子。

首先,现在将参照图1A、图1B和图1C来更加详细地描述TFT基底。

图1A是根据本发明示例性实施例的LCD的薄膜晶体管(TFT)基底的版图,图1B是沿着图1A中的线Ib-Ib′截取的剖视图,图1C是沿着图1A中的线Ic-Ic′和Ic′-Ic″截取的剖视图。

参照图1A、图1B和图1C,栅极线22沿着水平方向形成在绝缘基底10上,栅电极26从栅极线22突出地形成。从另一层或外部电路接收栅极信号的栅极线端部24形成在栅极线22的一端。为了有效地将栅极线22与外部电路结合,栅极线端部24比栅极线22宽。栅极线22、栅电极26和栅极线端部24构成栅极布线。

此外,存储电极线28沿着水平方向形成在绝缘基底10上,并基本上平行于栅极线22。多个存储电极29a、29b、29c和29d沿着第一子像素电极82a和第二子像素电极82b的边缘形成为存储电极线28的分支。例如,存储电极包括:存储电极垂直图案29a和29b,沿着数据线62从存储电极线28延伸,并与第一子像素电极82a和第二子像素电极82b叠置;存储电极倾斜图案29c和29d,沿着第一子像素电极82a和第二子像素电极82b之间相应的间隙83形成。存储电极倾斜图案29c和29d连接存储电极垂直图案29a和29b。存储电极垂直图案29a和29b可通过使用从存储电极垂直图案29a延伸的存储电极延伸部分27与第一子像素电极82a和第二子像素电极82b叠置。存储电极线28和存储电极29a、29b、29c、29d以及存储电极延伸部分27构成存储电极布线。

在本实施例中,为了增大LCD的开口率,存储电极布线27、28、29a、29b、29c和29d沿着第一子像素电极82a和第二子像素电极82b的边布置。然而,存储电极布线27、28、29a、29b、29c和29d可具有各种形状和布局,只要满足与第一子像素电极82a和第二子像素电极82b相关的预定存储电容形成条件。

栅极布线22、24、26和存储电极布线27、28、29a、29b、29c、29d可由Al、Al合金、Ag、Ag合金、Cu、Cu合金、Mo、Mo合金、Cr、Ti或Ta制成。此外,栅极布线22、24、26和存储电极布线27、28、29a、29b、29c、29d可具有多层结构,该多层结构包括具有不同物理特性的两个导电膜(未示出)。所述两个膜之一可由低阻金属制成,以减小信号延迟或电压降,所述低阻金属包括Al、Al合金、Ag、Ag合金、Cu和Cu合金。另一膜可由具有良好的物理特性、化学特性以及具有与其它材料诸如氧化铟锡(ITO)或氧化铟锌(IZO)的良好的电接触特性的材料诸如Mo、Mo合金、Cr、Ta或Ti制成。所述多层结构的示例包括下Cr膜和上Al膜,以及下Al膜和上Mo膜。然而,栅极布线22、24、26和存储电极布线27、28、29a、29b、29c、29d可由各种金属或导体制成。

栅极绝缘层30形成在栅极布线22、24、26和存储电极布线27、28、29a、29b、29c、29d上。

可由氢化非晶硅或多孔硅形成的半导体层40形成在栅极绝缘层30上。半导体层40可具有各种形状如岛状或线状。例如,图1A示出了岛状的半导体层40。当半导体层40为线状时,它可位于数据线62的下面并延伸到栅电极26。

欧姆接触层55和56可由例如硅化物或以高浓度n型杂质掺杂的n+氢化硅形成在半导体层40上。欧姆接触层55和56可具有各种形状如岛状或线状。例如,图1B示出了位于漏电极66和源电极65的下面的岛状的欧姆接触层55和56。线状的欧姆接触层可在栅电极26的上面延伸。

数据线62和漏电极66形成在欧姆接触层55、56和栅极绝缘层30上。数据线62在纵向上延伸,以与栅极线22交叉,从而限定像素。源电极65从数据线62分支并在半导体层40的上面延伸。从另一层或从外部电路接收数据信号并将数据信号传输到数据线62的数据线端部68形成在数据线62的一端。为了有效地将数据线62与外部电路结合,数据线端部68比数据线62宽。漏电极66和源电极65彼此分开,并位于栅电极26的相对侧。

