传感器、测量装置以及测量方法转让专利

申请号 : CN200580014503.3

文献号 : CN1950694B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 北胁文久龟井明仁河村达朗

申请人 : 松下电器产业株式会社

摘要 :

本发明涉及一种能够迅速并准确地测量多个测量项目的传感器,测量装置以及测量方法。该传感器包括,样品保持单元,用于保持包括分析物的样品;样品提供口,用于向样品保持单元提供该样品;检测单元,用于执行电化学测量,该单元被提供在样品保持单元中;光学测量单元,用于执行光学测量,该单元提供在样品保持单元中;试剂保持单元,用于保持试剂用于光学测量,该单元提供在样品保持单元中;其中,在提供自样品提供口的样品在样品保持单元中的流动方向上,样品提供口,检测单元和试剂保持单元按照所述的顺序定位。

权利要求 :

1.一种传感器,包含:

样品保持单元,包括用于保持包括第一分析物和第二分析物的样品的空间;

样品提供口,用于向所述样品保持单元提供样品,所述样品提供口连接到所述空间;

检测单元,用于执行所述第二分析物的电化学测量,该检测单元提供在所述样品保持单元中;

光学测量单元,用于执行所述第一分析物的光学测量,该光学测量单元提供在所述样品保持单元中;

试剂保持单元,用于保持所述光学测量用的试剂,该试剂保持单元提供在样品保持单元中;

其中,在自所述样品提供口提供的所述样品在所述样品保持单元中的流动方向上,所述样品提供口、所述检测单元和所述试剂保持单元按照所述的顺序定位;

其中,在自所述样品提供口提供的样品在所述样品保持单元中的流动方向上,所述光学测量单元位于与所述试剂保持单元基本上相同的位置,或位于所述试剂保持单元的下游侧。

2.根据权利要求1的传感器,其中,所述光学测量单元包含:光入射单元,用于使入射光入射;光出射单元,用于使出射光从所述光学测量单元内出射到所述光学测量单元外。

3.根据权利要求1或2的传感器,其中,所述试剂保持单元包含特定地与所述分析物反应的试剂。

4.根据权利要求1或2的传感器,其中,所述检测单元包含至少一对电极。

5.根据权利要求1或2的传感器,其中,所述检测单元包含离子选择电极。

6.根据权利要求2的传感器,其中,所述检测单元设置在与入射到所述样品保持单元的入射光的光路和从所述样品保持单元出射的出射光的光路不同的位置上。

7.一种测量装置,包含:

传感器安装单元,用于安装根据权利要求1到6中任何一个的传感器;

光源,用于使入射到所述传感器的所述光学测量单元的入射光出射;

光接收单元,用于接收从所述光学测量单元出射的出射光;

电压提供单元,用于向所述检测单元施加电压;

电信号测量单元,用于测量来自于所述检测单元的电信号;以及处理单元,用于基于从所述光接收单元接收的所述出射光和由所述电信号测量单元测量的所述电信号中的至少一个检测或量化所述分析物。

8.根据权利要求7的测量装置,其中,用于吸入所述样品的吸入单元被提供在安装到所述传感器安装单元的所述传感器的所述样品保持单元中。

9.一种采用传感器的分析物的测量方法,该传感器包含:样品保持单元,包括用于保持包括第一分析物和第二分析物的样品的空间;

样品提供口,用于向所述样品保持单元提供所述样品,所述样品提供口连接到所述空间;

检测单元,用于执行电化学测量,该检测单元被提供在所述样品保持单元中;

包含光入射单元和光出射单元并且被提供在所述样品保持单元中的光学测量单元,光入射单元用于使入射光向所述样品保持单元入射,光入射单元提供在所述样品保持单元中,光出射单元用于使出射光从所述光学测量单元内出射到所述光学测量单元外,光出射单元提供在所述样品保持单元中;以及试剂保持单元,用于保持所述光学测量用的试剂,试剂保持单元提供在所述样品保持单元中;

其中,在自所述样品提供口提供的所述样品在所述样品保持单元中的流动方向上,所述样品提供口、所述检测单元和所述试剂保持单元按照所述的顺序定位;

其中,在自所述样品提供口提供的样品在所述样品保持单元中的流动方向上,所述光学测量单元位于与所述试剂保持单元基本上相同的位置,或位于所述试剂保持单元的下游侧;

该方法包含以下步骤:

(A)向所述样品保持单元提供所述样品;

(B)向所述检测单元施加电压;

(C)测量来自于所述检测单元的电信号;

(D)基于在所述步骤(C)中测量的所述电信号检测或量化所述第二分析物;

(E)经由所述光入射单元将入射光照射到保持在所述样品保持单元内的所述样品;

(F)测量由所述入射光的照射引起的经由所述光出射单元从所述样品保持单元内部出射到所述样品保持单元外部的出射光;以及(G)基于在所述步骤(F)中测量的所述出射光检测或量化所述第一分析物。

10.根据权利要求9的测量方法,其中,在所述步骤(C)中检测到所述电信号时,在所述步骤(E)中照射所述入射光。

11.根据权利要求9或10的测量方法,还包含如下步骤:基于所述第一分析物的量化结果和所述第二分析物的量化结果中的一个,校正另一个量化结果。

说明书 :

