纳米网状复合膜,其制备方法及包括所述复合膜的模具转让专利

申请号 : CN200510102019.8

文献号 : CN1978094B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 陈杰良

申请人 : 鸿富锦精密工业(深圳)有限公司鸿海精密工业股份有限公司

摘要 :

本发明涉及一种纳米网状复合膜,其制备方法及包括所述复合膜的模具。所述纳米网状复合膜包括一非晶类金刚石碳层,所述非晶类金刚石碳层中包括副微粒、高硬度粒子及抗腐蚀粒子,所述副微粒为非晶微粒或微晶粒,所述高硬度粒子为碳化硅纳米晶颗粒、碳化钛纳米晶颗粒、氮化钛纳米晶颗粒或其组合,所述抗腐蚀粒子为铬纳米晶颗粒与/或氮化铬纳米晶颗粒,所述高硬度粒子分布于副微粒内及副微粒之间,所述抗腐蚀粒子主要分散于副微粒之间。本发明的纳米网状复合膜具有优异的机械强度、韧性及抗腐蚀能力。

权利要求 :

1.一种纳米网状复合膜,其包括一非晶类金刚石碳层,所述非晶类金刚石碳层中包括副微粒、高硬度粒子及抗腐蚀粒子,所述副微粒为非晶微粒或微晶粒,所述高硬度粒子为碳化硅纳米晶颗粒、碳化钛纳米晶颗粒、氮化钛纳米晶颗粒或其组合,所述抗腐蚀粒子为铬纳米晶颗粒与/或氮化铬纳米晶颗粒,所述高硬度粒子分布于副微粒内及副微粒之间,所述抗腐蚀粒子主要分散于副微粒之间。

2.如权利要求1所述的纳米网状复合膜,其特征在于部分高硬度粒子填充所述非晶类金刚石碳层中碳原子的悬浮键。

3.如权利要求1所述的纳米网状复合膜,其特征在于所述非晶类金刚石碳是氢掺杂、氮掺杂或氮-氢掺杂的。

4.如权利要求1所述的纳米网状复合膜,其特征在于所述非晶类金刚石碳层厚度为

20~3000纳米。

5.一种模具,其包括一基底及一形成于所述基底上的纳米网状复合膜,所述纳米网状复合膜包括一非晶类金刚石碳层,所述非晶类金刚石碳层中包括副微粒、高硬度粒子及抗腐蚀粒子,所述副微粒为非晶微粒或微晶粒,所述高硬度粒子为碳化硅纳米晶颗粒、碳化钛纳米晶颗粒、氮化钛纳米晶颗粒或其组合,所述抗腐蚀粒子为铬纳米晶颗粒与/或氮化铬纳米晶颗粒,所述高硬度粒子分布于副微粒内及副微粒之间,所述抗腐蚀粒子主要分散于副微粒之间。

6.如权利要求5所述的模具,其特征在于部分高硬度粒子填充所述非晶类金刚石碳层中碳原子的悬浮键。

7.如权利要求5项所述的模具,其特征在于所述非晶类金刚石碳是氢掺杂、氮掺杂或氮-氢掺杂的。

8.如权利要求5项所述的模具,其特征在于所述非晶类金刚石碳层厚度为20~3000纳米。

9.一种于基底上形成纳米网状复合膜的方法,其包括以下步骤:

提供一基底;

利用碳靶材、高硬度材质靶材及铬靶材进行混合溅镀于所述基底上形成一包括一非晶类金刚石碳层的纳米网状复合膜,所述高硬度材质靶材为碳化硅、碳化钛、氮化钛或其组合。

10.如权利要求9项所述的于基底上形成纳米网状复合膜的方法,其特征在于碳靶材处进行的为射频磁控溅。

11.如权利要求9项所述的于基底上形成纳米网状复合膜的方法,其特征在于钛靶材处进行的为直流磁控溅。

12.如权利要求9项所述的于基底上形成纳米网状复合膜的方法,其特征在于铬靶材处进行的为直流磁控溅。

13.如权利要求9项所述的于基底上形成纳米网状复合膜的方法,其特征在于所述基底于溅镀过程中旋转,旋转速度为10~200转/分钟。

说明书 :