漏电极66包括形成在半导体层40上的条型图案和从条形图案延伸并通过接触孔76部分地暴露的漏电极延伸部分67。以与漏电极66相同的材料形成并与漏电极66形成在相同的层上的耦合电极69从漏电极66分支。耦合电极69与第二子像素电极82b叠置,从而与第二子像素电极82b形成耦合电容。为了提高开口率并防止纹理和光泄漏,耦合电极69可沿着共电极的切口(图2和图3A的92)形成。数据线62、数据线端部68、源电极65、包括漏电极延伸部分67的漏电极66、耦合电极69构成数据布线。

数据布线62、65、66、67、68和69可由难熔金属如Cr、Mo、Ti、Ta或它们的合金制成。另外,数据布线62、65、66、67、68和69可具有包括低阻膜(未示出)和优良接触膜(未示出)的多层结构。该多层结构的示例包括下Cr膜和上Al膜的双层结构、下Al膜和上Mo膜的双层结构以及下Mo膜、中Al膜和上Mo膜的三层结构。

源电极65与半导体层40至少部分地叠置,漏电极66和源电极65至少部分覆盖半导体层40地位于栅电极26的相对侧。这里,欧姆接触55置于半导体层40和源电极65之间,欧姆接触56置于半导体层40和漏电极66之间,以减小半导体层40和源电极65之间以及半导体层40和漏电极66之间的接触电阻。

用作绝缘层的钝化层70形成在数据线62、漏电极66和半导体层40上。这里,钝化(保护)层70可由通过等离子体增强化学气相沉积(PECVD)形成的低介电绝缘材料如a-Si:C:O和a-Si:O:F、具有良好平坦性的光敏有机材料或者无机绝缘体如氮化硅或二氧化硅制成。可选择地,为了在保持有机层特性的同时保护暴露的半导体层40,钝化层70可具有下无机膜和上有机膜的双层结构。

穿过钝化层70形成接触孔76和接触孔78,以分别暴露漏电极66和数据线端部68。穿过钝化层70和栅极绝缘层30形成接触孔74,以暴露栅极线端部24。

像素电极82与像素的形状相对应地形成在钝化层70上。像素电极82包括被间隙83分开的第一子像素电极82a和第二子像素电极82b。间隙与偏振片的透射轴1形成大约45度或-45度的角度。第二子像素电极82b形成旋转的‘V’形,并位于像素区域的中间。第一子像素电极82a形成在像素区域没有第二子像素电极82b的部分上。这里,多个切口(未示出)可沿着倾斜的方向形成在第一子像素电极82a和第二子像素电极82b中,或者多个突出(未示出)可沿着倾斜的方向形成在第一子像素电极82a和第二子像素电极82b上。考虑到当向液晶层施加电场时液晶分子的指向矢的方向,可将像素电极82的显示区域划分成多个畴。使用形成在像素电极82中的切口或形成在像素电极82上的突出,每个畴可被划分成多个子畴。

第一子像素电极82a通过接触孔76电连接到漏电极66,通过从漏电极66延伸的耦合电极69,第二子像素电极82b耦合到漏电极66,但不直接与漏电极66连接。

辅助栅极线端部86和辅助数据线端部88形成在钝化层70上,并通过接触孔74与栅极线端部24连接,通过接触孔78与数据线端部68连接。此外,穿过钝化层70形成接触孔77,以暴露存储电极布线27、28、29a、29b、29c和29d。连接元件84形成在钝化层70上,并电连接相邻的像素区域的存储电极布线27、28、29a、29b、29c和29d。这里,第一子像素电极82a、第二子像素电极82b和辅助栅极线端部86、辅助数据线端部88可由透明导体如ITO、IZO或反射型导体如Al制成。辅助栅极线端部86将栅极线端部24与外部器件电连接,辅助数据线端部88将数据线端部68与外部器件电连接。

第一子像素电极82a通过接触孔76物理连接且电连接到漏电极66,漏电极66向第一子像素电极82a施加数据电压。第二子像素电极82b电浮置,并通过与漏电极66连接且与第二子像素电极82b叠置的耦合电极69与第一子像素电极82a容性耦合。

换句话讲,第二子像素电极82b的电压根据第一子像素电极82a的电压而改变。第二子像素电极82b的电压的绝对值可总小于第一子像素电极82a的电压的绝对值。可选择地,数据电压可施加到第二子像素电极82b,第一子像素电极82a可与第二子像素电极82b容性耦合。

