产生风味稳定饮料的大麦转让专利

申请号 : CN200580015328.X

文献号 : CN1981041B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 克劳斯·布雷达姆奥利·奥尔森伯吉特·斯卡德豪奇芬恩·洛克索伦·克努森莱恩·M·贝克

申请人 : 卡尔斯伯格公司

摘要 :

本发明提供了LOX-1无效大麦和它产生的植物产品,例如利用合成脂肪酸转换酶脂加氧酶-1有缺陷的大麦颗粒制造的麦芽。所述酶解释说明了与亚油酸转化成脂加氧酶路径代谢物—9-氢过氧十八碳二烯酸相关的主要活性,通过更进一步地酶反应或自发反应,9-氢过氧十八碳二烯酸可以导致反式2-壬烯醛的出现。本发明使啤酒工人能够生产即使在延期储存饮料之后,仍缺乏可检测的反式2-壬烯醛特异异味的啤酒。

权利要求 :

1.大麦植物细胞,其在LOX-1基因中具有导致完全丧失功能的突变,其中所述突变生成编码由下述LOX-1 N-末端片段组成的LOX-1多肽形式的基因,该LOX-1 N-末端片段包含如SEQ ID NO:3所示的野生型大麦LOX-1的最多665个N-末端氨基酸,且其中该大麦细胞不是繁殖材料。

2.权利要求1的大麦植物细胞,其中所述编码LOX-1的基因包含早熟无义密码子,早熟无义密码子位于所述起始密码子下游的最多665个密码子处。

3.权利要求1的大麦植物细胞,其中编码所述植物细胞的LOX-1的基因包含无义密码子,所述密码子对应于SEQ ID NO:1的碱基no.s 3572-3574。

4.权利要求1-3中任一项的大麦植物细胞,其中编码所述植物细胞的LOX-1的基因包含SEQ ID NO:1的3574位点处G至A的替换。

5.权利要求1的大麦植物细胞,其中编码所述植物细胞的LOX-1的基因包含SEQ ID NO:5的2311位点处G至A的替换。

6.权利要求1的大麦植物细胞,其中所述LOX-1基因包含:(i)对应于SEQ ID NO:1的碱基no.s 3572-3574的无义密码子;或(ii)SEQ ID NO:5的碱基no.2311位点处的G至A的替换。

7.包含权利要求1-6任一项的大麦植物细胞的组合物。

8.包含加工的大麦植物或其部分的磨碎的麦芽组合物,其中所述大麦植物在LOX-1基因中具有突变,所述突变生成编码由下述LOX-1N-末端片段组成的LOX-1多肽形式的基因,该LOX-1N-末端片段包含如SEQ ID NO:3所示的野生型大麦LOX-1的最多665个N-末端氨基酸。

9.权利要求8的磨碎的麦芽组合物,其中LOX-1基因中的突变是(a)导致对应于SEQ ID NO:1的碱基no.s 3572-3574的无义密码子的突变,或(b)SEQ ID NO:5的碱基no.2311位点处的G至A的替换。

10.权利要求8或9的磨碎的麦芽组合物,其中所述大麦植物的所述部分是颗粒。

11.利用大麦植物或其部分,或利用从所述大麦植物或其部分或其混合物制备的麦芽组合物制备的麦芽汁组合物,所述大麦植物在LOX-1基因中具有导致完全丧失功能的突变,所述突变生成编码由下述LOX-1N-末端片段组成的LOX-1多肽形式的LOX-1基因,该LOX-1N-末端片段包含如SEQID NO:3所示的野生型大麦LOX-1的最多665个N-末端氨基酸。

12.权利要求11的麦芽汁组合物,其中所述LOX-1基因中的突变是根据权利要求1-6中任一项的突变。

13.权利要求11的麦芽汁组合物,其中所述大麦植物的所述部分是颗粒。

14.权利要求11的麦芽汁组合物,其中所述麦芽组合物是权利要求8-10中任一项的麦芽组合物。

15.权利要求11-14中任一项的麦芽汁组合物,其中利用酶组合物或酶混合剂组合物制备所述组合物。

16.从(i)包含权利要求1-6中任一项的大麦植物细胞的组合物和(ii)权利要求8-10中任一项的磨碎的麦芽组合物的混合物制备的组合物。

17.从权利要求16的组合物制备的麦芽汁组合物或饮料。

18.具有稳定感官品质的饮料,其中所述饮料是通过加工大麦植物或其部分获得的,所述大麦植物在LOX-1基因中具有导致完全丧失功能的突变,所述突变生成编码由下述LOX-1 N-末端片段组成的LOX-1多肽形式的LOX-1基因,该LOX-1N-末端片段包含如SEQ ID NO:3所示的野生型大麦LOX-1的最多665个N-末端氨基酸。

19.权利要求18的饮料,其中所述LOX-1基因中的突变是根据权利要求1-6中任一项的突变。

20.权利要求18的饮料,其中所述饮料是啤酒。

21.权利要求18的饮料,其中所述饮料是利用从所述大麦植物的颗粒制备的麦芽制备的。

22.权利要求18的饮料,其中所述饮料是利用从大麦植物或其部分制备的麦芽汁组合物,或者从所述大麦植物或其部分制备的麦芽组合物制备的。

23.权利要求18的饮料,其中所述饮料是从未发芽的大麦植物或其部分制备的。

24.权利要求18-23中任一项的饮料,其中所述饮料是非发酵饮料。

25.权利要求18-23中任一项的饮料,所述饮料内9,12,13-三羟基十八碳烯酸与9,

10,13-三羟基十八碳烯酸比例最大是1.8。

26.利用大麦植物或其部分生产

(i)食物组合物;或

(ii)饲料组合物;或

(iii)香味原料组合物;或

(iv)(i)到(iii)的任何组合的方法,所述大麦植物在LOX-1基因中具有导致完全丧失功能的突变,所述突变生成编码由下述LOX-1N-末端片段组成的LOX-1多肽形式的LOX-1基因,该LOX-1N-末端片段包含如SEQID NO:3所示的野生型大麦LOX-1的最多665个N-末端氨基酸。

27.包含大麦植物或其部分的食物组合物、饲料组合物或香味原料组合物,所述大麦植物在LOX-1基因中具有导致完全丧失功能的突变,所述突变生成编码由下述LOX-1N-末端片段组成的LOX-1多肽形式的LOX-1基因,该LOX-1N-末端片段包含如SEQ ID NO:3所示的野生型大麦LOX-1的最多665个N-末端氨基酸。

