一种单端输入的迟滞比较电路转让专利

申请号 : CN200610124854.6

文献号 : CN1949668B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 邹雪城刘政林郑朝霞邹志革詹昶

申请人 : 华中科技大学

摘要 :

本发明公开了一种单端输入的迟滞比较电路,包括用于产生阈值电压的阈值电压产生环路,以及用于产生迟滞电压的正反馈支路;正反馈支路由电流源I3和开关SW串联构成;阈值电压产生环路包括PMOS管P1、P2,NMOS管N3、N4,电流源I1、I2;PMOS管P1的栅极作为输入端,其漏极接地,源极与NMOS管N3的源极相接并连接到正反馈支路的开关SW,开关SW的另一端接电流源I3的输出端;NMOS管N3的栅极与漏极相连并连接到NMOS管N4的栅极和电流源I1的输出端;NMOS管N4的漏极接电流源I2的输出端,源极与PMOS管P2的源极相连;PMOS管P2的栅极和漏极接地;电流源I1、I2、I3的输入端均与电源VDD相接。本迟滞比较电路是为检测芯片中某电压是否过低而设计,电路只有一个输入端用于输入待测电压。

权利要求 :

1.一种单端输入的迟滞比较电路,其特征在于:该迟滞比较电路包括用于产生阈值电压VTH的阈值电压产生环路(1),以及用于产生迟滞电压VHYS的正反馈支路(2);阈值电压产生环路(1)还用于将阈值电压VTH和输入端(CTRL)的电压值进行比较;其中, 正反馈支路(2)由第三电流源(I3)和开关(SW)串联构成;

阈值电压产生环路(1)包括第一、第二PMOS管(P1、P2)、第三、第四NMOS管(N3、N4)和第一、第二电流源(I1、I2),第一PMOS管(P1)的栅极作为输入端(CTRL),其漏极接地,源极与第三NMOS管(N3)的源极相接并连接到正反馈支路的开关(SW),开关(SW)的另一端接第三电流源(I3)的输出端;第三NMOS管(N3)的栅极与漏极相连后又连接到第四NMOS管(N4)的栅极和第一电流源(I1)的输出端;第四NMOS管(N4)的漏极接第二电流源(I2)的输出端,源极与第二PMOS管(P2)的源极相连;第二PMOS管(P2)的栅极和漏极接地;第一至第三电流源(I1、I2、I3)的输入端均与电源(VDD)相接。

2.根据权利要求1所述的迟滞比较电路,其特征在于:所述阈值电压产生环路(1)还包括第五NMOS管(N5),第五NMOS管(N5)的栅极和漏极相接后,接到第三NMOS管(N3)的栅极,第五NMOS管(N5)的源极则连接到第四NMOS管(N4)的漏极。

3.根据权利要求1或2所述的迟滞比较电路,其特征在于:该电路还包括电流源产生支路(3)和输出支路(4);其中,

阈值电压产生环路(1)中的第一、第二电流源(I1、I2)为第十三、第十四PMOS管(P13、P14),第十三PMOS管(P13)和第十四PMOS管(P14)的栅极与电流源产生支路(3)的输出端相连,第十三PMOS管(P13)的漏极接第三NMOS管(N3)的漏极,其源极接电源(VDD);第十四PMOS管(P14)的漏极接第四NMOS管(N4)的漏极,其源极接电源(VDD);

电流源产生支路(3)由第六、第七PMOS管(P6、P7)和第一电阻(R1)构成;第一电阻(R1)的一端接地,另一端接到第七PMOS管(P7)的漏极;第七PMOS管(P7)的栅极接地,源极接到第六PMOS管(P6)的漏极和栅极;第六PMOS管(P6)的源极接电源(VDD),栅极与漏极相接后作为电流源产生支路(3)的输出端,该输出端将偏置电位分别连接到第八至第十一PMOS管(P8~P11)和第十三、十四PMOS管(P13、P14)的栅极;