当如上所述地布置像素时,可补偿具有不同数据电压的第一子像素电极82a和第二子像素电极82b,因而减小了伽马曲线扭曲并加宽了参考视角。

如上所述,即使当在存储电极布线27、28、29a、29b、29c、29d之上形成像素电极82时出现叠置误差,也可基本上均匀地保持像素电极82和存储电极布线27、28、29a、29b、29c、29d之间的叠置面积,从而基本上均匀地保持多个相邻畴之间的电压比。例如,像素电极82被形成为它的两边都可叠加在存储电极垂直图案29a和29b上。因此,即使当在存储电极布线27、28、29a、29b、29c、29d之上形成像素电极82时出现叠置误差,也由于可以补偿像素电极82和存储电极垂直图案29a、29b的叠置面积而可以基本上均匀地保持像素电极82和存储电极布线27、28、29a、29b、29c、29d之间的叠置面积。当通过耦合电极69将第二子像素电极82b与第一子像素电极82a容性耦合时,第二子像素电极82b可被形成为它的右侧部分与存储电极垂直图案29b叠置,而它的左侧部分与从存储电极垂直图案29a延伸并比存储电极垂直图案29a宽的存储电极延伸部分27叠置。这里,下面将参照图4来详细描述第一子像素电极82a和第二子像素电极82b的耦合。

用于使液晶层取向的取向层(未示出)可形成在像素电极82、辅助栅极线端部86、辅助数据线端部88和钝化层70上。

现在将参照图2、图3A和图3B来详细描述根据本发明示例性实施例的LCD的共电极基底和具有该共电极基底的LCD。图2是根据本发明示例性实施例的LCD的共电极基底的版图,图3A是图1A中的TFT基底和图2中的共电极基底的版图,图3B是沿着图3A中的线IIIb-IIIb′截取的剖视图。

参照图2、图3A和图3B,顺序布置在各像素中的滤色器98(例如,红色、绿色和蓝色滤色器)和防止光泄漏的黑色矩阵94形成在可为透明绝缘材料如玻璃的绝缘材料96上。共电极90由透明导电材料如ITO或IZO形成在滤色器98上,共电极90包括倾斜的切口92。每个倾斜的切口92在中间具有凹口91。凹口91可为三角形、矩形、梯形或半圆形。畴边界附近的液晶分子由于凹口91而可为稳定且均匀地排列,因此防止了在畴边界附近产生暗点或余像。

共电极90面对像素电极82,并包括与偏振片2的透射轴1形成大约45度或-45度的角度的倾斜切口92。共电极90可包括代替倾斜切口92的突出(未示出)。倾斜的切口92和突出可称为畴划分件。

用于使液晶分子取向的取向层(未示出)可形成在共电极90上。

参照图3A,共电极90的倾斜切口92以及使第一子像素电极82a和第二子像素电极82b分开的间隙83可交替地布置。

参照图3B,TFT基底100和共电极基底200彼此垂直地排列,液晶层300置于其间且彼此耦合,因而形成根据本发明示例性实施例的LCD的基本结构。

包括在液晶层300中的液晶分子取向为它们的指向矢可垂直于TFT基底100和共电极基底200,并具有负的介电各向异性。TFT基底100和共电极基底200彼此排列成使得像素电极82和滤色器98彼此精确叠置。然后,像素可被倾斜的切口92和间隙83划分成多个畴。根据液晶分子取向的方向,像素可被间隙83划分成左畴和右畴,也可被划分成上畴和下畴。换句话讲,根据当电场施加到液晶层时包括在液晶层中的液晶分子的指向矢的方向,像素可被划分成多个畴。

根据本发明示例性实施例的LCD不仅可包括在图3B中示出的基本结构,而且也可包括其它的元件,如偏振片和背光组件。

偏振片2可以以这样的方式安装在基本结构的一侧上,即,一个透射轴平行于栅极线22,另一透射轴垂直于栅极线22。

在根据本发明示例性实施例的LCD中,当对像素的多个畴的每个中的液晶施加电场时,上述液晶垂直于间隙83或倾斜的切口92倾斜。因此,在每个畴中的液晶与偏振片2的透射轴形成大约45度或-45度的角度。形成在各间隙83或倾斜的切口92中的侧向电场有助于在各个畴中的液晶取向。

在这个LCD中,图像信号电压可被从TFT施加到第一子像素电极82a,第二子像素电极82b与第一子像素电极82a容性耦合。因此,第二子像素电极82b的电压根据施加到第一子像素电极82a的图像信号电压而改变。此外,第二子像素电极82b的电压的绝对值将小于第一子像素电极82a的电压的绝对值。因此,如上所述,通过以这样的方式在像素中布置第一子像素电极82a和第二子像素电极82b,使得它们可彼此互补,可减小伽马曲线扭曲的可能性。

