使用光罩的图案形成方法转让专利

申请号 : CN200610148583.8

文献号 : CN1975568B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 三坂章夫

申请人 : 松下电器产业株式会社

摘要 :

一种使用光罩的图案形成方法,其包括:在基板上形成光阻膜的工序;通过光罩向光阻膜照射曝光光的工序;使照射了曝光光的光阻膜显像,使光阻膜图案化的工序,光罩在它的透光性基板上形成有:对曝光光具有遮光性的半遮光部、由半遮光部包围且对曝光光具有透光性的透光部、及由半遮光部包围且位于透光部周边的周边部;半遮光部及透光部让曝光光在同相位下透过;周边部让曝光光在以半遮光部及透光部为基准的,反相位下透过;在半遮光部形成区域的透光性基板上,形成具有让曝光光部分地透过的透光率且让曝光光在以周边部为基准的反相位下透过的移相膜;周边部形成区域的透光性基板的表面露出来。

权利要求 :

1.一种使用光罩的图案形成方法,其包括:在基板上形成光阻膜的工序;通过所述光罩向所述光阻膜照射曝光光的工序;使照射了所述曝光光的所述光阻膜显像,使所述光阻膜图案化的工序,所述光罩在它的透光性基板上形成有:对所述曝光光具有遮光性的半遮光部、由所述半遮光部包围起来且对所述曝光光具有透光性的透光部、及由半遮光部包围起来且位于所述透光部周边的周边部;

所述半遮光部及所述透光部让所述曝光光在同相位下透过;

透过所述周边部的所述曝光光与透过所述半遮光部的所述曝光光相互具有相反的相位,透过所述周边部的所述曝光光与透过所述透光部的所述曝光光相互具有相反的相位;

在所述半遮光部形成区域的所述透光性基板上,形成具有让所述曝光光部分地透过的透光率的移相膜;

透过所述周边部的所述曝光光与透过所述移相膜的所述曝光光相互具有相反的相位;

所述周边部形成区域的所述透光性基板的表面露出来。

2.根据权利要求第1项所述的图案形成方法,其中:所述光罩的所述透光部形成区域的所述透光性基板被挖规定的厚度,透过所述周边部的所述曝光光和透过所述透光部形成区域的所述透光性基板的所述曝光光相互具有相反的相位。

3.根据权利要求第1项所述的图案形成方法,其中:所述光罩的所述移相膜为含有金属的氧化膜。

4.根据权利要求第1项所述的图案形成方法,其中:所述光罩的所述移相膜,包括:

对所述曝光光的透光率比所述透光性基板对所述曝光光的透光率还低的透光率调整膜;及形成在所述透光率调整膜上的相位调整膜,透过所述周边部的所述曝光光与透过所述相位调整膜的所述曝光光相互具有相反的相位。

5.根据权利要求第4项所述的图案形成方法,其中:所述光罩的所述透光率调整膜为由金属或者金属合金制成的薄膜。

6.根据权利要求第5项所述的图案形成方法,其中:所述光罩的所述透光率调整膜的膜厚小于或等于30nm。

7.根据权利要求第4项所述的图案形成方法,其中:所述光罩的所述相位调整膜为氧化膜。

8.根据权利要求第4项所述的图案形成方法,其中:所述光罩的所述周边部被布置在离所述透光部一定距离的位置上;

所述移相膜中仅有所述透光率调整膜形成在所述周边部和所述透光部之间。

9.根据权利要求第1项所述的图案形成方法,其中:所述光罩的将所述周边部设置成与所述透光部相连的状态。

10.根据权利要求第1项所述的图案形成方法,其中:所述光罩的将所述周边部设在离开所述透光部有一定距离的位置上。

11.根据权利要求第1项所述的图案形成方法,其中:所述光罩的所述移相膜包括相位调整膜和透光率调整膜,所述透光率调整膜形成在所述相位调整膜上且它对所述曝光光的透光率比所述透光性基板对所述曝光光的透光率还低;

透过所述周边部的所述曝光光与透过所述相位调整膜的所述曝光光相互具有相反的相位,所述透光部的所述透光性基板上也形成有所述相位调整膜。

12.根据权利要求第11项所述的图案形成方法,其中:所述光罩的所述透光率调整膜,为由金属或者金属合金制成的薄膜,透过所述周边部的所述曝光光与透过所述透光率调整膜的所述曝光光相互具有同相位。

13.根据权利要求第12项所述的图案形成方法,其中:所述光罩的所述透光率调整膜的膜厚小于或等于30nm。

14.根据权利要求第11项所述的图案形成方法,其中:所述光罩的所述相位调整膜为氧化膜。

15.根据权利要求第11项所述的图案形成方法,其中:所述光罩的所述周边部被布置成与所述透光部相连的状态。

16.根据权利要求第11项所述的图案形成方法,其中:所述光罩的所述周边部被布置在离所述透光部有一定距离的位置上。

17.根据权利要求1~16任一项所述的图案形成方法,其中:所述光罩的所述移相膜对所述曝光光的透光率大于或等于6%且小于或等于15%。

18.根据权利要求1~16任一项所述的图案形成方法,其中:在照射所述曝光光的工序中,使用斜入射照明法。

说明书 :

使用光罩的图案形成方法

[0001] 本申请是基于申请号为03122598.5、发明名称为“光罩及其制作方法”、申请日为2003年4月30日的专利申请的分案申请。

技术领域

[0002] 本发明涉及用于制造半导体集成电路装置的微细图案形成用光罩、光罩制作方法及使用该光罩的图案形成方法。

背景技术

[0003] 近年来,为实现用半导体制成的大规模集成电路装置(LSI)的高集成化,就要求电路图案越来越微细化。其结果是,构成电路的布线图案的细线化或者是将隔着绝缘层将被多层化的布线与布线连接起来的连接孔图案(以下称之为:连接图案)的微细化,也就变得非常重要了。
[0004] 下面,说明假定用正光阻工序实现用近几年的光曝光装置制作的布线图案微细化的情况。在正光阻工序中,线图案为:利用光罩曝光及这之后的显像而在对应于光阻的非感光区域残留下的线状光阻膜(光阻图案);沟槽图案为:对应于光阻感光区域的光阻除去部(光阻除去图案);连接图案为:孔状光阻除去部,可以认为是特别微小的沟槽图案。需提一下,在使用负光阻工序来代替正光阻工序的情况下,只要将上述线图案及沟槽图案各自的定义更换一下就行了。
[0005] 一般情况下,使用被称为超解像曝光的斜入射曝光形成细线图案的细线形成方法已经被应用到布线图案的微细化上来了。该方法作为一种将对应于光阻的非感光区域的光阻图案微细化的方法是非常好的,同时又有提高周期性地布置着的密集图案的焦点深度的效果。但该斜入射曝光方法作为一种将孤立的光阻除去部微细化的方法则是收不到什么效果的。相反,还会使像(光学像)的对比度、焦点深度恶化。因此,斜入 射曝光方法被用在形成具有光阻除去部的尺寸大于光阻图案的尺寸这样的特征的图案上,例如栅极图案的形成上等。
[0006] 另一方面,我们知道,为形成微细连接图案那样的孤立的微细光阻除去部分,使用不包含斜入射部分的低干涉程度的小光源是很有效的。若这时使用衰减型移相光罩(attenuated phase-shifting mask,half-tonephase-shifting mask)效果会更好(参考日本国特开平9—90601号公报)。在衰减型移相光罩中,作为包围对应于连接图案的透光部(开口部)的光罩图案,设了具有对曝光光为3~6%左右、非常低的透光率且相对于透过开口部的光产生180度的相位反转的移相器来取代完全遮光部。
[0007] 需提一下,在本说明书中,在不作特殊说明的情况下,透光率以设透光性基板的透光率为100%时的实效透光率来表示;完全遮光膜(完全遮光部)意味着实效透光率小于1%的遮光膜(遮光部)。
[0008] 下面,参考图27(a)~图27(g),说明用衰减型移相光罩形成图案的那种图案形成方法的原理。
[0009] 图27(a)为一光罩平面图,在设在光罩表面、成为完全遮光部的铬膜上形成对应于连接图案的开口部,即可制成该光罩;图27(b)为透过图27(a)所示的光罩的光中AA’线上的那一部分的透过光振幅强度。图27(c)为一光罩平面图,在形成在光罩表面上的移相器上形成对应于连接图案的铬膜作完全遮光部,即可制成该光罩;图27(d)为透过图27(c)所示的光罩的光中AA’线上的那一部分的透过光振幅强度。图27(e)为一光罩平面图,在形成在光罩表面上的移相器上形成对应于连接图案的开口部作完全遮光部,即可制成该光罩(也就是说衰减型移相光罩);图27(f)及图27(g)各自表示透过图27(e)所示的光罩的光中AA’线上的那一部分的透过光振幅强度及光强度。
[0010] 这里,如图27(b)、图27(d)、图27(f)所示,透过图27(e)所示的衰减型移相光罩的光的振幅强度,为透过图27(a)及图27(c)各自所示的光罩的光的振幅强度之和。也就是说,在图27(e)所示的衰减型移相光罩中,这样来形成成为遮光部的移相器:即不仅让光在低透光率下透过,还给透过该移相器的光加上对通过开口部的光为180度的光路差。因此,如图27(b)及图27(d)所示,因透过移相器的光具有相对 透过开口部的光为反相位的振幅强度分布,故若对图27(b)所示的振幅强度分布和图27(d)所示的振幅强度分布进行合成,则产生振幅强度由于相位变化而成为0的相位边界点,如图27(f)所示。结果是,如图27
[0011] (g)所示,就在成为相位边界点的开口部的边缘(以下称其为相位端),形成用振幅强度的平方表示、光强度也为0的强黑暗部。因此,在透过了图27(e)所示的衰减型移相光罩的光的像中,在开口部周围实现了非常强的对比度。但是,该对比度相对于垂直入射到光罩的光而提高,具体来讲,该对比度相对于从低干涉度的小光源区域入射到光罩的光而提高。相反,对斜入射曝光而言,例如对除去了垂直入射成分(来自光源中心(光罩的法线方向)的照明成分)、被称为环状照明那样的曝光而言,即使在开口部周围(产生相位变化的相位边界附近)也看不到对比度有什么提高。此外,与使用低干涉度的小光源进行曝光的情况相比,进行斜入射曝光时,还有焦点深度下降的缺点。
[0012] 如上所述,在用正光阻工序形成象连接图案那样的微细光阻除去图案的情况下,需要将0.5左右以下的小光源(成为只有垂直入射成分的照明)
[0013] 与衰减型移相光罩组合起来进行曝光。该方法对于形成微细的孤立布置的连接图案来说是非常有效的。
[0014] 然而,随着近年来的半导体器件的高集成化,不仅在布线图案中需要有孤立着布置的图案和布置得很密的图案;在连接图案中也需要有孤立着布置的图案和布置得很密的图案。为在形成布置得很密的连接图案的时候实现高焦点深度,也是与被布置得很密的布线图案一样,斜入射曝光的效果很好。
[0015] 需提一下,近年来,在形成布线图案的时候,除了需要将成为布线图案的线图案微细化,还需要将布线间的沟槽图案微细化。这里,与形成孤立连接图案时一样,在形成孤立的微小的布线间沟槽图案的时候,将低干涉度光源与衰减型移相光罩组合起来使用效果良好。
[0016] 也就是说,形成高密度的布线图案及高密度的连接图案时,必须用斜入射曝光,而另一方面,若进行斜入射曝光,孤立的连接图案及孤立的布线间沟槽图案的对比度及焦点深度明显变坏。在使用用以提高解像 度的衰减型移相光罩的情况下,该对比度及焦点深度会进一步变坏。
[0017] 相反,若为形成孤立的微小连接图案及孤立的微小布线间沟槽图案而使用低干涉度的小光源,则有难以形成高密度图案或者微小线图案的问题。
[0018] 因此,孤立布置的微小沟槽图案的最佳光源条件与布置得很密的图案或者微小的线图案的最佳光源条件互相矛盾。因此,要想同时形成微小的光阻图案和微小的孤立的光阻除去图案,就要折中考虑来自光源的垂直入射成分及斜入射成分各自的效果。结果是采用了中干涉度(0.5~0.6程度)的光源。然而,因为在这种情况下垂直入射及斜入射的效果相杀,故很难通过同时使孤立沟槽图案与孤立线图案或者孤立沟槽图案与密集图案微细化而实现半导体器件的进一步高集成化。