纳米网状复合膜,其制备方法及包括所述复合膜的模具

【技术领域】

[0001] 本发明涉及一种纳米网状复合膜,其制备方法,及包括所述纳米网状复合膜的模具。【背景技术】
[0002] 产业上,塑造所需求形状的手段主要包括模造、切削、研磨等,从成本及加工精度角度来看,需要进行此类动作的模具、刀具、研磨工具等需具有长的服务寿命且不发生影响产品品质的变形。上述工具发生变形的主要因素包括磨损及腐蚀,因此模具、刀具、研磨工具的防腐蚀、抗磨擦能力显得尤为重要。
[0003] 故,以模具为例,其一般采用硬度高、化学稳定性强的合金材料,但其性能仍不理想。尤其当操作环境较恶劣,例如镁合金压铸模,遭受熔融态镁的腐蚀,其寿命更短。
[0004] 在模具等工具表面形成保护膜层可显著提高其耐磨擦性能及抗腐蚀能力,从而延长其寿命。类金刚石碳(Diamond-Like Carbon,DLC)具有与钻石类似的高硬度,低磨擦系数,高的化学稳定性等特性,因此业界将DLC膜作为模具表面的保护膜,其具有耐磨损,抗腐蚀等优良特性。
[0005] 但是,一般DLC膜为非晶结构,其中包含大量副微粒,共同构成DLC的主体,副微粒可为非晶微粒或微晶粒,副微粒之间存在空隙,腐蚀粒子易于渗透进DLC膜,造成腐蚀。不3
同于钻石碳完美的SP 结构,DLC中碳原子存在悬浮键(Dangling Bond)等结构缺陷,因此碳原子间结合力相对较低,从宏观上看,DLC膜的机械强度底,韧度低,易碎裂,抗腐蚀性能不理想。
【发明内容】
[0006] 有鉴于此,有必要提供一种机械强度高、韧性高、抗腐蚀能力强的保护膜层,其制备方法及包括所述保护膜的模具。
[0007] 一种纳米网状复合膜,其包括一非晶类金刚石碳层,所述非晶类金刚石碳层中包括副微粒、高硬度粒子及抗腐蚀粒子,所述副微粒为非晶微粒或微晶粒,所述高硬度粒子为碳化硅纳米晶颗粒、碳化钛纳米晶颗粒、氮化钛纳米晶颗粒或其组合,所述抗腐蚀粒子为铬纳米晶颗粒与/或氮化铬纳米晶颗粒,所述高硬度粒子分布于副微粒内及副微粒之间,所述抗腐蚀粒子主要分散于副微粒之间。
[0008] 一种在基底上形成纳米网状复合膜的方法,其包括以下步骤:提供一基底;利用碳靶材、高硬度材质靶材及铬靶材进行混合溅镀在所述基底上形成一包括一非晶类金刚石碳层的纳米网状复合膜,所述高硬度材质靶材为碳化硅、碳化钛、钛或其组合,钛靶材处进行的为反应性溅镀以溅底氮化钛。
[0009] 一种模具,其包括一基底及一形成在所述基底上的纳米网状复合膜,所述纳米网状复合膜包括一非晶类金刚石碳层,所述非晶类金刚石碳层中包括副微粒、高硬度粒子及抗腐蚀粒子,所述副微粒为非晶微粒或微晶粒,所述高硬度粒子为碳化硅纳米晶颗粒、碳化钛纳米晶颗粒、氮化钛纳米晶颗粒或其组合,所述抗腐蚀粒子为铬纳米晶颗粒与/或氮化铬纳米晶颗粒,所述高硬度粒子分布于副微粒内及副微粒之间,所述抗腐蚀粒子主要分散于副微粒之间。
[0010] 相对于现有技术,所述的纳米网状复合膜中,高硬度粒子填充于副微粒内时,可减少副微粒内结构缺陷,副微粒强度增加,非晶类金刚石层强度增加,高硬度粒子填充在副微粒之间,可增加副微粒之间结合力,非晶类金刚石层韧性增加。抗腐蚀粒子分散于副微粒之间,因此非晶类金刚石层之抗腐蚀性能提高。【附图说明】
[0011] 图1是本实施例的纳米网状复合膜结构示意图。
[0012] 图2是本实施例使用的制备装置示意图。
[0013] 图3是本实施例使用的制备装置靶材阵列示意图。
[0014] 图4是本实施例的形成纳米网状复合膜方法流程图。
[0015] 图5是本实施例所得的模具剖面示意图。【具体实施方式】
[0016] 以下结合附图及实施例作进一步详细说明。
[0017] 参阅图1,是本实施例纳米网状复合膜结构示意图,纳米网状复合膜包括一非晶类金刚石碳层100,非晶类金刚石碳层100中包括无规则排列的副微粒110,副微粒110可为非晶微粒或微晶粒,副微粒110之间存在缝隙。副微粒110内主体元素为碳,碳原子111可3 2
以SP、SP、SP等多种方式成键,高硬度粒子120填充于副微粒110内及副微粒110之间,高硬度粒子120还可填充于副微粒中碳原子的悬浮键位置,抗腐蚀粒子130填充于副微粒
110内及副微粒110之间,优选的,抗腐蚀粒子主要分散于副微粒110之间缝隙中。图1仅为示意图,实际的原子密度远大于此。
[0018] 本实施例中,高硬度粒子120包括碳化硅纳米晶颗粒121、氮化钛纳米晶颗粒122、碳化钛纳米晶颗粒123或其组合,抗腐蚀粒子130铬纳米晶颗粒与/或氮化铬纳米晶颗粒。高硬度粒子120及抗腐蚀粒子130的成份皆可通过选择性溅镀实现。