28.生产具有稳定感官品质的饮料的方法,所述方法包括步骤:(i)制备包含大麦植物或其部分的组合物,所述大麦植物在LOX-1基因中具有导致完全丧失功能的突变,所述突变生成编码由下述LOX-1N-末端片段组成的LOX-1多肽形式的LOX-1基因,该LOX-1N-末端片段包含如SEQ ID NO:3所示的野生型大麦LOX-1的最多665个N-末端氨基酸;

(ii)将(i)的组合物加工成饮料;

从而获得具有稳定感官品质的饮料。

29.权利要求28的方法,其中步骤(i)包括从所述大麦植物或其部分的颗粒制备麦芽组合物。

30.权利要求28和29中任一项的方法,其中该方法更进一步地包含与LOX抑制剂一起温育。

31.权利要求28的方法,其中将组合物加工成饮料包括糖化步骤。

32.权利要求31的方法,其中在所述糖化步骤期间添加LOX抑制剂。

33.产生没有LOX-1活性的麦芽组合物的方法,所述方法包括步骤:(i)提供来自大麦植物的颗粒,所述大麦植物在LOX-1基因中具有导致完全丧失功能的突变,所述突变生成编码由下述LOX-1N-末端片段组成的LOX-1多肽形式的LOX-1基因,该LOX-1N-末端片段包含如SEQ ID NO:3所示的野生型大麦LOX-1的最多665个N-末端氨基酸;

(ii)浸泡所述颗粒;

(iii)在预先确定的条件下使浸泡的颗粒萌发;

(iv)热处理萌发的颗粒;

从而制造没有LOX-1活性或LOX-1活性低的麦芽组合物。

说明书 :