输出支路(4)由第十五PMOS管(P15)和第五电阻(R5)组成,第十五PMOS管(P15)的源极接电源(VDD),栅极作为输出支路(4)的输入端与阈值电压产生环路(1)中的第十四NMOS管(N4)的漏极相接,第十五PMOS管(P15)的漏极则与第五电阻(R5)的一端相接后,作为输出支路(4)的输出端,该输出端依次经过第一级反相器(INV1)和第二级反相器(INV2)作为整个电路的输出端;第五电阻(R5)的另一端接地; 正反馈支路(2)中的电流源(I3)由第八至第十一PMOS管(P8~P11)依次串联构成,开关(SW)为第十二PMOS管(P12);由第八至第十一PMOS管(P8~P11)依次串联后构成的PMOS管的源极接电源(VDD),栅极接到电流源产生支路(3)中的第六PMOS管(P6)的栅极,漏极接到第十二PMOS管(P12)的源极;第十二PMOS管(P12)的漏极与阈值电压产生环路(1)中的第三NMOS管(N3)的源极相接,其栅极与第一级反相器(INV1)的输出端相连。

4.根据权利要求3所述的迟滞比较电路,其特征在于:所述阈值电压产生环路(1)还包括作为负载的第三、第四电阻(R3、R4),第三电阻(R3)的一端与第十三PMOS管(P13)的漏极相接,另一端与第三NMOS管(N3)的漏极相接,第四电阻(R4)的一端与第十四PMOS管(P14)的漏极相接,另一端与第四NMOS管(N4)的漏极相接;

正反馈支路(2)还包括第二电阻(R2),第二电阻(R2)的一端与第十二PMOS管(P12)的漏极相接,第二电阻(R2)的另一端与阈值电压产生环路(1)中的第三NMOS管(N3)的源极相连。

5.根据权利要求3所述的迟滞比较电路,其特征在于:所述阈值电压产生环路(1)还包括第五NMOS管(N5),第五NMOS管(N5)的栅极和漏极相接后,接到第三NMOS管(N3)的栅极,第五NMOS管(N5)的源极则连接到第四NMOS管(N4)的漏极。

6.根据权利要求5所述的迟滞比较电路,其特征在于:所述阈值电压产生环路(1)还包括作为负载的第三、第四电阻(R3、R4),第三电阻(R3)的一端与第十三PMOS管(P13)的漏极相接,另一端与第三NMOS管(N3)的漏极相接,第四电阻(R4)的一端与第十四PMOS管(P14)的漏极相接,另一端与第四NMOS管(N4)的漏极相接。

说明书 :

一种单端输入的迟滞比较电路

技术领域

[0001] 本发明属于模拟集成电路领域,具体涉及一种单端输入的迟滞比较电路,是一种单端输入且自身产生比较阈值电压的迟滞比较电路,尤其适用于集成电路中的迟滞比较器。

背景技术

[0002] 在集成电路芯片的应用领域中,对于芯片的某个输入或输出电压常常会有最高和最低电位的限制,那么相应的就需要在芯片中设计电路对这个电压进行检测。一旦该电压过高或者过低时,就输出一定的信号对芯片进行保护或者关断等操作。
[0003] 检测电路的实现方法就是采用合适的比较电路,而且由于检测电路的输出信号还需要对芯片进行一定的控制,因此使用单纯的比较电路会造成芯片的不稳定性,需要用到迟滞比较电路。这样一旦当输入电压低于其下限电位时,迟滞比较电路就输出使芯片关断的控制信号。而且当输入电压在其下限电位左右微小的波动时,迟滞比较电路仍然只会输出使芯片关断的控制信号。只有当输入电压高于下限电位一定的数值时,迟滞比较电路才会发生翻转输出另一种状态的控制信号使芯片正常工作。
[0004] 传统的迟滞比较电路为双端输入差动对结构,不仅需要从外部引入参考电平VREF,往往还需要外部电路为其提供偏置电压VBIAS。这样的比较电路在芯片上会占用较大的面积,而且电路性能还会受到参考电平VREF和偏置电压VBIAS的波动的影响。

