旋转检测装置转让专利

申请号 : CN200580002948.X

文献号 : CN1910459B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 森下明平

申请人 : 东芝电梯株式会社

摘要 :

本发明的目的是削减由旋转检测装置引起的电动机的纹波成分。周期数乘法部51将检测对象的旋转角θ乘以检测对象每一次旋转的纹波周期数m。加法器53将mθ与来自相位调整部49的相位调整值ψ相加。对正弦计算部55计算出的sin(mθ+ψ),振幅调整部57乘以规定的增益G,乘法器59乘以检测对象的角速度ω。减法器61从ω减去乘法器59的输出并输出ω(1-Gsin(mθ+ψ))。该减法器61的输出以及加法器53的输出mθ+ψ被输入到相位调整部49以及振幅调整部57中。相位调整部49根据对加法器53的输出的每一个π/2采样的减法器61的输出的微分值的累积,计算出相位调整值ψ。振幅调整部57根据加法器53的输出为0,π的采样值平均和0~π的时间积分平均值的差的累积,计算增益G。

权利要求 :

1.一种旋转检测装置,其特征在于,

具有:检测旋转体的旋转运动的旋转检测单元、旋转计算单元和相位自动调整单元,

其中,所述旋转计算单元包含:

旋转角变换部,其根据所述旋转检测单元的输出,输出所述旋转体的旋转角;

角速度变换部,其根据所述旋转检测单元的输出,输出所述旋转体的角速度;

旋转角一次函数计算部,计算与所述旋转角变换部的输出有关的一次函数、而且具有将该一次函数的截距设定成可调的相位调整部;

三角函数计算部,其计算旋转角一次函数计算部输出值的正弦值或余弦值;

振幅调整部,其将所述三角函数计算部的输出乘以规定的增益;和乘法部,其将所述振幅调整部的输出乘以所述角速度变换部的输出,所述相位自动调整单元包含:

相位位移单元,其对所述角速度变换部的输出信号进行时间微分或时间积分;

位移相位采样单元,其在所述旋转角一次函数计算部输出值的每个规定的间隔,对所述相位位移单元的输出值进行采样;

周期性相位偏差积分单元,在所述旋转角一次函数计算部输出值的每个规定的间隔,将所述位移相位采样单元的输出值与从规定时刻开始到一个周期前为止的该位移相位采样单元输出值的总和相加;和相位增益乘法单元,使所述周期性相位偏差积分单元的计算结果乘以规定的增益,并将所述相位增益乘法单元的计算结果作为所述相位调整部的相位调整值进行输出。

2.根据权利要求1所述的旋转检测装置,其特征在于,所述振幅调整部具有振幅自动调整单元,其中,所述振幅自动调整单元包含:

振动采样单元,其在所述旋转角一次函数计算部输出值的每个规定的间隔,对所述角速度变换部的输出值进行采样;

振动采样值平均计算单元,其在所述旋转角一次函数计算部输出值的每个规定的间隔,输出所述振动采样单元的输出值与一个周期前的所述振动采样单元的输出值的平均值;

振动积分单元,对所述角速度变换部的输出信号进行时间积分并输出;

振动时间平均计算单元,其在所述旋转角一次函数计算部输出值的每个规定的间隔,计算所述振动积分单元输出值的时间平均值;

振幅偏差比较部,其在所述旋转角一次函数计算部输出值的每个规定的间隔,计算所述振动采样值平均计算单元的输出和所述振动时间平均计算单元的输出的差;

周期性振幅偏差积分单元,其在所述旋转角一次函数计算部输出值的每个规定的间隔,将所述振幅偏差比较部的输出值和从规定时刻开始到一个周期前为止的该振幅偏差比较部输出值的总和相加;和振幅增益乘法单元,使所述周期性振幅偏差积分单元的计算结果乘以规定的增益,并将所述振幅增益乘法单元的输出值作为所述振幅调整部的振幅调整增益进行输出。

3.根据权利要求1所述的旋转检测装置,其特征在于,所述周期性相位偏差积分单元为对所述位移相位采样单元的输出值进行时间积分的积分器。

4.根据权利要求2所述的旋转检测装置,其特征在于,所述周期性振幅偏差积分单元为对所述振幅偏差比较部的输出值进行时间积分的积分器。

5.根据权利要求1所述的旋转检测装置,其特征在于,所述旋转检测单元具有旋转变压器。

6.根据权利要求1所述的旋转检测装置,其特征在于,所述旋转检测单元具有发电机。

7.根据权利要求1所述的旋转检测装置,其特征在于,所述旋转检测单元具有编码器。

8.根据权利要求1所述的旋转检测装置,其特征在于,所述旋转检测单元与所述旋转计算单元相分离。

9.根据权利要求1所述的旋转检测装置,其特征在于,所述旋转计算单元的输出是降低了所述角速度的纹波成分的角速度输出。

10.根据权利要求1所述的旋转检测装置,其特征在于,在设所述旋转角为θ、所述角速度为ω、所述振幅调整部的振幅调整增益为G、所述相位调整部的调整相位值为Ψ、所述旋转体每旋转一次所述旋转角变换部的输出中所包含的波纹周期数为n的情况下,所述旋转计算单元的输出由通过下式计算的角速度输出ωout来规定。

[公式1]

ωout=ω(1-Gsin(nθ+ψ))...(式1)

11.根据权利要求1所述的旋转检测装置,其特征在于,所述旋转计算单元的输出是降低了所述旋转角的纹波成分的旋转角输出。

12.根据权利要求1所述的旋转检测装置,其特征在于,所述旋转角变换部具有对所述角速度变换部的输出进行积分的积分器。

13.根据权利要求10所述的旋转检测装置,其特征在于,所述旋转计算单元具有对所述角速度输出ωout进行积分的积分器。

14.根据权利要求1所述的旋转检测装置,其特征在于,所述旋转计算单元的输出是降低了所述旋转角的纹波成分的旋转角输出以及降低了所述角速度的纹波成分的角速度输出。

15.根据权利要求1所述的旋转检测装置,其特征在于,具有多个所述旋转计算单元。

16.根据权利要求1所述的旋转检测装置,其特征在于,所述相位自动调整单元具有相位调整值存储单元,该相位调整值存储单元根据来自外部的信号存储该相位自动调整单元的输出值,并且进行该存储的更新以及读出。

17.根据权利要求2所述的旋转检测装置,其特征在于,所述振幅自动调整单元具有振幅调整值存储单元,该振幅调整值存储单元根据来自外部的信号存储该振幅自动调整单元的输出值,并且进行该存储的更新以及读出。

说明书 :

技术领域

本发明涉及一种旋转检测装置,其是检测旋转机的旋转运动的旋转检测装置,安装在根据该旋转检测装置的检测结果控制所述旋转机的动作那样的控制系统中。更详细地说,涉及通过减少在旋转检测装置的输出信号中的纹波成分来减少旋转机的转矩纹波的技术。