产生风味稳定饮料的大麦

[0001] 1.发明领域
[0002] 本发明涉及植物生物技术,它公开了脂加氧酶(LOX)LOX-1合成有缺陷的大麦和麦芽,因此为产业使用提供了一种新原料。例如:所述原材料可以用来制造没有或仅有可忽略量的异味(off-flavor)化合物——反式2-壬烯醛(T2N)的一种新的有特色的风味稳定啤酒。所述T2N由LOX路径中的酶的依次作用形成,其中LOX-1代表主要活性,它使亚油酸双氧化产生9-过氧氢十八碳二烯酸(9-HPODE)。本发明的大麦和植物产品显示出无9-HPODE或仅有可忽略量的9-HPODE。另外,本发明涉及利用所述大麦和/或麦芽产生的饮料。
[0003] 2.发明背景
[0004] 与现代啤酒生产相关的研究目标之一是确定影响啤酒质量和稳定性的分子因素。大部分啤酒是以大麦(Hordeum vulgare,L)为基础生产的。大麦是单子叶作物,它生长在世界上的许多地方,这不仅是因为它作为工业产品来源,例如啤酒来源的经济重要性,而且也因为它是动物饲料的来源。美国现在是麦芽大麦(malting barley)的领先生产者之一,占世界农作物的大约13%;加拿大、澳大利亚和欧洲合在一起占生产的大约70%(Bios Intern.,2001)。
[0005] 为了研制出农艺学上可靠的稳定高产的载培品种,大麦育种者不断努力。为了完成这一目标,已经尝试通过化学处理引起随机诱变,或者通过辐射修饰有兴趣的特性,例如改变一般对植物生长和农作物生产率,以及使由该农作物制造的产品具有额外品质的特性可能有有害作用的特异基因的表达。叠氮化钠NaN3是诱变大麦的有用化学制剂已经得以很好建立。特别地,已经利用NaN3衍生的诱变来诱导大麦中的遗传变化,以产生花色素苷和原花色素合成受阻的突变体(von Wettstein et al.,1977;von Wettstein etal.,1985;Jende-Strid,1991;Jende-Strid,1993;Olsen et al.,1993)。第二个实例涉及用NaN3诱变处理的大麦颗粒筛选高水平游离磷酸盐(phosphate),旨在鉴定低肌醇六磷酸盐(phytate)突变体(Rasmussen andHatzak,1998);从2,000个筛选的颗粒中总共鉴定出10个突变体。虽然大麦遗传学的主要缺点是不能通过反向遗传学具体研究基因功能,但是,例如,NaN3诱导诱变后的向前遗传筛选(forward genetic screens)继续考虑与大麦和麦芽的营养和产品质量参数有关的改进。
[0006] 除在大体和一般方式中外,育种人员在常规植物育种过程中不能预计正在发育的新植物系的结果。这种不可预知性主要是由缺乏细胞水平的对照引起的,更具体地是由缺乏核DNA水平的对照引起的,其中核DNA的复杂性很高。许多其他的因素,例如植物繁殖地理位置的气候和土壤质量影响植物育种过程的结果。因此,使用常规方法的不同大麦育种人员决不会研制出具有相同特性的植物。在常规育种过程中,最困难的任务是鉴定遗传优良植物,其中优良不仅与有价值(interest)的特性,而且也与植物生长关联的生理学问题相关。当其他混淆特性掩蔽了目的特性时,选择过程会特别艰难。当现代植物育种方法包括突变基因DNA序列的确定时,确定过程是在育种计划晚期,即在突变体表征鉴定之后进行,例如,最近已经描述在拟南芥属(Arabidopsis)及其他植物中筛选化学方法诱导的突变(Colbertet al.,2001)。
[0007] 到目前为止,已经报告在完整基因组规模上对酿酒酵母创造以基因索引(gene-indexed)的功能损失突变(Giaever et al.,2002)。对植物Arabidopsis来说,通过插入土壤杆菌属(Agrobacterium)T-DNA序列已经使~29,454个预计基因中的21,700个基因失活(Alonso et al.,2003)。
[0008] 到目前为止,从首次诱变或杂交到销售植物或种子的常规育种过程占用>10年时间的情形并不是罕见的。具体地,利用检测与目的特性相关的基因中的突变的方法提供植物育种者可能是优良的方法。这种改进将增强育种方案中可预测性的水平,特别是,当突变体的筛选针对在目的基因的蛋白质编码部分具有无义突变的那些时也会出现这一情形。在其它情况下,DNA突变的早期鉴定也是优选的,例如利用以目的基因的启动子突变或影响表达的其他DNA突变为特征的系撤消更进一步的育种,这只是因为环境或生理学因素可以使诱变剂诱导的特性回复。因此,需要发现在育种计划早期检测有价值突变的可选择方法。
这将使整个育种过程更快,并产生更高的经济利益,从而使土地上生产的谷物的量最大化。
[0009] 生产的大麦的主要部分包含通过大麦的可控浸泡、萌发和干燥步骤能将其种子(kernels)变成麦芽的制麦芽品种(malting varieties)。小部分麦芽被用作食品工业的配料,而大部分麦芽随后在麦芽衍生饮料,包括但不限于啤酒和威士忌的生产中被用作主要配料(ingredient)。在啤酒厂,磨碎的麦芽进行糖化(mashing)步骤,该步骤包括逐步升高麦芽水悬浮液的温度使部分酶降解,以及提取,例如颗粒聚合淀粉和β葡聚糖。过滤后,用酒花煮沸含水的麦芽醪(mash)产生麦芽汁(malt)。随后用酵母使所述麦芽汁发酵产生啤酒产品,当啤酒产品成熟时将其装入瓶中。该麦芽汁也可以用于生产非发酵麦芽饮料。
[0010] 饮料的可口性和风味稳定性是与大麦和麦芽组合物相关联的重要因素。这是因为来源于所述大麦和麦芽的天然风味分子,或者在从所述大麦和麦芽中提取的酶的作用下产生的天然风味分子可以赋予最终产物不受欢迎的味道特性(Drost et al.,1990)。在这方面,产生纸板味样风味的挥发性化合物的形成似乎具有特殊的生物化学效益和经济利益。在1970年,已经分离负责纸板样风味的分子,经鉴定它是九碳(C9)alkenal T2N(Jamieson和Gheluwe,1970)。因为人体内T2N的味觉阈值水平非常低,以前确定大约是0.7nM或
0.1ppb(Meilgaard,1975),因此平均醛浓度极低的产品会因为该产品的异常味道而被认为是老化产品。而且,啤酒储存期间分解T2N加合物释放T2N可以引起该产品变质(Nyborg et al.,1999)。
[0011] 对植物组织的放射性标记研究已经确定壬烯醛(壬烯醛s)来源于C18脂肪酸亚油酸,而己醛和壬二烯醛是从C18脂肪酸亚麻酸形成的(Grosch andSchwartz,1971;Phillips and Galliard,1978)。已经将这些研究和随后的许多观察结果,例如Tijet等(2001),Noordermeer等(2001)和Matsui等(2003)概括的观察结果解释为T2N是由LOX路径特异酶的连续作用形成,且LOX的作用代表早期酶催化步骤的证据。与这一观念一致,Kurodo等(2003)发现麦芽包含将LOX产生的产物转化成T2N必需的热稳定酶因子。