发明内容

[0019] 鉴于以上所述,本发明的目的,在于:做到能够同时微细化孤立沟槽图案和孤立线图案或者孤立沟槽图案和密集图案。
[0020] 为达成所述目的,本发明的光罩是这样的,透光性基板上形成有:对曝光光具有遮光性的半遮光部、由半遮光部包围起来且对曝光光具有透光性的透光部及由半遮光部包围起来且位于透光部周边的周边部。半遮光部及透光部让曝光光在同相位下透过;周边部让曝光光在以半遮光部及透光部为基准的反相位下透过。再就是,在半遮光部形成区域的透光性基板上形成具有让曝光光部分地透过的透光率且让曝光光在以周边部为基准的反相位下透过的移相膜。
[0021] 根据本发明的光罩,让曝光光以与透光部相反的相位透过的周边部被透光部和让曝光光以与该透光部相同的相位透过的遮光性半遮光部夹起来。结果是,透光部和周边部间的光强度分布的对比度就由于透过周边部的光和透过透光部的光间的相互干涉而得以强调。再就是,在例如正光阻工序中用斜入射曝光形成微细的孤立光阻除去部(即微细的孤立沟槽图案)的情况下,也能收到这一对比度强调效果。换句话说,将本实施例中的光罩和斜入射曝光组合起来以后,就能将孤立沟槽图案与孤立线图案或者孤立沟槽图案与密集图案同时微细化。
[0022] 需提一下,在该说明书中,对曝光光具有透光性意味着:让光阻感光的透光率;而对曝光光具有遮光性则意味着:不让光阻感光的透光率。再就是,同相位意味着:大于、等于(—30+360×n)度且小于、等于(30+360×n)的相位差;而反相位意味着:大于、等于(150+360×n)度且小于、等于(210+360×n)的相位差。
[0023] 在本发明的光罩中,可挖透光部形成区域的透光性基板,挖后的厚度可让曝光光在以周边部为基准的反相位下透过。换句话说,透光部可为起高透光率移相器之作用的基板挖下部。
[0024] 在本发明的光罩中,周边部形成区域的透光性基板的表面可露出来。
[0025] 在本发明的光罩中,移相膜可为含有金属的氧化膜。
[0026] 在本发明的光罩中,最好是,移相膜包括对曝光光的透光率比透光性基板对曝光光的透光率还低的透光率调整膜、形成在透光率调整膜上且让曝光光在以周边部为基准的反相位下透过的相位调整膜。
[0027] 这样做以后,可任意选择我们所希望的相位变化和我们所希望的透光率组合起来的移相膜。还可通过组合透光率调整膜的材料和相位调整膜的材料而将用以加工移相膜的蚀刻时的选择比提高。
[0028] 在移相膜包括透光率调整膜和相位调整膜的情况下,透光率调整膜可为由金属或者金属合金制成的且让曝光光在以周边部为基准的同相位下透过薄膜。此时,透光率调整膜的膜厚可小于、等于30nm。
[0029] 还有,在移相膜包括透光率调整膜和相位调整膜的情况下,相位调整膜可为氧化膜。
[0030] 还有,在移相膜包括透光率调整膜和相位调整膜的情况下,最好是,周边部被布置在离透光部一定距离的位置上,移相膜中仅有透光率调整膜形成在周边部和透光部之间。这样做以后,周边部的透光率、周边部和透光部间仅形成了透光率调整膜的那一部分(以下称其为相位调整膜除去部分)的透光率的平均值,比周边部的透光率小。换句话说,因为可使含有相位调整膜除去部分的周边部的透光率(实效透光率)比1小,故控制周边部的尺寸的容限就增大。需提一下,在透光率调整膜为单层薄膜的情况下,透过周边部的光和透过相位调整膜除去部分的光基本上是同相位。再就是,在这种情况下,和使用多层构造的透光率调整膜相 比,可抑制在在周边部和透光部间形成微小宽度的透光率调整膜时该膜发生剥离。
[0031] 在本发明的光罩中,可将周边部设置成与透光部相连的状态,也可将周边部设在离开透光部有一定距离的位置上。
[0032] 在本发明的光罩中,最好是,移相膜包括对曝光光的透光率比透光性基板对曝光光的透光率还低的透光率调整膜、形成在透光率调整膜上且让曝光光在以周边部为基准的反相位下透过的相位调整膜;在周边部形成区域的透光性基板上也形成有透光率调整膜。 [0033] 这样做以后,可任意选择我们所希望的相位变化和我们所希望的透光率组合起来的移相膜。还可通过组合透光率调整膜的材料和相位调整膜的材料而将用以加工移相膜的蚀刻时的选择比提高。再就是,因在周边部的透光性基板上仅形成透光率调整膜,故周边部的透光率比透光性基板低,周边部成为透光率调整膜。换句话说,可由透光率调整膜将周边部的透光率调整在我们所希望的值上。结果是,因能避免出现光罩上周边部的透光率为最高这样的问题,故能够降低对周边部的微细化程度的要求。换句话说,能够避免由于轮廓强调光罩中的周边部即开口部的上限尺寸太微小而难以制成光罩这样的问题。
[0034] 还有,在这种情况下,透光率调整膜可为由金属或者金属合金制成且让曝光光在以周边部为基准的同相位下透过的薄膜。此时,透光率调整膜的膜厚可小于、等于30nm。 [0035] 还有,在这种情况下,相位调整膜可为氧化膜。
[0036] 还有,在这种情况下,周边部可被布置成与透光部相连的状态,或者被布置在离透光部有一定距离的位置上。
[0037] 在本发明的光罩中,最好是,移相膜包括让曝光光在以周边部为基准的反相位下透过的相位调整膜、形成在相位调整膜上且对曝光光的透光率比透光性基板对曝光光的透光率还低的透光率调整膜,透光部形成区域的透光性基板上也形成有相位调整膜,周边部形成区域的透光性基板的表面露出来。
[0038] 这样做以后,可任意选择我们所希望的相位变化和我们所希望的透光率组合起来的移相膜。还可通过组合透光率调整膜的材料和相位调整 膜的材料而将用以加工移相膜的蚀刻时的选择比提高。
[0039] 还有,在这种情况下,透光率调整膜,可为由金属或者金属合金制成的且让曝光光在以周边部为基准的同相位下透过的薄膜。此时,透光率调整膜的膜厚可小于、等于30nm。 [0040] 还有,在这种情况下,相位调整膜可为氧化膜。
[0041] 还有,在这种情况下,可将周边部设置成与透光部相连的状态,也可将周边部设在离开透光部有一定距离的位置上。
[0042] 在本发明的光罩中,移相膜的透光率大于、等于6%且小于、等于15%。 [0043] 这样做以后,就既能防止形成图案时光阻膜的减少等,又确能收到本实施例的对比度强调效果。
[0044] 本发明所涉及的图案形成方法,以使用本发明的光罩的图案形成方法为前提,包括:在基板上形成光阻膜的工序;介于光罩将曝光光照射到光阻膜上的工序;及对由曝光光照射的光阻膜进行显像处理并将光阻膜图案化的工序。
[0045] 根据本发明的图案形成方法,可收到与本发明的光罩一样的效果。再就是,在照射曝光光的工序中,使用斜入射照明法(斜入射曝光法)以后,就确能收到所述效果。 [0046] 本发明所涉及的第一种光罩制作方法,为制作在透光性基板上形成有:对曝光光具有遮光性的半遮光部、由半遮光部包围起来且对曝光光具有透光性的透光部及由半遮光部包围起来且位于透光部周边的周边部的光罩的制作方法。具体而言,包括:在半遮光部形成区域的透光性基板上形成具有让曝光光部分地透过的透光率且让曝光光在以周边部为基准的反相位下透过的移相膜的第一工序;及在第一工序之后,挖透光部形成区域的透光性基板,挖到挖后的深度可让曝光光在以周边部为基准的反相位下透过的第二工序。 [0047] 根据第一种光罩制作方法,在半遮光部形成区域的透光性基板上形成让曝光光部分地透过且让曝光光在以周边部为基准的反相位下透过的移相膜之后,再挖透光部形成区域的透光性基板,挖到挖后的厚度可让曝光光在以周边部为基准的反相位下透过。因此,让曝光光以与透光部 相反的相位透过的周边部,被成为高透光率移相器的透光部和让曝光光以与该透光部相同的相位透过的成为低透光率移相器的半遮光部夹起来。结果是,透光部和周边部间的光强度分布的对比度就由于透过周边部的光和透过透光部的光间的相互干涉而得以强调。再就是,在例如正光阻工序中用斜入射曝光形成微细的孤立光阻除去部(即微细的孤立沟槽图案)的情况下,也能收到这一对比度强调效果。换句话说,将本实施例中的光罩和斜入射曝光组合起来以后,就能将孤立沟槽图案与孤立线图案或者孤立沟槽图案与密集图案同时微细化。
[0048] 在第一种光罩制作方法中,最好是,第一工序,包括:在整个透光性基板面上形成移相膜,之后,再将透光部形成区域和周边部形成区域的移相膜除去的工序。
[0049] 这样做以后,因为在透光性基板上形成移相膜以后,对移相膜及透光性基板分别进行了选择性的蚀刻处理,故很容易实现具有成为低透光率移相器的半遮光部及周边部的任意形状的光罩及成为高透光率移相器的任意形状的透光部。再就是,在透光部和周边部相互分开的情况下,换句话说,在在透光部和周边部之间残留下移相膜的情况下,以在第一工序中已图案化的移相膜为掩模,在第二工序中对透光性基进行自我对准的蚀刻,故可正确地进行光罩加工。
[0050] 在第一种光罩制作方法中,最好是,第一工序包括:在整个透光性基板面上形成移相膜,之后,再将周边部形成区域的移相膜除去的工序;第二工序还包括在挖透光部形成区域的透光性基板之前,除去透光部形成区域的移相膜的工序。
[0051] 这样做以后,因为在透光性基板上形成移相膜以后,对移相膜及透光性基板分别进行了选择性的蚀刻处理,故很容易实现具有成为低透光率移相器的半遮光部及周边部的任意形状的光罩及成为高透光率移相器的任意形状的透光部。再就是,因除去周边部形成区域的移相膜的工序和除去透光部形成区域的移相膜的工序是分别进行的,故在透光部形成区域和周边部形成区域有一微小宽度的情况下,换句话说,在透光部和周边部间残留下宽度微小的移相膜的情况下,可使光罩的加工容限增大。
[0052] 在第一种光罩制作方法中,最好是,移相膜包括对曝光光的透光率 比透光性基板对曝光光的透光率低的透光率调整膜、和形成在透光率调整膜上且让曝光光在以周边部为基准的反相位下透过的相位调整膜。
[0053] 这样做以后,可任意选择我们所希望的相位变化和我们所希望的透光率组合起来的移相膜。还可通过组合透光率调整膜的材料和相位调整膜的材料而将用以加工移相膜的蚀刻时的选择比提高。
[0054] 在第一种光罩制作方法中,最好是,第一工序包括:在整个透光性基板面上,依次形成对曝光光的透光率比透光性基板对曝光光的透光率低的透光率调整膜、和让曝光光在以周边部为基准的反相位下透过的相位调整膜之后,再除去透光部形成区域和周边部形成区域的相位调整膜,而在半遮光部形成区域的透光性基板上形成由透光率调整膜及相位调整膜构成的移相膜的工序。第二工序还包括在挖透光部形成区域的透光性基板之前,除去透光部形成区域的透光率调整膜的工序。
[0055] 因这样做以后,在周边部形成区域的透光性基板上形成了透光率调整膜,故周边部的透光率比透光性基板的小,周边部成为透光率调整部。换句话说,周边部的透光率由透光率调整膜调整到我们所希望的值上。结果是,因可回避周边部的透光率在光罩上为最高的情况,而可降低对周边部的微细化要求。换句话说,能够避免由于轮廓强调光罩中的周边部即开口部的上限尺寸太微小而难以制成光罩这样的问题。再就是,可通过采用在透光性基板上依次形成透光率调整膜及相位调整膜以后,选择性地对相位调整膜、透光率调整膜及透光性基板分别进行蚀刻这一做法,而很容易地实现具有低透光率移相器的半遮光部及透光率调整部的周边部的、任意形状的光罩图案及成为高透光率移相器的任意形状的透光部。还有,在透光部和周边部相互分开的情况下,换句话说,在在透光部和周边部之间残留下移相膜的情况下,以已图案化的移相膜为掩模,对透光性基进行自我对准的蚀刻,故可正确地进行光罩加工。
[0056] 在第一种光罩制作方法中,最好是,第一工序包括:在整个透光性基板面上,依次形成对曝光光的透光率比透光性基板对曝光光的透光率低的透光率调整膜、和让曝光光在以周边部为基准的反相位下透过的相位调整膜,之后,再除去周边部形成区域的相位调整膜,从而在半遮光部形成区域的透光性基板上形成由透光率调整膜及相位调整膜构成的移相 膜的工序。第二工序还包括在透光性基板上挖一透光部形成区域之前,依次除去透光部形成区域的相位调整膜及透光率调整膜的工序。
[0057] 因为这样做以后,在周边部形成区域的透光性基板上形成了透光率调整膜,故周边部的透光率比透光性基板的小,周边部成为透光率调整部。换句话说,周边部的透光率由透光率调整膜调整到我们所希望的值上。结果是,因可回避周边部的透光率在光罩上为最高的情况,而可降低对周边部的微细化要求。换句话说,能够避免由于轮廓强调光罩中的周边部即开口部的上限尺寸太微小而难以制成光罩这样的问题。再就是,可通过采用在透光性基板上依次形成透光率调整膜及相位调整膜以后,选择性地对相位调整膜、透光率调整膜及透光性基板分别进行蚀刻这一做法,而很容易地实现具有低透光率移相器的半遮光部及透光率调整部的周边部的、任意形状的光罩图案及成为高透光率移相器的任意形状的透光部。
[0058] 还有,因除去周边部形成区域的移相膜的工序和除去透光部形成区域的移相膜的工序是分别进行的,故在透光部形成区域和周边部形成区域有一微小宽度的情况下,换句话说,在透光部和周边部间残留下宽度微小的移相膜的情况下,可使光罩的加工容限增大。 [0059] 本发明所涉及的第二种光罩制作方法,为制作在透光性基板上形成有:对曝光光具有遮光性的半遮光部、由半遮光部包围起来且对曝光光具有透光性的透光部及由半遮光部包围起来且位于透光部周边的周边部的光罩的制作方法。具体而言,包括:在透光性基板上依次形成让曝光光在以周边部为基准的反相位下透过的相位调整膜及它对曝光光的透光率比透光性基板对曝光光的透光率还低的透光率调整膜的第一工序;除去周边部形成区域的相位调整膜及透光率调整膜的第二工序;以及在第二工序之后,除去透光部形成区域的透光率调整膜的第三工序。形成在半遮光部形成区域的透光性基板上的相位调整膜及透光率调整膜,构成具有让曝光光部分地透过的透光率且让曝光光在以周边部为基准的反相位下透过的移相膜。
[0060] 根据第二种光罩制作方法,在透光性基板上形成相位调整膜及透光率调整膜之后,再除去周边部形成区域的相位调整膜及透光率调整膜,之后再除去透光部形成区域的透光率调整膜。结果是,半遮光部形成区域的透光性基板上形成了由相位调整膜及透光率调整膜构成的移相膜,即形成了
[0061] 让曝光光部分地在反相位下透过的移相膜。同时在透光部形成区域的透光性基板上形成了相位调整膜的单层构造。这样以来,让曝光光以和透光部相反的相位透过的周边部,就被成为高透光率移相器的透光部、及让曝光光在与透光部相同的相位下透过成为低透光率移相器的半遮光部夹起来。透光部和周边部间的光强度分布的对比度就由于透过周边部的光和透过透光部的光间的相互干涉而得以强调。再就是,在例如正光阻工序中用斜入射曝光形成微细的孤立光阻除去部(即微细的孤立沟槽图案)的情况下,也能收到这一对比度强调效果。换句话说,将本实施例中的光罩和斜入射曝光组合起来以后,就能将孤立沟槽图案与孤立线图案或者孤立沟槽图案与密集图案同时微细化。还有,因为在透光性基板上依次形成透光率调整膜及相位调整膜以后,对相位调整膜、透光率调整膜分别进行有选择的蚀刻,而很容易地实现具有成为低透光率移相器的半遮光部及周边部的、任意形状的光罩图案及成为高透光率移相器的任意形状的透光部。
[0062] 在第一种及第二种光罩制作方法中,最好是,移相膜对曝光光的透光率大于、等于6%且小于、等于15%。
[0063] 这样做以后,就既能防止形成图案时光阻膜的减少等,又确能收到本实施例的对比度强调效果。
[0064] 附图说明
[0065] 图1(a)到图1(g)为说明本发明的轮廓强调法的原理的图。
[0066] 图2(a)到图2(f)为说明利用现有的相位端的图像强调效果是如何随光源形状而变化的图。
[0067] 图3(a)到图3(f)为说明本发明的轮廓强调法中移相膜的尺寸上、下限值的图。 [0068] 图4(a)及图4(b)为说明本发明的轮廓强调法中移相膜的尺寸上、下限值的图。
[0069] 图5(a)到图5(f)为说明根据本发明的轮廓强调光罩形成孤立图案时,由来自各个光源位置的曝光光入射而产生的光强度分布的图。
[0070] 图6(a)到图6(f)为说明根据现有的衰减型移相光罩形成孤立图案时,由来自各个光源位置的曝光光入射而产生的光强度分布的图。
[0071] 图7(a)到图7(f)为说明对比度及DOF是如何随本发明的轮廓强调光罩中的半遮光部的透光率而变化的图。
[0072] 图8(a)到图8(f)示出了在形成了对应于连接图案的开口部的轮廓强调光罩中,由半遮光部和移相膜构成的遮光性光罩图案的几种平面布置情况。
[0073] 图9(a)到图9(f)示出了在形成了对应于连接图案的高透光率移相器的轮廓强调光罩中,由低透光率移相器和开口部构成的遮光性光罩图案的几种平面布置情况。 [0074] 图10(a)示出了要用本发明的第1个实施例所涉及的光罩形成的所希望的图案之一例;图10(b)为本发明的第1个实施例所涉及的光罩的平面图;图10(c)为沿图10(b)中的AA’线剖开的剖面图。
[0075] 图11(a)为在本发明的第1个实施例所涉及的光罩中移相膜为单层膜的情况下的剖面图;图11(b)为在本发明的第1个实施例所涉及的光罩中移相膜为由透光率调整膜和相位调整膜构成的叠层膜的情况下的剖面图。
[0076] 图12(a)为表示通常的曝光光源的形状的图;图12(b)为表示环状曝光光源的形状的图;图12(c)为表示四极曝光光源的形状的图;图12(d)为表示环状—四极混合型曝光光源的形状的图。
[0077] 图13(a)~图13(d)为剖面图,示出了使用本发明的第1个实施例所涉及的光罩的图案形成方法下的每一个工序。
[0078] 图14(a)~图14(e)为剖面图,示出了本发明的第1个实施例所涉及的光罩制作方法中的各个工序。图14(f)为对应于图14(c)所示的剖面图的平面图;图14(g)为对应于图14(e)所示的剖面图的平面图。
[0079] 图15(a)~图15(e)为剖面图,示出了本发明的第1个实施例的第1个变形例所涉及的光罩制作方法中的各个工序。图15(f)为对应于 图15(c)所示的剖面图的平面图;图15(g)为对应于图15(e)所示的剖面图的平面图。
[0080] 图16(a)~图16(e)为剖面图,示出了本发明的第1个实施例的第1个变形例所涉及的光罩制作方法中的各个工序。图16(f)为对应于图16(c)所示的剖面图的平面图;图16(g)为对应于图16(e)所示的剖面图的平面图。
[0081] 图17(a)及图17(b)为本发明的第1个实施例的第3个变形例所涉及的光罩的平面图及剖面图;图17(c)及图17(d)为开口部和高透光率移相器之间的相位调整膜被除去、本发明的第1个实施例的第3个变形例所涉及的光罩的平面图及剖面图。
[0082] 图18(a)示出了要用本发明的第2个实施例所涉及的光罩形成的所希望的图案之一例。图18(b)为第2个实施例所涉及的光罩的平面图;图18(c)为沿图18(b)中的AA’线剖开的剖面图。
[0083] 图19(a)~图19(d)为剖面图,示出了使用了本发明的第2个实施例所涉及的光罩的图案形成方法下的每一个工序。
[0084] 图20(a)~图20(e)为剖面图,示出了本发明的第2个实施例所涉及的光罩制作方法中的各个工序。图20(f)为对应于图20(c)所示的剖面图的平面图;图20(g)为对应于图20(e)所示的剖面图的平面图。
[0085] 图21(a)~图21(e)为剖面图,示出了本发明的第2个实施例的第1个变形例所涉及的光罩制作方法中的各个工序。图21(f)为对应于图21(c)所示的剖面图的平面图;图21(g)为对应于图21(e)所示的剖面图的平面图。
[0086] 图22(a)~图22(e)为剖面图,示出了本发明的第2个实施例的第2个变形例所涉及的光罩制作方法中的各个工序。图22(f)为对应于图22(c)所示的剖面图的平面图;图22(g)为对应于图22(e)所示的剖面图的平面图。
[0087] 图23(a)示出了要用本发明的第3个实施例所涉及的光罩形成的所希望的图案之一例。图23(b)示出了本发明的第3个实施例所涉及的光罩的平面图;图23(c)为沿图23(b)中的AA’线剖开的剖面图。
[0088] 图24(a)~图24(d)为剖面图,示出了使用本发明的第3个实施例所涉及的光罩的图案形成方法下的每一个工序。
[0089] 图25(a)~图25(e)为剖面图,示出了本发明的第3个实施例所涉及的光罩制作方法中的各个工序。图25(f)为对应于图25(c)所示的剖面图的平面图;图25(g)为对应于图25(e)所示的剖面图的平面图。
[0090] 图26(a)到图26(c)为说明用被薄膜化的遮光膜作本发明的第3个实施例所涉及的透光率调整膜用而引起的相位变化对图案形成造成的影响的图。
[0091] 图27(a)到图27(g)为说明用现有的衰减型移相光罩而得到的图像强调原理的图。
[0092] 符号说明
[0093] 1a、1b、1c、1d、1e、1f—轮廓强调光罩;2a、2b、2c、2d、2e、2f—透光性基板;3a、3b、3c、3d、3e、3f—半遮光部;4a、4b、4c、4d、4e、4f—开口部;5a、5b、5c、5d、5e、5f—移相膜;
10—透光性基板;10a—挖下部;11—移相膜;11A—透光率调整膜;11B—相位调整膜;12—第一光阻图案;13—第二光阻图案;20—透光性基板;20a—挖下部;21—透光率调整膜;
22—相位调整膜;23—第一光阻图案;24—第二光阻图案;30—透光性基板;31—移相膜;
32—透光率调整膜;33—第一光阻图案;34—第二光阻图案;100—基板;101—被加工膜;
102—光阻膜;102a—潜像部分;103—曝光光;104—透过光;105—光阻图案;200—基板;
201—被加工膜;202—光阻膜;202a—潜像部分;203—曝光光;204—透过光;205—光阻图案;300—基板;301—被加工膜;302—光阻膜;302a—潜像部分;303—曝光光;304—透过光;305—光阻图案。

