摄像装置以及其制造方法转让专利

申请号 : CN200610164544.7

文献号 : CN1979243B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 金井友范丸山竹介

申请人 : 日立麦克赛尔株式会社

摘要 :

本发明提供一种使用一体化形成了透镜和支撑透镜的透镜支撑部的透镜构件来实现小型化并且高性能的摄像装置以及其制造方法。摄像装置(1)具备:透镜构件(10),其具有透镜(10)、和支撑该透镜(10)的透镜支撑部(110b);和图像传感器芯片(20),其将来自透镜(10)的入射光转换为摄像信号。该摄像装置(1)通过具有5μm以上厚度的粘接剂(30),将透镜构件(10)固定在图像传感器芯片(20)上。

权利要求 :

1.一种摄像装置,具备:一体化形成的具有透镜以及在内部支撑该透镜的圆筒状的透镜支撑部的透镜构件,基于通过所述透镜入射的入射光处理摄像信号的图像传感器芯片,所述摄像装置的特征在于,所述图像传感器芯片具有:电极部和接收所述入射光的受光部,该电极部被设置在所述图像传感器芯片的端部的至少一部分上,向外部输出所述摄像信号,配置所述受光部,使从所述受光部的端部到芯片的端部或者到所述电极部的区域宽度根据部位而不同,所述透镜支撑部,通过具有5μm以上厚度的粘接剂,固定了所述图像传感器芯片上的至少具有最大所述区域宽度的部位和所述透镜支撑部的底面。

2.根据权利要求1所述的摄像装置,其特征在于,在所述区域宽度大时,形成大的所述透镜支撑部的底面的宽度,在所述区域宽度小时,形成小的所述透镜支撑部的底面的宽度。

3.根据权利要求1所述的摄像装置,其特征在于,在隔着所述图象传感器芯片上的所述受光部相对的两个区域中,利用所述粘接剂固定所述透镜构件的底面。

4.根据权利要求1所述的摄像装置,其特征在于,所述粘接剂,由具有热硬化特性的材料组成。

5.根据权利要求4所述的摄像装置,其特征在于,所述透镜构件,在入射所述透镜的所述入射光的表面以外区域的至少一部分中具有遮光膜。

6.根据权利要求1所述的摄像装置,其特征在于,将所述透镜支撑部的底面,围绕整个周围地使用所述粘接剂固定在所述图像传感器芯片上,所述透镜下侧中空部和所述图像传感器芯片形成的空穴部的水分浓度是10%以下。

7.根据权利要求6所述的摄像装置,其特征在于,所述空穴部是在所述中空部中填充了惰性气体后,通过所述粘接剂来密封所述透镜构件和所述图像传感器芯片的空穴部。

8.根据权利要求6所述的摄像装置,其特征在于,所述空穴部是0.5气压以下。

9.根据权利要求1所述的摄像装置,其特征在于,所述透镜构件,将成为所述入射光光路的区域以外的区域,用比成为所述光路的区域的穿透率低的材料来形成。

10.根据权利要求1所述的摄像装置,其特征在于,所述透镜构件,将成为所述入射光光路的区域以外的区域,用比成为所述光路的区域的遮光性高的材料来形成。

11.根据权利要求1所述的摄像装置,其特征在于,所述图像传感器芯片被倒装片式安装在安装基板上,利用具有遮光性的树脂材料,覆盖所述被倒装片式安装的部位以及所述透镜构件与所述图像传感器芯片的粘接部附近。

12.根据权利要求11所述的摄像装置,其特征在于,所述粘接剂,由具有光穿透性的材料组成。

13.根据权利要求1所述的摄像装置,其特征在于,所述图像传感器芯片被倒装片式安装在安装基板上,将所述透镜支撑部的下侧底面,围绕整个周围地使用所述粘接剂固定在所述图像传感器芯片上,利用具有遮光性的树脂材料,覆盖所述被倒装片式安装的部位以及所述透镜支撑部与所述图像传感器芯片的粘接部的至少一部分,通过该树脂材料以及/或者所述粘接剂来密封由在所述透镜支撑部中的所述透镜的下侧中空部与所述图像传感器芯片形成的空穴部,使其水分浓度为10%以下。

14.根据权利要求13所述的摄像装置,其特征在于,所述空穴部是在所述中空部中填充了惰性气体后,密封了所述透镜构件和所述图像传感器芯片的空穴部。

15.根据权利要求13所述的摄像装置,其特征在于,所述空穴部是0.5气压以下。

16.根据权利要求1所述的摄像装置,其特征在于,所述图像传感器芯片在其上面侧被倒装片式安装在安装基板上,所述透镜构件被粘接在所述图像传感器芯片的上面侧,所述粘接剂的厚度,比从所述图像传感器芯片的上面侧到所述安装基板的距离小。

17.一种摄像装置的制造方法,该摄像装置具备:一体地形成具有透镜以及在内部支撑该透镜的圆筒状的透镜支撑部的透镜构件,基于通过所述透镜入射的入射光处理摄像信号的图像传感器芯片,所述摄像装置的制造方法的特征在于,所述图像传感器芯片具有电极部和接收所述入射光的受光部,该电极部被设置在所述图像传感器芯片的端部的至少一部分上,向外部输出所述摄像信号;配置所述受光部,使从所述受光部的端部到芯片的端部或者到所述电极部的区域宽度根据部位而不同;在所述透镜支撑部的底面与图像传感器芯片的上表面之间涂布5μm以上厚度的粘接剂,固定了所述图像传感器芯片上的至少具有最大所述区域宽度的部位和所述透镜支撑部的底面,在进行了所述透镜的光轴调整后,使所述粘接剂硬化。

18.根据权利要求17所述的摄像装置的制造方法,其特征在于,所述粘接剂是UV硬化和热硬化并用型树脂。

说明书 :

摄像装置以及其制造方法

技术领域

[0001] 本发明涉及摄像装置以及其制造方法,更详细地说,涉及具有一体化形成透镜和支撑透镜的镜筒的透镜构件以及将通过所述透镜接收到的光转换为摄像信号的图像传感器芯片的摄像装置以及其制造方法。