[0012] 大麦颗粒(kernel)包含被称为LOX-1、LOX-2和LOX-3的三种LOX酶(van Mechelen et al.,1999)。LOX-1催化从亚油酸形成T2N前体——9-HPODE和三羟基十八碳烯酸(缩写为″THOEs″或仅为″THAs″),LOX-2催化亚油酸转化成13-HPODE,其中13-HPODE更进一步地被代谢为己醛(图1B),己醛是味觉阈值水平为大约0.4ppm的C6醛(Meilgaard,上文)。虽然LOX-3的产品特异性仍然难以捉摸,但是van Mechelen等(上文)显示对应基因的表达水平极低,这表明它对T2N形成的贡献是可忽略的。正在进行研究以确定LOX活性是否是产生与T2N特异异味形成相关联的亚油酸过氧化氢前体的唯一酶来源,或者确定脂肪酸自动氧化步骤是否也参与该过程。值得注意的是C18过氧化氢物可以被超过七个不同家族的植物和动物酶更进一步地转换,其中所有反应统称为LOX路径(Feussnerand Wasternack,2002);该路径也被称为oxylipin路径。Oxylipins就象他们的名称暗示的那样,是氧化的类脂衍生分子,该分子由LOX反应氧化不饱和脂肪酸产生,而且包括来源于这种氧化分子的任何分子。
[0013] 在Douma等的以WO02/053721A1公开的PCT申请PCT/IB01/00207中公开了具有活性降低的LOX-1蛋白质的大麦颗粒和大麦植物。但是,所述申请没有教导用失活的LOX-1酶来产生和分析大麦颗粒。
[0014] 合成低水平LOX的突变植物的几个实例已经已知。例如:在20世纪八十年代早期已经鉴定三个大豆系,每个系的成熟大豆种子中缺乏这三个LOX酶中的一个:
[0015] (i)LOX-1。虽然LOX-1无效突变的分子基础仍然不确定,但它与缺少对应的成熟mRNA相关联(Hildebrandt and Hymowitz,1982;Start et al.1986);
[0016] (ii)LOX-2。检测突变基因的转录产物,观察到将组氨酸配体替换到铁活性部位的导致酶不稳定的单个碱基变化(Davies and Nielsen,1986;Wang et al.,1994);
[0017] (iii)LOX-3。LOX-3无效突变体可能是由于基因启动子中的顺式作用元件而没有显示出可检测水平的对应转录产物(Kitamura et al.,1983;Wanget al.,1995)。
[0018] 在豌豆种子中,发现LOX-2无效系携带导致大多数LOX-2蛋白质缺失的缺陷(Forster et al.,1999)。因为该系显示LOX-2mRNA的量大大下降,这表明突变导致mRNA稳定性显著降低。
[0019] 在稻中,提取物的免疫印迹筛选显示存在两个天然栽培变种,Daw Dam和CI-115,其中每个都缺乏三种LOX酶中的一种(Ramezanzadeh et al.,1999)。已经确定在存储期间,具有全部三种LOXs的正常稻中的己醛、戊醛和戊醇的量被显著诱导,而Daw Dam和CI-115中的量却减少了66%-80%的范围。尽管结果表明稻谷中缺乏LOX酶会减轻氧化变质,但赋予Daw Dam和CI-115更少LOX特性的分子决定因素仍然难以捉摸。
[0020] 已经证明反义介导和共抑制介导的LOX基因的转基因消耗对阐明特异LOX酶和他们的对应产物在植物防卫信号发送中的功能有用。例如在拟南芥属(Arabidopsis)中,消耗LOX酶导致伤口诱导的茉莉酮酸积聚减少(Bellet al.,1995)。而且反义介导LOX编码基因消耗的结果确定对真菌病原体有抗力的烟草植物的不相容特性涉及对应的酶(Rance et al.1998)。其中已经用转基因方法来阐明LOX功能的第三个实例与马铃薯植物生长发育中的名称为LOX-H1的马铃薯LOX的作用有关(León et al.,2002)。已经显示LOX-H1消耗导致挥发性脂肪族C6醛,参与植物防卫反应和作为创伤诱导的基因表达的信号分子或作为抗微生物物质的化合物的显著减少。更进一步的研究显示LOX酶的基因表达耗尽的转基因马铃薯植物显示出块茎发育异常(Kolomiets et al.,2001)。但是,没有鉴定出解释块茎表型的具体oxylipins。在另一个研究中,反义介导的马铃薯LOX-H3的消耗抑制植物的可诱导防卫反应,而且伴有更高的块茎产量(Royo et al.,1999)。这些数据共同表明编码LOX酶的基因的表达在植物发育过程中很重要,其中一些LOX酶可能显示出防卫病原体的作用,而另外的LOX酶产生可调节细胞发育的产物。
[0021] 注意到两个LOX酶水平降低2-20%的番茄果实的风味挥发物与野生型果实相比没有显示出显著变化也具有重要意义(Griffiths et al.,1999)。这些发现表明极低水平的LOX足以产生醛和醇(alcohol),或者其他LOX酶在产生这些化合物的过程中是有活性的。
[0022] 饮食工业越来越多的意识到氧化酶,因为他们对与植物衍生产品风味和颜色有关的重要方面有影响。在这方面,LOXs由于具有诱导自由基形成的能力引起了大家的兴趣,其中自由基能攻击其他成分,例如维生素,着色剂,酚和蛋白质等等。值得注意的是认为一些自由基在游离脂肪酸的自动氧化中起作用。一些产生自由基的物质可以经受热处理,因此在加工食物中仍然保留足够的活性,在产品存储期间仍会启动变质。
[0023] 抗氧化剂被广泛用作LOX抑制剂,其中一些抑制剂也抑制LOX底物的自动氧化。但是,没有鉴定出有用的作为饮料风味改善添加剂的LOX抑制剂。
[0024] LOX酶的作用也与啤酒制造领域以外的问题相关,例如与抑制真菌污染敏感植物中真菌毒素形成的过氧氢脂肪酸的LOX催化产生相关,在Keller的美国专利No.5,942,661中已经公开这一点。虽然LOX酶在植物防卫和创伤反应中的作用仍然不太清楚,但创伤和病原体攻击时会诱导该酶产生(Bell and Mullet,1991;Bell and Mullet,1993;Melan et al.,1993;Sarvitzand Siedow,1996)。LOX酶在创伤和植物防卫中的作用可以是产生对抗病原体的活性脂肪酸氢过氧化物(Rogers et al.,1988)。另外,应激反应可以诱导LOXs产生信号分子,例如茉莉酮酸甲酯(Bell et al.,上文)。
[0025] 也已经描述,将在LOX酶的作用下产生的13-HPODE作为过氧化氢转换酶产生风味活性醛的底物的策略(Noordermeer et al.,2002;Husson andBelin,2002)。在许多专利,例如 et al的美国专利No.6,150,145和Holtz et al的美国专利No.6,274,358中公开了类似步骤。