背景技术

一般,电动机中存在转矩纹波。由于转矩纹波是引起伺服电动机的速度不均和位置误差的主要原因,因此,例如在NC装置中成为使加工精度恶化的原因,另外在电梯中成为轿厢被励振,损坏乘坐舒适度的主要原因。转矩纹波中存在由包含减速机的电动机本身引起的转矩纹波和由电动机的旋转检测传感器(旋转检测装置)引起的转矩纹波。前者是由电动机定子以及转子的工作精度或转子轴承的偏心、电动机内部的磁场的高次谐波以及减速机的安装的精度引起的。关于前者的转矩纹波的减少方法,一直研究在各种方法。
在特开平7-129251号公报中公开了如下方法:着眼于减速机所产生的转矩纹波,将转矩纹波调整增益设为A、将减速机的旋转角设为θ,将初始相位设为α1,并计算修正信号(Tcomp=sin(θ+α1)),使该修正信号与电动机的旋转周期同步,然后前馈地与目标转矩指令进行加法运算来消除转矩纹波。
另外,在特开平11-299277号公报中公开了如下方法:着眼于转矩纹波与电动机的旋转角具有相关性这一情况,将该相关关系存储到存储装置,同时读出与电动机旋转角对应的转矩纹波数据,把由转矩指令值减去纹波成分后的指令值作为新的转矩指令值。
另一方面,由于旋转检测传感器引起的转矩纹波作为电动机转矩纹波显现,所以较多的情况下通过对电动机的控制装置进行如上所述的控制,使其不成问题。但是,在旋转检测传感器的输出值中包含由检测对象的旋转角引起的纹波时,纹波的振幅与检测对象的角速度成比例地变大,因此产生在控制电动机的转矩或旋转速度时,无法使角速度反馈增益变大的问题,不仅对控制装置施加很大的负担,还引起装置的成本的上升。
为了解决这样的问题,如在特开2003-83769号公报中公开的那样,具有使用生成消除信号的纹波抵消单元,该消除信号具有减去由旋转检测传感器引起的纹波成分那样的相位和振幅。
如此,在现有的旋转检测装置中,为了即使在其输出中包含纹波也不会成为具有旋转检测装置的旋转机的转矩纹波或速度不均而明显地存在,在旋转机的驱动装置或控制装置内应用各种控制。因此,存在旋转机的驱动装置或控制装置变得复杂,引起可靠性的下降和成本的上升的问题。在电动机的转矩纹波的发生因素中,除了旋转检测装置输出的纹波之外,还有减速机的安装精度或电动机本身的工作精度、磁场的高次谐波等各种因素,但是旋转检测装置输出的纹波使得难以观察由其他因素引起的转矩纹波,不能认为充分发挥了作为旋转检测装置的传感器的功能。
另外,即使在消除旋转检测器的纹波成分的情况下,也需要为了很好地消除纹波成分,调整纹波抵消单元的振幅和相位,装置的调整不仅需要很多的时间,而且还引起装置调整成本的上升.