背景技术

[0002] 目前,摄像装置正作为移动电话、便携终端(PDA:Personal DigitalAssistance)等的用途被广泛使用。并且,需要该摄像装置更加小型化、高功能化、高性能化。作为实现小型化的方法,例如有在文献1中所记载的摄像装置。
[0003] 图16以及图17是分别表示现有的摄像装置的剖面图、斜视图。如图16、17所示,401是设置了开口部的基板,402是具有受光面402a的摄像元件,403是含有成像透镜部
403a的光学元件,404是在摄像元件402的端子上设置的电极凸起(bump)。摄像元件402以闭塞基板401开口部的形状用面朝下的方式来安装,通过凸起404与基板401电气连接。
组装光学元件403,使其安装在基板401开口部内的空间中且在摄像装置402的上面。这里,光学元件403被组装为:通过设置在基板401上的开口部401a,安装在摄像元件402的上面部分,更具体的说安装在受光部402a以外的部分。
[0004] [专利文献1]专利3607160号公报
[0005] 可是,在上述专利文献1中所述的摄像装置中,Z轴、θ轴的光轴调整依存于具有透镜部403a的光学元件403的精度。最近的摄像装置,正朝逐步小型化、低成本、高象素化、高性能化发展。因此,要求具有透镜部403a的光学元件402、和摄像元件(传感器)402的受光面402a间的高精度安装。但是光学元件403,通常由成型来形成所以在其精度上有限制。因此,会存在这样的问题,即通过该光学元件403进行Z轴、θ轴的细微光轴调整是困难的。

