五噻吩基-芴共聚物转让专利

申请号 : CN200580008122.4

文献号 : CN1968986B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : D·J·布伦南D·M·威尔士陈宇J·M·萧

申请人 : 陶氏环球技术公司

摘要 :

本发明涉及具有由式(I)所示结构单元的五噻吩基-芴共聚物:这里,R和R′各自独立地是取代基或H。本发明也涉及含有此共聚物的晶体管。本发明通过提供具有格外低滞后的电活化装置试图解决本领域的问题。

权利要求 :

1.一种具有下式所示结构单元的五噻吩基-芴共聚物:其中,R和R′各自独立地是取代基或H。

2.权利要求1的五噻吩基-芴共聚物,其中每个R独立地是H、C1-C20的直链或支链烷基、C5-C30的芳基、或C6-C40的芳烷基,和任选地每个R包含一种或多种选自由O、S、N、P、和Si组成的组的杂原子;和每个R’独立地是H、C1-C30的直链或支链烷基、或C1-C30的烷氧基烷基。

3.权利要求2的五噻吩基-芴共聚物,其中每个R是正己基、正辛基、或正己氧基苯基并且每个R’独立地是H或C1-C12的直链或支链烷基。

4.权利要求1的五噻吩基-芴共聚物,其含有下式所示的五噻吩基结构单元:其中每个R’独立地是H或C1-C12的直链或支链烷基。

5.权利要求4的五噻吩基-芴共聚物,其中至少一个R’是C1-C12的直链或支链烷基。

6.权利要求4的五噻吩基-芴共聚物,其中R’是正己基或正辛基。

7.一种晶体管,包含由具有下式所示结构单元的五噻吩基-芴共聚物构成的半导体晶体管通道:其中,R和R′各自独立地是取代基或H。

8.权利要求8的晶体管,其中R是正己基、正辛基、或正己氧基苯基并且每个R’独立地是H或C1-C12的直链或支链烷基。

9.权利要求8的晶体管,其中所述五噻吩基-芴共聚物具有由下式所示的五噻吩基结构单元:其中,每个R’独立地是H或C1-C12的直链或支链烷基。

10.权利要求9的晶体管,其中R’是正己基或正辛基。

说明书 :