发明内容

本发明是基于上述问题而发明的,其目的在于提供一种旋转检测装置,该旋转检测装置可以实现以下目的:减少旋转检测装置的输出纹波、消除旋转机等具备该旋转检测装置的传动器(actuator)的转矩纹波或速度不均、简化传动器驱动装置或控制装置、减少成本以及提高可靠性。
为了达到上述目的,本发明的旋转检测装置的特征为,具有:旋转检测单元,其检测旋转体的旋转运动;旋转计算单元,其具有:根据所述旋转检测单元的输出输出所述旋转体的旋转角的旋转角变换部、根据所述旋转检测单元的输出输出所述旋转体的角速度的角速度变换部、计算与所述旋转角变换部的输出有关的一次函数,而且具备将该一次函数的截距设定为可调的相位调整部的旋转角一次函数计算部、计算旋转角一次函数计算部输出值的正弦值或余弦值的三角函数计算部、使所述三角函数计算部的输出乘以规定的增益的振幅调整部、使所述振幅调整部的输出乘以所述角速度变换部的输出的乘法部;相位自动调整单元,其具有:对所述角速度变换部的输出信号进行时间微分或时间积分的相位位移单元、在所述旋转角一次函数计算部输出值的每个规定的间隔,对所述相位位移单元的输出值进行采样的位移相位采样单元、在所述旋转角一次函数计算部输出值的每个规定的间隔,将所述位移相位采样单元的输出值与从规定时刻开始到一个周期前为止的该位移相位采样单元输出值的总和相加的周期性相位偏差积分单元、使所述周期性相位偏差积分单元的计算结果乘以规定的增益的相位增益乘法单元,并且将所述相位增益乘法单元的计算结果作为所述相位调整部的相位调整值进行输出。
另外,可以采用振幅调整部具有振幅自动调整单元的旋转检测装置。其中,所述振幅自动调整单元包含:振动采样单元,其在所述旋转角一次函数计算部输出值的每个规定的间隔,对所述角速度变换部的输出值进行采样;振动采样值平均计算单元,其在所述旋转角一次函数计算部输出值的每个规定的间隔,输出与一个周期前的所述振动采样单元输出值的平均值;振动积分单元,对所述角速度变换部的输出信号进行时间积分并输出;振动时间平均计算单元,其在所述旋转角一次函数计算部输出值的每个规定的间隔,计算所述振动积分单元输出值的时间平均值;振幅偏差比较部,其在所述旋转角一次函数计算部输出值的每个规定的间隔,计算所述振动采样值平均计算单元和所述振动时间平均计算单元的差;周期性振幅偏差积分单元,其在所述旋转角一次函数计算部输出值的每个规定的间隔,将所述振幅偏差比较部的输出值和从规定时刻开始到一个周期前为止的该振幅偏差比较部输出值的总和相加;和振幅增益乘法单元,使所述周期性振幅偏差积分单元的计算结果乘以规定的增益,并将所述振幅增益乘法单元的输出值作为所述振幅调整部的振幅调整增益进行输出。
而且,还可以采用所述周期性相位偏差积分单元为对所述位移相位采样单元的输出值进行时间微分的积分器的旋转检测装置。
还有,可以采用所述周期性振幅偏差积分单元是对所述振幅偏差比较部的输出值进行时间积分的积分器的旋转检测装置。
另外,可以采用所述旋转检测单元具有旋转变压器的旋转检测装置。
而且,还可以采用所述旋转检测单元具有编码器的旋转检测装置。
还有,可以采用所述旋转检测单元具有发动机的旋转检测装置。
另外,所述旋转检测装置可以采用所述旋转检测单元与所述旋转计算单元分离的旋转检测装置。
而且,所述旋转检测装置还可以采用所述旋转检测单元具有所述旋转计算单元的旋转检测装置。
还有,所述旋转计算单元的输出可以采用降低了所述角速度的纹波成分的角速度输出。
另外,所述旋转计算单元的输出可以采用设所述旋转角为θ、所述角速度为ω、所述振幅调整部的振幅调整增益为G、所述相位调整部的相位调整值为ψ、所述旋转体每旋转一次所述旋转角变换部输出中包含的波纹周期数为n,通过下式1得到的角速度输出ωout。
[公式1]
ωout=ω(1-Gsin(nθ+ψ))...(式1)
而且,所述旋转计算单元的输出可以采用降低了所述旋转角的纹波成分的旋转角。
还有,可以采用所述旋转角变换部具有对所述角速度变换部的输出进行积分的积分器的旋转检测装置。
另外,可以采用所述旋转计算单元具有对所述角速度输出ωout进行积分的积分器的旋转检测装置。
而且,所述旋转检测装置还可以采用具有多个所述旋转计算单元的旋转检测装置。
还有,所述旋转计算单元的输出可以采用降低了所述旋转角的纹波成分的旋转角以及降低了所述角速度的纹波成分的角速度。
另外,可以采用所述相位自动调整单元具有根据来自外部的信号存储该相位自动调整单元的输出值,同时进行该存储的更新以及读出的相位调整值存储单元的旋转检测装置。
而且,还可以采用所述振幅自动调整单元具有根据来自外部的信号存储该振幅自动调整单元的输出值,同时进行该存储的更新以及读出的振幅调整值存储单元的旋转检测装置。
本发明有效地消除所述旋转检测单元的输出中所包含的纹波成分、特别是依赖于测定对象物的旋转周期出现的纹波成分。而且,通过赋予用于消除纹波成分的补偿参数的自动调解功能,事先不进行调解,如果需要,即使装置正在运转,也可以容易且有效地降低所述旋转检测单元的输出中所包含的纹波成分。
即,若设检测对象的旋转角为θ0,则具有振幅a(以下,“a”在本说明书中的公式中用斜体文字表示)的波纹的旋转检测单元的输出通过旋转角变换部,变换成下式2的旋转角输出θ。
[公式2]
θ=θ0-acos(mθ0+φ)...(式2)
其中,m是检测对象每次旋转的波纹周期数,φ是在旋转检测对象中安装旋转检测单元时的初始相位差。
这里,在本发明中,例如在角速度变换部对θ进行时间微分,得到下式的角速度输出(以下,打点的θ表示θ的时间微分,在本说明书中,由于与申请书形式有关的限制,有时也用“θdot”表示)。
[公式3]
ω=θ·0(1+amsin(0+φ))...(式3)
当所述旋转计算单元例如根据所述式1计算该单元的输出ωout时,把式2以及式3代入式1得到的ωout可以用下式表示。
[公式4]
ωout=θ·0(1-Gsin(ψ-amcos(0+φ)+0)+amsin(0+φ)
-amGsin(ψ-amcos(0+φ)+0)sin(0+φ))
...(式4)
式4中,由于波纹的振幅一般较小,可看作a<<1,所以将三角函数在角度0的附近近似线形地展开时,
[公式5]
ωout=θ·0(1-Gsin(ψ+mθ0)+anGcos(ψ+0)cos(0+φ)
+amsin(0+φ)-amGsin(ψ-amcos(0+φ)+0)sin(0+φ))
...(式5)
而且,看作aG=0,得到
[公式6]
ωout=θ·0(1-Gsin(0+ψ)+amsin(0+φ))...(式6)
如果可以在公式1中将振幅调整增益G设定为和纹波率am相等,且将相位调整值ψ设定为和初始相位差φ相等,则公式6表示所述旋转计算单元的输出ωout和检测对象的角速度θ0dot相等,此时表示可以消除所述旋转角检测单元的输出中所包含的纹波成分。
现在,将旋转检测装置中所包含的单位角速度的角速度纹波成分ωr用下式7表示。
[公式7]
ωr=ansin(mθ0+φ)...(式7)
因此,把使用下式8表示的单位角速度的补偿角速度纹波ωc与该角速度纹波ωr相加时,则补偿后的单位角速度的合成角速度纹波ωm如下式9。
[公式8]
ωc=Gsin(mθ+Ψ)...(式8)
[公式9]
ωm=()2+G2+2GBcos(φ-Ψ)sin(+Ω)...(式9)
其中,
[公式10]
tanΩ=sinφ+Gsinψcosφ+Gcosψ...(式10)
此时,当在公式9中φ=Ψ时,ωm如下式11。
[公式10]
ωm=(mθ+G)sin(mθ+Ψ)...(式11)
即,若φ=Ψ,则补偿角速度纹波ωc与合成角速度纹波ωm如图5(a)所示,成为同相位。因此,作为使ωc的相位Ψ变化的算法,在ωc的角度mθ+Ψ变成2nπ+π/2时,对ωm的时间微分值或时间积分值进行采样,设与0的偏差为e1(n)、设适当的增益为α,用下式来定义Ψ。其中,n为非负的整数。
[公式12]
Ψ(n+1)=αΣk=0ne1(k)...(式12)
如此,在ωc和ωm同相位时,Ψ的增减量变成0。而且,在ωc的角度mθ+Ψ变成2nπ+3π/2时,对ωm的时间微分值或时间积分值进行采样,设与0的偏差为e2(n)、设适当的增益为α,可以把Ψ定义为
[公式13]
Ψ(n+1)=-αΣk=0ne2(k)...(式13)
结果,对于从0到2π的角度mθ+Ф的变化,可以用下式定义Ψ。
[公式14]
Ψ(n+1)=α(Σk=0ne1(k)-Σk=0ne2(k)...(式14)
在式14中,当固定Ψ以使φ=Ψ成立时,在ωc的角度mθ+Ψ从2nπ变成2nπ+π的情况下,设变成mθ+Ψ=2nπ以及mθ+Ψ=2nπ+π时的时刻分别为t(2nπ+2π)、t(2nπ+π),设这些时刻的ωm的采样平均值为ωmAV1(n),设适当的增益为β,设T1(n)为T1(n)=t(2nπ+π)-t(2nπ),用下式15来定义G。
[公式15]
G(n+1)=βΣk=0n(1T1(k)t(2)t(2+π)ωmdt-ωmAV1(k))...(式15)
如此进行定义,在φ=Ψ成立时,在ωm的半周期的时间平均值和ωmAV1(n)相等时,G的增减量变成0。而且,在ωc的角度mθ+Ф从2nπ+π变成2nπ+2π的情况下,设变成mθ+Ф=2nπ+π以及mθ+Ф=2nπ+2π时的时刻分别为t(2nπ+2π)、t(2nπ+π),设这些时刻的ωm的采样平均值为ωmAV2(n),设适当的增益为β,设T2(n)为T2(n)=t(2nπ+2π)-t(2nπ),如果将G设为下式16,
[公式16]
G(n+1)=-βΣk=0n(1T2(k)t(2+π)t(2+2π)ωmdt-ωmAV2(k))...(式16)
则关于旋转角剩下的半个周期,ωm的时间平均值和ωmAV2(n)相等。
结果,对于从0到2π的角度mθ+Ψ的变化,用下式定义G。
[公式17]
G(n+1)=β(Σk=0n(1T1(k)t(2)t(2+π)ωmdt-ωmAV1(k))-Σk=0n(1T2(k)t(2+π)t(2+2π)ωmdt-ωmAV2(k)))
...(式17)
如此定义G时,G收敛于G=-mθ,并且ωm的振幅如图5(b)所示变成0。
另外,在纹波含有率am或初始相位φ为已知的情况下,不言而喻可以从开始将G或ψ设定为已知的值。
如此,在式14中补偿角速度纹波的相位和式17中补偿角速度纹波的振幅分别自动地被调整,抵消旋转检测装置的输出信号中所包含的纹波成分。
根据本发明,在本发明中可以自动地降低旋转检测装置的输出纹波,可以容易地削减该旋转检测装置所具备的旋转机等传动器的转距纹波或速度不均。另外,由于自动调解所需要的参数,即使装置正在运转,也可以容易且有效地降低旋转检测单元的输出纹波。另外,由于可以通过简单的计算降低旋转检测装置的输出纹波,因此可以实现传动器驱动装置或控制装置的简化、实现成本的降低。而且,根据本发明,由于可以与所述检测对象的旋转速度无关地降低纹波成分,因此可以提高具有本发明的旋转检测装置的驱动系统的精度以及可靠性。