技术领域

本发明涉及一种用于测量一个样品多个项目的传感器、采用这种传感器的一种测量装置以及一种测量方法。

背景技术

传统地在临床测试领域中采用的测量装置主要是大型自动装置以及POCT(即时诊断(Point of Care Tesing))装置。
在医院的中央临床测试部门以及主要从事临床测试的公司处提供这种大型自动装置,并且通过采用这些装置,许多患者的样品可以被进行多个项目的测试(例如,专利公开文献1)。例如,由Hitachi有限公司制造的7170型大自动化装置能够最多对于36个项目完成800个测试/小时。因此,大型自动装置已经在有助于测试的效率,这使得它适合于具有很多检查者的医院。
另一方面,POCT装置被用于在医院领域而不是测试室和医院测试中心中实施的临床测试,并且包括用在居家医疗中的装置(例如,专利公开文献2和专利公开文献3)。例如,可以提到一种血糖传感器,妊娠测试试剂,排卵测试试剂以及HbAlc和微白蛋白测试装置(例如,Bayer AG制造的DCA2000)。相比较大型自动装置,这些POCT装置较少地适用于通用应用,但是通过集中在对一种疾病唯一的标记物上,能够容易并迅速地进行测量。因此,这些装置对于筛选和监控检查者是有效的。此外,POCT装置小且便携的,可以为了低成本而引入,并且还可用于就操作而言不具有特定专业的任何人。
现在存在许多用于临床测试的测量项目。当诸如尿等的体液被用作样品时,测量方法一般来说主要被分成光学测量方法和电化学测量方法。在大型自动装置和POCT装置中,测量是通过采用光学测量方法或电化学测量方法实施的。
最近,医疗费用的上升以及与生活方式相关的疾病患者的增加已经正在引起医疗经济上的紧张,并且医疗费用上的减少以及避免与生活方式相关的疾病患者的增加已经成为问题。作为对于这种问题的基本解决方案,已经考虑了循证医学(evidence based-medical)(EBM)。通过实施EBM,医疗可以客观地对于各个患者进行管理。于是,通过基于EBM实行预防性医疗,特别期待的是控制与生活方式相关疾病患者的数量。
为了建立并实行EBM,来自于临床测试的测试信息是必要信息。EBM中的测试信息包括测试结果以及基于这种结果对于患者的解决方案。对于患者的解决方案涉及在日常习惯上的指导,诸如膳食管理和药物治疗。也就是,EBM中的测试对于想要接受医疗的人可以评价为“任务设置(task-setting)”和“策略确定(policy-determing)”。因此,在EBM中,为了提供安全和实质的解决方案,同时具有进一步的安全感,有必要清楚地将该问题呈现给想要接受医疗的人。因此,在临床测试中,很重要的是在多个相关的测试项目上容易并迅速地了解每个测试结果。
如上面的传统大型自动装置适用于多种用途,并且在不管是否存在疾病相关性的情况下,许多项目是可以测试的。然而,该装置的复杂结构使得对于没有专业知识的人操作是困难的,并且,进一步的问题在于,为了获得测试结果需要花费很长时间,包含用于将结果反馈给检查者的较长时间。此外,尽管上面的POCT装置是很好地可操作的,并且能够进行容易迅速的测试,但是它是一种特别用于与特定疾病相关的标记物的测量装置,并且不能测试多个项目。
因此,提出了一种包含一空腔的装置,样品液体通过毛细管效应流入到该空腔中;被用于生物化学或临床检查;具有用于测量样品电化学特性的电极结构,以及一种能够被释放到该空腔中的诸如抗体和酶等的试剂;其中该空腔的壁是透明的,以便可以光学地测量内部空腔(例如,专利公开文献4)。
[专利公开文献1]JP09-127126A
[专利公开文献2]JP07-248310A
[专利公开文献3]JP03-046566A
[专利公开文献4]USP5,141,868B

发明内容

通过本发明解决的问题
然而,在专利公开文献4中描述的装置的结构中存在一个问题,即,用于光学测量的试剂融解在提供到空腔的样品中,并且到达电极结构,给予具有电极结构的电特性测量的不良影响。
因此,考虑到这种传统的问题,本发明目的在于提供一种具有简单结构的传感器,能够通过同时执行样品的光学测量和电化学测量准确地测量多个项目。本发明目的还在于提供一种能够通过采用该传感器迅速并准确地测量多个项目的装置和方法。
解决问题的手段
也就是,为了解决上述问题,本发明提供了一种传感器,包含:
样品保持单元,用于保持包括分析物的样品;
样品提供口,用于向样品保持单元提供该样品;
检测单元,用于执行电化学测量,该单元被提供在样品保持单元中;
光学测量单元,用于执行光学测量,该单元提供在样品保持单元中;
试剂保持单元,用于保持试剂用于光学测量,该单元提供在样品保持单元中;
其中,在提供自样品提供口的样品在样品保持单元中的流动方向上,样品提供口、检测单元和试剂保持单元按照所述的顺序定位。
而且,本发明提供了一种测量装置,包含:
传感器安装单元,用于安装该传感器;
光源,用于释放进入到传感器光学测量单元的入射光;
光接收单元,用于接收从光学测量单元输出的出射光;
电压提供单元,用于向检测单元提供电压;
电信号测量单元,用于测量来自于检测单元的电信号;以及
处理单元,用于基于从光接收单元接收的出射光和电信号测量单元测量的电信号中的至少一个检测或量化分析物。
此外,本发明提供了一种采用传感器用于分析物的测量方法,包含:
样品保持单元,用于保持包括第一分析物和第二分析物的样品;
样品提供口,用于向样品保持单元提供样品;
检测单元,用于执行电化学测量,该单元提供在样品保持单元中;
光入射单元,用于向样品保持单元引入入射光,该单元提供在样品保持单元中;
光出射单元,用于将来自于光学测量单元内部的出射光释放到光学测量单元外部,该单元提供在样品保持单元中;以及
试剂保持单元,用于保持用于光学测量的试剂,该单元提供在样品保持单元中;
其中,在提供自样品提供口的样品在样品保持单元中的流动方向上,样品提供口,检测单元和试剂保持单元按照所述的顺序定位。
该方法包含以下步骤:
(A)向样品保持单元提供样品;
(B)向检测单元施加电压
(C)测量来自于检测单元的电信号;
(D)基于在步骤(C)中测量的电信号检测或量化第二分析物;
(E)经由光入射单元将入射光应用到保持在样品保持单元的样品;
(F)测量由入射光的应用引起的经由光出射单元从样品保持单元内部释放到样品保持单元外部的出射光;以及
(G)基于在步骤(F)中测量的出射光检测或量化第一分析物。
发明效果
基于本发明,利用具有如上提到的简单结构的传感器,样品的光学测量和电化学测量可以同时进行,并且多个项目可以迅速并准确地测量。特别的,尽管存在一个问题,即,通常用于光学测量的试剂给予电化学测量不良影响,基于上述结构,这种问题可以解决。此外,基于本发明,借助于该传感器,可以实现这样的测量装置和测量方法,其中多个项目迅速并准确地测量。

