用于相关光谱法的交叉干扰校正的方法转让专利

申请号 : CN200610132013.X

文献号 : CN1971247B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 詹姆斯·霍比马丁·洛佩兹

申请人 : 仕富梅集团公司

摘要 :

通过校正交叉干扰改进了相关光谱法测量。这通过把不同增益施加到输出信号实现,由此背景干扰种类的影响能够被计算并且自动校正系数能够被应用。

权利要求 :

1.一种用于相关光谱的交叉干扰校正的方法,用于通过分析原始测量信号,在材料的光谱测量中自动补偿一个或多个背景干扰物的存在,所述原始测量信号由探测器响应于透射通过样品室的探测光而产生,所述方法使用光路气体过滤器相关测量来实施,其中来自宽频带源的光使用填充有不显著吸收气体的试管和含有所关心气体的另一个试管被调制,其中所述被调制的光透射通过所述样品室,所述方法包括如下步骤:(a)通过改变施加到所述信号的微分增益以及使用两个或更多基线参考进行测量,操纵人为地引入测量信号中的负交叉干扰;

(b)通过确定在校正期间由所述步骤(a)获得的信号之间失配的程度,从操纵的测量信号确定自动校正函数,其中所述失配在随后测量中的变化给出背景干扰物浓度的测量。

2.根据权利要求1所述的方法,包括:

监测第一干扰物的存在以及产生与第一干扰物的浓度相关的信号。

3.根据权利要求1所述的方法,包括:

监测多个干扰物的存在以及产生与多个干扰物的浓度相关的信号。

4.根据权利要求1所述的方法,对于任何介质:固体、液体、气体或等离子体,使用任何波长处的吸收测量。

5.根据权利要求1所述的方法,对于任何介质:固体、液体、气体或等离子体,使用任何波长处的反射系数测量。

6.一种用于相关光谱的交叉干扰校正的方法,用于通过分析原始测量信号,在材料的光谱测量中自动补偿谱展宽的存在,所述原始测量信号由探测器响应于透射通过样品室的探测光而产生,所述方法使用光路气体过滤器相关测量来实施,其中来自宽频带源的光使用填充有不显著吸收气体的试管和含有所关心气体的另一个试管被调制,其中所述被调制的光透射通过所述样品室,所述方法包括如下步骤:(a)通过改变施加到所述信号的微分增益以及使用两个或更多基线参考进行测量,操纵人为地引入测量信号中的负交叉干扰;

(b)通过确定在校正期间由所述步骤(a)获得的信号之间失配的程度,从操纵的测量信号确定自动校正函数,其中所述失配在随后测量中的变化给出谱展宽的测量。

7.根据权利要求6所述的方法,包括:

检测谱展宽的存在以及产生与导致它的原因相关的信号。

8.根据权利要求6所述的方法,对于任何介质:固体、液体、气体或等离子体,使用任何波长处的吸收测量。

9.根据权利要求6所述的方法,对于任何介质:固体、液体、气体或等离子体,使用任何波长处的反射系数测量。

说明书 :

用于相关光谱法的交叉干扰校正的方法

技术领域

[0001] 本发明涉及一种用于在光学过滤器相关性中更特别地在校正光谱测量中校正或减少交叉干扰的方法和设备。

背景技术

[0002] 光学吸收测量很长以来用于测量混合物中成分的浓度。所述吸收行为能够通过Beer-Lambert定律描述。吸收光谱仪的简单形式由光源、选择相关波长范围的装置、样品室和检测器组成。当吸收成分存在时,透射光强度的减少使所测量的在混合物中的成分的浓度减少。同时基于吸收强度和路径长度,可以给出所关心成分的灵敏读数,如果存在在波长通带内也能被吸收的其它成分,由于光源强度和交叉干扰的变化,所述读数可能存在零位误差和灵敏度误差(测量误差)。