发明内容

[0005] 本发明的目的在于提供一种单端输入的迟滞比较电路,该迟滞比较电路具有独立的工作能力,电路所占的面积小、结构简单而且性能稳定。
[0006] 本发明提供的一种单端输入的迟滞比较电路,其特征在于:该迟滞比较电路包括用于产生阈值电压VTH和进行比较的阈值电压产生环路,以及用于产生迟滞电压VHYS的正反馈支路;其中,
[0007] 正反馈支路由电流源I3和开关SW串联构成;
[0008] 阈值电压产生环路包括PMOS管P1、P2、NMOS管N3、N4和电流源I1、I2,PMOS管P1的栅极作为输入端CTRL,其漏极接地,源极与NMOS管N3的源极相接并连接到正反馈支路的开关SW,开关SW的另一端接电流源I3的输出端;NMOS管N3为二极管连接,其栅极与漏极相连后又分别连接到NMOS管N4的栅极和电流源I1的输出端;NMOS管N4的漏极接电流源I2的输出端,源极与PMOS管P2的源极相连;PMOS管P2的栅极和漏极接地;电流源I1、I2和I3的输入端均与电源VDD相接。
[0009] 本发明与现有的技术相比本电路没有使用差动对结构,不需要外部电路为其提供参考电压,而且本电路自身具有偏置产生电路,所以也不需要外部电路为其提供偏置电压。本发明的迟滞比较电路具有由四个MOS管构成的环路以及与之配合的电流源,它们组成了本迟滞比较电路的阈值电压产生部分,再加上由电流源和开关组成的正反馈支路,共同组成了本迟滞比较电路的核心部分。通过对阈值电压产生部分中的电流源I1与电流源I2的大小,或者NMOS管N3与NMOS管N4的比例关系以及PMOS管P1与PMOS管P2的比例关系的调节,则可以实现不同大小的翻转阈值电压VTH。通过对正反馈支路中的电流源I3的大小的调节,则可以实现不同大小的迟滞电压VHYS。当本迟滞比较电路的各个参数设定后,电路即可在电源供电的情况下独立的工作在芯片内部。例如当本迟滞比较电路应用于白光LED驱动芯片中,对调光信号进行检测,在调光信号电压低于本电路所设定的翻转阈值时,本电路输出相应的控制信号将关断芯片中的大部分模块,以起到保护作用。而且由于电路的独立性,在其他模块不工作时本电路仍能完成对调光信号进行检测的功能。因此,当所检测的调光信号恢复正常时,本电路又会输出控制信号来启动芯片重新工作。在电源电压相对稳定的芯片中(电源电压的波动在正负10%以内),本迟滞比较电路的翻转阈值和迟滞电压都是相当稳定的,工作性能良好。

附图说明

[0010] 图1为本发明的迟滞比较电路的电路原理图;
[0011] 图2为本发明的迟滞比较电路的改进方案的电路原理图;
[0012] 图3为对应于图1的第一种实施方式的电路图;
[0013] 图4为对应于图1的第二种实施方式的电路图;
[0014] 图5为对应于图2的第一种实施方式的电路图;
[0015] 图6为对应于图2的第二种实施方式的电路图。