附图说明

图1是概略表示具有本发明的第一实施方式的旋转检测装置的旋转驱动系统的立体图。
图2是表示图1所示的旋转驱动系统的结构的框图。
图3是表示图2所示的相位调整部的结构的框图。
图4是表示图2所示的振幅调整部的结构的框图。
图5是表示用于说明相位以及振幅的自动调节的原理的转矩纹波和时间的关系的图形。
图6是表示目标角速度和时间的关系的图形。
图7是表示转矩指令值和时间的关系的图形。
图8是表示现有技术中的转矩指令值和时间的关系的图形。
图9是表示自动调整时的转矩指令值和时间的关系的图形。
图10是概略地表示具备具有与图1所示的旋转检测装置不同的旋转检测单元的旋转检测装置的旋转驱动系统的立体图。
图11是概略表示具备具有与图1以及图10所示的旋转检测装置不同的旋转检测单元的旋转检测装置的旋转驱动系统的立体图。
图12是概略表示具有本发明的第二实施方式的旋转检测装置的旋转驱动系统的立体图。
图13是表示图12所示的旋转驱动系统的结构的框图。
图14是概略表示具有本发明的第三实施方式的旋转检测装置的旋转驱动系统的立体图。
图15是表示图14所示的旋转驱动系统的结构的框图。