发明内容

[0006] 本发明是为解决这样的问题而形成的,其目的是提供一种使用一体化形成了透镜和支撑透镜的透镜支撑部的透镜构件,可实现小型化并且高性能的摄像装置以及其制造方法。
[0007] 为了实现上述的目的,本发明的摄像装置,具备:具有透镜、和支撑该透镜的透镜支撑部的透镜构件;和基于通过所述透镜入射的入射光来处理摄像信号的图像传感器芯片;通过具有5μm以上厚度的粘接剂,将所述透镜构件固定在所述图像传感器芯片上。
[0008] 在本发明中,因为固定透镜构件和图像传感器芯片的粘接剂厚度在5μm以上,所以可以在必要的精度内实施根据制造公差等所必要的光轴调整。
[0009] 另外,所述图像传感器芯片,具有接收所述入射光的受光部、和被设置在端部的至少一部分上并将所述摄像信号向外部输出的电极部,配置所述受光部,使从所述受光部端到芯片端或者所述电极部的区域宽度根据部位而不同,所述透镜支撑部,为筒状体,在其内部支撑所述透镜,通过所述粘接剂来固定至少具有最大所述区域宽度的部位和所述底面。由此,可以通过连接至少具有最大宽度的区域和底面来维持连接强度。
[0010] 另外,所述图像传感器芯片,具有接收所述入射光的受光部、和电极部,该电极部被设置在端部的至少一部分上并将所述摄像信号向外部输出,配置所述受光部,使从所述受光部端到芯片端或者所述电极部的区域宽度根据部位而不同,所述透镜支撑部,为筒状体,在其内部支撑所述透镜,以与所述区域宽度相应的宽度来形成底面,通过所述粘接剂来固定至少除去了具有最小所述区域宽度的部位的部位和所述底面。由此,因为通过粘接剂没有固定具有最小所述区域宽度的部位与底面,所以可以防止在电极部上附有粘接剂,从而可使材料利用率提高。
[0011] 在此情况下,最理想的是所述透镜构件在通过了所述图像传感器芯片上的所述受光部的相对的区域中,利用所述粘接剂固定其底面。通过使用隔着受光部的2个区域来粘接,可以使粘接强度稳定,粘接最小限度的区域,这样可以降低在粘接工序中发生的不良,使制造合格率提高。
[0012] 另外,所述粘接剂可以由具有热硬化特性的材料组成。在此情况下最理想的是所述透镜构件可以在所述透镜表面以外的区域的至少一部分中具有遮光膜,因为具有遮光膜,所以粘接剂为例如与紫外线硬化树脂等相比具有热硬化特性的材料。
[0013] 另外,最理想的是,所述透镜支撑部,为筒状体,在其内部支撑所述透镜,以该透镜下侧中空部和所述图像传感器芯片形成的空穴部的水分浓度是10%以下。由此,即使在摄像装置的使用环境温度强烈变化的情况下,也很少担心在空穴部内产生结露等。
[0014] 此外,所述空穴部,在所述中空部中填充了惰性气体后,通过所述粘接剂来密封所述透镜构件和所述图像传感器芯片。为了使水分浓度在10%以下除了干燥空气之外,还可以使用惰性气体等。
[0015] 此外,最理想的是所述空穴部是0.5气压以下。由此可以强化透镜构件与图像传感器芯片的粘着性,并且使空穴部内的光散乱/减衰与常压相比降低。
[0016] 另外,所述透镜构件,将成为所述入射光光路的区域以外的区域,由比成为所述光路的区域的穿透率低的材料来形成,或者由遮光性高的材料来形成。由此,可以抑制或者防止从成为入射光光路的区域以外的区域混入不需要的光。
[0017] 此外,所述图像传感器芯片被倒装片式安装在安装基板上,可以利用具有遮光性的树脂材料,覆盖所述被倒装片式安装的部位以及所述透镜构件与所述图像传感器芯片的粘接部附近,通过用具有遮光性的树脂材料来覆盖所述透镜构件与所述图像传感器芯片的接合部,可以防止从该接合部混入不需要的光。
[0018] 在此情况下,所述粘接剂,可以作出具有光穿透性的材料。由于用具有遮光性的树脂材料来覆盖,所以粘接剂也可以具有光穿透性,这样拓宽粘接剂的材料选择的自由度。
[0019] 还有,所述图像传感器芯片被倒装片式安装在安装基板上,所述透镜支撑部为筒状体,在其内部支撑所述透镜,通过所述粘接剂来固定其下侧底面与所述图像传感器芯片,利用具有遮光性的树脂材料,覆盖所述被倒装片式安装的部位以及所述透镜支撑部与所述图像传感器芯片的粘接部的至少一部分,通过该树脂材料以及/或者所述粘接剂来密封由在所述透镜支撑部中的所述透镜的下侧中空部与所述图像传感器芯片形成的空间,使其水分浓度为10%以下,通过将密封空间的水分浓度做成10%以下,即使环境温度强烈变化也难以产生结露,从而可以抑制性能恶化。
[0020] 另外,所述空穴部可以在所述中空部中填充了惰性气体后,密封所述透镜构件和所述图像传感器芯片,为了将水分浓度做成10%以下除了干燥空气之外,还可以使用惰性气体等。
[0021] 此外,所述空穴部可以为0.5气压以下,由此可以强化透镜构件与图像传感器芯片的粘着性,并且使空穴部内的光散乱/减衰与常压相比降低。
[0022] 另外最理想的是,所述图像传感器芯片在其上面侧被倒装片式安装在安装基板上,所述透镜构件被粘接在所述图像传感器芯片的上面,所述粘接剂的厚度比从所述图像传感器芯片的上面到所述安装基板的距离小,由此,可以在安装基板上安装小型的图像传感器芯片以及透镜构件。
[0023] 本发明的摄像装置,具备:透镜构件,其具有透镜、和支撑该透镜的透镜支撑部;和图像传感器芯片,其具有接收通过所述透镜入射的入射光的受光部、以及将基于其受光结果而得到的摄像信号向外部输出的电极部;所述图像传感器芯片,在端部的至少一部分中形成所述电极部,配置所述受光部,使从所述受光部端到芯片端或者所述电极部的区域宽度根据部位而不同,所述透镜支撑部,为筒状体,在其内部支撑所述透镜,通过粘接剂将底面和至少具有最大所述区域宽度的部位固定。
[0024] 本发明的摄像装置,具备透镜构件,其具有透镜、和支撑该透镜的透镜支撑部;和图像传感器芯片,其具有接收通过所述透镜入射的入射光的受光部、以及将基于其受光结果而得到的摄像信号向外部输出的电极部;所述图像传感器芯片,在端部的至少一部分中形成所述电极部,配置所述受光部,使从所述受光部端到芯片端或者所述电极部的区域宽度根据部位而不同,所述透镜支撑部,为筒状体,在其内部支撑所述透镜,以与所述区域宽度相应的宽度来形成底面,通过粘接剂来固定至少除去了具有最小所述区域宽度的部位的部位和所述底面。
[0025] 本发明的摄像装置,具备:透镜构件,其具有透镜、和支撑该透镜的透镜支撑部;和图像传感器芯片,其基于通过所述透镜入射的入射光,处理摄像信号;所述透镜构件,在所述入射光入射的透镜表面以外区域的至少一部分中具有遮光膜,并通过粘接剂固定在所述图像传感器芯片上,所述粘接剂包含具有热硬化特性的材料。
[0026] 本发明的摄像装置,具备:透镜构件,具有透镜、和支撑该透镜的透镜支撑部;和图像传感器芯片,基于通过所述透镜入射的入射光来处理摄像信号;所述透镜构件,将成为所述入射光光路的区域以外的区域,用比成为所述光路的区域的穿透率低的材料来形成。
[0027] 本发明的摄像装置,具备:透镜构件,具有透镜、和支撑该透镜的透镜支撑部;和图像传感器芯片,基于通过所述透镜入射的入射光来处理摄像信号;所述透镜构件,将成为所述入射光光路的区域以外的区域,用比成为所述光路的区域的遮光性高的材料来形成。
[0028] 本发明的摄像装置,具备:透镜构件,具有透镜、和支撑该透镜的透镜支撑部;和图像传感器芯片,基于通过所述透镜入射的入射光来处理摄像信号;所述图像传感器芯片被倒装片式安装在安装基板上,所述透镜构件通过具有光穿透性的粘接剂来固定在所述图像传感器芯片上,利用具有遮光性的树脂材料,覆盖所述被倒装片式安装的部位以及所述透镜构件与所述图像传感器芯片的粘接部附近。
[0029] 本发明的摄像装置具备透镜构件,具有透镜、和支撑该透镜的透镜支撑部;和图像传感器芯片,基于通过所述透镜入射的入射光来处理摄像信号;所述图像传感器芯片被倒装片式安装在安装基板上,所述透镜支撑部为筒状体,在其内部支撑所述透镜,通过粘接剂来固定其底面与所述图像传感器芯片,利用具有遮光性的树脂材料,覆盖所述被倒装片式安装的部位以及所述透镜构件与所述图像传感器芯片的粘接部的至少一部分,通过该树脂材料以及/或者所述粘接剂来密封由在所述透镜支撑部中的透镜下侧中空部与所述图像传感器芯片形成的空间,使其水分浓度为10%以下。
[0030] 本发明的摄像装置,具备:透镜构件,其具有透镜、和支撑该透镜的透镜支撑部;和图像传感器芯片,其基于通过所述透镜入射的入射光来处理摄像信号;所述图像传感器芯片被倒装片式安装在安装基板上,所述透镜构件用粘接剂固定在所述图像传感器芯片的上面,所述粘接剂的厚度比从所述图像传感器芯片的上面到所述安装基板的距离小。
[0031] 本发明摄像装置的制造方法,在透镜构件的底面与图像传感器芯片的上面之间,涂5μm以上厚度的粘接剂,该透镜构件,具有透镜、和支撑该透镜的透镜支撑部,该图像传感器芯片,将来自所述透镜的入射光转换为摄像信号,在进行了所述透镜的光轴调整后,使所述粘接剂硬化。
[0032] 根据本发明可以提供一种使用一体化形成了透镜和支撑透镜的透镜支撑部的透镜构件,来实现小型化并且高性能的摄像装置以及其制造方法。