具体实施方式

[0094] 首先,说明为实现本发明,本案发明人所设计的由光罩提高解像度的解像度提高方法,具体而言,说明为提高孤立沟槽图案的解像度的“轮廓强调法”。
[0095] (轮廓强调法)
[0096] 下面,以由正光阻工序形成连接图案的情况为例进行说明。需提一下,“轮廓强调法”是一只要是正光阻工序下的微小沟槽图案全能成立的原理,而与它的形状无关。而且,“轮廓强调法”同样适用于负光阻工序,只是这时要将正光阻工序的微小沟槽图案(光阻除去图案)和微小图案(光阻图案)置换一下。
[0097] 图1(a)~图1(g)用以说明在形成连接图案的曝光步骤中加强光的影像(transferred image)的对比度的原理。
[0098] 图1(a)为一光罩的平面图,由对曝光光的透光率大于、等于6%且小于、等于15%的半遮光部将对应于连接图案的开口部(即透光部)包围起来即构成该光罩;图1(b)表示透过图1(a)所示的光罩的光中AA’线上的那一部分光的振幅强度。
[0099] 图1(c)为一光罩的平面图,在图1(a)所示的开口部的周围区域布置上移相器且在除以外的其它区域上布置上完全遮光部,即构成该光罩。图1(d)表示透过图1(c)所示的光罩的光中AA’线上的那一部分光的振幅强度。这里,图1(d)所示的是透过移相器的光的振幅强度,故它和图1(b)所示的光的振幅强度之间的相位关系是反相的关系。 [0100] 图1(e)为一光罩的平面图,由对曝光光的透光率大于、等于6%且小于、等于15%的半遮光部将对应于连接图案的开口部及布置在开口部的周围区域的移相器包围起来,即构成该光罩。图1(f)及图1(g)表示透过图1(e)所示的光罩的光中AA’线上的那一部分光的振幅强度及光强度(光的振幅强度的平方)。图1(e)所示的光罩,为将移相器布置到图1(a)所示的光罩中的开口部的周围区域而得到的光罩。这里,图1(e)所示的光罩,是实现“轮廓强调法”的本发明的光罩(以下称其为轮廓强调光罩)之一例。
[0101] 需提一下,在图1(a)或者图1(e)所示的光罩中,透过半遮光部的光和透过开口部的光为同相位(具体而言,相位差大于、等于(—30+360×n)度且小于、等于(30+360×n)度(n为整数))。而且,在图1(e)所示的光罩中,透过移相器的光和透过开口部的光为反相位(具体而言,相位差大于、等于(150+360×n)度且小于、等于(210+360×n)度(n为整数))。
[0102] 透过图1(e)所示的轮廓强调光罩的光的影像得以强调的原理如下所述。也就是说,将图1(a)及图1(c)所示的光罩的构造重合起来以后即是图1(e)所示的光罩的构造。因此,如图1(b)、图1(d)及图1(f)所示,将透过图1(a)及图1(c)所示的光罩的光的振幅强度重合起来以后即是透过图1(e)所示的光罩的光的振幅强度的分布情况。这里,由图
1(f)可知,在图1(e)所示的光罩中,透过布置在开口部周围的移相器的光可将透过开口部及半遮光部的光中的一部分抵消。因此,在图1(e)所示的光罩中,只要进行调整而由开口部周围的光将透过移相器的光的强度抵消,就有可能形成对应于开口部周围的光的强度值减少到接近0的光强度分布,如图1(g)所示。
[0103] 在图1(e)所示的光罩中,透过移相器的光,一方面将开口部周围的光大大地抵消了,另一方面却将开口部中央附近的光稍微抵消了一些。结果收到了以下效果,如图1(g)所示,透过图1(e)所示的光罩的光中,从开口部中央朝着开口部周围变化的光强度分布曲线的陡度增大。这样以来,就因为透过图1(e)所示的光罩的光的强度分布曲线很陡,而形成了对比度很高的像。
[0104] 以上是本发明中强调光学像(光强度的像(image))的原理。也就是说,在由低透光率的半遮光部形成的光罩中,沿着开口部的轮廓布置上移相器,就能在借助图1(a)所示的光罩形成的光强度像中,形成对应于开口部的轮廓线的非常强的黑暗部。由此而可在开口部的光强度和开口部周围的光强度之间形成对比度得以强调的光强度分布。在该说明书中,称由这样的原理进行像强调的方法为“轮廓强调法”,并同时称实现该原理的光罩为“轮廓强调光罩”。
[0105] 下面说明成为本发明的基本原理的轮廓强调法和现有的衰减型移相光罩的原理的不同之处。轮廓强调法的原理的最重要之处,在于:透过半遮光部及开口部的光中有一部分被透过移相器的光抵消,由此而在光强度分布内形成了黑暗部。换句话说,轮廓强调法的原理的最重要之处,在于:移相器真的象不透明图案一样工作。因此从图1(f)可看出:在透过轮廓强调光罩的光的振幅强度中,由于相同相位一侧的强度变化而形成了黑暗部。在后面还要详细说明,只在这种状态下,可由斜入射曝光 光提高对比度。
[0106] 另一方面,在对具有对应于连接图案的开口部的现有的衰减型移相光罩进行曝光时的光强度分布中,也在开口部周围形成了比较强的黑暗部,如图27(g)所示。但比较一下显示对现有的衰减型移相光罩进行曝光时的光的振幅强度的图27(f)和显示对轮廓强调光罩进行曝光时的光振幅强度的图1(f)以后,明显存在着以下不同。换句话说,如图27(f)所示,在对衰减型移相光罩进行曝光时的振幅强度分布中,存在着产生反相位的相位边界点。而且,如图27(g)所示,该相位边界成为由相位端产生的光强度分布中的黑暗部而使像得以强调。但为了能收到由相位端形成黑暗部而带来的强调对比度的效果,就需要垂直于光罩入射的光的成分。相反,在某些斜入射曝光下即使产生了相位边界点,也不会形成由相位端产生的黑暗部,结果是,收不到对比度强调效果。这就是即使对衰减型移相光罩进行斜入射曝光也无法产生对比度强调效果的理由。换句话说,为能通过衰减型移相光罩收到对比度强调效果,就必须用低干涉度的小光源进行曝光。
[0107] 如上所述,在形成连接图案的时候,衰减型移相光罩和轮廓强调光罩实现了很相似的光强度分布,另一方面,由于黑暗部形成原理的不同(透过轮廓强调光罩的光的振幅强度分布上不产生相位边界点(参考图1(f)),而在轮廓强调法下,通过斜入射曝光光也能以高对比度形成形成微小的孤立沟槽图案所必需的光的影像。
[0108] 图2(a)为一衰减型移相光罩的平面图,由移相器将对应于连接图案的开口部包围起来以后,即形成该衰减型移相光罩;图2(b)示出了在使用对图2(a)所示的衰减型移相光罩的干涉度σ=0.4的小光源进行曝光的情况下,AA’线上的光强度分布的计算结果;图2(c)示出了在使用环状照明(斜入射曝光之一)对图2(a)所示的衰减型移相光罩进行曝光的情况下,AA’线上的光强度分布的计算结果。这里,使用外径σ=0.75、内径σ=
0.5即被称为2/3环状的作环状照明;曝光条件是光源波长λ=193nm(ArF光源)、开口数NA=0.6;连接尺寸为180nm四方,移相器的透光率为6%。需提一下,在以下说明中,在不做特别说明的情况下,用曝光光的光强度为1时的相对光强度来表示光强度。
[0109] 如图2(b)及图2(c)所示,在使用衰减型移相光罩的情况下,在用小光源进行曝光时的光强度分布中,由相位端产生黑暗部而形成了高对比度的影像,另一方面,因为在进行斜入射光曝光时的光强度分布中无法由相位端形成黑暗部,故所形成的像的对比度就很差。
[0110] 图2(d)为一边缘强调型移相光罩的平面图,由成为完全遮光部的铬膜将对应于连接图案的开口部和位于包围该开口部的区域上的移相器包围起来以后,即可形成该边缘强调型移相光罩;图2(e)示出了在使用对图2(d)所示的边缘强调型移相光罩的干涉度σ=0.4的小光源进行曝光的情况下,AA’线上的光强度分布的计算结果;图2(f)示出了在使用环状照明对图2(e)所示的边缘强调型移相光罩进行曝光的情况下,AA’线上的光强度分布的计算结果。这里,边缘强调型移相光罩与衰减型移相光罩一样,在开口部和移相器之间由相位端形成黑暗部而实现像强调。而且,对边缘强调型移相光罩来说,环状光源的种类、曝光条件及移相器的透光率与图2(a)~图2(c)所示的衰减型移相光罩是一样的。不过,连接尺寸为220nm四方,移相器宽为80nm。
[0111] 如图2(e)及图2(f)所示,和使用衰减型移相光罩一样,在使用边缘强调型移相光罩的情况下,也是在用小光源进行曝光时的光强度分布中,由相位端形成黑暗部而形成了高对比度的像,另一方面,因为在进行斜入射光曝光时的光强度分布中无法由相位端形成黑暗部,故所形成的像的对比度就很差。
[0112] 接下来,在轮廓强调法中,详细说明由斜入射曝光成分得到高对比度之前,先对若移相器的宽度过大,即使是如图1(e)所示的轮廓强调光罩的构造,也得不到轮廓强调法的效果这一情况加以说明。
[0113] 图3(a)为一轮廓强调光罩的平面图,由对曝光光的透光率大于、等于6%且小于、等于15%的半遮光部将对应于连接图案的开口部和位于包围该开口部的小宽度移相器包围起来以后,即构成该轮廓强调光罩。图3(b)示出了在使用对图3(a)所示的轮廓强调光罩的干涉度σ=0.4的小光源进行曝光的情况下,AA’线上的光强度分布的计算结果;图3(c)示出了在使用环状照明对图3(a)所示的轮廓强调光罩进行曝光的情况下,AA’线上的光强度分布的计算结果。
[0114] 图3(d)为一轮廓强调光罩的平面图,由对曝光光的透光率大于、等于6%且小于、等于15%的半遮光部将对应于连接图案的开口部和位于包围该开口部的区域的大宽度移相器包围起来以后,即构成该轮廓强调光罩。
[0115] 图3(e)示出了在使用对图3(d)所示的轮廓强调光罩的干涉度σ=0.4的小光源进行曝光的情况下,AA’线上的光强度分布的计算结果;图3(f)示出了在使用环状照明对图3(d)所示的轮廓强调光罩进行曝光的情况下,AA’线上的光强度分布的计算结果。 [0116] 这里,假设图3(d)所示的轮廓强调光罩中的移相器的宽度大到轮廓强调法的原理不能成立那么大。具体地讲,图3(a)及图3(d)所示的开口部的尺寸均为220nm四方;图3(a)所示的移相器的宽度为60nm;图3(d)所示移相器的宽度为150nm。而且,环状光源的种类及曝光条件与图2(a)~图2(c)所示的衰减型移相光罩一样。
[0117] 如图3(b)及图3(c)所示,在用轮廓强调法的原理能够成立的图3(a)所示的轮廓强调光罩的情况下,不管光源的种类如何,都会由于移相器的不透明化作用而出现黑暗部,同时光强度分布中的对比度在环状光源下达到更高的值。
[0118] 另一方面,因为在使用移相器过大的图3(d)所示的轮廓强调光罩的情况下,透过移相器的光变得过强,故在振幅强度分布中形成了反相位的强度分布。在这样的状况下,与衰减型移相光罩或者是边缘强调型移相光罩相同的原理在起作用。换句话说,如图3(e)及图3(f)所示,在用小光源进行曝光时的光强度分布中由相位端形成黑暗部而出现了对比度强调效果。另一方面,因为在进行斜入射曝光时的光强度分布中不会由相位端形成黑暗部,故形成的是对比度非常坏的像。
[0119] 也就是说,为实现轮廓强调法,在光罩构造中,不仅需要将移相器布置在由半遮光部包围的开口部周围,还需要限制透过该移相器内的光。根据原理性的机理(mechanism)来看,后者意味着:透过移相器的光的强度大于、等于由它将透过半遮光部及开口部的光抵消的强度,且在它的振幅强度分布中不形成其大小在一定大以上的反相位强度分布。 [0120] 为限制实际上透过移相器的光,可采用根据移相器的透光率对它的 宽度(具体而言,为上限)定一个条件这样的方法。下面,用已经考察过的某一条件的结果来说明该条件,在该条件下,透过移相器的光能将来自移相器周围的光抵消(参考图4(a)及图4(b))。 [0121] 如图4(a)所示,在用在透明基板上设置透光率为T、线宽为L的移相器而形成的光罩(移相光罩)进行曝光时,被曝光材料上对应于移相器的中心的那一位置所产生的光强度为Ih(L、T);在其中用设置了完全遮光部来取代移相光罩的移相器的光罩(遮光光罩)进行曝光时,被曝光材料上对应于完全遮光部的中心的那一位置所产生的光强度为Ic(L);在用取代移相光罩的移相器而设置了开口部(透光部)且取代移相光罩的透光部而设置了完全遮光部的光罩(透过光罩)进行曝光时,被曝光材料上对应于开口部的中心的那一位置所产生的光强度为Io(L)。
[0122] 图4(b)为分别取透光率T及线宽度L为纵轴及横轴且用光强度的等高线表示出的模拟结果。该模拟结果是在用图4(a)所示的移相光罩曝光时,让移相器的透光率T及线宽L发生各种变化而得到的光强度Ih(L、T)的模拟结果。这里,表示T=Ic(L)/Io(L)这一关系的曲线也画在里面了。而且,模拟条件是,曝光光的波长λ=0.193μm(ArF光源)、曝光机的投影光学系的开口数NA=0.6、曝光光源的干涉度σ=0.8(通常光源)。 [0123] 如图4(b)所示,光强度Ih(L、T)最小的条件可用T=Ic(L)/Io(L)这一关系来表示。这就物理上示出了透过移相器内的光的光强度T×Io(L)与透过移相器外的光的光强度Ic(L)达到了平衡的关系。因此,透过移相器内的光过剩而在振幅强度分布中出现反相位的移相器宽度L,则为T×Io(L)大于Ic(L)的宽度L。
[0124] 虽然由于光源种类的不同多少会有些差异,但透过透光率为1的移相器内的光和透过移相器外的光达到平衡时的宽度L为0.3×λ(光源波长)/NA(开口数)左右(在图4(b)的情况下为100nm左右),这是从各种模拟结果中凭经验得出的。还有,由图4(b)可知,为防止光过剩地透过透光率大于、等于6%(0.06)的移相器内这一现象的发生,有必要使这时的宽度L小于、等于透光率为100%(1.0)的移相器时的2倍。也就是说,为防止光过剩地透过透光率大于、等于6%的移相器内, 移相器的宽度L的上限必须小于、等于
0.6×λ/NA。