具体实施方式

以下,根据附图对本发明的实施方式进行详细的说明。
在图1至图4中,将第一实施方式的旋转检测装置作为整体用1来表示,旋转检测装置1具备旋转检测单元C1和旋转计算单元C2、C2′。
旋转检测单元C1由安转在作为检测对象的旋转电动机11上的、输出与旋转电动机11的转子旋转轴13的旋转角成比例的电压的旋转变压器15、与旋转变压器15的未图示的转子直接连结的输入旋转轴17、将转子旋转轴13的旋转传递给输入旋转轴17的旋转传递单元19构成。
与转子旋转轴13的一端连接的旋转传递单元19例如具有万向联轴器(universal joint)或联轴器(coupler),输入旋转轴17相对于转子旋转轴13最好是双方的轴心一致地旋转。旋转变压器15由缠绕了线圈的未图示的转子以及同样具有线圈的定子21构成,具有对从输入旋转轴17的规定的原点开始的每一个旋转角0~2π(rad)输出与旋转角对应的电压,例如输出0~5(V)电压的信号处理部23。在基板25上通过支撑元件27以规定的方法固定旋转变压器15的定子21。
这里,关于作为旋转运动的检测对象的旋转电动机11,特别参照图1进行说明。旋转电动机11被安放在底座29上,并用挡块(stopper)31固定住,和底座29成为一体。旋转电动机11除了所述的转子旋转轴13以外,还具有内置旋转电动机11的定子的定子外壳(housing)33、为了使转子旋转轴13可以在定子外壳33的圆筒底面中央部旋转地进行支撑的轴承35、安装在转子旋转轴13的另一端,并对旋转电动机11的负载以未图示的规定的方法传递动力的滑轮(pulley)37、根据旋转检测装置1的输出计算控制转子旋转轴13的旋转速度的转矩指令值的速度控制装置39、从三相交流电源41接收电功率,并且根据速度控制装置39的输出使转子旋转轴13产生与所述转矩指令值相等的转矩的驱动装置43。
参照图2,旋转检测单元C1的输出被输入到所述旋转计算单元C2中。旋转检测单元C1的输出信号中包含:由旋转传递单元19的安装偏心误差等引起的、以转子旋转轴13的旋转周期进行变动的第一纹波成分、和由于旋转变压器15未图示的线圈的不均匀的绕线等电磁产生的、以所述转子旋转轴13的旋转周期的整数倍例如4倍(此时纹波周期数m=4)的周期进行变动的第二纹波成分。为了使这些纹波成分减少,并取得与检测的旋转角相等的信号,具备了所述旋转计算单元C2、C2′。旋转计算单元C2进行用于消除第二纹波成分的计算处理,旋转计算单元C2′从通过旋转计算单元C2消除了第二纹波成分的信号中进一步消除第一纹波成分。
旋转计算单元C2具有:旋转角变换部45,其将信号处理部23的输出变换为转子旋转轴13的旋转角;角速度变换部47,其将旋转角变换部45的输出变换为转子旋转轴13的角速度;相位调整部49,其用于调节对于旋转角变换部45的输出的相位角;周期数增益乘法部51,将输入乘以转子旋转轴13旋转一次的期间所述旋转角变换部45的输出中包含的应消除的纹波周期数,例如4;加法器53,其将相位调整部49的输出和周期数增益乘法部51的输出进行相加;正弦计算部55,其输入加法器53的输出,同时计算所输入的值的正弦值;振幅调整部57,使正弦计算部55的输出乘以可调整的增益;乘法器59,其将振幅调整部57的输出和角速度计算部47的输出相乘;以及减法器61,其从角速度计算部47的输出减去乘法器59的输出.而且,相位调整部49、周期数增益乘法部51、加法器53以及正弦计算部55作为整体构成三角函数计算部C3.另外,由周期数增益乘法部51、相位调整部49以及加法器53构成计算旋转角的一次函数的旋转角一次函数计算部C4.
而且,旋转计算单元C2′具备:作为积分器的旋转角变换部45′,其对作为消除了第二纹波成分的旋转计算单元C2的输出的角速度进行积分;相位调整部49′,其用于调节与旋转角变换部45′的输出相加的相位角;加法器53′,其将相位调整部49′的输出和旋转角变换部45′的输出相加;正弦计算部55′,其计算加法器53′的输出的正弦值;振幅调整部57′,使正弦计算部55′的输出乘以可调整的增益;乘法器59′,其将振幅调整部57′的输出和旋转计算单元C2的输出相乘;减法器61′,其从旋转计算单元C2的输出减去乘法器59′的输出;和积分器63′,其对作为减法器61′的输出的角速度进行积分。在旋转计算单元C2′中,三角函数计算部C3′由旋转角一次函数计算部C4′和正弦计算部55′构成,旋转角一次函数计算部C4′由相位调整部49′以及加法器53′构成。
这里,为了更容易地理解,对速度控制装置39以及驱动装置43进行说明。速度控制装置39具有:角速度目标图形发生器65,其输出转子旋转轴13的角速度应追从的角速度目标图形;转矩指令计算部67,其根据角速度目标图形发生器65的输出以及旋转计算单元C2′的减法器61′的角速度输出,计算使转子旋转轴13的旋转速度追从目标图形的转矩指令值。另外,驱动装置43具有:转换器(converter)69,其用于将来自三相交流电源41的电功率转换成直流功率;逆变器(inverter)71,其根据转矩指令计算部67的输出以及积分器63′的输出,由变换器69的直流功率提供三相交流功率,以使所述旋转电动机11产生和转矩指令值相等的转矩。这里,逆变器71具备:点弧角控制部73,为了用产生规定的转矩的三相交流电流对旋转电动机11进行励磁,根据转矩指令计算部67的输出以及积分器63′的输出,控制晶闸管点弧角;晶闸管部75,其根据点弧角控制部73的输出向旋转电动机11提供三相交流电流。
在旋转检测装置1、速度控制装置39以及驱动装置43中,进行这些装置的动作所需要的电功率由单相交流电源77提供。此外,在框图中,箭头线表示信号路径,另外直线表示旋转电动机11以及旋转检测装置1周围的电力路径。
在图3,将所述相位调整部49(49′)作为相位自动调整单元49″进行表示.相位自动调整单元49″具备:绝对值计算部80,输入旋转角一次函数计算部C4(C4′)的输出,并计算该旋转角一次函数的绝对值;2π除法运算余数计算器82,其输出将绝对值计算部80的输出除以2π之后的余数;作为振动相位位移单元的模拟微分器84,其对减法器61(61′)的输出信号在规定的低频域进行微分使相位前进90度;作为位移相位采样单元的π/2采样固定器(holder)86,其导入模拟微分器84的输出,在2π除法运算余数计算器82的输出变成π/2时,对输入信号进行采样,并维持该采样值直至下次采样定时;作为位移相位采样单元的(第1)3π/2采样固定器88,其导入模拟微分器84的输出,在所述2π除法运算余数计算器52的输出变成3π/2时对输入信号进行采样,并维持该采样值直至下次采样定时;减法器90,其从π/2采样固定器86的输出值减去3π/2采样固定器88的输出值;周期性相位偏差积分单元92,其在所述2π除法运算余数计算器82的输出变成3π/2时,对减法器90的输出值进行采样,并与直到上一次为止的采样值的总和相加;作为相位增益乘法单元的相位增益乘法器93,其输入所述周期性相位偏差积分单元92的输出并乘以规定的增益;正反转调整部94,导入旋转角一次函数计算部C4(C4′)的输出,并将该旋转角一次函数的正负符号乘以相位增益乘法器93的输出;以及相位调整值存储单元96,其根据来自未图示的外部的信号,存储所述正反转调整部94的输出值.这里,周期性相位偏差积分单元92由以下部分构成:第2的3π/2采样固定器98,其在2π除法运算余数计算器82的输出变成3π/2时,对输入信号进行采样,并维持该采样值直至下次采样定时;加法器99,其将减法器90的输出值和第2的3π/2采样固定器98的输出值相加,并将加法结果输出到3π/2采样固定器98,3π/2采样固定器98的输出成为周期性相位偏差积分单元92的输出.