附图说明

[图1]本发明传感器实施例1的透视图。
[图2]从图1中箭头B的方向看传感器的透视图。
[图3]图1中线A-A的截面图。
[图4]本发明传感器实施例2的透视图。
[图5]从图4中箭头B的方向看传感器的透视图。
[图6]图4中线A-A的截面图。
[图7]本发明传感器实施例3的透视图。
[图8]从图7中箭头B的方向看传感器的透视图。
[图9]图7中线A-A的截面图。
[图10]本发明实施例4中测量装置2的透视图。
[图11]安装了实施例1的传感器1的图10中显示的测量装置2的透视图。
[图12]测量装置2的结构框图。
[图13]本发明实施例5的测量装置2的透视图。
[图14]安装了实施例3的传感器1的图13中显示的测量装置2的透视图。
[图15]在实例中,当将NaCl加入到反应液体中时,在具有各自盐浓度的反应液体中人血清蛋白浓度和散射光强度之间关系的曲线图。
[图16]在实例中,当将KCl加入到反应液体中时,在具有各自盐浓度的反应液体中人血清蛋白浓度和散射光强度之间关系的曲线图。
[图17]在实例中,当将CaCl2加入到反应液体中时,在具有各自盐浓度的反应液体中人血清蛋白浓度和散射光强度之间关系的曲线图。
最佳实施例
1、传感器
一种本发明的传感器,包含:
样品保持单元,用于保持包括分析物的样品;
样品提供口,用于向样品保持单元提供样品;
检测单元,用于执行电化学测量,该单元提供在样品保持单元中;
光学测量单元,用于执行光学测量,该单元提供在样品保持单元中;
试剂保持单元,用于保持试剂用于光学测量,该单元提供在样品保持单元中;
其中,在提供自样品提供口的样品在样品保持单元中的流动方向上,样品提供口,检测单元和试剂保持单元按照所述的顺序定位。
基于这种结构,通过一次将样品从样品提供口提供到样品保持单元,对于样品的光学测量和电化学测量可以借助于一个传感器几乎同时执行,并且多个项目可以容易并迅速地测量。
此外,在从传感器中的样品提供口提供的样品的流动方向上,检测单元位于试剂保持单元的上游,抑制了用于光学测量的试剂在提供给样品保持单元的样品中的溶解以到达检测单元,并且将用于光学测量的试剂对电化学测量的的不良影响的问题保持最小。
本发明的传感器可以由主要包含样品保持单元和用于将样品提供到样品保持单元的样品提供口的容器形成,并且各种形状可以应用到不会对本发明的效果不利的程度。
作为形成上述传感器的材料,只要至少将在后面描述的光学测量单元由光透射材料形成,在没有任何特殊限制的情况下,诸如样品保持单元等的单元可以由多种材料形成,直到不会对本发明的效果不利的程度。作为上面的光透射材料,例如,可以提到石英、聚苯乙烯、以及类似的材料。
考虑到成本降低以及制造过程简化,整个传感器优选地由单一材料形成。而且,当传感器想要做成可随意使用时,在考虑到成本的情况下,优选地采用聚苯乙烯。
检测单元被提供到样品保持单元中,并且优选的被提供在不同于引入到样品保持单元的入射光的光路和从样品保持单元释放的出射光的光路的位置。基于这种结构,检测单元不会阻碍入射光和出射光,并且优秀的光学测量可以实施在提供到样品保持单元的样品中。
例如,当样品保持单元具有长方体形状时,光入射单元和光出射单元的每个可以提供在长方体的彼此不同的面,并且检测单元可以提供在不同于光入射单元和光出射单元被提供的面上。
在提供自样品提供口的样品在样品保持单元中的流动方向上,光学测量单元优选地位于与试剂保持单元或试剂保持单元的下游大约相同的位置。基于这种结构,用于光学测量的试剂融解在提供到样品保持单元的样品中,从而包括试剂的样品到达光学测量单元,因此,在没有强制在样品保持单元中搅动的情况下,能够进行迅速的光学测量。
试剂保持单元被提供在上面的样品保持单元中。也就是,在本发明的传感器中,用于光学测量的试剂被提供在试剂保持单元中。试剂优选地在干燥的条件下在样品保持单元中和/或上面的样品引入路径中运送。基于这种结构,当样品提供到样品保持单元和/或样品引入路径中时,干燥的和被运送的试剂可以融解在样品中。
例如,试剂可以通过向由玻璃纤维或滤纸形成的多孔载体注入试剂溶液并干燥来运送(carry),并且载体可以放置在样品保持单元中和/或样品引入路径中。试剂可以通过直接地将试剂溶液应用到形成样品保持单元和/或样品引入路径的壁上并干燥来运送。
优选地试剂唯一地与样品中的分析物反应。基于此,由于该反应是对于分析物特定的反应,特定分析物的存在可以容易地从多个物质(进一步的,多个分析物)混合的样品中被检查到。
对于试剂和样品中分析物的特定反应,采用抗体试剂的抗原-抗体反应,生物化学反应,以及类似的反应可以被提到。对于生物化学反应,例如,用于尿蛋白测量的CBB G-255方法和邻苯三酚红方法(Pyrogallol Red method),以及用于尿糖测量的Benedict方法和Nylander方法可以被提到。
对于用于与分析物特定反应的试剂,例如,一种酶、抗体、激素受体、化学放光试剂,以及DNA可以被提到。其中,在能够明确地与多种分析物结合的抗体可以由已知的方法生产并且试剂可以容易地制成方面,抗体的使用是有优势的。
例如,通过采用诸如白蛋白等的蛋白质或诸如hCG和LH的荷尔蒙使老鼠和兔子免疫,可以获得对于抗原的抗体。对于该抗体,包含在尿中的诸如白蛋白的蛋白质的抗体,和包含在尿中诸如hCG和LH的荷尔蒙的抗体可以被提到。
光学测量单元优选地包含用于引入入射光的光入射单元,以及用于将来自于光学测量单元内部的输出(outgoing)光释放到光学测量单元外部的光出射单元。
基于这种结构,入射光的光学路径和输出光的光学路径可以被限定,并且可以容易并可靠地测量散射光、透射光以及反射光。
在本发明的传感器中,对于形成检测单元的元件,例如,玻璃电极、由诸如铜、铂等的金属形成的电极、由诸如多晶硅等的半导体形成的电极,以及诸如场效应晶体管(FET)等晶体管可以被提到。
在这些中,检测单元优选的包含至少一对用于测量样品电导率的电极。基于这种结构,除了光学测量之外,可以容易并可靠地执行样品的盐浓度测量。而且,在盐浓度影响光学测量结果的情况下,也可以容易地进行光学测量的测量值的校正。
此外,在本发明的传感器中,检测单元优选地包括离子选择电极(ISFET:Ion Selective FET),以及起比较电极作用的参考电极。对于离子敏感电极,例如可以采用传统的已知的电极。离子敏感电极可以包含电极和提供用来覆盖至少一部分电极的离子敏感薄膜。
对于离子敏感电极,可以采用那些具有选择性的通过钠离子、钾离子、锂离子、镁离子、钙离子、氯离子、铵离子、氢离子等的其中任何一种的功能的电极。