附图说明

[0033] 图1是表示本发明的实施方式1的摄像装置的剖面图。
[0034] 图2是表示本发明的实施方式1的摄像装置中的透镜构件的剖面图。
[0035] 图3是表示本发明的实施方式1的摄像装置中的图像传感器芯片的平面图。
[0036] 图4是表示本发明的实施方式1的摄像装置中的透镜构件的平面图。
[0037] 图5是对本发明的实施方式1的摄像装置中的图像传感器芯片的透镜构件安装位置进行说明的图。
[0038] 图6是表示刻模状况的示意图。
[0039] 图7是表示本发明的实施方式2的摄像装置中的图像传感器芯片的示意图。
[0040] 图8是表示本发明的实施方式2的摄像装置中的透镜构件的示意图。
[0041] 图9是对在本发明的实施方式2中的图像传感器芯片上安装透镜构件时的安装位置进行说明的图。
[0042] 图10是对本发明实施方式3中的透镜部安装后的连接区域进行说明的图。
[0043] 图11是表示将本发明实施方式3中的透镜构件安装在图像传感器芯片上后的状况图。
[0044] 图12是表示本发明实施方式4的摄像装置的透镜构件的示意图。
[0045] 图13是表示本发明实施方式5的摄像装置图。
[0046] 图14是表示本发明实施方式6的摄像装置斜视图。
[0047] 图15是表示本发明实施方式6的摄像装置的模式剖面图。
[0048] 图16是表示在专利文献1中记载的现有摄像装置的剖视图。
[0049] 图17是表示在专利文献1中记载的现有摄像装置的斜视图。