在图4中,将振幅调整部57(57′)作为振幅自动调整单元57″表示。即,振幅自动调整单元57″具备:第2绝对值计算部102,导入旋转角一次函数计算部C4(C4′)的输出,计算该旋转角一次函数的绝对值;第2的2π除法运算余数计算器106,其输出将绝对值计算部102的计算结果除以2π之后的余数;作为振动采样单元的0π采样固定器108,其在2π除法运算余数计算器76的输出变成0时,对减法器61(61′)的输出值进行采样,并维持该采样值直至下次采样定时;π采样固定器110,在2π除法运算余数计算器106的输出变成π时,对所述减法器61(61′)的输出值进行采样,并维持该采样值直至下次采样定时;2π采样固定器112,在2π除法运算余数计算器106的输出变成2π时,对所述减法器61(61′)的输出值进行采样,并维持该采样值直至下次采样定时;作为振动采样值平均计算单元的(第1)平均值计算部114,其计算0π采样固定器108的输出值和π采样固定器110的输出值的平均值;第2平均值计算部116,其计算π采样固定器110的输出值和2π采样固定器112的输出值的平均值;作为振动时间平均计算单元的0~π时间积分平均值计算部118,其对所述减法器61(61′)的输出,在所述2π除法运算余数计算器106的输出从0变成π的期间进行时间积分来计算积分结果的时间平均值;π~2π时间积分平均值计算部120,其对所述减法器61(61′)的输出,在所述2π除法运算余数计算器106的输出从π变成2π的期间进行时间积分来计算积分结果的时间平均值;作为振幅偏差比较部的减法器122,其从0~π时间积分平均值计算部118的输出减去所述平均值计算部114的输出;作为振幅偏差比较部的减法器124,其从π~2π时间积分平均值计算部120的输出减去所述平均值计算部116的输出;周期振幅偏差积分单元126,其在所述2π除法运算余数计算器106的输出变成π时,对减法器122的输出值进行采样,并与直到上一次为止的采样值的总和进行相加;周期振幅偏差积分单元128,其在所述2π除法运算余数计算器106的输出变成2π(变成0之前)时,对减法器124的输出值进行采样,并与直到上一次为止的采样值的总和进行相加;减法器130,其从所述周期性振幅偏差积分单元126的输出减去所述周期性振幅偏差积分单元128的输出;作为振幅增益乘法单元的乘法器132,导入减法器130的输出并乘以规定的增益;第2正反转调整部134,输入旋转角一次函数计算部C4(C4′)的输出,并使振幅增益乘法器63的输出乘以该旋转角一次函数的正负符号;以及振幅调整值存储单元136,其根据来自未图示的外部的信号,存储所述正反转调整部134的输出值。
这里,图4中的0~π时间积分平均值计算部118由以下部分构成:作为振动积分单元的0~π时间积分计算部144,其对减法器61(61′)的输出,在所述2π除法运算余数计算器106的输出从0变成π的期间进行时间积分;时间平均计算部146,计测2π除法运算余数计算器106的输出从0变成π的期间的时间,并将0~π时间积分计算部144的计算结果除以计测结果,由此计算0~π时间积分计算部144的输出值的时间平均,该时间平均计算部146的输出成为0~π时间积分平均值计算部118的输出.另外,π~2π时间积分平均值计算部120由以下部分构成:作为振动积分单元的π~2π时间积分计算部148,其对减法器61(61′)的输出,在所述2π除法运算余数计算器106的输出从π变成2π的期间进行时间积分;时间平均计算部150,计测2π除法运算余数计算器106的输出从π变成2π的期间的时间,并将π~2π时间积分计算部148的计算结果除以计测结果,由此计算π~2π时间积分计算部148的输出值的时间平均,该时间平均计算部150的输出成为π~2π时间积分平均值计算部120的输出.
周期性振幅偏差积分单元126由以下部分构成:第二π采样固定器152,其在2π除法运算余数计算器106的输出变成π时,对输入信号进行采样,并维持该采样值直至下次采样定时;加法器154,其将减法器122的输出值和第二π采样固定器152的输出值相加并将加法结果输出到所述π采样固定器152,该π采样固定器152的输出成为周期性振幅偏差积分单元126的输出。
周期性振幅偏差积分单元128由以下部分构成:第二2π采样固定器156,其在2π除法运算余数计算器106的输出变成2π(变成0之前)时,对输入信号进行采样,并维持该采样值直至下次采样定时;加法器158,其将减法器124的输出值和第二2π采样固定器156的输出值相加,并将加法结果输出到所述2π采样固定器156,该2π采样固定器156的输出成为周期性振幅偏差积分单元128的输出。
然后,对如上所述地构成的本实施方式的旋转检测装置的动作进行说明。
首先,对相位调整部49、49′的输出值为在相位调整值存储单元96中存储的规定的值,而且振幅调整部57、57′的输出值为在振幅调整值存储单元136中存储的规定的值时的装置的动作进行说明。
装置在处于待机状态的情况下,即接通三相交流电源41以及单相交流电源77,而且旋转检测装置1、速度控制装置39以及驱动装置43虽然处于运转状态,但角速度目标图形发生器65输出0的情况下,转子旋转轴13维持角速度为0的状态。然后,角速度目标图形发生器65例如发生如图6所示的梯形图形、目标角速度开始增加时,在转矩指令计算部67中,根据由减法器61′输出的当前的转子旋转轴13的角速度和目标图形发生器65的角速度目标值计算旋转电动机11应产生的转矩指令值,计算结果被输出给驱动装置43。于是,在点弧角控制部75中,控制对晶闸管部73的点弧角以使旋转电动机11产生符合指令值的转矩,从逆变器73输出励磁电流,旋转电动机11产生符合指令值的转矩。于是,由于旋转电动机11的转矩,滑轮37开始和转子旋转轴13一起旋转。转子旋转轴13的旋转经由旋转传递单元19、旋转输入轴17输入到旋转变压器15,在信号处理部23中,输出电压与转子旋转轴13的旋转角的增加对应地上升。信号处理部23的输出电压,在旋转角变换部45中变换成转子旋转轴13的旋转角,另一方面,在角速度变换部47中,例如通过模拟微分器等变换成角速度。此时,在信号处理部23的输出电压中,由于上述原因包含所述第一纹波成分和所述第二纹波成分。
将旋转角变换部45得到的旋转角(θ)在周期数增益乘法部51乘以转子旋转轴13每一次旋转的波纹周期数(m),在这里乘以4,然后,在加法器53中取得与作为相位调整部49的输出的相位调整值(ψ)的和(mθ+ψ),并输入给正弦计算部55,计算加法器53的输出值的正弦值(sin(mθ+ψ)).对正弦计算部55的输出,在振幅调整部57乘以规定的增益(G)之后,在乘法器59乘以来自角速度变换部47的角速度(ω).乘法器59的输出(ωGsin(mθ+ψ))和来自角速度变换部47的角速度一起被输入到减法器61,将角速度变换部47的输出(ω)作为被减数进行减法运算,结果成为旋转计算单元C2的输出(ω-ωGsin(mθ+ψ)).即,对于转子旋转轴13的旋转角以及角速度,上述公式1中的计算结果作为角速度从旋转计算单元C2被输出.因此在由旋转计算单元C2输出的角速度中,所述第二纹波成分被消除.