对于形成离子敏感薄膜的化合物,可以根据通过的离子采用已知的内含化合物(inclusion compound)。对于钠离子,例如,二[(12-冠-14)甲基]2,2-二苯并丙二酸盐(Bis[(12-crown-14)methyl]2,2-dibenzomalonate)等可以被提到,并且对于钾离子,例如,二[苯并15-冠-5]4-甲基]庚二酸盐(bis[benzo15-crown-5]4-methyl]pimelate)等可以被提到。
对于锂离子,例如,磷酸基十二烷基-14-冠-4(phosphododecyl-14-crown-4)等可以被提到,并且对于镁离子,例如,4,13-二[N-(1-金刚烷)氨甲酰基乙酰]-8-十四烷基-1,7,10,16-四氧-4,13-二氮杂环十八烷(4,13-bis[N-(1-adamantyl)carbamoylacetyl]-8-tetradecyl-1,7,10,16-tetraoxa-4,13-diazacyclooctadecane)等可以被提到。
对于钙离子,例如,(4,16-二(N-十八烷基氨基甲酰)-3-八丁酰基-1,7,10,13,19-五氧-4,16-二氮杂环二十一烷)(4,16-bis(N-octadecylcarbamoyl)-3-octbutyryl-1,7,10,13,19-pentaoxa-4,16-diazacyclohenicosane)等可以被提到,并且对于氯离子,例如,(2,7-二-叔丁-丁基-9,9-二甲基-4,5-二(N-n-丁基亚硫脲基)氧杂蒽)(2,7-Di-tert-butyl-9,9-dimethyl-4,5-bis(N-n-butylthioureylene)xanthene)等可以被提到。
此外,对于铵离子,例如,(2,6,13,16,23,26-六乙二酸七氯环-[25.4.4.47,12.4.17,22.01,17.07,12.0.17,22]四十三烷)(2,6,13,16,23,26-hexaoxaheptacyclo-[25.4.4.47,12.4.17,22.01,17.07,12.0.17,22]tritetracontane)以及类似的可以被提到。
任何上面的内含化合物例如可以从DOJINDO LABORATORIES作为商业上可用的产品获得。
对于用于将离子敏感薄膜形成到电极上的方法,可以采用多种方法。例如,离子敏感薄膜可以通过将内含化合物,诸如增塑剂的聚合物化合物,阴离子去除剂以及聚氯乙烯(PVC)溶解在有机溶剂中,并将获得的溶剂混合物应用到电极上,然后通过空气干燥,从而形成。
2、测量装置
本发明的测量装置包含:
传感器安装单元,用于安装该传感器;
光源,用于释放进入到传感器光学测量单元的入射光;
光接收单元,用于接收从光学测量单元出射的出射光;
电压提供单元,用于向检测单元施加电压;
电信号测量单元,用于测量来自于检测单元的电信号;以及
处理单元,用于基于从光接收单元接收的出射光和由电信号测量单元测量的电信号中的至少一个检测或量化分析物。
基于这种结构,通过一次将来自于样品提供口的样品提供到上面传感器的样品保持单元中,样品的光学测量和电化学测量可以通过采用一个测量装置几乎同时地实现(carry out),并且多个项目可以容易并迅速地测量。
此外,由于在采用的传感器中,检测单元位于从如上所述的传感器中的样品提供口提供的样品的流动方向上的试剂保持单元的上游,抑制了用于在提供到样品保持单元的样品的光学测量的试剂的溶解以到达检测单元,并且因此来自于用于光学测量的试剂对电化学测量的不良效果可以被保持到最小。
这里,传感器优选的可拆卸地安装到测量装置上。而且,传感器优选的可随意使用。
本发明的测量装置优选的在安装到传感器安装单元的传感器的样品保持单元中还包含,吸入单元,用于吸入样品。基于这种结构,样品可以通过采用吸入单元被提供到传感器的样品保持单元中,传感器安装在传感器安装单元。吸入单元可以手动或自动的操作。例如,类似于注射器、分配器等的活塞机构可以被提到。
尽管活塞操作方法可以是手动的或自动的,但是为了减少操作员的负担,自动操作是优选的。自动方法包括用电机操作活塞。对于电机而言,步进电机、直流电机等可以被提到。步进电机是每输入一脉冲信号旋转一特定角度的电机,并且由于旋转角度可以由脉冲数确定,用于定位的编码器是不必的。也就是,活塞的操作距离可以通过输入的脉冲数控制。通过采用齿轮机构、外螺纹和内螺纹组合的线性机构将电机的旋转运动转换成线性运动,可以操作活塞。尽管将旋转运动转换成线性运动的方式在直流电机的情况下是相同的,但是在直流电机的情况下,为了控制活塞的操作距离,用于检测电机旋转位置的编码器成为必须的。还存在一种线性类型的步进电机,并且在这种类型的电机中,外螺纹和内螺纹组合的线性机构被引入到电机中,并且它这样构造使得类似棒的可移动单元取决于输入的脉冲数实现线性运动。因此,活塞可以直接连接到该棒,获得简单的结构。
本发明的测量装置优选地包含用于将在处理单元检测或量化样品中分析物的结果记录在存储介质中的记录单元。
基于这种结构,检测或量化的结果可以存储在可移动的存储介质上,并且该结果可以容易地从测量装置中取出。因此,存储介质可以带给或发送给分析专家,可以很容易地请求分析。
此外,本发明的测量装置优选的包含:
定时单元,用于对在处理单元检测或量化样品中的分析物所花费的时间进行定时;以及
存储单元,用于存储在处理单元检测或量化样品中的分析物的结果,与在定时单元定时的检测或量化时间相结合。
基于这种结构,由于检测或量化样品中分析物的结果与测量的时间一起被存储在存储单元中,可以进行经济的分析。
此外,本发明的测量装置优选的包含发送单元,用于将在处理单元检测或量化样品中的分析物的结果发送到测量装置的外部。基于这种结构,检测或量化样品中的分析物的结果可以被发送到医院的分析相关部门,分析相关的商业供应者以及类似的机构,并且可以在分析相关部门,分析相关的商业供应者以及类似的机构中进行分析。因此,可以缩短从测量到分析花费的时间。
而且,本发明的测量单元优选的包含接收单元,用于接收分析相关部门或分析相关的商业供应者的分析结果。基于这种结构,对分析结果的反馈可以迅速的给予受检查者。
3、测量方法
本发明的测量方法是包括上述本发明传感器以及包括第一分析物和第二分析物的样品的测量方法,该方法包括以下步骤:
(A)向样品保持单元提供样品;
(B)向检测单元施加电压;
(C)测量来自于检测单元的电信号;
(D)基于在步骤(C)中测量的电信号检测或量化第二分析物;
(E)经由光入射单元将入射光应用到保持在样品保持单元中的样品;
(F)测量由入射光的应用引起的经由光出射单元从样品保持单元释放到样品保持单元外部的出射光;以及
(G)基于在步骤(F)中测量的出射光检测或量化第一分析物。