[0125] 若将上述考察应用到轮廓强调光罩中,则可以认为:在轮廓强调光罩中,透过移相器外的光实质上不是移相器的两侧,而只是一侧。故轮廓强调光罩中移相器的宽度L的上限只要是上述考察所得的上限的一半即可。因此,在移相器的透光率大于、等于6%的情况下,轮廓强调光罩中的移相器的宽度L的上限小于、等于0.3×λ/NA。但是,这并不是充分条件,有必要根据移相器的透光率的大小让移相器的宽度L的上限小于、等于0.3×λ/NA。也就是说,在移相器的透光率为大于、等于100%或者是50%的高透光率的情况下,移相器的宽度L小于、等于0.2×λ/NA,最好是小于、等于0.15×λ/NA。还有,在形成微细的孔图案时,为能通过透过移相器的光和透过对应于孔图案的透光部的光的相互干涉而得到光强度分布曲线得以强调的效果,最好是将移相器布置在离开透光部即孔中心的距离小于、等于0.5×λ/NA的那一区域内。因此,在移相器的宽度L小于、等于0.3×λ/NA的情况下,最好是,在形成孔图案时,将包围透光部的移相器布置在这样的一个距离范围内,即离开对应于孔图案的透光部的中心的距离在0.5×λ/NA~0.8×λ/NA以下。
[0126] 需提一下,在本说明书中,在没有特别说明的情况下,移相器的宽度等各种光罩尺寸是由被换算为曝光材料上的尺寸以后表示出来的。用该换算尺寸乘以曝光机的缩小投影光学系的缩小倍数M以后,很容易地就能将光罩的实际尺寸求出来。
[0127] 接下来,根据在从各种光源位置对轮廓强调光罩曝光的情况下光强度分布中的对比度的变化,来详细说明在轮廓强调法中是如何由斜入射曝光实现像强调的。
[0128] 图5(a)为轮廓强调光罩之一例的平面图。这里,半遮光部的透光率为7.5%,移相器及开口部的透光率为100%;开口部的尺寸为200nm四方;移相器的宽度为50nm。 [0129] 图5(c)是这样得到的,通过光学模拟计算出在根据开口数NA而标准化了的各种光源位置的点光源对图5(a)所示的轮廓强调光罩进行曝光的情况下,图5(a)中的AA’线上的光强度分布,读取该计算结果 (例如图5(b)所示的光强度分布)中相当于开口部中央位置的光强度Io,再对各个光源位置描绘出该光强度Io,图5(c)所示的就是描绘结果。这里,示出了光源波长λ为193nm(ArF光源)、开口数NA为0.6,借助光学计算进行模拟的结果。需提一下,在下面的说明中,在没有特别说明的情况下,光学模拟中,计算是在波长λ=193nm(ArF光源)、开口数NA=0.6的条件下进行的。
[0130] 如图5(c)所示,越是由外侧的光源位置(离图5(c)的原点远的光源位置)的点光源曝光,开口部中央的光强度Io就越大。由此可知,越是用斜入射成分强的光源曝光,对比度就越强。参考附图具体说明一下。图5(d)、图5(e)及图5(f)是描绘在图5(c)所示的各点光源的取样点P1、P2、P3中图5(a)中的AA’线上的光强度分布而得到的图。如图5(d)、图5(e)及图5(f)所示,点光源的位置越往外侧,换而言之,越是大斜入射光源位置,所形成的像的对比度就越高。
[0131] 接下来,为了进行比较,说明在从各种各样的光源位置对衰减型移相光罩进行曝光的情况下,光强度分布中的对比度的变化情况。图6(a)为衰减型移相光罩之一例的平面图。这里,移相器的透光率为6%;开口部的透光率为100%;开口部的尺寸(被曝光晶片上的尺寸)为180nm四方。
[0132] 图6(c)是这样得到的,通过光学模拟计算出在用开口数NA被标准化了的各种光源位置的点光源对图6(a)所示的轮廓强调光罩进行曝光的情况下,图6(a)中的AA’线上的光强度分布,读取该计算结果(例如图6(b)所示的光强度分布)中相当于开口部中央位置的光强度Io,再对各个光源位置描绘出该光强度Io,图6(c)所示的就是描绘结果。这里,示出了光源波长λ为193nm(ArF光源)、开口数NA为0.6,借助光学计算进行模拟的结果。需提一下,在以下的说明中,在没有特别说明的情况下,光学模拟中,计算是在波长λ=193nm(ArF光源)、开口数NA=0.6的条件下进行的。
[0133] 如图6(c)所示,越是由内侧的光源位置(离图6(c)的原点近的光源位置)的点光源曝光,开口部中央的光强度Io就越大。由此可知,越是用垂直入射成分强的光源曝光,对比度就越强。参考附图具体说明 一下。图6(d)、图6(e)及图6(f)是描绘在图6(c)所示的各点光源的取样点P1、P2、P3中,图6(a)中的AA’线上的光强度分布而得到的图。如图6(d)、图6(e)及图6(f)所示,随着点光源位置变为内侧,换而言之,越接近垂直入射光源位置,所形成的像的对比度就越高。
[0134] 如上所述,比较一下图5(a)~图5(f)所示的结果和图6(a)~图6(f)的结果,便可知道:在形成连接图案等微小的孤立沟槽图案时,采用轮廓强调法,就能通过斜入射曝光而使光强度分布的对比度强调成为可能,这是用现有方法所达不到的。
[0135] 到此为止,说明了用轮廓强调光罩提高对比度的做法。接下来,说明对比度及DOF是如何随轮廓强调光罩中半遮光部的透光率而变化的。这里,根据利用图7(a)所示的轮廓强调光罩,对形成图案时的各种容限进行模拟的结果进行说明。图7(b)示出了对图7(a)所示的轮廓强调光罩进行曝光时所形成的光强度分布。在图7(b)中,也示出了与在要用图7(a)所示的轮廓强调光罩形成宽度100nm的孔图案情况下所定义的各种容限有关的值。具体而言,临界强度Ith为光阻膜感光的光强度,对该值定义各种容限。例如,若以Ip作光强度分布的峰值,则Ip/Ith就成为与使光阻膜感光的那一感度成正比的值,该值越高越好;
若以Ib作为透过半遮光部的光的背景(background)强度,则意味着Ith/Ib值越高,形成图案时光阻膜就不减少等,该值也是越高越好。一般来讲,希望Ith/Ib的值大于、等于2。
根据以上所述来说明各个容限。
[0136] 图7(c)示出了一计算结果,这一计算结果反映了用图7(a)所示的轮廓强调光罩形成图案时,DOF是如何随半遮光部的透光率而变化的。这里,DOF被定义图案的最小线宽(CD:Critical Dimension)在10%以内变化时的焦点位置的宽度。如图7(c)所示,半遮光部的透光率越高,对DOF的提高就越有利。图7(d)示出了:用图7(a)所示的轮廓强调光罩形成图案时,相对半遮光部的透光率的峰值Ip的计算结果。如图7(d)所示,也是半遮光部的透光率越高,对峰值Ip即对比度的提高就越有利。由以上结果可知,在轮廓强调光罩中,半遮光部的透光率越高越好,具体地讲,如图7(c)及图7(d)所示,透光率在0%到6%之间上 升时曝光容限的上升率变大,也就能够理解为什么使用透光率大于、等于6%的半遮光部是最理想的了。
[0137] 图7(e)示出了:在用图7(a)所示的轮廓强调光罩形成图案时,相对半遮光部的透光率的Ith/Ib值的计算结果。如图7(e)所示,半遮光部的透光率越高,Ith/Ib就越低,若半遮光部的透光率过高,则不利于提高Ith/Ib。具体地讲,半遮光部的透光率在15%左右时,Ith/Ib就会变得小于2。图7(f)示出了:所计算出的用图7(a)所示的轮廓强调光罩形成图案时,相对半遮光部的透光率的Ip/Ith。如图7(f)所示,当半遮光部的透光率在15%左右时,Ip/Ith达到峰值。
[0138] 如上所述,在轮廓强调光罩中,半遮光部的透光率越高,DOF或者是对比度也就越高,若半遮光部的透光率超过6%,这一效果就会更加明显。另一方面,从防止图案形成时光阻膜的减少或者是光阻感光度的最佳化等的观点来看,最好是将半遮光部的透光率的最大值设定在15%左右。因此,可以说轮廓强调光罩中的半遮光部的透光率的最佳值为大于、等于6%且小于、等于15%。也就是说,半遮光部为让曝光光部分地透过但却不让光阻膜感光那一程度的部分。换而言之,半遮光部只让全曝光量中的一部分透过。可用ZrSiO、CrAlO、TaSiO、MoSiO或者是TiSiO等氧化物作为这样的半遮光部的材料。
[0139] 图8(a)~图8(f)为:在设置了对应于连接图案的开口部的轮廓强调光罩中,由半遮光部和移相器构成的遮光性光罩图案的各种平面布置图。
[0140] 图8(a)所示的轮廓强调光罩1a与图1(e)所示的轮廓强调光罩具有相同的结构。也就是说,轮廓强调光罩1a为使用透光性基板2a的光罩,它包括:具有使曝光光的一部分透过的透光率的半遮光部3a、由半遮光部3a包围起来且对应于孤立连接图案的开口部4a、及位于开口部4a周围的环状移相器5a。
[0141] 图8(b)所示的轮廓强调光罩1b为使用了透光性基板2b的光罩,它包括:具有使曝光光的一部分透过的透光率的半遮光部3b、由半遮光部3b所围且对应于孤立连接图案的开口部4b及其边长与开口部4b各边的长度相等且与每一条边相接的四个矩形移相部组成的移相器5b。该轮 廓强调光罩1b,在形成孤立图案时和轮廓强调光罩1a具有基本相同的特性。
[0142] 图8(c)所示的轮廓强调光罩1c为使用了透光性基板2c的光罩,它包括:具有使曝光光的一部分透过的透光率的半遮光部3c、由半遮光部3c所围且对应于孤立连接图案的开口部4c、及具有比开口部4c各边的边长短且与该各边相连的四个矩形移相部组成的移相器5c。移相器5c的各个移相部的中央和开口部4c各边的中央的位置正好对齐。在该轮廓强调光罩1c中,通过固定开口部4c的宽度(大小)而改变移相器5c的各个移相部的长度,便可以对曝光后所形成的光阻图案的尺寸进行调整。例如,将移相器5c的各个移相部的长度做得越短,光阻图案的尺寸就会越大。这里,在保持轮廓强调的作用的前提下,可改变的移相器5c的各个移相部的长度的下限为:将它限制到光源(曝光光)波长的一半左右为止。另一方面,因图案尺寸仅变化光罩尺寸变更量的一半左右,故调整移相部的长度这一做法,是一种非常优良的调整图案尺寸的方法。
[0143] 图8(d)所示的轮廓强调光罩1d为使用透光性基板2d的光罩,它包括:具有使曝光光的一部分透过的透光率的半遮光部3d、由半遮光部3d所围且对应于孤立连接图案的开口部4d、及位于从半遮光部3d和开口部4d的边界处进到半遮光部3d一侧一定尺寸的环状移相器5d。也就是说,在移相器5d和开口部4d之间夹着环状的半遮光部3d。
[0144] 图8(e)所示的轮廓强调光罩1e为使用了透光性基板2e的光罩,它包括:具有使曝光光的一部分透过的透光率的半遮光部3e、由半遮光部3e所围且对应于孤立连接图案的开口部4e、及位于从半遮光部3e和开口部4e的边界处进到半遮光部3e一侧一定尺寸的环状移相器5e。移相器5e,由四个移相部组成,每一个移相部为其长度比开口部4e各边的边长还长的矩形状且在开口部4e的对角线上各自的角部相连接。这里,在移相器5e和开口部4e之间夹着环状的半遮光部3e。在该轮廓强调光罩1e中,通过固定移相器5e的大小及布置而只变更开口部4e的宽度(大小),就能对曝光后形成的光阻图案的尺寸进行调整。例如,随着使开口部4e的宽度增大,光阻图案的尺寸也变大。与同时决定开口部及移相器的尺寸而调整图案尺寸的那一方法相比,只变更该开口部宽度的图案尺 寸调整方法,可以使MEEF(Mask Error Enhancement Factor:图案尺寸的变化量相对光罩尺寸的变化量之比)降低到一半左右。
[0145] 图8(f)所示的轮廓强调光罩1f为使用透光性基板2f的光罩,它包括:具有使曝光光的一部分透过的透光率的半遮光部3f、由半遮光部3f所围且对应于孤立连接图案的开口部4f、及从半遮光部3f和开口部4f的边界处进入半遮光部3f一定尺寸的环状移相器5f。移相器5f由四个移相部组成,每一个移相部的形状为与开口部4f各边的边长相等的矩形且与开口部4f的各边相对。这里,移相器5f的各个移相部的长度,既可以比开口部4f的边长长,也可以比开口部4f的边长短。借助轮廓强调光罩1f,可以如图8(c)所示的轮廓强调光罩1c那样,对光阻图案的尺寸进行调整。
[0146] 需提一下,在图8(d)~图8(f)所示的轮廓强调光罩中,为增大MEEF的降低效果,最好是,将开口部和移相器之间的半遮光部的宽度设定在小于、等于λ/NA(λ为曝光光的波长,NA为开口数)的1/5左右。还有,为了收到提高DOF的效果,最好是,上述半遮光部的宽度为一能够影响由移相器引起的光的干涉效果的尺寸,即最好在小于、等于λ/NA的1/10左右。还有,在图8(a)~图8(f)所示的轮廓强调光罩中,开口部的形状采用了正方形,但使其为多角形(八角形)或者是圆形等均可。还有,移相器的形状也是一样,并不只限于连续的环状或者是多个长方形。例如,也可将多个正方形移相部排列起来而形成移相器。
[0147] 还有,到此为止,是以正光阻工序为前提,将轮廓强调光罩中对应于光阻除去部的部分定义为开口部而进行了全部的说明。但是,在可以利用充分高的透光率的移相器的情况下,在上述说明中所用的轮廓强调光罩中,因为即使将定义为开口部的部分置换为高透光率的移相器,将定义为移相器的部分置换为开口部,将定义为半遮光部的部分定义为低透光率移相器(如衰减型移相光罩中的移相器),各构成要素之间的相对相位差关系是一样的,故可实现具有同样效果的轮廓强调光罩。图9(a)到图9(f)示出了在形成有对应于连接图案的高透光率移相器的轮廓强调光罩中,由低透光率移相器和开口部构成的遮光性光罩图案的几种平 面布置情况。将图8(a)到图8(f)中所示的光罩中的开口部、移相器及半遮光部分别置换为高透光率移相器、开口部及低透光率移相器以后,即构成图9(a)到图9(f)所示的光罩。这里,高透光率移相器的透光率最好大于、等于60%。换句话说,为在由低透光率移相器将高透光率移相器包围起来的光罩结构中,让低透光率移相器对应于光阻膜的非感光部,同时让高透光率移相器对应于光阻膜的感光部,高透光率移相器的透光率最少要为低透光率移相器的透光率的3倍左右的值,最理想的是它的10倍左右的值。因此,我们希望的是低透光率移相器的透光率为6~15%,高透光率移相器的透光率大于、等于60%。在以下各实施例中,以图9(a)到图9(f)所示的轮廓强调光罩为对象。
[0148] (第1个实施例)
[0149] 下面,参考附图,说明本发明的第1个实施例所涉及的光罩、光罩制作方法及使用该光罩的图案形成方法。需提一下,第1个实施例所涉及的光罩为用以实现所述轮廓强调法的缩小投影曝光装置下的光罩。