而且,旋转计算单元C2的角速度输出被输入到旋转计算单元C2′中。即,在具有积分器的旋转角变换部45′对所输入的角速度进行积分,变换成旋转角。另一方面,从相位调整部49′输出相当于所述第一纹波成分的初始相位角的规定的相位角,旋转角变换部45′以及相位调整部49′的输出被输入到加法器53′中。这里,在旋转计算单元C2中,之所以不存在位于旋转角变换部45′和加法器53′之间的周期数增益乘法部51,这是因为应消除的所述第一纹波成分和所述转子旋转轴已同步。在正弦计算部55′中计算加法器53′所输出的旋转角的正弦值,在振幅调整部57′中将正弦计算部55′的输出值乘以相当于所述第一纹波成分的振幅的规定的增益。将振幅调整部57′的输出在乘法器59′中乘以从旋转计算单元C2输出的角速度,在减法器61′中将乘法器59′的输出作为减数,对从旋转计算单元C2输出的角速度进行减法运算。即,即使这里,也是关于所述第一纹波成分,将(式1)的计算结果作为角速度从减法器61′输出。因此,在从减法器61′输出的角速度中,所有的纹波成分已被消除。
减法器61′的角速度输出直接作为旋转计算单元C2′的第一输出输入给速度控制装置39,另一方面,输入给积分器63′转换成旋转角。积分器63′的旋转角输出作为旋转计算单元C2′的第二输出被输入给驱动装置43。在这里,为了将随着角速度目标值的增加而增大的转子旋转轴13的旋转角以及角速度正确地输入到转矩指令计算部67以及点弧角控制部75中,使旋转电动机11中不产生伴随着角速度的增加而产生的异常振动或角速度恒定时的转矩纹波,滑轮37以良好地跟踪图6的角速度目标图形的角速度进行旋转。然后,在目标角速度变成0时滑轮37的角速度也变成0,旋转电动机11再次处于待机状态。
此时的转矩指令计算部67的指令值为图7所示的波形,但如同目前那样,当转子旋转轴13的旋转信息从旋转检测单元C1直接输入到速度控制装置39时,随着角速度的增加,在转矩指令值中发生图8所示的纹波。该纹波的振动数和振幅随着转子旋转轴13的角速度的增加而增大,直至到达最大角速度,然后随着角速度的减少而消失。如此,当在转矩指令值中包含从0到最大角速度运转时的频率的纹波时,对与旋转电动机11相关联的系统的共振频率进行激励。当对系统的共振频率进行激励,且转子旋转轴13成为特定的角速度时,则从系统中发生噪音或振动,根据情况会引起系统的破损。为了防止这样的现象提高系统的可靠性,可以提高包含旋转电动机11的系统整体的刚性,使共振频率上升。但是,为了提高系统的刚性,需要高强度的材料或需要进行加强,因此,作为结果会引起与旋转电动机11相关联的系统整体的成本的上升。但是,在本实施方式中,如图7所示,由于转矩指令值中不包含纹波,所以不会发生上述的问题。
下面,对使装置开始动作的情况、或由于停电等某种原因,使用存储在相位调整值存储单元96或振幅调整值存储单元136中的值无法消除旋转变压器15的输出信号中所包含的纹波成分,重新设定纹波成分的相位和振幅时的装置的动作进行说明。此时,装置处于待机状态、即三相交流电源35以及单相交流电源49被接通,且旋转检测装置1以及速度控制装置39处于运转状态但角速度目标图形发生器31输出0的情况下,旋转电动机11维持角速度0的状态。另外,在启动装置时,根据来自未图示的外部的信号,在相位调整值存储单元96以及振幅调整值存储单元136中,取代输出此之前的存储数据,直接输出输入给它们的正反转调整部94、134的输出值。在该状态下,将周期性相位偏差积分单元92以及周期性振幅偏差积分单元126、128的各个积分初始值例如设为0,从相位调整部49、49′以及振幅调整部57、57′输出0。
然后,当角速度目标图形发生器31产生如图6所示的梯形图形且目标速度开始增加时,旋转电动机11开始旋转。旋转电动机11的旋转是通过旋转变压器15来检测,但是信号处理部23的输出电压中,如上所述包含所述第1纹波成分和所述第2纹波成分。
但是,在本发明的旋转检测装置1中,通过相位自动调整单元49″以及振幅自动调整单元57″的作用,这些纹波成分随着旋转电动机11的旋转而被抵消。即,旋转检测单元C1(旋转计算单元C2)的输出经由旋转角变换部45(45′)被输入到旋转角一次函数计算部C4(C4′),在周期数增益乘法部51中乘以所述第2(第1)纹波成分频率,并且在加法器53(53′)中加上相位调整部49(49′)的输出,计算与旋转角有关的一次函数。此外,所谓与旋转角有关的一次函数,具体地说意味着mθ+Ψ,是将旋转角θ看作变量、将相位调整值Ψ看作常数项(一次函数截距),与可以用f(θ)=mθ+Ψ记述的θ有关的一次函数。然后,旋转角一次函数计算部C4(C4′)的输出被输入到相位调整部49(49′)、即相位自动调整单元49″以及振幅调整部57(57′)、即振幅自动调整单元57″。另一方面,加法器61(61′)的输出作为旋转计算单元C2(C2′)的输出,被输入到相位调整部49(49′)以及振幅调整部57(57′)中。
在具有图2所示的相位自动调整单元49″的结构的相位调整部49(49′)中,旋转角一次函数计算部C4(C4′)的输出被输入到绝对值计算部80以及正反转调整部94中。在绝对值计算部80中计算旋转角一次函数计算部C4(C4′)的输出(mθ+Ψ)的绝对值,在2π除法运算余数计算器82中计算将旋转角一次函数计算部C4(C4′)的输出除以2π之后的余数。该输出值被输入到π/2采样固定器86、3π/2采样固定器88、98中,在各个采样固定器中用于采样定时的检测。
另外,减法器61(61′)的输出被输入到模拟微分器84,模拟微分器84的输出即旋转变压器15的输出纹波的微分值(ωm的时间微分值)作为被采样信号输入到π/2采样固定器86以及3π/2采样固定器88中。如前面所述,π/2采样固定器86以及3π/2采样固定器88在将旋转角一次函数计算部C4(C4′)的输出(mθ+Ψ)的绝对值除以2π之后的余数分别为π/2以及3π/2时,对模拟微分器84的输出进行采样。
π/2采样固定器86以及3π/2采样固定器88的输出被输入到减法器90中,减法器90从π/2采样固定器86的输出值减去3π/2采样固定器88,并输出其结果.减法器90的输出被输入到周期性相位偏差积分单元92中.周期性偏差相位积分单元92的3π/2采样固定器98在每次将旋转角一次函数计算部C4(C4′)的输出(mθ+Ψ)的绝对值除以2π之后的余数为3π/2时,对减法器90的输出进行采样,并且使用加法器90,将此时采样的减法器90的输出与之前累积的减法器90的输出相加(进一步累积)(参照式14).周期性相位偏差积分单元92的输出、更具体地说3π/2采样固定器98的输出被输入到相位增益乘法器93中,在这里乘以使相位自动调整单元49″的输出值收敛的规定的增益(α).相位增益乘法器93的输出被输入到正反转调整部94中,在这里附加基于旋转角一次函数计算部C4(C4′)的输出的正负的规定符号,最终从正反转调整部94向相位调整值存储单元96输出基于所述式14的相位差Ψ.而且,随着旋转电动机11的旋转相位差Ψ接近所述(式7)的角速度纹波的相位差φ,与此相伴(式14)的Ψ的增加量收敛于0,最终变成Ψ=φ,相位自动调整单元49″的输出值变得稳定.此时,根据来自外部的指令在所述相位调整值存储单元96中存储相位差Ψ,在下次运转装置时,若从该相位调整值存储单元96输出该Ψ,则从起动时开始从旋转角一次函数计算部C4(C4′)输出没有相位差的信号.不言而喻,在该阶段由减法器61(61′)输出包含上述式11的纹波成分的角速度信号.