基于这种结构,通过一次将来自于样品提供口的样品提供到样品保持单元,样品的光学测量和电化学测量可以借助于一个测量装置几乎同时地实现,并且多个项目可以容易并迅速地测量。
此外,因为检测单元在从传感器中的样品提供口提供的样品的流动方向上位于试剂保持单元的上游,它抑制了用于光学测量的试剂在提供到样品保持单元中的样品中的溶解以到达检测单元,并且因此来自于用于光学测量的试剂对电化学测量的不良影响可以保持到最小。
这里,本发明的测量方法优选的包括以下步骤:
通过吸入单元从安装到传感器安装单元的传感器样品提供口吸入样品液体;
基于来自于检测单元的电信号的变化检测到样品保持单元的样品提供;以及
基于在该步骤中样品的检测激活光源。
具体的,当在步骤(C)中检测到电信号时,入射光优选的应用在步骤(E)中。基于这种结构,可以自动地检测到样品保持单元的样品的提供,并且光学测量的准备可以同时作出,因此,缩短了实现电化学测量和光学测量所需要的时间。
此外,基于第一分析物量化结果和第二分析物量化结果的任何一个,用于校正量化结果另一个的步骤优选的被包括。基于这种结构,通过测量相互关联的多个项目,可以提高测量结果的准确性。
这里,对于本发明中的样品,诸如尿、血清、血浆,以及血液和培养基的沉清液体的体液可以被提到。
当本发明的传感器和测量装置为了居家日常健康管理的目的被采用时,该测量优选地是非侵入式的,并且因此,尿优选的作为一种样品。
对于第一分析物,例如,白蛋白,hCG,LH,CRP以及IgG可以被提到。
对于第二分析物,例如,钠离子、钾离子,锂离子,镁离子,钙离子、氯离子,铵离子以及氢离子中的至少一个可以被提到。
在实施在健康管理的初期的尿定性试验中,测试12个项目,即,pH,比重,蛋白质,糖,隐血,酮体,胆红素,尿胆素原,亚硝酸盐,白血球,抗坏血酸,淀粉酶和氯化钠。为了分析肾功能的目的,微白蛋白被测试,并且对于用于怀孕测试和排卵测试的标记物,诸如hCG和LH等的荷尔蒙被采用。
粗略地分割上述测试项目,基于抗原-抗体反应的光学测量适合于对于蛋白质、微白蛋白和诸如hCG和LH的荷尔蒙的测试。这里,对于基于抗原-抗体反应的光学测量,例如,浊度免疫测定、比浊免疫测定以及胶乳凝集免疫测定可以被采用。
另一方面,盐度(钠离子、钾离子等类似的离子)以及尿的pH主要是基于电化学测量被测量。具体的,尿的盐度反映了诸如膳食的日常习惯,并且是用于提供与健康管理相关的解决方案的重要信息。
归因于日周期的变化、非日周期的变化以及个体差异,尿中的盐度和pH随着样品不同而不同,并且样品中的这种不同对由光学测量获得的抗原-抗体反应的反应量产生影响。特别的,在盐度浓度上的改变大大地影响了浊度免疫测定、比浊免疫测定以及胶乳凝集免疫测定的结果。例如,在高盐度浓度中的抗原-抗体反应在离解度上是较高的,并在反应量上较少。
因此,在光学测量中获得的抗原浓度优选地通过采用作为校准曲线显示抗原浓度和多个盐度浓度中出射光强度之间的关系的数据,并采用在电导率测量(电化学测量)中获得的盐度数值而校正。
基于此,样品差别可以被校正。这样,定量结果的准确性可以被提高。
此外,通过采用已经提到的在离子敏感电极中的离子敏感薄膜,并且获得钠离子和锂离子,即尿中盐度的主要成分的浓度,考虑到每种离子对抗原-抗体反应影响的差别的校正也是可能的。
而且,通过从氢粒子浓度测量获得尿的pH,考虑来自于pH影响的的校正也是可能的。
在后面,本发明传感器结构的实施例通过参考附图进一步进行描述。然而,本发明不限于这些实施例。
实施例1
在该实施例中的传感器的结构通过采用图1至3进行描述。在该实施例中的传感器意图对于光学测量采用散射光而构造。图1是显示本发明传感器实施例1的透视图。图2是从图1中箭头B的方向看传感器的透视图。图3是图1中线A-A的截面图。
如图1中所示,在该实施例中的传感器1用由聚苯乙烯形成的样品保持单元104形成。
样品保持单元104具有中空的四边形角锥和具有正方形横截面的中空四边形棱柱的组合的形状,并且在四边形角锥的顶端,提供了样品提供口101。而且,在样品提供口101的相对侧,提供了一开口102。于是,在该实施例中的传感器被这样以便样品被从样品提供口101提供到样品保持单元104中。
在环绕样品保持单元104的四个面中的第一面,如图3所示,试剂保持单元108通过粘贴玻璃纤维制成的多孔载体形成,其中,对于尿中人体血清蛋白的抗体在干燥的条件下被携带作为试剂。
而且,在不同于形成试剂保持单元108的第一面的面中,在与上面第一面相邻的第二面上,包含离子敏感电极105和参考电极106的检测单元111被提供在样品提供口101和试剂保持单元108之间。
也就是,在从传感器1的样品提供口101提供的样品的流动方向上(箭头X的方向,也就是基本平行于传感器1的纵向),样品提供口101、检测单元111和试剂保持单元108以所述的顺序定位,从样品提供口101到检测单元111的距离D1和从样品提供口101到试剂保持单元108的距离D2满足关系方程:D1<D2。
检测单元111具有硅基底。通过在硅基底上形成栅极、源极和漏极,并且提供用于覆盖该栅极的离子敏感薄膜,形成离子敏感电极105。离子敏感薄膜由二[(12-冠-14)甲基]2,2-二苯并丙二酸盐(Bis[(12-crown-14)methyl]2,2-dibenzomalonate)形成,其特别地识别钠离子。
而且,参考电极106配置在上面的硅基底上,绝缘薄膜113被提供,以致于暴露出参考电极106和离子敏感薄膜,同时覆盖其它部分。
而且,在上面的硅基底的面中,在离子敏感电极105和参考电极106被提供的面的相对面上,为离子敏感电极105的栅极、源极和漏极的每个(未示出)以及对于参考电极106提供了一端子。这些端子经由由绝缘薄膜保护的引线112被连接到提供在样品保持单元104的开口102的三个端子107。如图2所示,这三个端子107,经由开口102,从样品保持单元104的内壁面延伸到内壁面的背面。该栅极和源极被连接到相同的端子,并且漏极和参考电极106的每个被连接到不同的端子。
在形成样品保持单元104的四个面中,除了提供有检测单元111的面和提供有试剂保持单元108的面的两个面用作光入射单元109和光出射单元110。
实施例2
在该实施例中的传感器的结构通过采用图4到6进行描述。在该实施例中的传感器意图对于光学测量采用透射光而构造。图4是显示本发明传感器实施例2的透视图。图5是从图4中箭头B的方向看传感器的透视图。图6是图4中线A-A的截面图。
如图4所示,该实施例中的传感器1用由聚苯乙烯形成的样品引入单元203和样品保持单元204形成。样品引入单元203和样品保持单元204整体地形成。