[0150] 图10(a)示出了要用第1个实施例所涉及的光罩形成的所希望的图案之一例。 [0151] 然而,若设曝光机的缩小投影光学系的缩小倍数为M,则对通常的光罩而言,使用相对曝光光为完全遮光膜的铬等材料,其大小为我们所希望的图案(一般情况下为晶片上的设计值)的M倍的图案,便被画在由对曝光光的透光率很高的材料制成的基板(透光性基板)上。然而,在本说明书中,在没有特别说明的情况下,为简单起见,对光罩进行说明时,不使用将晶片上的尺寸放大了M倍以后的光罩尺寸,而是使用晶片上的尺寸进行说明。再就是,在本实施例中在说明如何形成图案的时候,在没有特别说明的情况下,说明的是使用正光阻工序的情况。换句话说,说明的是除去光阻膜的感光部分的情况。另一方面,在使用负光阻工序的情况下,除了光阻膜的感光部分成为光阻图案这一点不一样以外,其它地方都和使用正光阻工序时是完全一样的。再就是,在本实施例中,在没有特别说明的情况下,透光率用设透光性基板的透光率为100%时的实效透光率来表示。
[0152] 图10(b)为第1个实施例所涉及的光罩的平面图,具体而言,为用 以形成图10(a)所示的我们所希望的图案的光罩的平面图。如图10(b)所示,对应着我们所希望的图案中的光阻除去部形成了高透光率移相器(透光部)。再就是,用它的透光率为不让光阻膜感光那么大小(6~15%左右)的低透光率移相器(半遮光部)来代替将曝光光完全遮住的完全遮光部作将高透光率移相器包围起来的遮光性光罩图案。还在高透光率移相器附近,形成了没有低透光率移相器的、宽度微小的开口部(周边部)。高透光率移相器及低透光率移相器让曝光光在同相位下透过;开口部让曝光光在以高透光率移相器及低透光率移相器为基准的反相位下透过。
[0153] 需提一下,在第1个实施例中,采用这样的开口部的布置方式,即例如如图9(b)所示那样,开口部从矩形高透光率移相器的每一条边开始延伸到一定尺寸以下的区域中且与高透光率移相器的每一条边相连。
[0154] 图10(c)为沿图10(b)中的AA’线剖开的剖面图,即第1个实施例所涉及的光罩的剖面图。如图10(c)所示,图10(b)所示的光罩通过以下做法来实现。即在透光性基板10中低透光率移相器(半遮光部)形成区域上形成移相膜11并由此而形成低透光率移相器。该移相膜11是这样的一个膜。它有一个不让光阻膜感光那么大小的低透光率(6~
15%左右),而且在它和透光性基板10(开口部)之间对曝光光产生180度(实际上大于、等于(150+360×n)度且小于、等于(210+360×n)度(但n为整数))的相位差。挖透光性基板10上的透光部形成区域,所挖的深度为在它和透光性基板10(开口部)之间对曝光光产生180度(实际上大于、等于(150+360×n)度且小于、等于(210+360×n)度(但n为整数))的相位差那么深,这样就由透光性基板10上的挖下部10a形成了成为高透光率移相器的透光部。结果是,成了由高透光率移相器(透光部)和由移相膜11构成的低透光率移相器(半遮光部)将没有移相膜11(透光性基板10的表面露出来)的周边部即开口部夹起来的结构,而实现了轮廓强调光罩。可用由ZrSiO、CrAlO、TaSiO、MoSiO或者TiSiO等形成的含有金属的氧化膜作移相膜11。但是要通过轮廓强调法得到对比度强调,必须将开口部的宽度限制在一定尺寸以下。
[0155] 然而,在以上说明中,如图11(a)所示,是以成为低透光率移相器 的移相膜11为单层膜的情况为前提。因为在这种情况下,移相膜11的光学系数由膜材料决定,故移相膜11的膜厚由相位偏移量决定。另一方面,因透光率不仅与光学系数有关,还与膜厚有关,故不敢说一定存在具有适宜的光学系数的材料作移相膜11的材料。具体而言,即让曝光光在以透光性基板10(开口部)为基准的反相位下透过的那一膜厚下,正好能实现规定的透光率的材料。因此,在第1个实施例所涉及的光罩中,如图11(b)所示,移相膜11具有依次沉积低透光率透光率调整膜11A和高透光率相位调整膜11B而得到的两层构造,从能在移相膜11中实现任意的透光率的角度来看是较理想的情况。具体而言,透光率调整膜11A对曝光光的透光率比透光性基板10对曝光光的透光率低;相位调整膜11B让曝光光在以透光性基板10(开口部)为基准的反相位下透过。可用由例如Zr、Cr、Ta、Mo或者Ti等金属制成的薄膜(厚度小于、等于30nm)或者由例如Ta—Cr合金、Zr—Si合金、Mo—Si合金或者Ti—Si合金等金属合金制成的薄膜(厚度小于、等于30nm)作透光率调整膜11A;可用例如SiO2膜等氧化膜作相位调整膜11B。
[0156] 需提一下,在本说明书中,透光率调整膜意味着这样的膜,对曝光光的单位厚度透光率较低且不会对曝光光的相位变化造成影响并能通过调节它的厚度以将对曝光光的透光率设定在我们所希望的值上;相位调整膜则意味着这样的膜,对曝光光的单位厚度透光率较高且不会对曝光光的透光率变化造成影响并能通过调节它的厚度将在它和透光性基板(开口部)之间的对曝光光的相位差设定在我们所希望的值上。
[0157] 其次,说明使用了第1个实施例所涉及的光罩的图案形成方法。这里,就象在用曝光机进行光罩图案的缩小复印时,对轮廓强调法的原理所做的说明一样,使用斜入射曝光光源以便通过轮廓强调光罩形成高对比度的像。这里,斜入射曝光光源意味着图12(b)~图12(d)中所示的光源,即将图12(a)所示的普通曝光光源中的垂直入射成分除去后的得到的光源。这种斜入射曝光光源的代表有:图12(b)所示的环状曝光光源及图12(c)所示的四极曝光光源。虽然或多或少与目的图案有关,但一般情况下,从对比度的强调或者DOF的放大效果来看,四极曝光光源比环状曝光光源更大。但因四极曝光有图案形状相对光罩形状出现歪 斜等副作用,故最好是,在那种情况下,用图12(d)所示的环状—四极混合型曝光光源。该环状—四极曝光光源的特征在于:在以光源中心(通常为曝光光源中心)为原点的XY坐标进行考虑的情况下,将光源中心和XY轴上的光源除去以后就具有四极的特点;而采用圆形作光源的外形以后就又具有环状的特点。
[0158] 图13(a)~图13(d)为剖面图,示出了使用第1个实施例所涉及的光罩的图案形成方法下的每一个工序。
[0159] 首先,如图13(a)所示,在基板100上形成金属膜或者绝缘膜等被加工膜101以后,再如图13(b)所示,在被加工膜101上形成正光阻膜102。
[0160] 接着,如图13(c)所示,用斜入射曝光光源将曝光光103照射到第1个实施例所涉及的包括由移相膜11形成的低透光率移相器和由挖下部10a构成且起高透光率移相器之作用的透光部的光罩,由透过该光罩的透过光104对光阻膜102曝光。因此时用低透光率移相器(半遮光部)作了光罩图案,故整个光阻膜102在较弱的能量下被曝光。但是,如图13(c)所示,被足以让光阻膜102在显像工序中溶解的曝光能照射的仅仅是光阻膜102中对应于光罩的透光部(挖下部10a)的潜像部分102a。
[0161] 接着,对光阻膜102进行显像处理以除去潜像部分102a而形成光阻图案105,如图13(d)所示。这时在图13(c)所示的曝光工序下,透光部周边的光被抵消了。结果是,因曝光能几乎不照射光阻膜102中对应于开口部(周边部)的部分,故透过透光部的光与透过周边部的光之间的光强度分布的对比度就得到了强调。换句话说,照射到潜像部分102a上的光和照射在潜像部分102a周围的光之间的光强度分布的对比度就得到了强调。这样一来,因潜像部分102a的能量分布也发生了急剧的变化,故形成形状陡峭的光阻图案105。 [0162] 其次,参考附图,说明第1个实施例所涉及的光罩制作方法。
[0163] 图14(a)~图14(e)为剖面图,示出了第1个实施例所涉及的光罩制作方法中的各个工序。图14(f)为对应于图14(c)所示的剖面图的平面图;图14(g)为对应于图14(e)所示的剖面图的平面图。
[0164] 首先,如图14(a)所示,在由对曝光光具有透光性的材料例如石英 等制成的透光性基板10上,形成对曝光光具有规定的透光率(例如6~15%)的移相膜11。可用由ZrSiO、CrAlO、TaSiO、MoSiO或者TiSiO等制成的含有金属的氧化膜作移相膜11;移相膜11在它和透光性基板10(开口部)之间对曝光光产生大于、等于(150+360×n)度且小于、等于(210+360×n)(但n为整数))的相位差。这里,移相膜11具有上述的透光率调整膜和相位调整膜的两层构造。
[0165] 接着,如图14(b)所示,在透光性基板10上形成覆盖低透光率移相器(半遮光部)形成区域的第一光阻图案12,换句话说,是形成在高透光率移相器(透光部)形成区域及开口部(周边部)形成区域分别具有除去部的第一光阻图案12。之后,以第一光阻图案12为掩模对移相膜11进行蚀刻处理并将移相膜11图案化以后,再将第一光阻图案12除去。这样一来,如图14(c)及图14(f)所示,移相膜11中对应于高透光率移相器形成区域及开口部形成区域的部分分别被除去。
[0166] 接着,如图14(d)所示,在透光性基板10上形成覆盖低透光率移相器形成区域及开口部形成区域的第二光阻图案13,换句话说,形成在高透光率移相器形成区域具有除去部的第二光阻图案13。之后,以第二光阻图案13为掩模对透光性基板10进行蚀刻,之后再将第二光阻图案13除去。这样一来,如图14(e)及图14(g)所示,在透光性基板10中对应于高透光率移相器形成区域的部分,形成产生180度(具体而言大于、等于(150+360×n)度且小于、等于(210+360×n)(但n为整数))的反相位的挖下部10a,而制成了第1个实施例所涉及的光罩。换句话说,准备能让移相膜沉积在其上的透光性基板即和现有的衰减型移相光罩一样的基板作空白光罩(mask blank),之后,依次对移相膜和透光性基板进行蚀刻,就很容易制成具有轮廓强调光罩的平面构造的第1个实施例所涉及的光罩。
[0167] 如上所述,根据第1个实施例,在透光性基板10中低透光率移相器(半遮光部)形成区域上,形成让曝光光以低透光率透过且相位反相的移相膜11。还透光性基板10的透光部形成区域被挖,所挖深度能让曝光光的相位反相而形成了透光部。因此,没有移相膜11的开口部,换句话说,让曝光光以与透光部反相的相位透过的周边部,被夹在由挖下部10a 构成且起高透光率移相器之作用的透光部和让曝光光以与该透光部相同的相位透过且由移相膜11构成的低透光率移相器之间。结果,透光部和周边部间的光强度分布的对比度就由于透过周边部的光和透过透光部的光间的相互干涉而得以强调。而且,在例如正光阻工序中用斜入射曝光形成微细的孤立光阻除去部(即微细的孤立沟槽图案)的情况下,也能收到这一对比度强调效果。换句话说,将本实施例中的光罩和斜入射曝光组合起来以后,就能将孤立沟槽图案与孤立线图案或者孤立沟槽图案与密集图案同时微细化。
[0168] 还有,根据第1个实施例,因为在透光性基板10上形成移相膜11以后,分别对移相膜11及透光性基板10进行选择性蚀刻,故很容易得到具有低透光率移相器及开口部的任意形状的光罩及成为高透光率移相器的任意形状的透光部。
[0169] 还有,根据第1个实施例,因为可通过加工构成低透光率移相器的移相膜11而形成任意形状的开口部,故轮廓强调光罩的平面图案布置并不限于图10(b)及图10(c)所示的那种类型,即图9(b)所示的那种类型,还能实现例如图9(a)~图9(f)所示的任一类型的平面图案布置。
[0170] 需提一下,在第1个实施例中,最好是移相膜11即低透光率移相器的透光率大于、等于6%且小于、等于15%。这样做以后,就既能防止形成图案时光阻膜的减少等,又确能收到本实施例的对比度强调效果。
[0171] 还有,在第1个实施例中,最好是移相膜11具有依次沉积低透光率透光率调整膜11A及高透光率相位调整膜11B而得到的两层构造。这样做以后,就能任意选择所希望的相位变化和所希望的透光率组合起来的移相膜11。还有,通过组合透光率调整膜11A的材料和相位调整膜11B的材料,就能提高用以加工移相膜11的蚀刻时的选择比。
[0172] 还有,在第1个实施例中,是以使用正光阻工序为前提进行说明的,当然,不言而喻,可用负光阻工序代替正光阻工序。这里,在使用任一工序的情况下,都是使用例如i线(波长365nm)、KrF受激准分子激光(波长248nm)、ArF受激准分子激光(波长193nm)或者F2受激准分子激光(波长157nm)等作曝光光源。
[0173] (第1个实施例的第1个变形例)
[0174] 下面,参考附图,说明本发明的第1个实施例的第1个变形例所涉及的光罩及其制作方法。
[0175] 第1个实施例的第1个变形例和第1个实施例的不同之处如下,即在第1个实施例中,是以例如图9(a)~图9(c)所示那样的高透光率移相器与开口部相邻的平面布置的轮廓强调光罩为对象,但在第1个实施例的第1个变形例中,是以例如图9(d)~图9(f)所示那样的高透光率移相器(透光部)与开口部(周边部)相分离的平面布置的轮廓强调光罩为对象。
[0176] 图15(a)~图15(e)为剖面图,示出了第1个实施例的第1个变形例所涉及的光罩制作方法中的各个工序。图15(f)为对应于图15(c)所示的剖面图的平面图;图15(g)为对应于图15(e)所示的剖面图的平面图。
[0177] 首先,如图15(a)所示,在由对曝光光具有透光性的材料例如石英等制成的透光性基板10上,形成对曝光光具有规定的透光率(例如6~15%)的移相膜11。移相膜11在它和透光性基板10(开口部)之间对曝光光产生大于、等于(150+360×n)度且小于、等于(210+360×n)(但n为整数)的相位差。这里,移相膜11可为具有透光率调整膜和相位调整膜的两层构造(参考第1个实施例)。
[0178] 接着,如图15(b)所示,在透光性基板10上形成覆盖低透光率移相器(半遮光部)形成区域的第一光阻图案12。也就是说,形成在高透光率移相器(透光部)形成区域及开口部(周边部)形成区域分别具有除去部的第一光阻图案12。这里,在本变形例中,开口部形成区域和高透光率移相器形成区域相互是分开的。换句话说,第一光阻图案12形成在开口部形成区域和高透光率移相器形成区域之间。之后,以第一光阻图案12为掩模对移相膜11进行蚀刻处理并将移相膜11图案化以后,再将第一光阻图案12除去。这样一来,如图15(c)及图15(f)所示,移相膜11中对应于高透光率移相器形成区域及开口部形成区域的部分分别被除去。