五噻吩基-芴共聚物

[0001] 交叉参考声明
[0002] 本申请要求于2004年3月17日提交的美国临时申请号60/554,218的权益。
[0003] 政府合同
[0004] 此发明依据NIST授予的合作协议No.70NANB0H3033在美国政府的支持下进行。美国政府拥有此发明中的某些权利。
[0005] 发明背景
[0006] 本发明涉及五噻吩基-芴共聚物。为了最佳运行,晶体管需要在一个窄电压范围内开关。将启动晶体管需要的电压指作阈值电压,其稳定性取决于晶体管中半导体材料的性质。由于使用这些材料导致阈值电压的高可变性,许多半导体材料是不适合的,否则这些材料将运用于晶体管应用。因此,寻找具有低阈值电压可变性的半导体,在晶体管应用的半导体领域中是一个正在进行的挑战。
[0007] 发明概述
[0008] 本发明试图解决本领域的问题,第一方面,通过提供具有下述分子式所示结构单元的五噻吩基-芴共聚物:
[0009]
[0010] 这里,R和R′各自独立地是取代基或H。
[0011] 第二方面,本发明是一种晶体管,包含由具有下列分子式所示结构单元的五噻吩基-芴共聚物构成的半导体晶体管通道:
[0012]
[0013] 这里,R和R′各自独立地是取代基或H。本发明通过提供具有格外低滞后(hysteresis)的电活化装置试图解决本领域的问题。
[0014] 附图简述
[0015] 图1是一个涂有五噻吩基-芴共聚物的晶体管的构造。
[0016] 发明详述
[0017] 本发明的第一方面涉及具有下述分子式所示结构单元的五噻吩基-芴共聚物:
[0018]
[0019] 这里,R和R′各自独立地是取代基或H。所述共聚物优选被取代以使其在有机溶剂中充分可溶,因此,获得的溶液可应用于衬底以形成晶体管。
[0020] 优选地,每个R独立地包含C1-C20直链或支链烷基、C5-C30芳基、或C6-C40芳烷基,或两个R基团与芴基的9-碳原子一起形成C5-20环状结构。每一个R基团可任选地包含一个或多个杂原子,如O、S、N、P、或Si。更优选,每个R独立地是C5-C12直链或支链烷基、C1-C20烷氧基烷基、或C1-C12烷氧基苯基。最优选,每个R是正己基,正辛基,或正己氧基苯基。优选地,每个R′独立地是H、C1-C30直链或支链烷基、或C1-C30烷氧基烷基。更优选,每个R′独立地是H或C1-C12直链或支链烷基。五噻吩基的实例包括未取代的五噻吩基、3″-取代-α-五噻吩基、或3″,4″-双取代-α-五噻吩基,如下所示:
[0021]
[0022] 这里R′是前面定义的。
[0023] 本发明的共聚物可通过将5,5″″-二溴五噻吩与2,7-芴二硼酸酯(diboronate)或2,7-芴二硼酸(diboronic acid)偶联而制备。优选所述2,7-芴二硼酸酯或二硼酸是9,9-双取代-2,7-芴二硼酸酯或二硼酸;优选所述5,5″″-二溴五噻吩是5,5″″-二溴-3″,4″-二烷基-α-五噻吩。9,9-双取代-2,7-芴二硼酸酯可通过任何适当的方法例如那些本领域熟知的方法而制备,例如,美国专利6,169,163,37栏、65-67行和38栏、1-40行中描述的,其说明书作为参考结合于此。优选的二溴五噻吩可依照如下的反应路线而制备:
[0024]
[0025]
[0026] 同样,多种多取代的二溴化五噻吩可先通过将取代或未取代的三噻吩(terthiophene)与取代或未取代的噻吩偶联而制备,如下所示:
[0027]
[0028] 可以理解,2-噻吩基三烷基锡和2-联噻吩基(bithienyl)三烷基锡不是可与2,5-二溴代噻吩偶联的反应物的唯一实例。其他实例包括2-噻吩基锌卤化物和2-联噻吩基锌卤化物,优选2-噻吩基锌氯化物和2-联噻吩基锌氯化物,其中每一个都可以用改进的Negishi交叉偶联反应而制备(见E.Negishi等.,J.Org.Chem.42,1821(1977));并且2-噻吩硼酸和2-联噻吩硼酸或其硼酸酯,其用改进的Suzuki交叉偶联反应制备(见Miyaura等ChemicalRevews,第95卷,2457-2483页(1995))。
[0029] 多种取代的噻吩偶联试剂的制备实例包括a)3,4-二溴噻吩与烷基化Grignard试剂反应,如在氯化镍催化剂存在下,与烷基镁化溴反应形成3,4-二烷基噻吩,然后将此中间体与氯化三烷基锡反应而形成3,4-二烷基-2-噻吩基三烷基锡;b)2-溴-3-烷基噻吩与镁反应产生Grignard试剂,然后将此中间体与卤化锌反应形成3-烷基-2-噻吩锌卤化物;或c)3-烷基噻吩与正丁基锂在胺如N,N,N′,N′-四甲基乙二胺(TMEDA)或三异丙胺存在下反应,形成4-烷基-2-噻吩锂中间体,然后将此中间体与卤化锌反应形成4-烷基-2-噻吩锌卤化物。