样品引入单元203具有圆柱形状,具有提供在其顶端的样品提供口201。而且,样品保持单元204具有正方形横截面的中空四边形棱柱的形状,并且在样品提供口201的相对侧,提供了一开口202。于是,该实施例中的传感器这样构造以便经由样品引入路径203,样品被从样品提供口201提供到样品保持单元204。
在环绕样品保持单元104的四个面中的第一面,如图6所示,试剂保持单元208通过粘贴玻璃纤维制成的多孔载体形成,其中,对于尿中人体血清蛋白的抗体在干燥的条件下被携带作为试剂。
在不同于形成试剂保持单元208的第一面的面中,在与上面第一面相对的第二面上,包含离子敏感电极205和参考电极206的检测单元211被提供在样品提供口201和试剂保持单元208之间。
也就是,在从传感器1的样品提供口201提供的样品的流动方向上(箭头X的方向,也就是基本平行于传感器1的纵向),样品提供口201、检测单元211和试剂保持单元208以所述的顺序定位,从样品提供口201到检测单元211的距离D1和从样品提供口201到试剂保持单元208的距离D2满足关系方程:D1<D2。
检测单元211具有硅基底。通过在硅基底上形成栅极、源极和漏极,并且提供用于覆盖该栅极的离子敏感薄膜,形成离子敏感电极205。离子敏感薄膜由二[(12-冠-14)甲基]2,2-二苯并丙二酸盐(Bis[(12-crown-14)methyl]2,2-dibenzomalonate)形成,其特别地识别钠离子。
此外,参考电极206配置在上面的硅基底上,绝缘薄膜213被提供从而暴露出参考电极206和离子敏感薄膜,同时覆盖其它部分。
而且,在上面的硅基底的面中,在离子敏感电极205和参考电极206被提供的面的相对面上,为离子敏感电极205的栅极、源极和漏极的每个(未示出)以及对于参考电极206提供了端子。这些端子经由由绝缘薄膜保护的引线212被连接到提供在样品保持单元204的开口202的三个端子207。如图5所示,这三个端子207经由开口202从样品保持单元204的内壁面延伸到内壁面的背面。该栅极和源极连接到相同的端子,并且漏极和参考电极206的每个被连接到不同的端子。
在形成样品保持单元204的四个面中,除了提供有检测单元211的面和提供有试剂保持单元208的面的两个面用作光入射单元109和光出射单元110。
实施例3
在该实施例中的传感器的结构通过采用图7到9进行描述。在该实施例中的传感器意图对于光学测量采用散射光而构造。图7是显示本发明传感器实施例3的透视图。图8是从图7中箭头B的方向看传感器的透视图。图9是图7中线A-A的截面图。
如图7所示,该实施例中的传感器1用由聚苯乙烯形成的样品引入单元303和样品保持单元304形成。样品引入单元303和样品保持单元304整体地形成。
样品引入单元303具有圆柱形状,具有提供在其顶端的样品提供口301。而且,样品保持单元304具有正方形横截面的底是中空的四边形棱柱的形状,并且,在四个面中的第一面的较低部分,提供了样品引入路径303。此外,在样品保持单元304中,在样品提供口301的相对侧,提供了一开口302。于是,该实施例中的传感器这样构造以便经由样品引入路径303,样品被从样品提供口301提供到样品保持单元304。
在上面提到的第一面上,如图9所示,试剂保持单元307通过粘贴玻璃纤维制成的多孔载体形成,其中,对于尿中人体血清蛋白的抗体在干燥的条件下被携带作为试剂。
而且,在不同于形成试剂保持单元307的第一面的面中,在与上面提到的第一面相邻的第二面上,包含实施电导率测量的一对电极305的检测单元311被提供在样品提供口301和试剂保持单元307之间。
也就是,在从传感器1的样品提供口301提供的样品的流动方向上(箭头X的方向,也就是基本平行于传感器1的纵向),样品提供口301、检测单元311和试剂保持单元307以所述的顺序定位、并且,从样品提供口301到检测单元311的距离D1和从样品提供口301到试剂保持单元307的距离D2满足关系方程:D1<D2。
形成检测单元311的电极305对可以通过传统地公知方法形成。电极305经由由绝缘薄膜保护的引线310被连接到提供在样品保持单元304的开口302的两个端子307。如图8所示,两个端子306,经由开口302,从样品保持单元304的内壁面延伸到内壁面的背面。
在形成样品保持单元304的四个面中,除了提供有检测单元311的面和提供有试剂保持单元307的面的两个面用作光入射单元308和光出射单元309。
实施例4
在该实施例中的测量装置的结构通过采用图10到12进行描述。图10是显示了实施例中测量装置2的透视图。图11是显示了安装有上面实施例1中传感器1的在图10中显示的测量装置2的透视图。图12是示出了测量装置2结构的框图。
该实施例中的测量装置2包含传感器安装单元401,用于显示测量结果的显示单元402,样品吸入开始按钮403以及传感器移去按钮404。对于传感器安装单元401,传感器1可以通过插入相对于传感器1的样品提供口101的开口102安装到测量装置2上。
于是,参考图12,描述了通过采用具有上面实施例1中显示的结构的传感器1以及该实施例中的测量装置2,用于测量尿中分析物的方法。
首先,将传感器1的一部分插入到测量装置2的传感器安装单元401,测量装置2中提供的三个端子和传感器1中提供的三个端子107分别接触。在此时,包含提供在测量装置2中的微型开关的传感器插入检测开关(未示出)被启动,并且用作控制单元的CPU601检测传感器1的插入,从而将来自于电压施加单元602的电压应用到传感器1的检测单元603。
在测量装置2中,光接收单元608被提供(未示出),以便可以测量透射光和散射光。为了更具体,光源607和光接收单元608被提供有在从传感器1的光出射单元110出来的光的线性方向上置于其间的传感器1,以便测量透射光。
此外,在与从传感器1的光出射单元110出来的光的线性方向直角交叉的以传感器1为中心的轴上,提供了另一个光接收单元608,以便测量散射光。
于是,当传感器1的一部分被浸入到尿在诸如卫生间或纸杯中的尿中时,按下样品吸入开始按钮403。通过这样,活塞机构604、提供在测量装置2中的吸入单元被启动,并且一预定量的尿被从传感器1的样品提供口101吸入到样品保持单元104中。
当提供到样品保持单元104的尿到达检测单元603时,检测单元603中的电势状态变化,并且电信号测量单元605检测由此获得的电信号中的改变,因此,允许CPU 601通过定时单元606开始定时,并且通过电压施加单元602关闭电压施加。提供到样品保持单元104中的尿溶解在试剂保持单元中携带的干燥状态的抗体,因此,推进了与尿中抗原的免疫反应。