[0179] 接着,如图15(d)所示,在透光性基板10上形成覆盖含有开口部 形成区域的低透光率移相器形成区域且在高透光率移相器形成区域具有除去部的第二光阻图案13。之后,以第二光阻图案13及已图案化的移相膜11为掩模对透光性基板10进行蚀刻,之后再将第二光阻图案13除去。这样一来,如图15(e)及图15(g)所示,在透光性基板10中对应于高透光率移相器形成区域的部分,形成产生180度(具体而言大于、等于(150+360×n)度且小于、等于(210+360×n)(但n为整数))的反相位的挖下部10a,而制成了第1个实施例的第1个变形例所涉及的光罩。
[0180] 根据第1个实施例的第1个变形例,除能收到第1个实施例的效果以外,还能收到以下效果。也就是说,因可用已图案化的移相膜11为掩模,对透光性基板10进行自我对准的蚀刻,故可正确地进行光罩加工。
[0181] (第1个实施例的第2个变形例)
[0182] 下面,参考附图,说明本发明的第1个实施例的第2个变形例所涉及的光罩及其制成方法。
[0183] 第1个实施例的第2个变形例和第1个实施例的不同之处如下,即在第1个实施例中,是以例如图9(a)~图9(c)所示那样的高透光率移相器(透光部)与开口部(周边部)相邻的平面布置的轮廓强调光罩为对象,但在第1个实施例的第2个变形例中,是以例如图9(d)~图9(f)所示那样的高透光率移相器与开口部相分离的平面布置的轮廓强调光罩为对象。
[0184] 图16(a)~图16(e)为剖面图,示出了第1个实施例的第2个变形例所涉及的光罩制作方法中的各个工序。图16(f)为对应于图16(c)所示的剖面图的平面图;图16(g)为对应于图16(e)所示的剖面图的平面图。
[0185] 首先,如图16(a)所示,在由对曝光光具有透光性的材料例如石英等制成的透光性基板10上,形成对曝光光具有规定的透光率(例如6~15%)的移相膜11。移相膜11在它和透光性基板10(开口部)之间对曝光光产生大于、等于(150+360×n)度且小于、等于(210+360×n)(但n为整数)的相位差。这里,移相膜11可具有由透光率调整膜和相位调整膜构成的两层构造(参考第1个实施例)。
[0186] 接着,如图16(b)所示,在透光性基板10上形成覆盖低透光率移 相器(半遮光部)形成区域及高透光率移相器形成区域(透光部)的第一光阻图案12。换句话说,是形成在开口部(周边部)形成区域具有除去部的第一光阻图案12。之后,以第一光阻图案12为掩模对移相膜11进行蚀刻处理并将移相膜11图案化以后,再将第一光阻图案12除去。这样一来,如图16(c)及图16(f)所示,移相膜11中对应于开口部形成区域的部分被除去。 [0187] 接着,如图16(d)所示,在透光性基板10上形成覆盖低透光率移相器形成区域及开口部形成区域的第二光阻图案13。换句话说,形成在高透光率移相器形成区域具有除去部的第二光阻图案13。之后,以第二光阻图案13为掩模依次对移相膜11及透光性基板10进行蚀刻后,将第二光阻图案13除去。这样一来,如图16(e)及图16(g)所示,移相膜11中对应于高透光率移相器形成区域的那一部分被除去。还有,在透光性基板10中对应于高透光率移相器形成区域的那一部分形成产生180度(具体而言,大于、等于(150+360×n)度且小于、等于(210+360×n)(但n为整数))的反相位的挖下部10a,即制成了第1个实施例的第2个变形例所涉及的光罩。
[0188] 根据第1个实施例的第2个变形例,除能收到第1个实施例的效果以外,还能收到以下效果。也就是说,在本变形例中,除去移相膜11中对应于开口部形成区域的那一部分的工序(参照图16(c))、除去移相膜11中对应于高透光率移相器形成区域的那一部分的工序(参照图16(e))是分开进行的。因此,在开口部和高透光率移相器间存在微小的宽度的情况下,光罩的加工容限就增大。换句话说,在开口部和高透光率移相器之间残留下微小宽度的移相膜11的情况下,光罩的加工容限就增大。
[0189] 需提一下,在第1个实施例的第2个变形例中,除去移相膜11中对应于高透光率移相器形成区域的那一部分的工序(包括在透光性基板10上形成挖下部10a的工序),可在除去移相膜11中对应于开口部形成区域的那一部分的工序之前进行。
[0190] (第1个实施例的第3个变形例)
[0191] 下面,参考附图,说明本发明的第1个实施例的第3个变形例所涉及的光罩及其制成方法。
[0192] 第1个实施例的第3个变形例和第1个实施例的不同之处如下,即在第1个实施例中,是以例如图9(a)~图9(c)所示那样的高透光率移相器(透光部)与开口部(周边部)相邻的平面布置的轮廓强调光罩为对象,但在第1个实施例的第3个变形例中,是以例如图9(d)~图9(f)所示那样的高透光率移相器与开口部相分离的平面布置的轮廓强调光罩为对象。还有,在第1个实施例中,是以例如图11(a)所示那样的成为低透光率移相器(半遮光部)的移相膜11是单层膜的情况为前提的,但在第1个实施例的第3个变形例中,是以例如图11(b)所示那样的以移相膜11具有依次沉积低透光率透光率调整膜11A和高透光率相位调整膜11B而形成的两层构造的情况为前提的。
[0193] 图17(a)及图17(b)示出了第1个实施例的第3个变形例所涉及的光罩的平面图及剖面图。如图17(a)及图17(b)所示,由透光性基板10的挖下部10a构成、成为高透光率移相器的透光部与没有移相膜11的开口部即周边部是相互分离着的。再就是,成为低透光率移相器的移相膜11具有为下层的低透过透光率调整膜11A和为上层的高透光率相位调整膜11B。这里,透光率调整膜11A,例如由在它和透光性基板10(开口部)之间对曝光光产生大于、等于(—30+360×n)度且小于、等于(30+360×n)(但n为整数)的相位差的单层薄膜构成。换句话说,透光率调整膜11A让透过的光只产生微小的相位变化。可用由例如Zr、Cr、Ta、Mo或者Ti等金属制成的薄膜(厚度小于、等于30nm)或者由例如Ta—Cr合金、Zr—Si合金、Mo—Si合金或者Ti—Si合金等金属合金制成的薄膜(厚度小于、等于30nm)作透光率调整膜11A;可用例如SiO2膜等氧化膜作相位调整膜11B。
[0194] 然而,在包括本变形例在内的第1个实施例中,可由透光性基板10的挖下部10a形成透光率极高(例如90~100%左右)的高透光率移相器。然而,高透光率移相器的实效透光率则因光在透光性基板10的蚀刻面中散射等而比开口部(即透光性基板10)稍微低了一点。这样一来,在光罩上开口部的透光率就成为最高的透光率,对开口部的微细化要求也就更加严格了。
[0195] 这里,如图17(c)所示的平面图及图17(d)所示的剖面图所示, 从形成在移相膜11中的开口部和高透光率移相器(挖下部10a)之间的那一部分将相位调整膜11B除去以后,就能收到以下效果。换句话说,在周边部和透光部之间仅留下透光率调整膜11A,就能收到以下效果。
[0196] 首先,在透光率调整膜11A的膜厚十分小的情况下,透过开口部的光与透过相位调整膜11B的除去部分(即透光性基板10中仅形成了透光率调整膜11A的那一部分)的光的相位基本相同。在这一状况下,将开口部和相位调整膜11B的除去部分合起来的那一区域与具有对应于各自的面积而被平均化的透光率的区域是等价的。这里,因开口部的透光率与相位调整膜11B的除去部分的透光率的平均值比开口部的透光率小,故图17(d)所示的构造与图17(c)所示的构造(在高透光率移相器附近形成它的实效透光率比开口部还低的准开口部的构造)等价。换句话说,因为可使包括相位调整膜11B的除去部分的开口部的透光率(实效透光率)比1小,故控制开口部的尺寸的容限就变大。
[0197] 还有,与使用多层结构的透光率调整膜相比,在透光率调整膜11A由单层薄膜构成的情况下,能抑制在开口部与高透光率移相器之间形成宽度微小的透光率调整膜11A时,透光率调整膜11A发生剥离。
[0198] (第2个实施例)
[0199] 下面,参考附图,说明本发明的第2个实施例所涉及的光罩、光罩制作方法及使用该光罩的图案形成方法。需提一下,第2个实施例所涉及的光罩为用以实现轮廓强调法的缩小投影曝光装置下的光罩。
[0200] 图18(a)示出了要用第2个实施例所涉及的光罩形成的所希望的图案之一例。 [0201] 需提一下,在本实施例中在说明如何形成图案的时候,在没有特别说明的情况下,说明的是使用正光阻工序的情况。换句话说,说明的是除去光阻膜的感光部分的情况。另一方面,在使用负光阻工序的情况下,除了光阻膜的感光部分成为光阻图案这一点不一样以外,其它地方都和使用正光阻工序时是完全一样的。再就是,在本实施例中,在没有特别说明的情况下,透光率用设透光性基板的透光率为100%时的实效透光率来表示。 [0202] 图18(b)为第2个实施例所涉及的光罩的平面图,具体而言,为用 以形成图18(a)所示的我们所希望的图案的光罩的平面图。如图18(b)所示,对应着我们所希望的图案中的光阻除去部形成了高透光率移相器(透光部)。再就是,用它的透光率为不让光阻膜感光那么大小(6~15%左右)的低透光率移相器(半遮光部)来代替将曝光光完全遮住的完全遮光部作将高透光率移相器包围起来的遮光性光罩图案。还在高透光率移相器附近,形成了没有低透光率移相器的、宽度微小的开口部(周边部)。这里,在第2个实施例中,在开口部形成它对曝光光的透光率比透光性基板低的透光率调整膜。这样一来,开口部的透光率就被调整到比透光性基板的透光率还低的那一个值上。下面,在本实施例中,称这一开口部为透光率调整部。再就是,高透光率移相器及低透光率移相器让曝光光在同相位下透过;透光率调整部让曝光光在以高透光率移相器及低透光率移相器为基准的反相位下透过。 [0203] 需提一下,第2个实施例中,采用这样的透光率调整部(开口部)的布置方式,即例如如图9(b)所示那样,透光率调整部从方形高透光率移相器的每一条边开始延伸到一定尺寸以下的区域中且与高透光率移相器的每一条边相连。
[0204] 图18(c)为沿图18(b)中的AA’剖开的剖面图,即第2个实施例所涉及的光罩的剖面图。如图18(c)所示,图18(b)所示的光罩通过以下做法来实现。即在透光性基板20中透光部形成区域以外的其它区域上,依次形成它对曝光光的透光率比透光性基板20对曝光光的透光率还低的半遮光膜(透光率调整膜)21和相位调整膜22。相位调整膜22在它与透光性基板20及透光率调整膜21的叠层构造(即透光率调整部(周边部))之间对曝光光产生180度(实际上,大于、等于(150+360×n)度且小于、等于(210+360×n)度(但n为整数))的相位差。这样一来,就形成了由透光率调整膜21和相位调整膜22的叠层构造构成且有一个不让光阻膜感光那么大小的低透光率(6~15%左右)的移相膜,由此而形成了成为低透光率移相器的半遮光部。需提一下,透光率调整部上未形成相位调整膜22。还有,最好是透光率调整膜21为薄膜,不过它也可为任意厚度的厚膜。挖透光性基板20上的透光部形成区域,所挖的深度为在它和透光性基板20与透光率调整膜21的叠层构造(即透光 率调整部)之间对曝光光产生180度(实际上大于、等于(150+360×n)度且小于、等于(210+360×n)度(但n为整数))的相位差那么深,这样就由透光性基板20上的挖下部20a形成了成为高透光率移相器的透光部。结果是,就成了由高透光率移相器(透光部)、透光率调整膜21及相位调整膜22的叠层构造(移相膜)构成的低透光率移相器(半遮光部)将没有相位调整膜22(即透光率调整膜21的单层构造)的透光率调整部夹起来的结构,而实现了轮廓强调光罩。可用由例如Zr、Cr、Ta、Mo或者Ti等金属制成的薄膜(厚度小于、等于30nm)或者由例如Ta—Cr合金、Zr—Si合金、Mo—Si合金或者Ti—Si合金等金属合金制成的薄膜(厚度小于、等于30nm)作透光率调整膜21;可用例如SiO2膜等氧化膜作相位调整膜22。但是要通过轮廓强调法得到对比度强调,必须将透光率调整部的宽度限制在一定尺寸以下。
[0205] 其次,说明使用了第2个实施例所涉及的光罩的图案形成方法。
[0206] 图19(a)~图19(d)为剖面图,示出了使用第2个实施例所涉及的光罩的图案形成方法下的每一个工序。
[0207] 首先,如图19(a)所示,在基板200上形成金属膜或者绝缘膜等被加工膜201以后,再如图19(b)所示,在被加工膜201上形成正光阻膜202。
[0208] 接着,如图19(c)所示,用斜入射曝光光源将曝光光203照射到第2个实施例所涉及的包括由透光率调整膜21及相位调整膜22的叠层构造(移相膜)形成的低透光率移相器、具有透光率调整膜21的单层构造的透光率调整部及由挖下部20a构成且起高透光率移相器之作用的透光部的光罩,由透过该光罩的透过光204对光阻膜202曝光。因此时用低透光率移相器(半遮光部)作了光罩图案,故整个光阻膜202在较弱的能量下被曝光。但是,如图19(c)所示,被足以让光阻膜202在显像工序中溶解的曝光能照射的仅仅是光阻膜202中对应于光罩的透光部(挖下部20a)的潜像部分202a。
[0209] 接着,对光阻膜202进行显像处理以除去潜像部分202a而形成光阻图案205,如图19(d)所示。这时在图19(c)所示的曝光工序下,透光部周边的光被抵消了。结果是,因曝光能几乎不照射光阻膜202中对 应于透光部周边(透光率调整部)的部分,故透过透光部的光与透过透光率调整部的光之间的光强度分布的对比度就得到了强调。换句话说,照射到潜像部分202a上的光和照射在潜像部分202a周围的光之间的光强度分布的对比度就得到了强调。这样一来,因潜像部分202a的能量分布也发生了急剧的变化,故形成形状陡峭的光阻图案205。
[0210] 其次,参考附图,说明第2个实施例所涉及的光罩制作方法。
[0211] 图20(a)~图20(e)为剖面图,示出了第2个实施例所涉及的光罩制作方法中的各个工序。图20(f)为对应于图20(c)所示的剖面图的平面图;图20(g)为对应于图20(e)所示的剖面图的平面图。