具体实施方式

[0016] 如图1所示,本发明为单端输入的迟滞比较电路,包括正反馈支路2和阈值电压产生环路1两个部分。其中,正反馈支路2用于产生迟滞电压VHYS。阈值电压产生环路1用于产生阈值电压VTH以及完成比较功能。
[0017] 正反馈支路2由电流源I3和开关SW串联构成。阈值电压产生环路1包括PMOS管P1、P2、NMOS管N3、N4和电流源I1、I2。PMOS管P1的栅极作为输入端CTRL,其漏极接地,源极与NMOS管N3的源极相接并连接到正反馈支路的开关SW,开关SW的另一端接电流源I3的输出端。NMOS管N3为二极管连接,其栅极与漏极相连后又分别连接到NMOS管N4的栅极和电流源I1的输出端。NMOS管N4的漏极接电流源I2的输出端,源极与PMOS管P2的源极相连。PMOS管P2为二极管连接,其栅极和漏极接地。电流源I1、I2和I3的输入端均与电源VDD相接。
[0018] 本发明的实施电路具体工作原理详细叙述如下。本电路可通过自身的阈值电压产生环路1在达到平衡时的临界条件来实现对该迟滞比较器阈值电压的设置,因此不需要外部提供参考电压。当电路平衡时,电流源I1产生的电流将流经由NMOS管N3和PMOS管P1组成的支路;电流源I2产生的电流将流经由NMOS管N4和PMOS管P2组成的支路;电流源I3支路的开关将断开。此时根据动态平衡的KVL方程可知,结点X2处的电压既等于从NMOS管N3、PMOS管P1支路到地的电压大小,也等于从NMOS管N4、PMOS管P2支路到地的电压大小。那么可以列出下面的等式:
[0019] VTH+VSGP1+VGSN3=VSGP2+VGSN4
[0020] 式中的阈值电压VTH即为此刻对应的CTRL端的电压值,也就是本迟滞比较电路的翻转阈值电压,VSGP1为PMOS管P1的源极和栅极之间的电压差,VGSN3为NMOS管N3的栅极和源极之间的电压差,VSGP2为PMOS管P2的源极和栅极之间的电压差,VGSN4为NMOS管N4的栅极和源极之间的电压差。再由饱和状态下的MOS管电流公式和所使用的工艺库中提供的各项参数,以及所设置的电流源I1和I2所产生的电流大小,即可分别算得等式中除了阈值电压VTH之外的另外四个电压值,所以阈值电压VTH就这样确定下来。
[0021] 当CTRL端的电压低于阈值电压VTH时,由于电流源I1的存在使得NMOS管N3、PMOS管P1支路的电流为恒定值,因此阈值电压VTH越低结点X1和X2的电位也会随之降低。设构成的PMOS管P1的并联PMOS管的数量与构成的PMOS管P2的并联PMOS管的数量的比例为n∶1,n>1,则将构成的NMOS管N3的并联NMOS管的数量与构成的NMOS管N4的并联NMOS管的数量的比例亦设置为n∶1,这样可使得此时由NMOS管N4和PMOS管P2组成的支路上的电流被限制得很小,那么产生电流源I2的器件(即图3中的PMOS管P14)将进入线性区,输出OUT为高电平,OUT的反馈信号使得开关SW断开。
[0022] 当CTRL端的电压从低于阈值电压VTH变化到高于阈值电压VTH时,相应的结点X1和X2的电位也会随之升高。这将使得由NMOS管N4和PMOS管P2组成的支路导通,电流源I2产生的电流能流经该支路,使得NMOS管N4向线性区转变,所以此时OUT的电位变为低。OUT的反馈信号使得正反馈支路的开关SW闭合,电流源I3的电流能流经PMOS管P1。
[0023] 因为当CTRL端的电压高于阈值电压VTH后继续升高时,结点X2的电位也会随之升高,最终将使得NMOS管N4和产生电流源I1的器件(即图3中的PMOS管P13)都进入线性工作区。所以为了使电路能更稳定的工作在饱和工作区,我们将本发明做了如图2所示的改进,使其更具有实用性。
[0024] 如图2所示,在阈值电压产生环路1中,增加了二极管连接的NMOS管N5,NMOS管N5的栅极和漏极相接后,接到NMOS管N3的栅极,NMOS管N5的源极则连接到NMOS管N4的漏极。