具体实施方式

[0050] 以下,一边参照附图一边对适合本发明的具体实施方式进行详细地说明。该实施方式使本发明适用于具备一体化形成了透镜以及镜筒的透镜构件的、易于小型化且可以高精度地接收光的摄像装置以及其制造方法。
[0051] 实施方式1
[0052] 参照图1至图6对本发明的实施方式1的摄像装置进行说明。实施方式1的摄像装置,是光轴可自动调整的传感器模块。图1是表示本实施方式的摄像装置的剖面图。如图1所示,摄像装置1被构成为:具有透镜构件10和图像传感器芯片(chip)20,通过具有5μm以上厚度的粘接剂(粘接部)30,将所述透镜构件10固定在所述图像传感器芯片20上,透镜构件10与图像传感器芯片20没有接触。透镜构件10具有透镜10a、和支撑该透镜10a的透镜支撑部10b。图像传感器芯片20,将来自透镜10a的入射光转换为摄像信号并向外部输出。
[0053] 图2是表示透镜构件的剖面图,图3是表示图像传感器芯片的平面图。如图1以及图2所示,透镜构件10具有会聚入射光的透镜10a,与透镜10a一体化形成了作为支撑该透镜10a用的镜筒的透镜支撑部10b。该透镜构件10例如可以通过成型来形成。透镜10a例如由非球面凸面镜构成,具有使入射光在图像传感器芯片20的表面上成像的功能。该透镜10a例如由塑料及玻璃构成。
[0054] 透镜支撑部10b,俯视为矩形的筒状体,在其上侧内部支撑透镜10a。透镜10a的下侧为中空部10c。并且,下侧底面10d与图像传感器芯片20相对,底面10d的一部分或者全部,用粘接剂30与图像传感器芯片20的后述的粘接区域粘接、固定。中空部10c在本例中,俯视为矩形。
[0055] 此外,在本实施方式中,透镜支撑部10b作为俯视为矩形筒状体来说明,但是例如也可以是圆筒状。另外不限于筒状只要是能在图像传感器芯片20上支撑透镜10a的形状就可以。即,可以构成为用1个或者多个支撑点来支撑透镜10a。另外,透镜构件10作为具备1个透镜10a来说明,但是也可以做成在透镜构件10中具有多个透镜10a的结构。
[0056] 另外,在透镜构件10的透镜10a上面,通过AR涂层来形成用于使反射光不明显的反射防止膜11。该反射防止膜11,使从透镜10a的上面入射的光形成在出射的透镜10a的下面侧。另外,在透镜10a的下面形成的反射防止膜11上,通过IR涂层来切断紫外/红外线,形成仅可视光透过的膜(以下称为红外吸收膜。)12。通过这些反射防止膜11以及红外吸收膜12可以使摄像装置1的性能提高。此外,在本实施方式中,仅在作为透镜10a的光的出射侧的下面侧形成红外吸收膜12,不过也可以形成在作为透镜10a的光的入射侧的上面。另外,为了除去噪音等使性能更加提高,可以在透镜10a的上面以及/或者下面涂具有低通滤波功能的材料等。
[0057] 此外,在透镜构件10的透镜10a以外的上面以及侧面,形成遮光膜13。由此,透镜构件10可以不取入来自透镜10a上面的入射光以外的不需要的光。
[0058] 图像传感器芯片20具有矩形的受光部22,该受光部22如图1以及图3所示,在俯视为矩形的例如由硅基板构成的基台21表面上形成,接收来自透镜10a的入射光。受光部22由CCD元件或者CMOS元件构成。另外,在基台21表面的周边(4边)上形成电极部23。
此外,在本实施方式中,作为在基台21的全部4个边上形成电极部23来说明,但是电极部
23例如也可以仅在1边上形成。另外,在与受光部22同一面上具有信号处理电路(DSP)(未图示)。
[0059] 该图像传感器芯片20将在受光面22上用透镜10a会聚的光转换为电信号(摄像信号),所述信号处理电路对该电信号进行适当增幅处理、噪音除去处理等各种信号处理,该信号通过电极部23向外部输出。电极部23是与信号处理电路电气连接的输入输出端子。该电极部23例如与构成移动电话、便携终端(PDA)、卡式照相机(card camera)等的布线基板电连接。信号处理电路,形成在从受光部22的4边到电极部23的区域上,在其上面形成保护膜。
[0060] 这里,本实施方式的图像传感器芯片20,配置受光部22,使具有从受光部22的4边到形成在基台21的周围4边上的电极部23的各自距离A~D的区域(以下成为基板区域。)中的至少1个的距离(以下,称为区域宽度。)比其它的大。在本例中,距离D比其它距离A~C大。
[0061] 在图像传感器芯片20中,当将受光部22配置在其中央部时,上述区域宽度不能取大,而导致上述信号处理电路的电路设计变得麻烦。另外,当确保用于安装信号处理电路的区域(宽度)时,将使图像传感器芯片20大型化。为了解决此问题,在本实施方式中,使从受光部22到电极部23的距离A~D分别不同,其结构满足下述条件,A<B<C<D。这样将受光部22配置在从中心稍稍偏移的位置,使各距离不同,这样就可以取大一个距离例如本例中取大距离D,就可以把具有距离D的基板区域设计得较广。
[0062] 图像传感器芯片20,如上所述在从该受光部22的4边到电极部23的基板区域中形成上述信号处理电路,但是该区域还成为与透镜构件10的底面10d粘接的基板区域。即,可以通过在信号处理电路上形成表面保护膜,并在其上粘接固定所述透镜构件10,来有效利用信号处理电路的形成区域上方,并且可以通过在图像传感器芯片20上利用粘接剂30固定透镜构件10,来实现作为整体元件的小型化。
[0063] 另外,通过精心配置受光部22,可以不用增加图像传感器芯片20的表面区域,就能确保很宽的基板区域,可以使上述信号处理电路的安装变得容易。此外,虽然在本例中与距离A的基板区域粘接的透镜支撑部10b的底面10d的宽度变窄,但是与具有距离D的区域相对的透镜支撑部10b的底面10d的宽度可以足够宽,这样可以即使进行了小型化也能确保透镜构件10的强度,并且可以维持必要的粘接强度。此外,如后面所述,透镜支撑部10b的底面10d中的某一边以上可以与图像传感器芯片20粘接。在本例的情况中,在仅粘接1边的情况下,从粘接强度的观点来说,最好使距离D的区域与底面10d粘接。
[0064] 对以上这样构成的摄像装置的制造方法进行说明。图4是表示透镜构件的平面图,图5是说明图像传感器芯片的粘接区域的图,图6是表示刻模状况的模式图。
[0065] 成型构成透镜构件10的透镜基台,在其上面形成3个位置的、在安装到图像传感器芯片20时的位置对准标记14(参照图4)。该位置对准标记14可以形成为对透镜10a具有遮光性。此外,可以不是形成在透镜基台上而是形成在遮光膜13上。另外,位置形成标记14可以形成2个位置以上。还有,透镜基台也可以作为具有多个透镜来成型。
[0066] 并且,在构成成像透镜部10a的部位以外的透镜基台的上面以及侧面,通过蒸镀来形成遮光膜。在成像透镜部10a的上面以及下面,蒸镀AR涂层来形成反射防止膜11,在下面蒸镀IR涂层来形成红外吸收膜12。如上所述,在本实施方式中,仅在透镜10a的下面形成红外吸收膜12,不过也可以形成在上面(入射侧)。这样来形成透镜构件10。