这样,在用于消除旋转电动机11的转距纹波的修正角速度纹波ωc的相位差Ψ收敛时,在振幅调整部57(57′)中进行自动调整,以使上述式8的G变成G=am,在减法器61(61′)中变成G=-an,角速度纹波成分被抵消。即,旋转角一次函数计算部C4(C4′)输出被输入到绝对值计算部102以及正反转调整部134中。在绝对值计算部102中计算旋转角一次函数计算部C4(C4′)的输出的绝对值,在2π除法运算余数计算器106中计算将旋转角一次函数计算部C4(C4′)的输出除以2π之后的余数。该输出值被输入到0π采样固定器108、π采样固定器110、152以及2π采样固定器112、156中,在各个采样固定器中用于采样定时的检测。另外,减法器61(61′)的输出被输入到0π采样固定器108、π采样固定器110、2π采样固定器112、0~π时间积分平均值计算部118以及π~2π时间积分平均值计算部120中。在平均值计算部114中计算0π采样固定器108以及π采样固定器110的输出的平均值ωmAV1。然后,在0~π时间积分平均值计算部118中,通过0~π时间积分计算部144以及时间平均计算部146计算减法器61(61′)的输出的旋转角0~π(rad)之间的时间积分平均值,在减法器122中计算平均值计算部114的输出,计算所述(式15)右边的∑内的值。减法器122的输出通过周期性振幅偏差积分单元126中的π采样固定器152以及加法器154的作用,计算(式15)的∑的值。另一方面,在平均值计算部116计算π采样固定器110以及2π采样固定器112的输出的平均值ωmAV2。然后,在p~2p时间积分平均值计算部120中通过p~2p时间积分计算部148以及时间平均计算部150计算减法器61(61′)的输出的旋转角π~2π(rad)之间的时间积分平均值,在减法器124中计算平均值计算部116的输出来计算所述(式16)右边的∑内的值。减法器124的输出通过周期性振幅偏差积分单元128中的2π采样固定器156以及加法器158的作用计算所述式16的∑的值。周期性振幅偏差积分单元126、128的输出在减法器130被进行减法运算,在振幅增益乘法器132中乘以使振幅调整部57(57′)的输出值收敛的规定的增益(β),并且在正反转调整部134中乘以基于旋转角一次函数计算部C4(C4′)的输出的正负的规定符号,结果,计算出基于所述式17的振幅G。然后,随着旋转电动机11的旋转振幅G接近所述式7的角速度纹波的振幅am,与此相伴所述式17的G的增加量收敛于0,最终变成G=am,角速度纹波ωr被抵消。
由此,图8的旋转电动机11的输出转距随着旋转电动机11的旋转的加速抵消掉转距纹波成分,如图9所示变得平滑.此时,根据来自外部的指令在所述振幅调整值存储单元136中存储振幅G,在下次运转装置时如果从该振幅调整值存储单元136输出该G,则从起动时开始从旋转计算单元C2(C2′)输出没有纹波成分的角速度信号.如此,不会激励与旋转电动机11相关联的系统的共振频率,也不会使系统的动作精度恶化,不会引起装置的破损.
此外,在本实施方式的旋转检测装置中,对相位增益乘法器93以及振幅增益乘法器132,在本装置的运转初期设定规定的初始值,例如设定0。但是,不言而喻,这些增益值在本发明的旋转检测装置的初期调整时,在相位增益乘法器63中变更为相位调整部22的输出;在振幅增益乘法器102中变更为振幅调整部的输出在规定的范围内收敛那样的值。
如上所述,在本实施方式中,可以提供一种旋转检测装置,其对于在旋转电动机11中产生的、由旋转检测单元C1引起的转距纹波,根据包含纹波成分的角速度信号以及其微分值分别自动调整用旋转电动机11的旋转角的sin函数定义的补偿角速度纹波的振幅以及相位,由此,可以抵消在旋转检测单元C1的输出中包含的角速度纹波,由此可以使旋转电动机11的转距纹波减少。因此,可以在装置正在运转时,容易且有效地减低旋转电动机11的驱动对象或旋转电动机11本身产生的振动或噪音,满足装置的功能,同时可以实现成本的降低以及可靠性的提高。
此外,在上述的第一实施方式中旋转检测单元具有旋转变压器,但这并不限定旋转检测单元的结构,可以进行各种变更。例如,也可以是得到与输入轴的角速度的增加成比例的输出电压的发电机。另外,通过旋转传递单元19以及旋转输入轴17来传递旋转电动机11的旋转,但是这对旋转传递单元19的方式或旋转输入轴17的使用没有任何限制,例如,如图10所示,可以是在转子旋转轴13的端部周围设置等间隔的条纹状140,作为使用信号处理部23′附带的光学元件141对其进行读取的旋转检测单元C1的光学式编码器143,或如图11所示,经由作为旋转传递单元的滚轮(roller)145将转子旋转轴13的旋转传递给回转式编码器147。
接着,根据图12、图13对本发明的第二实施方式进行说明。在第一实施方式中,用串连排列的两个旋转检测单元C2、C2′处理旋转检测单元C1的输出信号,但是这对旋转计算单元的个数或结构没有任何限制,与旋转检测单元的输出信号所具有的纹波成分的特征相配合,可以变更旋转计算单元的个数或结构。例如,在取代旋转变压器15具有回转式编码器147的旋转检测单元C1′中,不存在由旋转变压器15引起的第二纹波成分。另一方面,例如当在由联轴器(coupling)构成的旋转传递单元19中存在振动时,相位差φ对应旋转电动机11的转距的方向变动。另外,在旋转电动机11的负载把使轴心偏移的方向的外力作用于转子旋转轴13的情况下,有时根据负载的大小,在转子旋转轴13的轴心和与回转式编码器147的未图示的旋转轴直接连接的输入旋转轴17的轴心发生偏移,纹波成分的振幅变动。此时,可以使用具有如下功能的旋转计算单元C2″:在每次外力的大小变化时使振幅自动调整单元57”’动作,更新存储在振幅调整存储单元136中的振幅值,同时使相位自动调整单元49”’动作将正反转时的各个相位调整值存储在相位调整值存储单元96中,以转距指令部67的输出的正负来切换由相位调整值存储单元96输出的相位调整值。
即,旋转计算单元C2″具有输入相位调整部49”’、振幅调整部57”’和所述转距指令部67的输出,并判定其正负的符号判定器149.所述符号判定器149的输出被输入到所述相位调整部49”’,由此,所述相位调整部49”’根据转距指令部67的输出的正负,输出正负各自对应的规定的值.另外,例如,在重力方向的外力使转子旋转轴13的轴心偏移时,振幅调整部57”’的振幅调整值收敛于依据此时的外力的值,若需要,则可以将该振幅调整值使用到下次外力变更时为止.这里,不言而喻,将旋转计算单元C2″中的周期数增益乘法部51的增益设定为1.另外,在本实施方式中,三角函数计算部C3″由旋转角一次函数计算部C4″以及所述正弦计算部55构成,其中,所述旋转角一次函数计算部C4″由所述相位调整部49”’、周期数增益乘法部51和加法器53所构成.
而且,根据图14和图15对本发明的第三实施方式进行说明。在上述的第一、第二实施方式中,旋转检测单元与旋转计算单元相邻,作为整体构成旋转检测装置1,但是这对旋转检测单元和旋转计算单元的距离以及结构位置没有任何限定,如这些图所示,也可以将旋转计算单元C2安装到速度控制装置39′或驱动装置43′中。这里,由于在驱动装置43′中需要旋转角,因此旋转计算单元C2的输出经由积分器63′输入给点弧角控制部73。另外,之所以没有使用旋转计算单元C2′是因为由旋转传递单元引起的上述的第一纹波成分非常小。在本实施方式中,可以将旋转检测单元C1安装在旋转电动机11上,具有安装装置简单的优点。
此外,在上述各实施方式中,以模拟计算的方式说明了旋转计算单元,但这对模拟、数字的计算方式没有任何限定,也可以使用数字计算方式。
另外,在上述各实施方式中,旋转的检测对象是旋转电动机,但这对旋转检测装置的检测对象没有任何限定,例如,可以将直线电动机作为检测对象,其中,该直线电动机将可动体的移动距离经由车轮,用回转式编码器变换成旋转角。
此外,在不脱离本发明的宗旨的范围内可以进行各种变更。