[0212] 首先,如图20(a)所示,在由对曝光光具有透光性的材料例如石英等制成的透光性基板20上,依次形成它对曝光光的透光率比透光性基板20对曝光光的透光率低的透光率调整膜21和相位调整膜22。相位调整膜22,在它和透光性基板20与透光率调整膜21的叠层构造之间对曝光光产生大于、等于(150+360×n)度且小于、等于(210+360×n)(但n为整数)的相位差。这里,由由透光率调整膜21及相位调整膜22的叠层构造构成的移相膜,构成对曝光光具有规定的透光率(例如6~15%)的半遮光部。
[0213] 接着,如图20(b)所示,在透光性基板20上形成覆盖低透光率移相器(半遮光部)形成区域的第一光阻图案23,换句话说,是形成在高透光率移相器(透光部)形成区域及透光率调整部(周边部)形成区域分别具有除去部的第一光阻图案23。之后,以第一光阻图案23为掩模对相位调整膜22进行蚀刻处理并将相位调整膜22图案化以后,再将第一光阻图案23除去。这样一来,如图20(c)及图20(f)所示,相位调整膜22中对应于高透光率移相器形成区域及开口部形成区域的部分分别被除去。
[0214] 接着,如图20(d)所示,在透光性基板20上形成覆盖低透光率移相器形成区域及透光率调整部形成区域的第二光阻图案24,换句话说,形成在高透光率移相器形成区域具有除去部的第二光阻图案24。之后,以第二光阻图案24为掩模依次对透光率调整膜21及透光性基板20进行蚀刻,之后再将第二光阻图案24除去。这样一来,如图20(e)及图20 (g)所示,透光率调整膜21中对应于高透光率移相器形成区域的部分被除去。还在透光性基板20中对应于高透光率移相器形成区域的部分,形成在它和透光性基板20及透光率调整膜21的叠层构造(透光率调整部)之间产生180度(具体而言,大于、等于(150+360×n)度且小于、等于(210+360×n)(但n为整数))的反相位的挖下部20a,即制成了第2个实施例所涉及的光罩。换句话说,准备能让由透光率调整膜及相位调整膜构成的移相膜沉积在其上的透光性基板作空白光罩,之后依次对相位调整膜、透光率调整膜及透光性基板进行蚀刻,就很容易制成具有轮廓强调光罩的平面构造的第2个实施例所涉及的光罩。 [0215] 如上所述,根据第2个实施例,在透光性基板20的低透光率移相器(半遮光部)形成区域上,形成让曝光光以低透光率透过且相位反相的移相膜(透光率调整膜21及相位调整膜22的叠层构造)。还在透光性基板20上挖一深度能让曝光光的相位反相的透光部形成区域而形成透光部。还在透光性基板20的透光率调整部形成区域上形成了透光率调整膜21的单层构造。这样一来,为透光率调整膜21的单层构造的透光率调整部,换句话说,让曝光光以与透光部反相的相位透过的周边部,被由挖下部20a构成且起高透光率移相器之作用的透光部及让曝光光以与该透过部相同的相位透过且由移相膜构成的低透光率移相器夹起来。结果是,透光部和周边部间的光强度分布的对比度就由于透过周边部的光和透过透光部的光之间的相互干涉而得以强调。而且,在例如正光阻工序中用斜入射曝光形成微细的孤立光阻除去部(即微细的孤立沟槽图案)的情况下,也能收到这一对比度强调效果。换句话说,将本实施例中的光罩和斜入射曝光组合起来以后,就能将孤立沟槽图案与孤立线图案或者孤立沟槽图案与密集图案同时微细化。
[0216] 还有,根据第2个实施例,成为低透光率移相器的移相膜具有由低透光率透光率调整膜21和高透光率相位调整膜22构成的叠层构造。因此,就能任意选择所希望的相位变化和所希望的透光率组合起来的移相膜。还有,通过组合透光率调整膜21的材料和相位调整膜22的材料,就能提高用以加工移相膜的蚀刻时的选择比。
[0217] 还有,根据第2个实施例,因为在透光性基板20的周边部形成区域 上形成了透光率调整膜21的单层构造,故周边部的透光率比透光性基板20的低,周边部成为透光率调整部。也就是说,周边部的透光率由透光率调整膜21调整到我们所希望的那一个值上。这样一来,因能避免出现光罩上周边部的透光率为最高这样的问题,故能够降低对周边部的微细化程度的要求。换句话说,能够避免由于轮廓强调光罩中的周边部即开口部的上限尺寸太微小而难以制成光罩这样的问题。
[0218] 还有,根据第2个实施例,在透光性基板20上依次形成透光率调整膜21及相位调整膜22以后,选择性地对相位调整膜22、透光率调整膜21及透光性基板20分别进行蚀刻。因此,很容易实现具有低透光率移相器(半遮光部)及透光率调整部(周边部)的、任意形状的光罩图案及成为高透光率移相器的任意形状的透光部。
[0219] 还有,根据第2个实施例,因为可通过加工构成低透光率移相器的相位调整膜22而形成任意形状的开口部(透光率调整部),故轮廓强调光罩的平面图案布置并不限于图18(b)及图18(c)所示的那种类型,即图9(b)所示的那种类型,还能实现例如图9(a)~图
9(f)所示的任一类型的平面图案布置。
[0220] 需提一下,在第2个实施例中,最好是,由透光率调整膜21和相位调整膜22的叠层构造构成的移相膜的透光率,大于、等于6%且小于、等于15%。这样做以后,就既能防止形成图案时光阻膜的减少等,又确能收到本实施例的对比度强调效果。
[0221] 还有,在第2个实施例中,是以使用正光阻工序为前提进行说明的,当然,不言而喻,可用负光阻工序代替正光阻工序。这里,在使用任一工序的情况下,都是使用例如i线(波长365nm)、KrF受激准分子激光(波长248nm)、ArF受激准分子激光(波长193nm)或者F2受激准分子激光(波长157nm)等作曝光光源。
[0222] 还有,在第2个实施例中,最好是,透光率调整膜21为在它和透光性基板20之间对曝光光产生大于、等于(—30+360×n)度且小于、等于(30+360×n)(但n为整数)的相位差的单层构造。这样做以后,准备形成在透光性基板上且由由单层薄膜构成的透光率调整膜和相位调整膜构成的移相膜,即通常的衰减型移相光罩用空白光罩,再分别对相位 调整膜、透光率调整膜及透光性基板进行蚀刻,很容易地就加工出光罩来。若此时用例如金属薄膜作透光率调整膜21,就能收到以下效果。即在用以在透光性基板20上形成挖下部20a的基板蚀刻中,可用透光率调整膜21作对由石英等制成的透光性基板20的选择比很高的蚀刻掩模。
[0223] (第2个实施例的第1个变形例)
[0224] 下面,参考附图,说明本发明的第2个实施例的第1个变形例所涉及的光罩及其制成方法。
[0225] 第2个实施例的第1个变形例和第2个实施例的不同之处如下,即在第2个实施例中,是以例如图9(a)~图9(c)所示那样的高透光率移相器(透光部)与开口部(透光率调整部)相邻的平面布置的轮廓强调光罩为对象,但在第2个实施例的第1个变形例中,是以例如图9(d)~图9(f)所示那样的高透光率移相器与透光率调整部相分离的平面布置的轮廓强调光罩为对象。
[0226] 图21(a)~图21(e)为剖面图,示出了第2个实施例的第1个变形例所涉及的光罩制作方法中的各个工序。图21(f)为对应于图21(c)所示的剖面图的平面图;图21(g)为对应于图21(e)所示的剖面图的平面图。
[0227] 首先,如图21(a)所示,在由对曝光光具有透光性的材料例如石英等制成的透光性基板20上,依次形成它对曝光光的透光率比透光性基板20对曝光光的透光率低的透光率调整膜21和相位调整膜22。相位调整膜22,在它和透光性基板20与透光率调整膜21的叠层构造(即透光率调整部)之间对曝光光产生大于、等于(150+360×n)度且小于、等于(210+360×n)(但n为整数)的相位差。再就是,由透光率调整膜21及相位调整膜22的叠层构造构成的移相膜成为对曝光光具有规定的透光率(例如6~15%)的半遮光部。 [0228] 接着,如图21(b)所示,在透光性基板20上形成覆盖低透光率移相器(半遮光部)形成区域的第一光阻图案23,换句话说,是形成在高透光率移相器(透光部)形成区域及透光率调整部(周边部)形成区域分别具有除去部的第一光阻图案23。这里,在该变形例中,透光率调整部形成区域和高透光率移相器形成区域是分离着的。换句话说,第一光 阻图案夹在透光率调整部形成区域和高透光率移相器形成区域之间。之后,以第一光阻图案23为掩模对相位调整膜22进行蚀刻处理并将相位调整膜22图案化以后,再将第一光阻图案23除去。这样一来,如图21(c)及图21(f)所示,相位调整膜22中对应于高透光率移相器形成区域及透光率调整部形成区域的部分分别被除去。
[0229] 接着,如图21(d)所示,在透光性基板20上形成覆盖含有透光率调整部形成区域的低透光率移相器形成区域且在高透光率移相器形成区域具有除去部的第二光阻图案24。之后,以第二光阻图案24及已图案化的相位调整膜22为掩模依次对透光率调整膜21及透光性基板20进行蚀刻,之后再将第二光阻图案24除去。这样一来,如图21(e)及图21(g)所示,透光率调整膜21中对应于高透光率移相器形成区域的部分被除去。还在透光性基板
20中对应于高透光率移相器形成区域的部分,形成在它和透光性基板20及透光率调整膜
21的叠层构造(透光率调整部)之间产生180度(具体而言,大于、等于(150+360×n)度且小于、等于(210+360×n)(但n为整数))的反相位的挖下部20a,即制成第2个实施例的第1个变形例所涉及的光罩。
[0230] 根据第2个实施例的第1个变形例,除能收到第2个实施例的效果以外,还能收到以下效果。也就是说,因可用已图案化的相位调整膜22为掩模,对透光性基板20进行自我对准的蚀刻,故可正确地进行光罩加工。
[0231] (第2个实施例的第2个变形例)
[0232] 下面,参考附图,说明本发明的第2个实施例的第2个变形例所涉及的光罩及其制成方法。
[0233] 第2个实施例的第2个变形例和第2个实施例的不同之处如下,即在第2个实施例中,是以例如图9(a)~图9(c)所示那样的高透光率移相器(透光部)与开口部(透光率调整部)相邻的平面布置的轮廓强调光罩为对象,但在第2个实施例的第2个变形例中,是以例如图9(d)~图9(f)所示那样的高透光率移相器与透光率调整部相分离的平面布置的轮廓强调光罩为对象。
[0234] 图22(a)~图22(e)为剖面图,示出了第2个实施例的第2个变 形例所涉及的光罩制作方法中的各个工序。图22(f)为对应于图22(c)所示的剖面图的平面图;图22(g)为对应于图22(e)所示的剖面图的平面图。
[0235] 首先,如图22(a)所示,在由对曝光光具有透光性的材料例如石英等制成的透光性基板20上,依次形成它对曝光光的透光率比透光性基板20对曝光光的透光率低的透光率调整膜21和相位调整膜22。相位调整膜22,在它和透光性基板20与透光率调整膜21的叠层构造(即透光率调整部)之间对曝光光产生大于、等于(150+360×n)度且小于、等于(210+360×n)(但n为整数)的相位差。再就是,由透光率调整膜21及相位调整膜22的叠层构造构成的移相膜成为对曝光光具有规定的透光率(例如6~15%)的半遮光部。 [0236] 接着,如图22(b)所示,在透光性基板20上形成覆盖低透光率移相器(半遮光部)形成区域及高透光率移相器(透光部)形成区域的第一光阻图案23,换句话说,是形成在透光率调整部(周边部)形成区域具有除去部的第一光阻图案23。之后,以第一光阻图案23为掩模对相位调整膜22进行蚀刻处理并将相位调整膜22图案化以后,再将第一光阻图案23除去。这样一来,如图22(c)及图22(f)所示,相位调整膜22中对应于透光率调整部形成区域的部分被除去。
[0237] 接着,如图22(d)所示,在透光性基板20上形成覆盖低透光率移相器形成区域及透光率调整部形成区域的第二光阻图案24。换句话说,是形成在高透光率移相器形成区域具有除去部的第二光阻图案24。之后,以第二光阻图案24为掩模按相位调整膜22、透光率调整膜21及透光性基板20之顺序进行蚀刻,之后再将第二光阻图案24除去。这样一来,如图22(e)及图22(g)所示,透光率调整膜21及相位调整膜22中对应于高透光率移相器形成区域的部分分别被除去。还有,在透光性基板20中对应于高透光率移相器形成区域的部分,形成在它和透光性基板20及透光率调整膜21的叠层构造(透光率调整部)之间产生180度(具体而言,大于、等于(150+360×n)度且小于、等于(210+360×n)(但n为整数))的反相位的挖下部20a,即制成第2个实施例的第2个变形例所涉及的光罩。
[0238] 根据第2个实施例的第2个变形例,除能收到第2个实施例的效果以外,还能收到以下效果。也就是说,在本变形例中,除去相位调整膜22中对应于透光率调整部形成区域的那一部分的工序(参照图22(c))、除去相位调整膜22中对应于高透光率移相器形成区域的那一部分的工序(参照图22(e))是分开进行的。因此,在透光率调整部和高透光率移相器间存在微小的宽度的情况下,光罩的加工容限就增大。换句话说,在透光率调整部和高透光率移相器之间残留下微小宽度的相位调整膜22的情况下,光罩的加工容限就增大。 [0239] 需提一下,在第2个实施例的第2个变形例中,除去相位调整膜22中对应于高透光率移相器形成区域的那一部分的工序(包括除去透光率调整膜21中对应于高透光率移相器形成区域的部分,同时在透光性基板20上形成挖下部20a的工序),可在除去相位调整膜22中对应于透光率调整部形成区域的那一部分的工序之前进行。
[0240] (第3个实施例)
[0241] 下面,参考附图,说明本发明的第3个实施例所涉及的光罩、光罩制作方法及使用该光罩的图案形成方法。需提一下,第3个实施例所涉及的光罩为用以实现轮廓强调法的缩小投影曝光装置下的光罩。
[0242] 图23(a)示出了要用第3个实施例所涉及的光罩形成的我们所希望的图案之一例。