于是,当基于来自于定时单元606的信号由CPU 601确定已经经过预定时间时,CPU 601启动光源607以及电压施加单元602。从光源607出来并经由光入射单元109进入到样品保持单元,在尿中散射,并从光出射单元110出来的光(散射光)由提供在测量装置2中用于接收散射光的光接收单元608接收。
另一方面,来自于检测单元603的电信号由电信号测量单元605测量。基于该电信号,用作处理单元的CPU 601通过参考存储在作为存储单元的存储器609中的显示电信号和钠浓度关系的校准曲线将电信号转换成尿中的钠浓度。
在测量装置2的存储器609中,显示在多个钠浓度的条件下出射光强度和抗原浓度关系的校准曲线被存储。用作处理单元的CPU 601通过提取在先前测量的钠浓度上的校准曲线数据并参考校准曲线,基于出射光强度和电信号,计算抗原浓度。
因此获得的钠浓度和抗原浓度,如图11所示,显示在显示单元402上。而且,因此获得的钠浓度和抗原浓度与用定时单元606记时的日时一同存储在存储器609中。
最后,通过按下传感器移去按钮404,传感器移去机构610被启动,从而,在样品保持单元104中的尿被从样品提供口101放出后,被自动地从测量装置2移去传感器1。
此外,获得的钠浓度和抗原浓度可以由记录单元611存储在诸如SD卡的存储介质中。通过存储在移动存储介质中,测量结果可以容易地从测量装置2中采集,并且因此存储介质可以带给或邮递给专家用于分析请求。
此外,获得的钠浓度和抗原浓度可以从发送单元612向外发送到测量装置2的外部。基于此,测量结果可以被发送到医院的分析相关部门或分析相关商业供应者,从而缩短从测量到分析的时间。
此外,接收单元613被提供用于接收在分析相关部门或分析相关商业供应者处分析的结果。基于此,被检查者可以立即接收基于分析结果的反馈。
实施例5
在该实施例中的测量装置的结构通过采用图13,14和图12进行描述。图13是显示了实施例中测量装置2的透视图。图14是显示了安装有上面实施例3中传感器1的在图13中显示的测量装置2的透视图。图12是示出了测量装置2结构的框图。
该实施例中的测量装置2包含传感器安装单元501,用于显示测量结构的显示单元502,样品吸入开始按钮503以及传感器移去按钮504。对于传感器安装单元501,通过插入相对于传感器1的样品提供口301的开口302,传感器1可以被安装到测量装置2上。
于是,参考图12,描述了通过采用具有上面实施例3中显示的结构的传感器1以及该实施例中的测量装置2用于测量尿中分析物的方法。
首先,将传感器1的一部分插入到测量装置2的传感器安装单元501,测量装置2中提供的两个端子和传感器1中提供的两个端子306分别接触。在此时,包含提供在测量装置2中的微型开关的传感器插入检测开关(未示出)被启动,并且用作控制单元的CPU 601检测传感器1的插入,从而将来自于电压施加单元602的电压应用到传感器1的检测单元603。
在测量装置2中,光接收单元608被提供(未示出),以便可以测量透射光和散射光。为了更具体,光源607和光接收单元608被提供有在从传感器1的光出射单元309出来的光的线性方向上置于其间的传感器1,以便测量透射光。
此外,另一个光接收单元608被提供在与传感器1的光出射单元309出来的光的线性方向直角交叉的以传感器1作为中心的轴上,以便测量散射光。
于是,当传感器1的一部分被浸入到尿在诸如卫生间或纸杯中的尿中时,按下样品吸入按钮503。通过这样,活塞机构604、提供在测量装置2中的吸入单元被启动,并且一预定量的尿被从传感器1的样品提供口301吸入到样品保持单元304中。
当提供到样品保持单元304的尿到达检测单元603时,检测单元603中电极305对之间的电阻值(即,电导率)根据样品中的盐浓度而改变,并且电信号测量单元605检测由此获得的电信号中的改变,因此,允许CPU 601通过定时单元605开始定时。提供到样品保持单元304中的尿溶解在试剂保持单元中携带的干燥状态的抗体,因此,推进了与尿中抗原的免疫反应。
于是,当基于来自于定时单元606的信号由CPU 601确定已经经过预定时间时,CPU 601启动光源607以及电压施加单元602。从光源607出来并经由光入射单元308进入到样品保持单元,在尿中散射,并从光出射单元309出来的光(散射光)由提供在测量装置2中用于接收散射光的光接收单元608接收。
另一方面,来自于检测单元603的电信号由电信号测量单元605测量。基于该电信号,用作处理单元的CPU 601,通过参考存储在作为存储单元的存储器609中的显示电信号和盐浓度关系的校准曲线将电信号转换成尿中的盐浓度。
在测量装置2的存储器609中,显示出射光强度和抗原浓度的校准曲线被存储。用作处理单元的CPU 601通过参考校准曲线,基于出射光强度和电信号,计算抗原浓度。
因此获得的盐浓度和抗原浓度,如图14所示,显示在显示单元502上。而且,因此获得的盐浓度和抗原浓度与用定时单元606记时的日时一同存储在存储器609中。
最后,通过按下传感器移去按钮504,传感器移去机构610被启动,从而,在样品保持单元304中的尿被从样品提供口301放出后,自动地从测量装置2移去传感器1。
此外,获得的盐浓度和抗原浓度可以由记录单元611记录在诸如SD卡的存储介质中。通过存储在可移动存储介质中,测量结果可以容易地从测量装置2中采集,并且因此存储介质可以带给或邮递给专家用于分析请求。
此外,获得的盐浓度和抗原浓度可以从发送单元612向外发送到测量装置2的外部。基于此,测量结果可以被发送到医院的分析相关部门或分析相关商业供应者,从而缩短从测量到分析的时间。
此外,接收单元613被提供用于接收在分析相关部门或分析相关商业供应者处分析的结果。基于此,被检查者可以立即接收基于分析结果的反馈。
实例
下面,为了准备由本发明测量装置的存储器单元存储的校准曲线,添加NaCl,KCl和CaCl2到抗原-抗体反应系统的影响通过具有浊度免疫测定的测量进行检验。
在该检验中,检验在每种盐以0M,0.050M以及0.30M的浓度存在于反应溶液中的情况下的影响。为了准备在该实例中的缓冲溶液以及类似的溶液,采用通过Milli-Q SP TOC(由Millipore公司制造)过滤的纯水。而且,对于不特别地注解的诸如盐类(salts)和缓冲液(buffers)等的试剂,采用由Wako Pure Chemical Industries,Ltd.制造的那些试剂,并且对于聚乙二醇6000(PEG6000),采用一级试剂(first-grade)试剂,并且对于其它试剂,采用特级(special-grade)试剂。