[0030] 本发明的共聚物也可以包括另外的亚芳基结构单元,包括取代或未取代的亚噻吩基,亚联噻吩基(bithienylene),1,4-亚苯基,4,4′-亚联苯基,蒽-9,10-二基,萘-1,4-二基,萘-2,6-二基,2,1,3-苯并噻二唑-4,7-二基,N-取代咔唑-3,8-二基,N-取代咔唑-4,7-二基,二苯并silole-3,8-二基,二苯并silole-4,7-二基,N-取代-吩噻嗪-3,
7-二基,N-取代-吩噁嗪-3,7-二基,三芳基胺-二基,包括三苯胺-4,4′-二基,二苯基-对-甲苯胺-4,4′-二基,和N,N-二苯基苯胺-3,5-二基,N,N,N′,N′-四芳基-1,
4-二氨基苯-二基,N,N,N′,N′-四芳基联苯胺-二基,芳基硅烷-二基。
[0031] 第二方面中,本发明是一个包含由五噻吩-芴共聚物构成的半导体晶体管通道的晶体管。图1中描绘了优选的底门(bottom gate)、共平面晶体管的示意图。晶体管(10)包含叠加金源极接点(30)、金漏极接点(40)和氮化硅栅极绝缘体(50)的共聚物层(20)。所述源极接点(30)和漏极接点(40)一般在高于绝缘体(50)约20-100nm的范围内。具有电容一般在0.1-100纳法拉(nF)范围内的所述绝缘体(50),并任选所述共聚物,叠加金门(60)和衬底(70),所述衬底(70)可以是玻璃或可弯曲的材料如塑料。所述通道长度,即源极接点(30)和漏极接点(40)之间的距离,一般在1-100微米范围内。所述通道宽度(70),一般落在10微米-10mm范围内。一般是10-200纳米厚的所述共聚物层(20),可作为溶液(例如,在二甲苯中为0.5-4重量百分比)涂敷所述装置,利用多种技术包括旋涂、喷涂、或浸涂。所述金源极接点(30)、金漏极接点(40),和金门(60)例如,通过喷镀或蒸发可被涂敷。例如,通过化学气相沉积,可涂敷氮化硅栅极绝缘体(50)。
[0032] 惊奇地发现本发明的共聚物可用于制造具有低域值电压可变性的晶体管。
[0033] 下列实例仅用于说明性的目的,无意限制本发明的范围。
[0034] 实施例1-5,5″″二溴-3″,4″-二己基-α-五噻吩的合成
[0035]
[0036] A.5-三甲基甲锡烷基-2,2′-联噻吩的制备
[0037]
[0038] 向装备有玻璃塞、橡胶隔片和氮气进口的3-颈烧瓶内加入2,2′-联噻吩(10g,60.1mmol)和无水THF(100mL)。将所述深(绿)色溶液冷却至0℃。通过注射器加入2.5M的n-BuLi己烷溶液(26.4mL,66mmol)。然后在25℃搅拌反应混合物1.5小时。所述混合物冷却至-78℃,并通过注射器缓慢加入1.0M三甲基甲锡烷基氯的THF溶液(66mL,66mmol)。让反应混合物升温至25℃并搅拌过夜。真空中除去THF,并将剩余物溶解在戊烷中(200mL)。
戊烷层用水洗(3×200mL),MgSO4干燥,真空中除去戊烷得到绿色油。通过真空蒸馏将所述油纯化(118-120℃,0.6mmHg)得到12.5g(64%)的产物。MS=330。
[0039] B.2,5二溴-3,4-二己基噻吩的制备
[0040]
[0041] 向装备有玻璃塞、橡胶隔片和连接到氮气进口的回流冷凝器的250mL、3-颈圆底烧瓶中加入溶解在DMF(80mL)中的3,4-二己基噻吩(20.14g、0.0797mol)。向此溶液中加入NBS(28.37g,0.159mol),混合物在室温下搅拌1.5小时。然后将所述反应混合物倒入水中并用戊烷萃取(3×200mL)。合并的戊烷级分用水洗(3×300mL),MgSO4干燥,之后在真空中除去戊烷得到清澈的黄色油。通过真空蒸馏将所述油纯化(135℃,0.6mmHg)得到28.0g(77%)的淡黄色油。MS=410。
[0042] C.3″,4″-二己基-α-五噻吩
[0043] 向装备有玻璃塞、橡胶隔片和连接到氮气进口的回流冷凝器的250mL、3-颈圆底烧瓶中加入5-三甲基甲锡烷基-2,2′-联噻吩(8.28g,25mmol)、2,5二溴-3,4-二己基噻吩(4.92g,25mmol),和DMF(100mL)。所述烧瓶用氮气吹扫10min,然后将Pd(PPh3)2Cl2(0.35g,25mmol)溶液加入并且将暗色混合物在90℃加热18h。将所述溶液冷却,倒入3%NaCl的水溶液中(800mL),并且将所述水性混合物用乙醚萃取(3×200mL)。合并的醚层用3%NaCl的水溶液洗(3×200mL),MgSO4干燥,并且在真空中除去醚得到橙色固体。将乙醇(500mL)加入到粗产物中并加热到90℃直到所述固体溶解。将所述乙醇倾析到清洁的烧瓶中并通过过滤收集沉淀物。收率:5.70g,81%。