[0067] 接着,以所述位置对照标记14为基准,在形成了多个受光部22以及电极部23的晶片(wafer)20a上装配透镜构件10。基台例如由硅板组成,形成多个受光部22以及与其对应的电极部23等,装配多个透镜构件10。
[0068] 这里,透镜构件10的装配精度对摄像装置的性能有很大影响。因此在本实施方式中,使用粘接剂30来粘接透镜构件10和晶片20a,此时,进行光轴调整之后使粘接剂硬化。
[0069] 光轴调整,例如有以下方法。例如,将来自透镜构件10的入射光用受光部22接收并转换为摄像信号,在电极部23上安放探针(probe)来取出该摄像信号,可以根据该摄像信号的好坏来调整透镜构件10的装配位置。
[0070] 另外,也可以从装配的透镜构件10的上面进行光学观测,来调整装配位置,使透镜10a的焦点一致。此外,通过透镜构件10的事先检查来预先求出XYZθ(θ:透镜的中心轴与光轴的相对角)的安装位置的信息,也可以基于该安装位置信息(光轴位置信息)来调整装配位置。
[0071] 涂于晶片20a和透镜构件10之间的粘接剂,可以使用UV硬化和热硬化并用型树脂。这里,在作为具有如图3这样的受光部22以及电极部23的配置的基台21的情况下,如图5所示,可以将与从受光部22到电极部23的各基板区域的宽度(距离)A~D的大小相应的宽度A′~D′,作为利用粘接剂粘接的粘接宽度。透镜构件10的透镜支撑部10b的底面10d,以与该宽度A′~D′相一致的宽度来形成。由此,在最大的距离D中,可以确保用于得到必要的粘接强度的足够宽的宽度D,与该区域相对的透镜构件10的底面10d的宽度也可以为足够大,这样作为镜筒的强度可以确保足够的厚度。
[0072] 在具有与基板区域对应的粘接宽度的透镜支撑部10b的底面10d上涂粘接剂,该基板区域具有区域宽度A~D,如上所述实施光轴调整。此时,粘接剂必需涂作为可光轴调整的足够厚度的5μm以上的厚度。
[0073] 这样在透镜构件10的底面(粘接面)10d上涂了粘接剂之后,由装配工,使用3个位置对准标记14和在晶片20a表面上形成的标记,来进行位置对准。并且,在干燥空气氛围中,将透镜构件10向例如表示上述安装位置信息的安装位置进行装配等,并执行光轴的自动调整。接着通过UV照射来进行准硬化,因此在整个晶片20a上以准硬化状态来安装透镜构件。并且,过热整个晶片20a,用热硬化来使粘接剂真正硬化,由此使透镜构件10和图像传感器芯片20固定。最后,如图6所示,通过刻模装置40来切断在晶片20a上安装的多个透镜构件10,通过各个分割来制造摄像装置1。
[0074] 这里,由于在上述干燥空气中进行装配,所以最好将利用粘接剂30来密封的中空部10c和晶片20a(图像传感器芯片20)的空穴部的水分浓度控制在10%以下。在变化了环境温度的情况下,当空穴部的水分浓度高时在空穴部内部生成结露,这将导致受光部22的性能恶化或者故障。另一方面,因为空穴部的水分浓度成为10%以下,所以即使环境温度变化在内部也不会产生结露。因此,空穴部的水分浓度最好在10%以下。
[0075] 另外,如上所述,使介于成为透镜构件10粘接面的底面10d和晶片20a(图像传感器芯片20)的粘接区域之间的粘接剂30的厚度在5μm以上。预先由装配工调整透镜构件10,使其在UV硬化/热硬化后安装在根据透镜构件10的检查而得到的安装位置上。因为透镜构件10各自具有最适合于自己的安装位置,所以在晶片内不同的位置上调整透镜构件10,使其各自单独地成为自己的安装位置。
[0076] 具体地进行说明。在安装位置是后焦距812μm,θ=1°的情况下,当取透镜构件10的空穴部10c的侧壁(脚)的长度L=790±10μm(参照图1),后焦距距离为817±10μm,装配工安装制度为±2μm的精度时,透镜构件10的底面10d,用具有5μm以上厚度的粘接剂固定在图像传感器芯片20的面上,所以可以进行所述光轴调整的安装。
即,通过具有在将透镜构件10安装在图像传感器芯片20上时的光轴调整所需的距离以上的厚度的粘接剂30,将透镜构件10粘接在图像传感器芯片20上,因此可以通过制造公差来进行产生偏移的光轴的调整。
[0077] 在本实施方式中,因为从图像传感器芯片20的表面通过粘接剂30以上浮了5μm以上厚度的状态来安装透镜构件10,所以可以在装配工精度内进行光轴调整。因此,可以实现摄像装置品质的稳定化。即,通过具有5μm以上厚度的粘接剂30,来吸收制造公差的光轴偏移,因此可以实现适合于小型化及低成本化、高象素化及高性能化的、透镜构件10的高精度安装。
[0078] 另外,在本实施方式中,对使用透镜构件10的检查数据来求安装位置并安装的情况进行了说明,但是也可以不使用透镜构件10的数据,通过上述的其它方法安装。即,在安装透镜构件10时,从透镜10a的上面入射光,一边监控从电极部23取出的传感器信号一边进行光轴调整,或者一边从透镜10a上面监控受光部22的焦距调整一边进行光轴调整,因此可以进行更高精度安装。
[0079] 另外,本实施方式中摄像装置1,被做成用晶片20a(图像传感器芯片20)和粘接剂30来密封透镜构件10的中空部10c这样的构造,还使该空穴部的水分浓度为10%以下。可以通过使空穴部成为密封构造,来防止由于使用摄像装置的环境的灰尘等而导致的性能恶化。另外,还可以通过使水分浓度在10%以下来防止针对环境变化产生的结露等而导致的性能恶化。
[0080] 另外,在本实施方式中,通过在干燥空气中利用粘接剂来固定,而使空穴部的水分浓度成为了10%以下,不过也可以在氩气或氮气等惰性气体范围中同样地形成密封构造,使水分浓度为10%以下。
[0081] 此外,在将透镜构件10固定在图像传感器芯片20上的情况下,为了小型化,当然需要使用小型的图像传感器芯片20。该情况下,除了配置为不受光学影响之外,还要考虑连接端子的配置,而且必需决定其固定位置,即,图像传感器芯片20上的受光部22的配置位置。在本实施方式中,设计受光部22,使晶片20a(图像传感器芯片20)中的传感器受光部22到电极部23的距离成为A<B<C<D,将相应于其基板区域的宽度与透镜构件10粘接的粘接宽度设为A′<B′<C′<D′,所以通过宽度D′可以足够确保粘接面积,因此可以确保粘接强度以及透镜支撑部10b的强度。并且,因为确保了较宽的距离D,所以即使在小型化的情况下,也可以使信号处理电路的设计变得容易,由此可以提供便于制造的摄像装置。