[0026] 而且,也已经显示LOX酶为面包制作贡献了几个有益效果(Casey,1997)。而且,Handa和Kausch的美国专利No.6,355,862B1已经公开抑制LOX的产生可以增强果实品质,例如使产品的保存期更长。
[0027] 3.发明概述
[0028] 因为从基本上没有LOX-1活性的大麦植物制备的饮料将具有极低水平的T2N,因此对这种植物仍存在未满足的需要。另外,本发明显示从这种植物制备的饮料将具有极低水平的9,12,13-THOE。而且,这种植物可用于其他目的。
[0029] 令人惊讶地,本发明公开了制备没有或有极少LOX-1活性的大麦植物的方法。特别地本发明公开了LOX-1基因的无效突变。本发明的预期收益包括从LOX路径的对应支路完全消除T2N,因此本发明提供了大麦颗粒中T2N水平的优良方法;而且由这些颗粒产生的啤酒在延期储存之后由显示出特别的味道稳定性,即使在高温条件下也是如此。
[0030] 有趣的是,本发明也提供了早期突变检测的方法,因此晚期突变体表征鉴定的缺点已经被本发明解决。本发明利用吸引人的新方法产生改进的麦芽(malting)大麦栽培变种,在育种过程的早期时间点插入连续使用的突变体群体中的目标基因的表型鉴定和DNA序列确定。利用多种的植物育种方法可以更进一步地改进分离的植物。
[0031] 本发明解决了目前与大麦中活性LOX-1酶的存在有关的问题、限制和缺点。首先,本发明提供了显著降低筛选化学诱变大麦时间和劳动量的效率高的新筛选方法。第二,本发明包括LOX-1无效新大麦,例如对生产风味稳定啤酒有用的大麦。
[0032] 如上所述的植物LOX突变体的理论背景技术涉及LOX活性水平降低的植物。相反,本发明通过提供有效产生LOX-1无效大麦植物的方法克服了与低LOX活性或残留LOX活性相关的限制和缺点。具体的差异包括:
[0033] (i)与Douma等的以WO02/053721A1公开的PCT申请PCT/IB01/00207中公开的大麦植物相比,本发明的植物基本上不包含LOX-1活性,优选植物是真正的LOX-1无效植物,即显示出完全缺乏LOX-1蛋白质功能的植物;
[0034] (ii)通过筛选对应基因中无义突变的存在可以鉴定出这里描述的真正LOX-1无效的特性。因此,具有那种特性的大麦植物纯合子中活性酶的合成将被完全阻断,阻断与生长条件或环境效应无关。这是植物育种技术中的理想特性,对比背景技术中大豆LOX突变体可能的分子方案,其中生命或无生命状态可以影响细胞生理状态的变化使随后翻译LOX的mRNA稳定;
[0035] (iii)大豆和稻LOX突变体中的有关特性包括主食中气味强烈的化合物--己醛的水平降低,本发明与饮料中特有的味道化合物T2N的较低水平和饮料中9,12,13-THOE的较低水平有关;
[0036] (iv)大豆和稻LOX突变体受13-HPODE下游的LOX路径分子的影响,而LOX-1无效的特性与包含9-HPODE下游的分子的LOX路径的支路有关;
[0037] (v)而该大豆突变体包括LOX基因的辐射诱导的突变,Daw Dam和CI-115代表选择的稻育种系的天然发生的栽培变种,具有LOX-1无效特性的大麦植物中的突变是由化学制剂NaN3诱导的。
[0038] 因此,提供包含的LOX-1活性小于野生型大麦植物的LOX-1活性的5%,优选小于1%的大麦植物,其部分或片段是本发明的目标。
[0039] 从包含的LOX-1活性小于野生型大麦植物LOX-1活性的5%,优选小于1%的植物提供种子或颗粒(kernel)是本发明的第二个目标。
[0040] 提供含有包含的LOX-1活性小于野生型大麦植物的LOX-1活性的5%,优选小于1%的大麦植物,其部分或片段的组合物是本发明的第三个目标。
[0041] 提供含有包含的LOX-1活性小于野生型大麦植物的LOX-1活性的5%,优选小于1%的加工的大麦植物的麦芽组合物是本发明的更进一步的目标。麦芽组合物优选可以是纯麦芽组合物。但是,麦芽组合物也可以是大麦和麦芽混和混合物。
[0042] 提供感官品质稳定的饮料也是本发明的目标,其中利用本发明的大麦植物或其部分制造所述饮料。特别地,优选利用麦芽组合物,例如上述的纯麦芽组合物或大麦和麦芽的混合物制造所述的饮料。在本发明的优选实施例中,所述饮料由啤酒组成。
[0043] 提供感官品质稳定的饮料是本发明的另外目标,其中利用大麦植物制造所述饮料,所述饮料中9,12,13-三羟基十八碳烯酸(trihydroxyoctadecenoicacid)(在这里缩写为9,12,13-THOE或只表示为9,12,13-THA)与9,10,13-三羟基十八碳烯酸(在这里缩写为9,10,13-THOE或仅9,10,13-THA)的比例最大是1.8。所述饮料优选是啤酒。
[0044] 而且,本发明的目的是提供组合物,例如包含本发明的大麦植物或其部分的食物组合物、饲料组合物或香原料组合物是本发明的目标。
[0045] 另外,提供在本发明的大麦植物中表达重组蛋白质的方法是本发明的目标,其中所述方法包括用包含操作性连接的在大麦植物或其部分中可表达的启动子成分,编码所述重组蛋白质的DNA序列和转录终止区域的核酸序列转化所述植物,使所述重组蛋白质在所述大麦植物中表达。
[0046] 更进一步地,提供降低本发明的大麦植物中的蛋白质水平的方法是本发明的目标,其中所述方法包括用包括操作性连接的在大麦植物或其部分中可表达的启动子成分,DNA序列和转录终止区域的核酸序列转化所述植物,使所述DNA序列的表达通过反义抑制或共抑制或RNA干扰降低编码所述蛋白质的基因的表达。
[0047] 因此,提供制备包含的LOX-1活性小于野生型大麦植物的5%,优选小于1%的大麦植物的方法是本发明另外目标,它包括步骤:
[0048] (i)确定野生型大麦颗粒(kernel)或其部分的LOX-1活性;和
[0049] (ii)诱变处理大麦植物和/或大麦颗粒和/或大麦胚,从而获得M0代大麦;和[0050] (iii)繁殖所述诱变处理的大麦植物、颗粒和/或胚至少2代,获得Mx代大麦植物,其中X是≥2的整数;和
[0051] (iv)从所述Mx大麦植物获取颗粒或其部分;和
[0052] (v)确定所述颗粒或其部分的LOX-1活性;和
[0053] (vi)选择诱变处理的颗粒或其部分的LOX-1活性小于野生型或其部分的LOX-1活性的5%的植物;
[0054] 从而获取包含的LOX-1活性小于野生型大麦植物的LOX-1活性的5%的大麦植物。
[0055] 更进一步,本发明的目标是提供制造具有稳定感官品质的饮料的方法,该方法包括步骤:
[0056] (i)提供本发明的麦芽组合物;
[0057] (ii)将所述麦芽组合物加工成饮料;