而且,在该实例中,为了比较,执行具有抗人(anti-human)白蛋白多克隆抗体(polyclonal antibody)的人白蛋白测量。抗人白蛋白多克隆抗体从与具有蛋白质A(由Amersham Pharmacia Biotech制造)柱色谱的人白蛋白免疫的兔子抗血清中提炼出来。对于该柱的平衡缓冲溶液,采用包括1.5M甘氨酸和3.0M NaCl的混合溶液(pH8.9),并且对于洗脱缓冲溶液,采用0.1M的柠檬酸(pH4.0)。
通过采用一万分数分子(fraction molecule)量的渗析管,以100倍的容量,用包括0.05M的3-(N-Morpholino)丙烷磺酸(MOPS),0.15的NaCl和0.04%(w/v)的NaN3的缓冲溶液(pH7.4),对于提炼的抗体执行几次渗析。渗析缓冲溶液中的0.15M的NaCl被加入,从而阻止在存储时基于抗体的自凝反应。通过渗析具有替换缓冲溶液的溶液被看作是抗人白蛋白多克隆抗体存储溶液,并且具有280nm的吸光度量度,估计它的浓度(3.2mg/ml)。
作为抗原的人白蛋白(由Wako Pure Chemical Industries有限公司制造)被融解在包括0.05M的MOPS和0.04%的NaN3的缓冲溶液中(pH7.4),并且准备了用于存储的100mg/dl的溶液。该抗人白蛋白多克隆抗体溶液和用于人白蛋白的存储溶液被在4℃存储直到使用。对于下述溶液的pH调整通过采用NaOH作出。
对于该实例中的缓冲溶液,采用MOPS。MOPS是包含多种铵化合物的好的缓冲溶液中的一种,由Good等人设计。其中一个特性包括双极离子缓冲溶液,并且与离子缓冲溶液比较,具有较小的盐效应。因此,这被进一步用来明确在该实例结果中的对比。采用的MOPS由DojinGlocal Corporation制造。
对于用于校验每种盐效果的缓冲溶液,如下面对于各自的盐浓度所示出的,准备了两种,一种包括PEG,另一种不包括PEG。
对于不包括添加的盐的缓冲溶液,准备了0.050M的MOPS缓冲溶液(pH7.4)和包括0.050M的MOPS和6%(w/v)PEG6000的缓冲溶液。
对于包括NaCl作为添加的盐的缓冲溶液,准备了包括0.050M,0.15M和0.30M NaCl的0.050M的MOPS缓冲溶液(pH7.4)以及包括0.050M的MOPS和6%(w/v)PEG6000的缓冲溶液(pH7.4)。对于包括KCl作为添加的盐的缓冲溶液,准备了包括0.050M,0.15M和0.30MKCl的0.050M的MOPS缓冲溶液(pH7.4)以及包括0.050M的MOPS和6%(w/v)PEG6000的缓冲溶液(pH7.4)。对于包括CaCl2作为添加的盐的缓冲溶液,准备了包括0.050M,0.15M和0.30M CaCl2的0.050M的MOPS缓冲溶液(pH7.4)以及包括0.050M的MOPS和6%(w/v)PEG6000的缓冲溶液(pH7.4)。
对于通过浊度免疫测定的测量,采用了荧光分光光度计(spectrofluorophotometer)(由Shimadzu Corporation制造的RF-5300PC)。一恒温的试池架(由Shimadzu Corporation制造的no.206-15440)放置在荧光分光光度计的样品室中,并且连接到低恒温的罐中(由TIETECH Co.Ltd制造的EL-15)。温度保持在25℃的水进行循环从而保持测量温度恒定。
对于荧光分光光度计的测量条件,激励波长和荧光波长被设定到660nm,并且激励侧的带宽被设定到1.5nm,荧光侧的带宽被设定到3nm,并且敏感度被设定为高。
来自于每种添加的盐的影响如下所述进行测量。也就是,对于添加的盐的浓度为0M,0.050M,0.15M,0.30M的测量被作为一组测量被考虑,浓度为0M的测量的情况被考虑成根据测量每种添加的盐的影响的测量系统的测量波动中的控制。对于浓度是0M的情况下的测量,采用了如在上述中准备的不具有添加的盐的缓冲溶液。
抗人白蛋白多克隆抗体不包括如在上述准备的PEG,并且被用具有要测量的匹配的添加盐和其浓度的缓冲溶液稀释到1.0mg/ml的浓度。通过采用相同的缓冲溶液,人白蛋白存储溶液被稀释,从而准备具有0,1,5,10,50和100mg/dl浓度的各个人白蛋白溶液。
反应液体的准备如下作出。首先,取得2.0ml的包括PEG和要测量的匹配的添加的盐和浓度的缓冲溶液,以及0.67ml的不包括PEG和要测量的匹配的添加的盐和浓度的缓冲溶液,并且通过搅动将两者混合。
接着,添加0.3ml的在上面准备的抗人白蛋白多克隆抗体溶液,并且通过搅动混合,此外,添加0.03ml的如上面准备的人白蛋白溶液,并且通过搅动混合。抗人白蛋白多克隆抗体和人白蛋白的最终浓度,对于抗人白蛋白多克隆抗体大约是0.01mg/ml,对于人白蛋白,用于反应的人白蛋白溶液的浓度值乘以0.01。PEG6000的最终浓度是4%(w/v)。
接着,上述混合物被转移到用于荧光分析的石英单元(quartzcell)中,并且设定在荧光分光光度计中。T-热电偶(由RS ComponentsLtd.制造的no.219-4696)被浸入到该元件中,并且该元件为了防止干燥而密封。从混合人白蛋白之后经过2分钟的点,时程(timecourse)测量中执行具有0.08秒的间隔的900秒测量。在测量中单元中温度的改变通过将T-热电偶连接到数字多温度计(multithermometer)(由ADVANTEST CORPORATION制造的TR2114)进行监控。在用纯水对于各个反应测量之前,执行单元空白值的测量,并且该值由测量的值推导出来。计算获得的600-900秒散射光强度测量值的平均值,并将其看作是各个测量值。
在图15到17中,通过从每个平均值推导出在人白蛋白不包括在相应的盐和浓度的情况下的平均值,绘制这些值。图15显示了当添加NaCl时的结果,图16显示了当添加KCl时的结果,图17显示了添加CaCl2时的结果。
如图15到17所示,抗原-抗体反应基于盐的浓度而不同。从这些结果来看,很清楚的是,基于样品中盐浓度的差别可以显示不同的抗原-抗体反应量,即使样品具有相同的人白蛋白的浓度。从上面的结果来看,对于每种盐,可以获得显示对于每种盐浓度抗原浓度和出射光强度之间关系的数据。这被设定为一校准曲线,并且通过采用由电化学测量获得的盐浓度,利用由光学测量测量到的出射光强度的校准,可以获得更高准确性的样品液体中的抗原浓度。
工业适用性
基于本发明,用具有上面提到的简单结构的传感器,可以同时进行样品的光学测量和电化学测量,并且多个项目可以迅速并准确地测量。特别的,尽管存在的问题在于通常用于光学测量的试剂在电化学测量上给予不利的影响,但是基于上面的结构,可以解决这样的问题。此外,基于本发明,利用该传感器,可以实现这样一种测量装置和测量方法,其中可以迅速并准确地测量多个项目的。
因此,本发明在医学领域和医学相关检查领域,尤其是尿分析中的检查中是有用的。