[0082] 还有,在本实施方式中,透镜构件10预先具有遮光膜13。在上述的专利文献1中公开了为了遮光在将透镜构件进行基板安装后涂遮光材料的方法,不过通过使用附有遮光膜的透镜构件10,也可以使制造工艺简单化。此情况下,当在用粘接剂来固定之际使用通过UV硬化树脂等的光学能来进行硬化的粘接剂时,由于在遮光膜上夺去了能量,而导致粘接剂难以硬化。为了解决此问题,在本实施方式中,作为粘接剂30使用含有热硬化特性的材料,因此即使透镜构件10具有遮光膜13也可以充分硬化,可以提供可靠性高的摄像装置。
[0083] 实施方式2
[0084] 以下,参照图7~图9,对本发明实施方式2的摄像装置进行说明。本实施方式调整用透镜构件和图像传感器芯片形成的空穴部内的气压/水分浓度。图7、图8是分别表示在本实施方式2中使用的图像传感器芯片以及透镜构件的示意图,图9是说明在安装透镜构件时的粘接区域的图。
[0085] 本实施方式的图像传感器芯片120,在基台121的相对的2边上仅具有电极部123。从受光部22到电极部123或者基台21的端部的长度A~D为A<B<C<D等,其它的结构与实施方式1相同。另外,本实施方式的透镜构件110,基本上成为与实施方式1的透镜构件10相同的构成。形成透镜构件110的透镜支撑部110b的底面110d的宽度,当底面110d的4边的宽度被设为A″~D″时,使成为A″<B″<C″<D″。另外,当分别涂在底面110d的4边的粘接剂的宽度被设为A′~D′时,成为A′<B′<C′<D′,这些宽度具有A′<A″、B′<B″、C′<C″、D′<D″的关系,涂粘接剂,使其不溢出底面
110d。
[0086] 此外,中空部110c的透镜侧(上方)的宽度成为比底面110d的宽度宽这样,即支撑中空部110c的透镜10a的部位的厚度成为比底面110d的厚度厚。根据此结构,使透镜支撑部10b为尽可能厚,并且与图像传感器芯片120粘接的底面10d的宽度变小,因此可以确保透镜支撑部110d的强度提高,并且作为模块整体可以实现小型化。其它的结构是与实施方式1相同,对相同的构成要素标注同一符号,省略其详细的说明。
[0087] 该透镜构件110的底面110d,如图9所示,俯视为如110e这样。图像传感器芯片120,从受光部22到电极部123或者基台21的端部的区域宽度为A<B<C<D等,配置透镜构件110,使与其对应。此时,在底面110d上对21a所示的区域(粘接区域)涂粘接剂,通过该粘接剂,粘接透镜构件110和图像传感器芯片120。如上所述,粘接区域也与上述A<B<C<D的宽度对应,分别成为A′<B′<C′<D′。
[0088] 这里,在本实施方式的摄像装置的制造方法中,在透镜部安装时不是干燥空气氛围,而是通过在真空室内进行等来在真空氛围中安装。其它的制法可以与实施方式1相同。即,在成为涂粘接剂并进行了光轴调整的安装位置之后,使涂后的粘接剂硬化并实现高精度的定位。
[0089] 根据本实施方式,除了取得与实施方式1相同的效果之外,还可以通过在真空氛围中进行安装,将空穴部的水分浓度抑制在10%以下,将内部气压抑制在0.5atm以下,该空穴部是用粘接剂密封了中空部110c和图像传感器芯片120而形成的。
[0090] 由此,与实施方式1相同,可以防止由针对环境中的温度变化而产生的结露所导致的性能恶化。另外,通过使透镜空穴部内的压力成为了0.5atm以下,可以提高透镜构件110和图像传感器芯片120的粘着性,并可以提供可靠性高的摄像装置。此外,在本实施方式中对成为0.5atm以下的情况进行了说明,不过也可以做成比其低的压力。另外,只要中空部的气压至少比常压小,就可以使透镜构件110和图像传感器芯片120的粘着性提高。
[0091] 另外,在将透镜构件110固定在图像传感器芯片120上,使透镜构件110的空穴部被密封这样情况下,由于空穴部的水分浓度高以及温度变化而导致结露,因此出现了摄像装置的性能恶化的问题。另外,在不密封空穴部的情况下,除了同样的问题之外,还产生由于灰尘等混入而导致摄像装置的性能恶化这样的问题。对此,在本实施方式中作为密封结构,通过使透镜空穴部内的压力成为0.5atm以下,与常压的情况相比可以抑制在空穴部中的光散乱/衰减,可以提供更高性能的摄像装置。此外,在使粘接剂硬化的情况时,有气体的产生量增多的情况,当在常压下进行透镜部的安装时,摄像装置的透镜空穴部变为高压,这有可能成为可靠性下降的主要原因,但是在本实施方式中,因为在真空状态下安装透镜构件110,所以可以抑制由在粘接剂硬化时产生的气体而导致透镜空穴部内的气压上升。
[0092] 此外,在本实施方式中,将透镜构件110的底面110d的宽度设为A″<B″<C″<D″。因此,与全部成为相同宽度的情况相比,可以充分地确保透镜构件110与图像传感器芯片120的粘接强度以及透镜构件110的支撑部110d的强度,可以提供可靠性高的摄像装置。
[0093] 此外,当为了小型化而使透镜支撑部110d的厚度变窄时,不能确保透镜支撑部110d的强度。为了解决此问题,在本实施方式中,在透镜构件110的透镜支撑部110d中,透镜支撑部110d的厚度为从底面侧到上侧。由此,可以一边将粘接部保持在必要最小限度的宽度内,一边使透镜构件10的强度提高或者维持,还可以提供可靠性高的摄像装置。
[0094] 此外,在图9中,在21a中所示的粘接宽度A′~D′形成为比透镜构件底面110d的宽度(A″~D″)窄(A′<A″、B′<B″、C′<C″、D′<D″),不过也可以使粘接宽度成为比底面110d的宽度大(A′>A″、B′>B″、C′>C″、D′>D″)。
[0095] 实施方式3
[0096] 参照图10、11对本实施方式3的摄像装置进行说明。图10是说明透镜部安装后的粘接区域的图。另外,图11是表示将透镜构件安装在图像传感器芯片上之后的情况的示意剖面图。本实施方式的摄像装置的图像传感器芯片220与实施方式1同样,具有受光部22和在4边上形成的电极部23。这里,设计受光部22与4边的电极部23之间的距离,使其分别为A<B<C<D。这里,具有距离A、C的区域隔着受光部22并相对,具有距离B、D的区域隔着受光部22并相对。即,成为与受光部22相对的一区域宽度(距离)A、C比另一相对区域宽度(距离)B、D小。
[0097] 透镜构件10具有与实施方式1相同的结构。这里,与具有距离A~D的基板区域对应,透镜构件10的底面210d也同样形成为其4边的宽度成为A″<B″<C″<D″。并且,在本实施方式中,图像传感器芯片220仅仅连接在具有最宽距离D″的底面、和与该底面通过受光部22相对的具有距离B″的底面。即,在具有距离D、B的基板区域上仅形成粘接区域221a,该区域与透镜构件10和图像传感器芯片220粘接固定。因此,粘接剂仅涂在距离B、D的基板区域上,不涂在距离A、C的基板区域上。由此,如图11所示,在位于距离A、C的基板区域上的底面210d和图像传感器芯片220之间,形成间隙。此时,粘接剂与实施方式1相同,最好涂5μm以上的厚度,因此上述间隙也最好为5μm以上。可以通过该粘接剂的厚度或者间隙来吸收制造公差,在进行正确的光轴调整之后将透镜构件10安装在图像传感器芯片220上。