[0243] 需提一下,在本实施例中在说明如何形成图案的时候,在没有特别说明的情况下,说明的是使用正光阻工序的情况。换句话说,说明的是除去光阻膜的感光部分的情况。另一方面,在使用负光阻工序的情况下,除了光阻膜的感光部分成为光阻图案这一点不一样以外,其它地方都和使用正光阻工序时是完全一样的。再就是,在本实施例中,在没有特别说明的情况下,透光率用设透光性基板的透光率为100%时的实效透光率来表示。 [0244] 图23(b)示出了第3个实施例所涉及的光罩,具体而言,为用以形成图23(a)所示的我们所希望的图案的光罩的平面图。如图23(b)所示,对应着我们所希望的图案中的光阻除去部形成了高透光率移相器(透光部)。再就是,用它的透光率为不让光阻膜感光那么大小(6~15%左右) 的低透光率移相器(半遮光部)来代替将曝光光完全遮住的完全遮光部作将高透光率移相器包围起来的遮光性光罩图案。还在高透光率移相器附近,形成了没有低透光率移相器的、宽度微小的开口部(周边部)。再就是,高透光率移相器及低透光率移相器让曝光光在同相位下透过;开口部则让曝光光在以高透光率移相器及低透光率移相器为基准的反相位下透过。
[0245] 需提一下,在第3个实施例中,采用这样的开口部的布置方式,即例如如图9(b)所示那样,开口部从矩形高透光率移相器的每一条边开始延伸到一定尺寸以下的区域中且与高透光率移相器的每一条边相连。
[0246] 图23(c)为沿图23(b)中的AA’剖开的剖面图,即第3个实施例所涉及的光罩的剖面图。如图23(c)所示,图23(b)所示的光罩通过以下做法来实现。即在透光性基板30的低透光率移相器形成区域上,依次形成相位调整膜31、其对曝光光的透光率比透光性基板30对曝光光的透光率还低的半遮光膜(透光率调整膜)32。相位调整膜31在它与透光性基板30(开口部)之间产生180度(实际上,大于、等于(150+360×n)度且小于、等于(210+360×n)度(但n为整数))的相位差。这样一来,就形成了由相位调整膜31和透光率调整膜32的叠层构造构成且有一个不让光阻膜感光那么大小的低透光率(6~15%左右)的移相膜,由此而形成了成为低透光率移相器的半遮光部。这里,假设透光率调整膜32让光以低透光率透过,光的相位由于透光率调整膜32的厚度而起的变化很小。还有,相位调整膜31的单层构造形成在透光性基板30的透光部形成区域上,由此而形成了成为高透光率移相器的透光部。这样一来,就成为没有相位调整膜31(透光性基板30的表面露出来)周边部即开口部,由高透光率移相器(透光部)及由相位调整膜31和透光率调整膜32的叠层构造(移相膜)构成的低透光率移相器(半遮光部)夹起来的构造,即实现了轮廓强调光罩。可用例如SiO2膜等氧化膜作相位调整膜31;可用由例如Zr、Cr、Ta、Mo或者Ti等金属制成的薄膜(厚度小于、等于30nm)或者由例如Ta—Cr合金、Zr—Si合金、Mo—Si合金或者Ti—Si合金等金属合金制成的薄膜(厚度小于、等于30nm)作透光率调整膜32。
但是要通过轮廓强调法得到对比度强调,必须将开口部的 宽度限制在一定尺寸以下。 [0247] 其次,说明使用了第3个实施例所涉及的光罩的图案形成方法。
[0248] 图24(a)~图24(d)为剖面图,示出了使用第3个实施例所涉及的光罩的图案形成方法下的每一个工序。
[0249] 首先,如图24(a)所示,在基板300上形成金属膜或者绝缘膜等被加工膜301以后,再如图24(b)所示,在被加工膜301上形成正光阻膜302。
[0250] 接着,如图24(c)所示,用斜入射曝光光源将曝光光303照射到第3个实施例所涉及的包括由相位调整膜31及透光率调整膜32的叠层构造(移相膜)形成的低透光率移相器、由相位调整膜31的单层构造构成且起高透光率移相器之作用的透光部的光罩,由透过该光罩的透过光304对光阻膜302曝光。因此时用低透光率移相器(半遮光部)作了光罩图案,故整个光阻膜302在较弱的能量下被曝光。但是,如图24(c)所示,被足以让光阻膜302在显像工序中溶解的曝光能照射的仅仅是光阻膜302中对应于光罩的透光部的潜像部分302a。
[0251] 接着,对光阻膜302进行显像处理以除去潜像部分302a而形成光阻图案305,如图24(d)所示。这时在图24(c)所示的曝光工序下,透光部周边的光被抵消了。结果是,因曝光能几乎不照射光阻膜302中对应于开口部(周边部)的部分,故透过透光部的光与透过周边部的光之间的光强度分布的对比度就得到了强调。换句话说,照射到潜像部分302a上的光和照射在潜像部分302a周围的光之间的光强度分布的对比度就得到了强调。这样一来,因潜像部分302a的能量分布也发生了急剧的变化,故形成形状陡峭的光阻图案305。 [0252] 其次,参考附图,说明第3个实施例所涉及的光罩制作方法。
[0253] 图25(a)~图25(e)为剖面图,示出了第3个实施例所涉及的光罩制作方法中的各个工序。图25(f)为对应于图25(c)所示的剖面图的平面图;图25(g)为对应于图25(e)所示的剖面图的平面图。
[0254] 首先,如图25(a)所示,在由对曝光光具有透光性的材料例如石英等制成的透光性基板30上,依次形成相位调整膜31、它对曝光光的透光率比透光性基板30对曝光光的透光率低的透光率调整膜32。相位调整膜 31,在它和透光性基板30(开口部)之间对曝光光产生大于、等于(150+360×n)度且小于、等于(210+360×n)(但n为整数)的相位差。再就是,由相位调整膜31及透光率调整膜32的叠层构造构成的移相膜成为对曝光光具有规定的透光率(例如6~15%)的半遮光部。在本实施例中,可用例如被薄膜化而具有了低透光率的遮光膜(作为通常的光罩的遮光膜用的铬膜等)作透光率调整膜32用。
[0255] 接着,如图25(b)所示,在透光性基板30上形成覆盖低透光率移相器(半遮光部)形成区域及高透光率移相器(透光部)的第一光阻图案33,换句话说,形成在开口部(周边部)形成区域具有除去部的第一光阻图案33。之后,以第一光阻图案33为掩模对透光率调整膜32及相位调整膜31进行蚀刻之后,再将第一光阻图案33除去。这样一来,如图25(c)及图25(f)所示,相位调整膜31及透光率调整膜32的叠层构造(移相膜)中对应于开口部形成区域的部分被除去。
[0256] 接着,如图25(d)所示,在透光性基板30上形成至少覆盖低透光率移相器形成区域且在高透光率移相器形成区域具有除去部的第二光阻图案34。之后,以第二光阻图案34为掩模对透光率调整膜32进行蚀刻之后,再将第二光阻图案34除去。这样一来,如图25(e)及图25(g)所示,透光率调整膜32中对应于高透光率移相器形成区域的部分被除去,即形成了第3个实施例所涉及的光罩。换句话说,准备能依次让具有一产生180度的反相位之厚度的相位调整膜及被薄膜化了的遮光膜(透光率调整膜)沉积在其上的透光性基板作空白光罩,之后依次对该遮光膜及相位调整膜进行蚀刻,就很容易制成具有轮廓强调光罩的平面构造的第3个实施例所涉及的光罩。
[0257] 如上所述,根据第3个实施例,在透光性基板30的低透光率移相器(半遮光部)形成区域上,形成让曝光光以低透光率透过且相位反相的移相膜(相位调整膜31及透光率调整膜32的叠层构造)。还有,在透光性基板30的透光部形成区域上形成相位调整膜31的单层构造而形成透光部。这样一来,没有移相膜的开口部即让曝光光以与透光部反相的相位透过的周边部,被由相位调整膜31的单层构造构成且起高透光率移相器之作用的透光部及让曝光光以与该透过部相同的相位透过且由移相膜 构成的低透光率移相器夹起来。结果是,透光部和周边部间的光强度分布的对比度就由于透过周边部的光和透过透光部的光之间的相互干涉而得以强调。而且,在例如正光阻工序中用斜入射曝光形成微细的孤立光阻除去部(即微细的孤立沟槽图案)的情况下,也能收到这一对比度强调效果。换句话说,将本实施例中的光罩和斜入射曝光组合起来以后,就能将孤立沟槽图案与孤立线图案或者孤立沟槽图案与密集图案同时微细化。
[0258] 还有,根据第3个实施例,成为低透光率移相器的移相膜具有由高透光率相位调整膜31和低透光率透光率调整膜32构成的叠层构造。因此,就能任意选择我们所希望的相位变化和所希望的透光率组合起来的移相膜。还有,通过组合相位调整膜31的材料和透光率调整膜32的材料,就能提高用以加工移相膜的蚀刻时的选择比。
[0259] 还有,根据第3个实施例,在透光性基板30上依次形成相位调整膜31及透光率调整膜32以后,选择性地对透光率调整膜32、相位调整膜31进行蚀刻。因此,很容易实现具有低透光率移相器(半遮光部)及开口部(周边部)的任意形状的光罩图案及成为高透光率移相器的任意形状的透光部。
[0260] 还有,根据第3个实施例,因为通过加工构成低透光率移相器的相位调整膜31及透光率调整膜32的叠层构造(移相膜),就能形成任意形状的开口部,故轮廓强调光罩的平面图案布置并不限于图23(b)及图23(c)所示的那种类型,即图9(b)所示的那种类型,还能实现例如图9(a)~图9(f)所示的任一类型的平面图案布置。
[0261] 还有,根据第3个实施例,因为被薄膜化的遮光膜作透光率调整膜32,具体而言,在它与透光性基板30及相位调整膜31的叠层构造之间对曝光光产生大于、等于(—30+360×n)度且小于、等于(30+360×n)(但n为整数)的相位差的单层薄膜作透光率调整膜32,故能收到以下效果。即先准备在透光性基板上形成有由下层的相位调整膜和上层的透光率调整膜构成的移相膜的衰减型移相光罩用空白光罩,再分别对透光率调整膜及相位调整膜进行蚀刻,很容易地就能将光罩加工出来。换句话说,优点是制造光罩时可借用现有技术。再就是,因透光率调整膜 为被薄膜化的遮光膜,故必须准备的空白光罩也就很简单了。
[0262] 这里,参考图26(a)到图26(c),说明通过模拟而得到的、由于使用被薄膜化的遮光膜作透光率调整膜32用而引起的相位变化(在高透光率移相器和低透光率移相器之间所产生的相位差)对形成图案时造成的影响。模拟条件是,曝光光的波长为λ=0.193μm(ArF光源)、曝光机的投影光学系的开口数NA=0.6、环状照明。
[0263] 图26(a)为模拟用轮廓强调光罩的平面图。如图26(a)所示,高透光率移相器(透光部)及开口部(周边部)的宽度分别为200nm及50nm;高透光率移相器、开口部及低透光率移相器(半遮光部)的透光率分别为100%、100%及7.5%;高透光率移相器在它与开口部之间产生180度的相位差;低透光率移相器在它与开口部之间产生180~150度的相位差。
[0264] 图26(b)示出了在低透光率移相器和开口部之间产生180度、170度、160度及150度的相位差那样的,对图26(a)所示的轮廓强调光罩曝光时,对应于剖开线AA’的光强度分布的模拟结果。由图26(b)可知,若低透光率移相器和高透光率移相器间的相位差达到30度左右,光强度分布的对比度几乎不受影响。
[0265] 图26(c)示出了在低透光率移相器和开口部之间产生180度、170度、160度及150度的相位差那样的,对图26(a)所示的轮廓强调光罩曝光时,图案最小线宽与焦点之间的关系的模拟结果。如图26(c)所示,若低透光率移相器和高透光率移相器间的相位差有变化,CD达到峰值的那一最佳焦点位置就会随着发生变化。但是,即使上述相位差有变化,CD随着焦点变化而变化的困难程度不变,即焦点深度几乎不变。话又说回来,若光罩上所有部分的最佳焦点位置变化都一样,则形成图案时就完全没有问题了。形成图案时唯一的问题就是焦点深度的值。即可以这样说,只要低透光率移相器和高透光率移相器间的相位差达到30度左右,焦点特性就没有问题。
[0266] 因此,在本实施例中,虽然在使用被薄膜化的遮光膜作透光率调整膜32的情况下,实现不了严格意义上的轮廓强调光罩(低透光率移相器和高透光率移相器间的相位差为0度),但可知:只要由薄膜产生的相位差小于、等于30度左右,就不会失去由轮廓强调法带来的良好效果。具 体而言,在使用Ta、Cr或者包含它们的合金等作遮光膜的材料的情况下,在它和高透光率移相器(透光部)之间对来自ArF光源的光产生30度左右的相位差的遮光膜的厚度据估算大于、等于30nm。而且,该厚度为一足以实现小于、等于10%的透光率的厚度。
[0267] 需提一下,在第3个实施例中,最好是由相位调整膜31及透光率调整膜32的叠层构造构成的移相膜的透光率,大于、等于6%且小于、等于15%。这样做以后,就既能防止形成图案时光阻膜的减少等,又确能收到本实施例的对比度强调效果。
[0268] 还有,在第3个实施例中,是以使用正光阻工序为前提进行说明的,当然,不言而喻,可用负光阻工序代替正光阻工序。这里,在使用任一工序的情况下,都是使用例如i线(波长365nm)、KrF受激准分子激光(波长248nm)、ArF受激准分子激光(波长193nm)或者F2受激准分子激光(波长157nm)等作曝光光源。
[0269] 还有,在第3个实施例中,是以例如图9(a)~图9(c)所示那样的高透光率移相器与开口部相邻的平面布置的轮廓强调光罩为对象,也可以例如图9(d)~图9(f)所示那样的高透光率移相器与开口部相分离的平面布置的轮廓强调光罩为对象。
[0270] 不用说,在第3个实施例中,还可通过在透光率调整膜32上再沉积相位调整膜这一做法,而使高透光率移相器与低透光率移相器间的相位差实质上为0度。
[0271] 还有,在第1个实施例到第3个实施例中,是以光罩中的开口部(也可为周边部:透光率调整部)及高透光率移相器(透光部)以外的部分全部为低透光率移相器(半遮光部)为前提。然而,光罩中离开口部及高透光率移相器都非常远的部分可以是完全遮光部。
也就是说,光罩中离开口部及高透光率移相器的那一距离,为基本上可忽视来自光罩中的开口部及高透光率移相器的光学干涉效果之影响的那一距离(=2×λ/NA(λ为曝光光的波长,NA为曝光机的缩小投影光学系的开口数))以上。
[0272] 发明的效果
[0273] 根据本发明,透光部和周边部间的光强度分布的对比度由于透过透 光部的光和透过周边部的相互干涉得以提高。在例如正光阻工序中用斜入射曝光形成微细的孤立光阻除去部(换句话说,对应于透光部的微细孤立沟槽图案)的情况下也能这一对比度强调效果。换句话说,通过组合使用本发明和斜入射曝光,就能同时将孤立沟槽图案与密集图案或者孤立沟槽图案与密集图案微细化。