[0058] 从而获取感官(organoleptic)品质稳定的饮料。
[0059] 本发明的另外目标是提供产生LOX-1活性低的麦芽组合物的方法,该方法包括步骤:
[0060] (i)提供本发明的颗粒;
[0061] (ii)浸泡所述颗粒;
[0062] (iii)在预先确定的状态下使浸泡的颗粒萌发;
[0063] (iv)加热处理萌发的颗粒(kernel);
[0064] 从而产生LOX-1活性低或没有LOX-1活性的麦芽组合物。
[0065] 在一个优选实施例中,本发明以大麦突变体D112(在这里也称为″突变体D112″或″大麦D112″)的功能研究的不可预知的结果为基础,其中显示主要的9-HPODE形成酶LOX-1的功能完全丧失。在设计的确定LOX催化亚油酸转化后的产物分布图的生物化学测定中检测到9-HPODE∶13-HPODE的分布是10%∶90%,这是一个令人惊奇的发现。考虑到T2N的味觉阈值非常低,因此突变体D112的颗粒中残余的9-HPODE等等的降解仅引起从所述颗粒的麦芽制造的啤酒产物在陈酿(aging)期间释放极低的T2N,使T2N正好低于味觉阈值,这一点更令人惊奇。
[0066] 对利用野生型和LOX-1无效颗粒进行分析的结果的调查为LOX-1活性高可以增强T2N的不新鲜纸板风味提供了明显的证据,因此证实了LOX路径在控制alkenal形成中的重要作用。这一结论与建议LOX活性仅有助于小部分T2N前体分子的Liégeois等(上文)的意见对立。
[0067] LOX-1无效的特性可以被引入任何其他大麦植物,例如确立的大麦品种,如确立的麦芽大麦品种,因此允许产生保存限期延长的风味稳定的饮料。例如,可以通过本领域技术人员熟知的常规繁育方法来完成这一过程。该方法不仅不依赖突变体D112衍生大麦生长的地理区域,而且不依赖制造突变体D112衍生啤酒和出售给顾客的场所。突变体D112大麦植物或其衍生植物是种植该农作物的农场主和利用它作为啤酒生产或基于大麦的其他饮料生产的原材料的啤酒厂的潜在重要的经济因素。也预料依赖没有9-HPODE/9-HPOTE形成活性的原材料的其他应用将从大麦突变体D112的特性中受益。
[0068] 依照本发明的一个实施方案提供了几个新的麦芽大麦突变体,例如大麦突变体D112或大麦突变体A618(在这里也称为″突变体A618″或″大麦A618″)。本发明因此涉及大麦突变体D112或A618的颗粒,大麦D112或A618植物,将大麦突变体D112或A618与自身或另一个大麦系杂交,衍生产生大麦植物的方法。而且,本发明包括通过诱变或转化大麦突变体D112或A618产生的LOX-1无效变体。因此,利用大麦突变体D112或A618或其衍生物作为亲本株产生的所有植物都在本发明的范围内。
[0069] 另一方面,本发明提供供组织培养大麦突变体植物D112或A618使用的可再生细胞。组织培养优选用于再生具有上述大麦植物特征,包括形态学和遗传学特征的植物。在这种组织培养中再生的细胞可能是胚、原生质体、分生细胞、愈伤组织、花粉、花药等等。应理解本发明提供了从本发明的组织培养再生的大麦植物。
[0070] 在一个优选实施例中,本发明包含来源于LOX-1无效大麦颗粒的麦芽。
[0071] 本发明也涉及从LOX-1无效大麦植物或其部分或者从这种大麦植物制备的麦芽组合物制备的麦芽汁组合物。
[0072] 本发明更进一步地包括饮料,例如利用本发明的LOX-1无效大麦颗粒或来源于所述颗粒的麦芽制造的啤酒。
[0073] 另外,本发明涉及由LOX-1无效大麦植物或其部分产生的植物产品。所述植物产品可能是加工处理所述大麦植物或其部分产生的任何产品。优选的,所述植物产品选自由麦芽、麦芽汁、发酵饮料,例如啤酒、非发酵饮料、食物产品,例如大麦粉和饲料产物组成的组。
[0074] 提供显示出不能与野生型大麦植物相区别的抗病力水平或显示出具有改进的抗病力的LOX-1无效大麦颗粒也是本发明的目标。
[0075] 更进一步地,本发明包括LOX-1无效大麦颗粒和来源于所述颗粒的麦芽,其中颗粒和麦芽都显示真菌毒素水平降低。
[0076] 而且本发明也包括相对于野生型植物,抗病性增强的LOX-1无效大麦品种。更进一步地公开了相对于野生型植物,抗病性降低的LOX-1无效大麦品种,条件是所述植物的其他特性提供了比抗病性降低特性更重要的益处。
[0077] 另外,本发明提供可用于产生LOX路径衍生的香料,包括青香韵(greennote)化合物的LOX-1无效大麦颗粒。
[0078] 而且,本发明提供LOX-1无效大麦突变体D112或A618的转基因植物或其衍生植物,其中插入的基因赋予如除草剂抗性、抗虫性、细菌、真菌或病毒疾病抗性、增强的营养价值和在产业中使用的特性。基因可以是内源大麦基因,或可迭地通过基因工程方法插入的转基因。
[0079] 最后,本发明提供利用LOX-1抑制剂降低LOX-1活性的方法。通过所述方法获取的植物产品或来源于植物的产品,包括饮料和啤酒可以具有与以LOX-1无效大麦作为原材料制备的产物相似的特性。
[0080] 参照下列定义、说明书、实施例、附加的权利要求书,伴随的序列表和附图可以更好地理解本发明的这些及其他特征、方面和优点。
[0081] 3.1定义
[0082] 在随后的说明书、附图和表中使用了许多术语。为了提供说明书和权利要求书,包括这些术语限定的范围,提供了下列定义:
[0083] 这里使用的″a″可以指一个或多个,这取决于使用它的上下文。
[0084] 术语″农学特性″描述的是有助于所述植物的性能或经济价值的植物表型特性。这种特性包括抗病性、抗虫性、抗病毒性、抗线虫性、干旱耐受性、高盐度耐受性、产量、株高、成熟天数、颗粒的等级(grading)(即颗粒的大小分级)、颗粒的含氮量等等。
[0085] ″反义核苷酸序列″指方向与核苷酸序列正常编码的5′-3′方向相反的序列。当存在于植物细胞中时,反义DNA序列优选抑制内源基因核苷酸序列的正常表达,因此可以破坏对应天然蛋白质的产生。
[0086] 与啤酒制造过程有关的术语″大麦″,特别是用来描述麦芽制造过程的术语″大麦″指大麦颗粒。在其他情形下,除非另作说明,否则″大麦″指包括任何品种的大麦植物(Hordeum vulagre,L)。
[0087] ″抗病性″指植物避免出现是植物病原体相互作用结果的疾病症状。这样就可以阻止病原体引起植物疾病和相关的疾病症状,或疾病症状。或者,病原体引起的疾病症状被减到最低程度或降低了。
[0088] 在此公开文本中限定的″谷类″植物是禾本科(Graminae)植物家族的成员,其中耕种禾本科植物家族主要是为了获取他们的含淀粉种子。谷类植物包括,但不局限于大麦(Hordeum属)、小麦(Triticum属)、稻(Oryza属)、玉蜀黍(Zea属)、黑麦(Secale属)、燕麦(Avena属)、高粱(Sorghum属)、Triticale和黑麦-小麦杂交种。