[0025] 加入了NMOS管N5后,当CTRL端的电压从低于阈值电压VTH变化到高于阈值电压VTH时,随着正反馈电流流入PMOS管P1,X2结点的电位将进一步升高,然而此时NMOS管N5源端的电位(即OUT端的电位)却在持续降低,因此NMOS管N5将导通,并对X2处的电压进行钳位,使得NMOS管N3进入截止状态,电流源I1的电流将通过NMOS管N5流到由NMOS管N4和PMOS管P2组成的支路。
[0026] 当CTRL端的电压从高于阈值电压VTH变化到低于阈值电压VTH时,若要OUT的输出信号发生翻转,则必须使NMOS管N3重新导通让电流源I1的电流能流经NMOS管N3。然而此时PMOS管P1上的电流除了I1之外还有I3的存在,因此根据PMOS管饱和状态下的漏极电流方程:
[0027]
[0028] 可知,当PMOS管P1上的电流变为I1+I3时,相应的其栅源电压VGSP1也变得更大。而此时结点X2的电位已被N5钳制,所以此时的翻转阈值电压VTH′将比原来的阈值电压VTH要低。这两个阈值之差VTH-VTH′即为本迟滞比较电路的迟滞电压的大小,记做VHYS。VTH′应被设置成与检测电压的下限电位相等。
[0029] 下面举例对本发明作进一步详细的说明。
[0030] 如图5所示,阈值电压产生环路1中的电流源I1、I2为PMOS管P13、P14,PMOS管P13和P14的栅极与电流源产生支路3的输出端相连,PMOS管P13的漏极接电阻R3的一端,其源极接电源VDD;PMOS管P14的漏极接电阻R4的一端,其源极接电源VDD;电阻R3的另一端与NMOS管N3的漏极相接,电阻R4的另一端与NMOS管N4的漏极相接。NMOS管N5的栅极和漏极相接后,接到NMOS管N3的栅极,NMOS管N5的源极则连接到NMOS管N4的漏极。
[0031] 电流源产生支路3由PMOS管P6、P7和电阻R1构成;电阻R1的一端接地,另一端接到PMOS管P7的漏极;PMOS管P7的栅极接地,源极接到PMOS管P6的漏极和栅极;PMOS管P6为二极管连接,其源极接电源VDD,其栅极与漏极相接后作为电流源产生支路3的输出端,该输出端将偏置电位分别连接到PMOS管P8~P11,P13和P14的栅极。电流源产生支路3产生的电流大小将直接决定电路中正反馈支路2和阈值电压产生环路1的功耗大小,所以应该设置该电流源的大小为“纳安”量级,以减小本迟滞比较电路的功耗。因此可以根据芯片允许分配给该模块的功率来估算能分配给该支路的功率大小,再由两个PMOS管都应该工作在饱和区来计算两个PMOS管的宽长比。电阻R1的阻值应该设置的足够小,以保证PMOS管P7能总是工作在饱和状态下。
[0032] 输出支路4由PMOS管P15和电阻R5组成,PMOS管P15的源极接电源VDD,栅极作为输出支路4的输入端与阈值电压产生环路1中的NMOS管N4的漏极相接,漏极则与电阻R5的一端相接后,作为输出支路4的输出端,该输出端依次经过第一级反相器INV1和第二级反相器INV2后作为整个电路的输出端;电阻R5的另一端接地。输出支路4的功能是将C结点的输出电压反相后再从结点D输出,而结点D的输出电压经过第一级反相器INV1后作为反馈控制信号输到正反馈支路2的开关管PMOS管P12的栅极以控制其通断,再经过第二级反相器INV2后,作为最终的输出控制信号。
[0033] 正反馈支路2中的电流源I3由PMOS管P8~P11依次串联构成,开关SW为PMOS管P12;串联后的PMOS管的源极接电源VDD,栅极接到电流源产生支路3中的PMOS管P6的栅极,漏极接到PMOS管P12的源极;PMOS管P12的漏极与电阻R2的一端相接,其栅极与第一级反相器INV1的输出端相连;电阻R2的另一端与阈值电压产生环路1中的NMOS管N3的源极。在正反馈支路2中,PMOS管P8~P11串联后可等效为一个PMOS管,由于该支路是为了产生迟滞电压VHYS而设置的,而且迟滞电压VHYS的值与阈值电压VTH相比应该小许多,所以正反馈支路的镜像电流相应的也要小的多,这就是为什么镜像是由四个串联PMOS管串联的原因。通过改变串联的MOS管数量或者宽长比的大小,即可改变迟滞电压VHYS的大小。