[0098] 另外,在本实施方式的摄像装置的制造方法中,在将透镜构件10向图像传感器芯片220进行安装的工序中,不用进行气压或气体氛围等气体调整地进行安装。其它的制造工序与实施方式1相同。
[0099] 在本实施方式中,仅将透镜构件10的4边的底面中的2边与图像传感器芯片220粘接。由此,即使使图像传感器芯片小型化并作为粘接面积具有窄边的图像传感器芯片,也可以利用其以外的边来与透镜构件连接。另外,通过将粘接的部分做成仅4边中相对的2边,可以使粘接面积变小。因此可以尽量不产生粘接不良等,可以提供可靠性高的摄像装置。此外,因为没有用粘接剂来密封透镜构件10的中空部10c和图像传感器芯片20,所以可以在粘接剂硬化时使用气体产生量大的粘接剂。由此,可以使粘接剂材料的选择及制造过程中的自由度提高。
[0100] 实施方式4
[0101] 参照图12对本实施方式4的摄像装置进行说明。图12是表示本实施方式的摄像装置的透镜构件的示意图。在上述的实施方式1至实施方式3的透镜构件中,用都具有光透过性的材料形成了透镜以及透镜支撑部,不过需要设计为:形成遮光膜等,向透镜支撑部的入射光作为不用光不到达受光面。因此,在本实施方式中,如图12所示,在透镜构件10中仅由具有光穿透性的材料形成视场角的光线通过的部分,即,成为来自透镜310a的入射光的光路的部位,将其它部位即透镜支撑部310b进行由比透镜310a遮光性高的材料形成的2色成型。具有遮光性的材料,可以在具有光穿透性的材料上混入遮光材料。
[0102] 在本实施方式中,透镜支撑部310b由具有不透过光的遮光性的材料构成,因此可以削减不用光,尤其削减由视场角外的光产生的杂光(flare)或双重图像(ghost),与形成遮光膜的情况相同可以提供高性能的摄像装置。另外,在本实施方式中,透镜支撑部310b作为使用具有遮光性的遮光材料的构件来进行了说明,利用低穿透率材料,即使吸收向透镜支撑部310b入射的光也可以取得相同的效果。
[0103] 实施方式5
[0104] 参照图13对本发明实施方式5的摄像装置进行说明。图13是表示在移动电话等的母板基板上安装的摄像装置101的图。如图13所示,本实施方式的摄像装置101,在与实施方式1相同的摄像装置中,使用在图像传感器芯片20的电极部23上形成的焊凸50,通过图像传感器芯片20与母板基板52上的布线53进行FC(flip chip)连接来进行电连接。因此,在凸度50周边的区域填充底部填充胶(underfill)51。通过底部填充胶51来吸收在焊锡接合部上产生的应力,缓和加给焊凸50的压力。
[0105] 这里,在本实施方式的摄像装置101中,底部填充胶51由具有遮光性的材料组成。并且,填充底部填充胶51,使其不仅覆盖焊凸50的周边区域,还覆盖透镜构件10与图像传感器芯片20的粘接部。此外,考虑到连接后的焊凸50的高度再进行FC连接,因此成为图像传感器芯片20和母板基板52之间的距离h2比图像传感器芯片20与透镜构件10之间的距离、即粘接剂(粘接部)130的高度h1大这样的结构。
[0106] 这里,在利用具有光穿透性的粘接剂将可遮光的透镜部固定在图像传感器芯片20上的情况下,或者具有一部分间隙的情况下,产生由于粘接剂或者来自间隙的不用光而导致摄像装置的性能恶化这样的问题。尤其混入视场角外的光这样的情况成为问题。为了解决该问题,在本实施方式中,因为将在FC连接中使用的底部填充胶51作为遮光性覆盖粘接剂130,所以可以防止在受光部22中混入无用光。
[0107] 例如,在实施方式1所示的摄像装置中,在将粘接剂30作为由具有光穿透性的材料组成的粘接剂来使用的情况下,从其粘接部混入不用光,导致摄像装置的性能降低。粘接剂的选择需要在考察了粘接硬度、硬化方法、粘接剂的收缩率、粘接剂硬化时的气体产生量等很多的参数之后再进行选择,最理想的是尽量减少这些应该考虑的参数,使材料选择的自由度变大。于是,如本实施方式这样使用具有遮光性的底部填充胶51,因此在固定部的粘接剂中,粘接部材料的选择自由度变大,且无需考虑有无光穿透性。
[0108] 另外,由于从图像传感器芯片20到母插件基板52的距离比从图像传感器芯片20到透镜构件10的距离h1大,所以可以防止粘接剂130与母板基板52接触。因此,可以最大限度地活用从电极部23到安装了透镜构件10的区域,所以即使是小型的摄像装置也可以装配。结果,使安装了摄像装置的母插件小型化,因此可以实现使用该母板的移动电话等的小型化。
[0109] 实施方式6
[0110] 以下,参照图14以及15对本发明实施方式6的摄像装置进行说明。图14以及图15是分别表示本实施方式的摄像装置201的斜视图、示意剖面图。
[0111] 在本实施方式中,与将摄像装置的图像传感器芯片20、FC连接到母插件基板上的实施方式5不同,是将图像传感器芯片20向柔性印刷(flexibleprint)板(FPC)60进行FC连接。
[0112] 由此,可以简单地进行摄像装置201的电连接。在上述实施方式5中,需要FC连接到移动电话等的母板基板上,但是在本实施方式中,可以与母板基板进行连接器(connector)连接,由此可能吸收FC连接的材料利用率。即,在直接FC连接到母板基板上的情况下,当FC连接的材料利用率差时全体母板成为不合格品,导致高成本化。与此相对,如果将摄像连接到FCP上时,可以仅将合格品的摄像装置安装FCP连接到母板上,这样不会使材料利用率恶化,可以在本质上提供低价格的摄像装置。
[0113] 另外,摄像装置201为与实施方式3相同的结构,在向FPC基板进行FC连接时,在干燥空气氛围内,通过填充可遮光的底部填充胶并密封中空部10c与图像传感器芯片20,来使透镜空穴部的水分浓度在10%以下。通过这样的结构,可以防止针对在使用本摄像装置201的环境中的温度变化而产生结露所导致的性能恶化。这样,事先做成了在透镜构件10与图像传感器芯片20进行粘接时没有密封空穴部这样的结构,不过也可以在此后的FC连接时再进行密封。在此情况中也可以取得与上述实施方式2相同的效果。
[0114] 此外,显而易见也可以在不是干燥空气而是氩气或氮气等惰性气体的氛围、或者真空氛围中形成做成密封构造。另外,水分浓度,在以防止环境温度变化而产生的结露为目的的情况下,可以按照摄像装置的使用环境来进行适当调节。例如,如果是水分浓度在10%以上也不产生结露这样的使用环境,则可以是10%以上,另外还可以做成例如0.5%等低水分浓度。
[0115] 此外,显而易见本发明不仅限于上述的实施方式中,在不脱离本发明要点的范围中可以进行各种变更。例如,上述的实施方式1至6可以做成适当地组合1或2个以上。