[0019] 本实施例中,副微粒110中还掺杂有氮原子及氢原子,当然副微粒110中还可只掺杂氢或只掺杂氮。
[0020] 非晶类金刚石碳层100中,若碳原子以SP2、SP等不饱和方式成键比例高,则类金刚石碳强度较低,作为保护膜层性能不理想,本实施例中利用高硬度粒子120填充于副微粒110内及副微粒110之间,填充于副微粒110内时,可减少副微粒110内结构缺陷,副微粒110强度增加,非晶类金刚石碳层100强度增加;填充于副微粒110之间,可增加副微粒之间结合力,非晶类金刚石碳层100韧性增加。副微粒110之间存在缝隙,腐蚀性材料,如熔融态镁可轻易扩散进入非晶类金刚石碳层100中,造成腐蚀,非晶类金刚石碳层100中寿命降低,本实施例中,部分抗腐蚀粒子130填充于副微粒110之间,因此非晶类金刚石碳层100的抗腐蚀性能提高。
[0021] 以下将详细介绍上述实施例的纳米网状复合膜的制备方法。
[0022] 首先提供一纳米网状复合膜的制备装置,参阅图2,纳米网状复合膜的制备装置300包括一真空腔350、设置于所述真空腔350内的一靶材阵列310及一基底320。真空腔
350与机械泵341及高真空泵342相连通,基底320设置于基底固定器330上,基底固定器
330可旋转,从而可带动基底320旋转。
[0023] 参阅图3,靶材阵列310包括一靶材固定器311及固设于靶材固定器311上的碳靶材312、碳化硅靶材313、碳化钛靶材314、铬靶材315及钛靶材316,碳靶材312包括石墨或其它形式的碳。碳靶材312、碳化硅靶材313及碳化钛靶材314与射频电源相连,射频电源频率为13.56百万赫兹。碳靶材312与一匹配网络相连,利用匹配纲络中的电感及电容,射频电源供应的能量可调节并最大化,从而反射的能量减小至最少。铬靶材315及钛靶材316与直流电源负极相连。碳靶材312用于溅镀非晶类金刚石碳,碳化硅靶材313、碳化钛靶材314及钛靶材316用于溅镀高硬度粒子20,铬靶材315用于溅镀抗腐蚀粒子30。各靶材周围可设置磁极,以增强溅镀时的等离子体密度。
[0024] 参阅图4,溅镀的具体过程如下:
[0025] 将基底320置于纳米网状复合膜的制备装置300中,此处基底320可为各种需镀膜的模具、刀具、研磨工具等,本实施例中,是一模具,模具表面利用镜面抛光抛光至平均表面粗糙度(Ra)小于等于10纳米,模具的材质包括铁碳铬合金、铁碳铬钼合金、铁碳铬硅合金、铁碳铬镍钼合金、铁钛铬镍钛合金、铁钛铬钨锰合金、铁碳铬钨钒合金、铁碳铬钼钒合金或铁碳铬钼钒硅合金。
[0026] 首先利用机械泵341将真空腔350内抽真空,再利用高真空泵342将真空腔350-4中压力抽至1.2×10 帕斯卡(Pa)以下。
[0027] 使用靶材阵列310中的不同靶材在溅镀气体氛围中同时进行混合溅镀以得到所需的纳米网状复合膜。各靶材周围分别通入所需的溅镀气体。碳靶材312周围的溅镀气体为惰性气体、氮气及含氢气体的混合气体,含氢气体可为氢气、甲烷或乙烷;含氢气体含量为惰性气体5~20%,氮气含量为惰性气体5~40%。碳化硅靶材313、碳化钛靶材314及钛靶材316周围的溅镀气体包括惰性气体与氮气,不同的处在于,钛靶材316处进行的为反应性溅镀,以溅镀氮化钛。铬靶材315周围的溅镀气体包括惰性气体或惰性气体及氮气,当无氮气时可溅镀铬,当含有氮气时,会发生反应性溅镀,可溅镀氮化铬,且氮气的通入量小于溅镀所能消耗量时,会同时溅镀铬及氮化铬。上述惰性气体包括氩气或氪气。各靶材处的气体流量可分别通过质量流量控制器317控制。
[0028] 溅镀过程中,利用基底固定器330将基底320进行旋转,旋转速度可为10~300转/分钟(rpm),优选20~80rpm,最终可得一形成于基底320上的均匀的纳米网状复合膜100。根据所要制备的纳米网状复合膜的组成,可有选择性的采用上述所有靶材中的部份以溅镀不同组成的纳米网状复合膜。
[0029] 溅镀时,从靶材上溅射出的各种粒子虽为随机方向,但是,由于抗腐蚀粒子与碳原子及高硬度粒子相差较大,不易于形成强结合力,因此最后形成的结构中,抗腐蚀粒子集中于副微粒之间缝隙中。而高硬度粒子则分散于副微粒内及副微粒之间。
[0030] 参阅图5,本实施例所得的模具500包括一基底320及一形成于基底320上的纳米网状复合膜100。
[0031] 另外,本领域技术人员还可在本发明精神内做其它变化。当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。