现在将参照图4来详细描述第一子像素电极82a和第二子像素电极82b的耦合,图4是根据本发明示例性实施例的LCD的电路图。

参照图3A和图4,Clca是形成在第一子像素电极82a和共电极90之间的液晶电容器,Csta是形成在第一子像素电极82a和存储电极布线27、28、29a、29b、29c、29d之间的存储电容器,Cstb是形成在第二子像素电极82b和存储电极布线27、28、29a、29b、29c、29d之间的存储电容器,Clcb是形成在第二子像素电极82b和共电极90之间的液晶电容器,Ccp是形成在第一子像素电极82a和第二子像素电极82b之间特别是形成在第二子像素电极82b和耦合电极69之间的耦合电容器。

参照图4,像素的TFT Q是包括控制端部(例如,栅电极26)、输入端部(例如,源电极65)和输出端部(例如,漏电极66)的三端部器件,其中,控制端部与栅极线G(例如,栅极线22)电连接,输入端部与数据线D(例如,数据线62)电连接,输出端部与液晶电容器Clca、Clcb以及存储电容器Cst电连接。

第一子像素电极82a和第二子像素电极82b的电压分别以Va和Vb表示。电压分布规律为:

Vb=Va×[Ccp/(Ccp+Clcb+Cstb)]

由于Ccp/(Ccp+Clcb+Cstb)总小于1,所以电压Vb将小于电压Va。通过控制电容器Ccp的电容,可调节Vb对Va的比,通过调节第二子像素电极82b与耦合电极69之间的接触面积或距离可控制电容器Ccp的电容。如上所述,可以以各种方式布置耦合电极69。

这里,如果当在存储电极布线27、28、29a、29b、29c、29d之上形成像素电极82时出现叠置误差,则电容器Cstb的电容可根据第二子像素电极82b与存储电极布线27、28、29a、29b、29c、29d之间的叠置面积而改变。因此,为了基本上均匀地保持电压Va与电压Vb之比,包括电容器Cstb的LCD应该被设计成不管当在存储电极布线27、28、29a、29b、29c、29d之上形成像素电极82时是否出现叠置误差,电容器Cstb都具有预定的电容。

如上所述,在根据本发明示例性实施例的LCD中,以这样的方式形成第二子像素电极82b,即,它的右侧部分与存储电极垂直图案29b叠置,它的左侧部分与从存储电极垂直图案29a延伸的存储电极延伸部分27叠置。因此,即使当在存储电极布线27、28、29a、29b、29c、29d之上形成像素电极82时出现叠置误差,也可基本上均匀地保持电容器Cstb的电容。结果,可基本上均匀地保持电压Va和电压Vb之比,从而防止LCD的显示特性劣化。

现在,将参照图5A和图5B来详细描述根据本发明另一示例性实施例的LCD。

图5A是LCD的TFT基底的版图,图5B是根据本发明示例性实施例的包括图5A中的TFT基底的LCD的版图。如图5A和图5B所示,相同的元件分别以相同的标号表示,省略对它们的重复描述。

参照图5A和图5B,修改了第二子像素电极582b,使得第二子像素电极582b和存储电极延伸部分27的叠置面积与第二子像素电极582b和存储电极垂直图案29b的叠置面积基本上相同。凹进A形成在第二子像素电极582b的右侧上(即,形成在第二子像素电极582b的最长的侧边上),使得第二子像素电极582b和存储电极垂直图案29b的叠置面积与第二子像素电极582b和存储电极延伸部分27的叠置面积基本上相同。

因此,即使当在存储电极布线27、28、29a、29b、29c、29d之上形成像素电极58,具体地讲,当在存储电极布线27、28、29a、29b、29c、29d之上形成第二子像素电极582b时出现叠置误差,也可基本上均匀地保持第二子像素电极582b和存储电极布线27、28、29a、29b、29c、29d的叠置面积。因此,可基本上均匀地保持施加到第一子像素电极82a的电压对施加到第二子像素电极582b的电压之比,从而改进了LCD的显示特性。

如上所述,即使当在存储电极布线之上形成像素电极时出现叠置误差,根据本发明示例性实施例的LCD也可基本上均匀地保持像素电极和存储电极布线的叠置面积,从而改进了LCD的显示特性。

本领域技术人员将清楚,在不脱离本发明的精神或范围的情况下,可对本发明作出各种修改和变化。因此,本发明意在覆盖本发明的修改和变化,只要它们落入权利要求及其等同物的范围。