[0044] D.5,5””二溴3″,4″-二己基-α-五噻吩的合成
[0045] 向装备有玻璃塞、橡胶隔片和连接到氮气进口的回流冷凝器的250mL、3-颈圆底烧瓶中加入3″,4″-二己基-α-五噻吩(7.02g,12.8mmol)、THF(150mL)、和乙酸(75mL)。向加料漏斗中,将NBS(4.19g,23.56mmol)溶解在THF(50mL)和乙酸(25mL)中。在0℃、用45min的时间将此溶液逐滴加入到所述3″,4″-二己基-α-五噻吩溶液中。将所述反应混合物搅拌另外45min,然后通过LC监控。将另外的NBS(0.32g,1.83mmol)加到反应混合物中并且搅拌继续另外15min。将蒸馏水(500mL)加到反应混合物中并用过滤收集沉淀的固体。所述固体用10%的NaHCO3和水洗,然后用硫酸镁干燥。所述固体再溶解在CH2Cl2(200ml)中,然后通过硅胶,接下来用CH2Cl2(200mL)洗。然后,所述溶剂在真空中蒸发,得到橙色固体。所述橙色固体是从丙酮结晶的。收率:8.1g,90%.%。
[0046] 实施例2-五噻吩基-芴共聚物的制备
[0047] 向装备有连接到氮气进口的回流冷凝器和顶部搅拌器的250mL、3-颈圆底烧瓶中加入9,9-二辛基芴-2,7-二硼酸酯(3.77g,7.10mmol)、5,5””-二溴3”,4”-己二基-α-五噻吩(5.65g,7.66mmol)、Aliquot 336相转移催化剂(0.87g,02.16mmol)、[Pd(PPh3)2Cl2](0.0073g,0.010mmol)、和甲苯(92mL)。在搅拌几分钟而溶解大部分固体之后,加入碳酸钠溶液(2M,13.1mL,26.2mmol)。然后将所述反应混合物在95℃加热5小时。然后加入THF(10ml)中的苯基硼酸(0.46g,3.77mmol)和[Pd(PPh3)2Cl2](0.0073g,0.010mmol),搅拌在95℃继续16小时。所述反应混合物用甲苯(230mL)稀释,将有机层分离并用温水(3×230mL)洗。然后用二乙基二硫代氨基甲酸钠盐三水合物的水溶液(7.5%,DDC,76.6mL)处理所述溶液,并在80℃加热过夜。分离并弃去水层,有机层用温水(3×230mL)洗,所述聚合物沉淀到甲醇中(2.3L)。经由过滤收集所述聚合物,用甲醇(200mL)洗,然后再溶解到热甲苯(960mL)中,从其中煮去60mL。所述热聚合物溶液通过硅藻土(1×8cm)、硅胶(4×8cm)、和碱性氧化铝(3×8cm)的紧密填充柱(预先用200mL热甲苯冲洗)。收集所述聚合物溶液,然后将溶液的体积浓缩到约500mL。所述聚合物沉淀到甲醇(2.3L)中,用甲醇(230mL)、丙酮(230mL)、并再用甲醇(230mL)洗。然后将所述聚合物在60℃真空干燥过夜而得到橙红色材料。收率:5.59g。
[0048] 实施例3-含五噻吩基-芴共聚物的晶体管的制备和测试
[0049] 基本上如图1的元件(30)-(70)中所描绘,预先制备多层结构的表面用O2等离子体灰化器清扫以除去有机残留物。然后用DI水冲洗所述表面,然后干燥。每一个结构具有宽度为1mm的通道,每一个包含玻璃衬底、金门、栅极绝缘体(电容为~22nF)、金源极(高度~70nm)、和金漏极(高度~70nm)。所述结构的通道长度在5μm到50μm间变化。通过将实施例2中制备的1%的五噻吩基-芴共聚物的二甲苯溶液旋涂而制备了基本如图10
所描述的晶体管装置。表1显示了对于第一次电压扫描的估计阈电压(VT)、电荷载流子迁移率(μfe)、和连续扫描之间阈电压的差异(ΔVT,也就是通常所说的滞后)。ΔVT1指的是一天之后的滞后,和ΔVT7指的是七天之后的滞后。
[0050] 表1-晶体管性质的测量
[0051]门长度 门长度 门长度 门长度
(gatelength) 20μm 10μm 5μm
50μm
2 -4 -4 -3 -3
μfe(cm/V-sec) 4.62×10 8.73×10 1.01×10 2.27×10
VT0 2V 2V 3V 8V
ΔVT1 0V 0V 0V 0V
ΔVT7 0V 0V 0V 0V