发明内容

[0003] 因为没有对所述光源的强度随时间的变化的参考,零位误差和灵敏度误差能够发生。通过使用参考测量此影响能够被补偿,所述参考测量与所关心的测量同时监视所述源输出信号。通过使用选择性的检测系统,调到所关心成分的吸收比,交叉干扰能够被最小化。
[0004] 另一个方法是通过使用单光路气体光学过滤器相关测量。图1中图示了其基本布置。在此方法中,使用轮2机械地调制来自宽频带源1的光,所述轮2包含填充有例如氮的不显著吸收气体的试管(或小容器)3和含有所关心气体的另一个试管(或小容器)4。为了增大信噪比,光通带光学过滤器5用来选择所关心的区域。得到的已调制发射指向测量单元(或测量室)7内,在所述测量测量单元7中,基于样品成分,可以发生进一步的吸收。所述信号被收集到光学探测器8上,并在光学探测器8转变成电信号,然后电信号通过处理电路9处理以便产生外部输出信号。
[0005] 来自光学探测器的信号由已调制的输出信号组成,所述已调制的输出对应于来自填充有不同气体的试管的通过量(或处理量)。下面将描述填充有氮的单个非吸收试管和填充有所关心气体的单个吸收试管的简化例子,在此情况下,所关心气体是NO(一氧化氮)。尽管给出简单说明,但是此描述同样适用于通过例如使用吸收或反射的任何光谱技术测量的任何材料。
[0006] 回到我们的示例,对于样品单元(或样品室)内的非吸收混合物(氮)的情况,图2a和2b图示了输出信号的示意图。因为对应于吸收光谱的一些光已经被吸收,通过NO试管的信号将总是具有比通过氮试管的信号的振幅小的振幅。不同的增益通过处理电路9施加到这两个信号上,从而所述两个信号的量级相配。这被作为导出浓度测量的零点。
[0007] 此后,当包含所关心气体的样品,例如在氮背景中的NO,被引入到样品单元时,输出信号发生变化(图2c和2d)。因为NO试管已经预吸收了对应于NO吸收频带的辐射的一部分,从而氮试管信号中的变化总是大于NO试管信号中的变化。由NO试管吸收的入射辐射的量依赖于例如其浓度、温度、背景气体和吸收通路长度。两个增益信号之间的差,图2d中的 I,与样品气体单元中的NO浓度有关并因此设定测量的敏感度。所述差通常除以NO试管信号以提供标准化的信号,所述标准化的信号与光源强度的任何变化无关且然后与仪器系数相乘以给出NO浓度读数。
[0008] 在前面的示例中,如果它们在光学过滤器的通频带内吸收,背景干扰气体的影响能够引起读数中的误差。上述示例提供了会发生的两种干扰类型:正干扰和负干扰,所述正干扰引起正误差,其中干扰吸收与NO吸收频带一致,所述负干扰引起负误差,其中吸收与吸收频带不一致。这在图3中图示。正干扰是固有的不能区分NO与干扰物的结果,而负交叉干扰是施加到信号上的标准化的微分增益的结果(即与(G-1)成正比),其中G是施加的标准化的微分增益)。两种类型的干扰经常同时发生。
[0009] 通过选择光学过滤器的通频带和气体试管的特性,特定气体混合物的交叉干扰的量能被最小化。然而,在一些情况下,例如水作为NO的干扰气体,这不可能满意地移除干扰,且导致不可接受的误差。
[0010] 处理交叉干扰影响的普通方法是,不论通过气体过滤器相关性还是其它手段,独立地测量交叉干扰的浓度并相应地校正。当然,这需要用于第二测量的额外的设备,同时伴随着成本增加和复杂性增加。另外,所述样品将不会与初始测定所看到的样品相同,但是能够具有时间和/或空间上的分离。
[0011] 本发明不依赖第二测量,但是使用已经存在于信号中的信息。通过改变基线参考有意地改变施加到信号上的微分增益以便形成对于背景气体影响的自动校正函数(或功能)。因为正交叉干扰与干扰物和NO吸收线的吸收重叠的相对强度成比例并在校准中扣除,所述正交叉干扰不受基线参考的任何变化的影响。然而因为负交叉干扰将改变需要施加的微分增益,所述负交叉干扰将受到基线参考的影响。

附图说明

[0012] 为使本发明更容易理解,现在将通过示例参照附图描述实施例,其中:
[0013] 图1显示了用于光谱测量的基本设备的图解表示;
[0014] 图2和3是帮助解释使用图1中所示仪器的在先技术方法的图表;和[0015] 图4至7是帮助解释根据本发明的优选方法的图表。

具体实施方式

[0016] 优选实施例利用与在先技术相同的基本设备,这显示在图1中,并且所述操作基本上相同。然而,如果同时或顺序地使用两个或更多基线参考(例如,两个不同的增益)进行测量,那么两个不同的信号会产生。当不存在干扰物时,两个信号之间失配的程度能够在校正期间确定,且此失配中随后的变化给出背景干扰物浓度的测量。无论是干扰物独立存在还是除NO以外存在,所述测量都保持正确。这个系统也能够被用于多个交叉干扰物的校正。这种方法预示负交叉干扰总是存在。然而,因为两种不同的混合物将不会有相同的光谱特性,事实上通常如此。
[0017] 在图4中以简化的格式说明了所述概念。为简单起见,假定当由于预吸收NO存在于单元(或室)中时,NO试管信号没有显著变化。尽管它们具有不同的增益G1和G2,两个系统1和2都同样有效。每个系统能被独立地校正以给出对样品单元中NO的存在的成比例的响应。这在图5中被图示。
[0018] 当水存在时,对于具有增益G1和G2的两个系统出现输出信号上的误差。这通过使用图6中的试验结果显示出来,其中氮中NO为恒定水平76ppm,而增加水背景的水平。图6也显示了使用用水的先前校正得出的校正系数(图7)的校正浓度读数。水的浓度也能够从读数的不同推断出,因此如果需要,能够显示浓度读数。
[0019] 如果相对于在密闭的试管内的NO,对于样品单元中的NO本身出现了负交叉干扰的变化,这种方法也适用。例如由于背景气体成分的变化和压力或温度的变化引起的线展宽,这可能发生。由于相关的NO灵敏度的变化,这将通常导致测量误差。然而,使用本专利中描述的方法,也能够校正此影响。