[0089] 在特定核酸上下文中的″编码″或″编码的″指包含翻译成特定蛋白质的信息。编码蛋白质的核酸在核酸翻译区内可以包含非翻译序列(例如,内含子),或者可以缺乏这种插入的非翻译序列(例如,在cDNA中)。利用密码子对编码蛋白质的信息进行说明。
[0090] 这里在核酸上下文中使用的″表达″应理解为来源于核酸片段的有义mRNA或反义RNA的转录和积聚。在蛋白质上下文中使用的″表达″指将mRNA翻译成多肽。
[0091] ″风味分子″指制造的是植物中气味和/或味道成分的醛和/或醇(alcohol)。特别地,风味分子包括某些挥发性醇和醛。挥发性的风味分子的实例包括,但是不限于己醛、(3Z)-己烯醛、(2E)-己烯醛、(2E)-己烯醇、(3Z)-壬烯醛、(2E)-壬烯醛。本发明可用于调节植物中风味分子的水平。
[0092] 术语″基因″指参与产生多肽链的DNA节段;它包括在编码区之前和之后的区域(启动子和终止子)。真核基因间断编码蛋白质,由被内含子中断的外显子组成。在转录成RNA以后,通过拼接除去内含子产生成熟信使RNA(mRNA)。典型地,通过作为拼接过程的拼接信号的共有序列确定外显子之间的″拼接位点″,拼接过程由从初级RNA转录产物缺失内含子和在切除的内含子的任一侧连接或融合剩余RNA的末端组成。有时轮流的拼接模式或不同的拼接模式可以从相同的单个DNA范围产生不同的蛋白质。天然基因被可以称为内源基因。
[0093] ″基因沉默″是改变基因表达的方法。它指RNA沉默,RNA沉默是各种生物体之间保守的翻译后基因沉默机制。该方法包括翻译后基因沉默(PTGS)和RNA干扰(RNAi)。PTGS是内源和外源同源基因的基因沉默现象。虽然关于PTGS的大多数实例与共抑制构建物或转基因反义方向的表达所引起的效果有关,但是在常规育种计划的植物中也已经观察到这一现象,例如在稻中的Lgcl突变(Kusaba et al.,2003)。已经发现这一突变通过RNA沉默抑制谷蛋白表达,可能是由于在两个高度相似的谷蛋白基因之间删除3.5kbp后形成了尾到尾反向重复,而这种重复可以产生成为RNA沉默的有效诱导物的双链RNA分子。RNA沉默的第二种形式被称为RNA干扰(RNAi),RNAi的基本前提是双链RNA注入或摄取到细胞中时具有特异阻断其同源基因表达的能力。
[0094] 这里使用的与核酸有关的″异源″指来源于外来物种的核酸,或者指来源于相同物种的,通过人的故意干预从组合物的天然形式和/或基因组位点获得的基本上被修饰的核酸。
[0095] 这里使用的术语″萌发″(germination)指在各种组合物中,例如在自然界中发现的普通土壤中,大麦颗粒开始或恢复生长。萌发也可以在放入生长室的盆的土壤中进行,或者,例如可以在放入标准实验室Petri培养皿的湿滤纸上进行。一般理解的萌发包括颗粒的水合作用、颗粒的膨胀和诱导胚生长。影响萌发的环境因素包括湿度、温度和含氧量。观察根和芽的发育。
[0096] ″青香韵″是描述存在于许多植物中的挥发性风味和香料分子的术语,表现感官术语鲜绿和草绿的特性。植物中类脂和游离脂肪酸,例如亚油酸和亚麻酸的降解会产生这些分子。
[0097] 这里使用的术语″分离的″指从原料的原始环境中除去该原料。例如:存在于活生物中的天然发生的多核苷酸或者多肽不是分离的,而与天然系统中的一些或全部共存原料分离的相同的多核苷酸或多肽是分离的。这种多核苷酸可以是载体的一部分和/或这种多核苷酸或多肽可以是组合物的一部分,但他们仍然是分离的,因为这种载体或组合物不是它的天然环境的一部分。
[0098] 限定术语″颗粒″包括谷类颖果,也称为内部种子(internal seed),外稃和内稃。在大多数大麦品种中,外稃和内稃附着于颖果,而且是脱粒后的颗粒的一部分。但是,存在裸大麦品种。在这些大麦中,颖果没有外稃和内稃,因此象小麦一样,捶击(thresh out)就可以释放颖果。术语″颗粒″和″谷粒″谷颗粒(grain)在这里可交换使用。
[0099] ″颗粒成熟″或″谷物发育″指开始于储存可代谢的储备物,例如糖、低聚糖、淀粉、酚醛塑料、氨基酸和蛋白质的施肥,结束于颗粒(谷粒)脱水的周期,其中施肥过程有和没有液泡靶向到颗粒(谷粒)的各种组织,例如胚乳、外种皮、糊粉和角质鳞片,导致颗粒(谷粒)膨大、颗粒(谷粒)装满。
[0100] 术语″LOX-1活性″指大麦LOX-1酶的酶活性。特别地,在本发明的上下文中″LOX-1活性″是LOX-1酶催化亚油酸双氧化成9-HPODE。即使LOX-1能够催化其他反应,但为了依照本发明确定LOX-1的活性仍应仅考虑形成9-HPODE的活性。图1B概述了把亚油酸转化为T2N的生物化学路径。
[0101] 术语″低LOX″指在一个或几个内源基因中存在一个或几个突变,导致特定LOX酶的功能部分损失,优选指,但不局限于酶活性的损失。例如:在Douma等的以WO02/053721A1公开的PCT申请PCT/IB01/00207中公开的大麦植物产生了与对应的野生型酶相比,具有10%残余活性的突变的LOX-1酶。″低LOX″的植物指特定LOX酶功能部分损失的植物。
[0102] ″麦芽制造″(malting)是大麦颗粒在可控的环境条件下,包括但不限于在麦芽浸泡池和萌发箱中进行的特殊萌发形式。与本发明的这一步骤一致,萌发过程在浸泡大麦颗粒期间和/或已经浸泡大麦颗粒之后开始发生。可以通过干燥大麦颗粒停止萌发过程。应理解从LOX-1无效大麦制备的麦芽组合物包括LOX-1无效麦芽,例如纯LOX-1无效麦芽或包含LOX-1无效麦芽的任何混合物。
[0103] ″糖化″(mashing)是在水中温育磨碎的麦芽。优选在特定的温度和特定体积的水中进行糖化。温度和水的体积很重要,因为他们会影响来源于麦芽的酶活性下降的速率,因此特别会影响发生的淀粉水解的量。存在添加剂时可以发生糖化,应理解添加剂包含除麦芽以外的任何碳水化合物来源,例如主要作为提取物的另外来源的大麦(包括LOX-1无效大麦)、玉蜀黍和稻添加剂。在啤酒厂加工处理添加剂的要求取决于使用的添加剂的状态和种类,特别是取决于淀粉胶化或液化的温度。如果胶化温度超过正常的麦芽糖化温度,那么在添加淀粉到碎麦芽中之前淀粉就被胶化和液化。
[0104] ″突变″包括基因编码区和非编码区的缺失、插入、颠换和点突变。缺失可以是缺失整个基因或仅缺失基因的一部分。点突变可以产生终止密码子,移码突变或氨基酸替换。体细胞突变是那些仅仅发生在植物的某些细胞或组织中,但不遗传到下一代的突变。在植物的任何细胞中可以发现种系突变,这种突变可以遗传。
[0105] 术语″无效的LOX″指在LOX编码基因内存在突变,导致编码的LOX酶的功能完全丧失。在编码LOX的基因中产生早熟终止(无意义)密码子的突变仅仅代表一个可以使功能完全丧失的机制。使LOX酶功能完全丧失的分子方法包括产生导致所述酶的转录产物完全缺失的突变,或产生使编码的酶完全失活的突变。″无效的LOX″的植物指特定LOX酶功能完全丧失的植物。