[0034] 图5中连接在电源VDD和PMOS管P15的栅极之间的电容c是作滤波用的,即用于消除电路信号中可能出现的毛刺和尖峰,以免影响本迟滞比较电路的输出状态。如果CTRL端为芯片的一个PAD,那么就需要图中的电阻R0和PMOS管P16以及NMOS管N17来完成静电保护功能。
[0035] 由于电流的大小为纳安量级,因此电阻R2、R3和R4上的压降都很小,可忽略不计。对PMOS管P8~P11、P13和P14作适当的调整甚至可以去掉R2、R3和R4这三个电阻,所以就有图6所示的实施方式电路图。NMOS管N5的连接方式为二极管连接,其作用就是对结点B和C进行钳位,并提高本迟滞比较电路的翻转速度。但是去掉NMOS管N5,本电路仍然能够工作,所以又有图3和图4所示的另外两种对应于原理图1的实施方式的电路图。
[0036] 在上述全部实施方式的电路图中,所有PMOS管的衬底均接电源VDD,所有NMOS管的衬底均接地。
[0037] 下面,对本迟滞比较电路如图5所示的实施方式的电路的动作进行说明。
[0038] 当CTRL端的输入电压为0V时,NMOS管N3和N4可以看作电流镜结构。设置二者的宽长比相同,但是组成二者的并联MOS管数量为n∶1,那么此时NMOS管N4上流经的电流将是NMOS管N3上的1/n。同时通过设置组成PMOS管P13的并联PMOS管的数量和组成PMOS管P14的并联PMOS管的数量的比例为1∶m,m>1,那么PMOS管P14上产生的电流大小为PMOS管P13上产生的电流大小的m倍,因此PMOS管P14管势必会进入线性区,结点C的电位为高。此时输出支路4中的PMOS管P15管不导通,或者导通电流非常小,结点D输出电压为低。反馈电压为高,正反馈支路2中的PMOS管P12关断。总输出控制信号OUT为低。
[0039] 随着CTRL端的电压从0V开始升高,而且PMOS管P1管上流经的电流大小又保持不变,那么结点A和B的电位也会随之升高。相应的随着结点B的电位升高,NMOS管N4、P2支路上的电流将不断增大。直到CTRL端的电压升高到阈值电压VTH时,由NMOS管N4和PMOS管P2组成的支路上的电流恰好增大到与PMOS管P14产生的电流大小一致。此时反向二极管连接的NMOS管N5即将导通,结点C的电位为低,输出支路4中的PMOS管P15导通,结点D输出电压为高。反馈电压为低,正反馈支路2中的PMOS管P12打开。总输出控制信号OUT为高。
[0040] 正反馈支路2的开关打开后,该支路产生的反馈电流就会流过PMOS管P1,这将使得结点A的电位进一步升高。然而由于有反向二极管连接的NMOS管N5的存在,结点B和C的电位均被钳位。因此,反馈电流的加入使得NMOS管N3将进入截止状态。而且由PMOS管P13产生的电流将通过NMOS管N5流经由NMOS管N4和PMOS管P2组成的支路。此后,若CTRL端的电压继续升高,也只会对结点A造成影响,并不会影响到结点B和C。
[0041] 相反的,当CTRL端的输入电压从高于阈值电压VTH开始下降时,要使电路发生翻转,必须要使NMOS管N3重新进入饱和区。然而此时PMOS管P1上流经的电流除了镜像电流源P13产生的电流之外,还有正反馈支路产生的电流。又由于NMOS管N5对NMOS管N3栅极电位的钳位,因此对于PMOS管P1来说,源极电压不变,就需要比阈值电压VTH更低的栅极电压VTH′才能使其进入饱和区。二者之差即为迟滞电压VHYS的大小。