[0106] ″操作性连接″是用来指关联单个多核苷酸上的两个或更多个核酸片段,使一个片段的功能受另一个的影响的术语。例如:当启动子能够影响编码序列的表达,即编码序列位于启动子的转录控制下时,启动子是操作性地与编码序列连接的。可以以有义或反义方向将编码序列操作性地与调节序列连接。
[0107] ″PCR″或″聚合酶链反应″是本领域熟练技术人员熟知的用于扩增特异DNA片段的技术(Mullis等的美国专利号Nos.4,683,195和4,800,159)。
[0108] ″植物″或″植物材料″包括植物细胞、植物原生质体、从中可以再生大麦植株的植物细胞组织培养物、植物愈伤组织,植物或植物部分,例如胚、花粉、胚珠、花、颗粒、叶、根、根尖、花药中完整的植物细胞,或植物的任何部分或产品。
[0109] 术语″植物产品″指由加工处理植物或植物部分产生的产品。因此所述植物产品可以是麦芽、麦芽汁、发酵或非发酵饮料、食品或饲料产品。
[0110] 这里使用的与蛋白质有关的″重组体″指来源于外来物种的蛋白质,或者指来源于相同物种的,通过人的故意干预从组合物的天然形式获得的基本上被修饰的蛋白质。
[0111] ″RNA转录产物″(transcript)指由RNA聚合酶催化DNA序列转录产生的产物。当RNA转录物是DNA序列的完全互补拷贝时,称它为初级转录产物。当RNA序列来源于初级转录物的翻译后处理时,称它为成熟RNA。″信使RNA″或″mRNA″指没有内含子,而且能够被细胞翻译成蛋白质的RNA。″cDNA″指与来源于mRNA模板,与mRNA模板互补的DNA。
cDNA可以是单链的,或者可以利用例如,DNA聚合酶I的Klenow片段把其变成双链形式。″有义RNA″指包括mRNA,因此能被细胞翻译成多肽的RNA转录产物。″反义RNA″指与初级靶转录产物或mRNA的全部或部分互补,而且能阻断靶基因表达的RNA转录产物。反义RNA的互补性可以指与特定核苷酸序列的任何一部分,即5′非编码序列、3′非编码序列、内含子或蛋白质编码序列互补。″功能RNA″指有义RNA,反义RNA,或者其他的可以不被翻译成蛋白质,但对细胞过程有影响的RNA。
[0112] 除 非 另 作 说 明,否 则 ″T2N ″ 指T2N的 游 离 形 式。 术 语 ″ 潜 在T2N″(T2Npotential)描述的是具有在一个或多个反应中释放T2N的能力,或具有被转化成T2N的能力的化学物质。可以以在高温(例如,100℃)和低酸度(例如pH 4.0)条件下温育(例如,2h)的溶液,例如麦芽汁或啤酒中T2N的浓度测量潜在T2N。样品处理使T2N从潜在的T2N,例如从″T2N加合物″释放,其中T2N加合物是用来描述连接到一种或多种物质,包括但不限于蛋白质、亚硫酸盐、细胞碎片、细胞壁等等上的T2N的术语。通常T2N加合物本身不会被人感觉到作为异味。但是,通过加热或酸从所述T2N加合物释放的T2N可以产生异味。
[0113] ″组织培养″显示包含相同或不同类型的分离的细胞或这种细胞的集合的组合物构成植物的一部分,例如原生质体、愈伤组织、胚、花粉、花药等等。
[0114] ″转化″指将DNA插入生物体中,以便将DNA作为染色体外元件(没有整合和稳定遗传)或染色体组成部分(遗传学上稳定遗传)保持。除非另有说明,否则这里使用的转化大肠杆菌的方法是CaCl2方法(Sambrook andRussel,上文)。为了转化大麦,除了使用另一个栽培变种,例如栽培变种Golden Promise作为宿主外,基本上可以按照Tingay等(1997)和Wang等(2001)的描述实施农杆菌介导的转化。
[0115] ″转基因″是通过转化过程导入基因组的基因。
[0116] 这里使用的″转基因的″包括通过引入异源核酸已经被修饰的细胞或由这种修饰的细胞衍生而来的细胞。因此,例如:转基因细胞表达未以相同形式在细胞的天然形式中被发现的基因,或者表达由于人的故意干预另外异常表达、低表达或非根本不表达的天然基因。这里使用的术语″转基因″植物,特别是大麦植物不包括通过传统植物育种方法产生的细胞改变,例如NaN3衍生的诱变,以及通过天然发生事件,例如人没有故意创造发生的那些事件产生的细胞改变。
[0117] 术语″野生型大麦植物″指常规大麦植物,该术语优选指从中可以衍生本发明的大麦植物的大麦植物,即亲本株。在本发明的一个优选实施方案中,″野生型大麦植物″选自由cv.sCeleste、Lux、Prestige、Saloon和Neruda组成的组。更优选的″野生型大麦植物″是栽培变种Barke。通常从普通的种子公司可获得野生型大麦栽培变种或者其种子。
[0118] 4.序列表简述
[0119] 参考下列构成本申请一部分的详细的说明书和伴随的序列表(概括在表9中)可以更充分地理解本发明。所述的表列出了这里描述的核酸和多肽,cDNA克隆的名称包括编码代表这些多肽的全部或重要(substantial)部分的多肽的核酸片段和对应的标识符[SEQ ID NO:]。在此附上的序列说明和序列表遵守管理专利申请中核苷酸和/或氨基酸序列公开的规则。
[0120] 序列表包含限定和标准化介绍一致的核苷酸和氨基酸序列的一字母代码(Cornish-Bowden,1985;IUPAC-IUB Joint Commission on BiochemicalNomenclature,1984),在此将其引入作为参考。核苷酸和氨基酸序列数据使用的符号和格式遵守管理专利申请中序列公开的规则。
[0121] 5.附图简述
[0122] 图1被分成三个流程图表A、B和C。图1A显示怎样繁殖NaN3诱变处理的大麦颗粒。M0代的颗粒生长为形成M1代颗粒的植物。可以播种这些M1代颗粒,让其发展成为产生M2代新颗粒的M1植物。接下来,M2植物生长,并产生可以收获进行筛选分析的M3代颗粒。也可以播种M3种子,利用对应植物的花进行杂交获取M4代植物。图1B是生物化学LOX路径怎样降解亚油酸,并最终产生T2N的简化图表。图1C举例说明亚油酸怎样在LOX-1作用下被变成对应的9-过氧氢酸(9-hydroperoxy acid)(9-HPODE),接下来是通过环氧醇合成酶(epoxy alcohol synthase)和环氧水解酶更进一步的酶转化变成9,12,13-三羟基-10-十八碳烯酸(9,12,13-THOE)。
[0123] 图2是测量的cv Barke、突变体D112的胚提取物和包含加热失活的cv.Barke胚提取物的对照样品的总LOX活性的图解比较。
[0124] 图3显示的是测量的突变体A618、cv.Neruda的胚提取物和包含加热失活的cv.Barke胚提取物的对照样品的总LOX活性的图解比较。
[0125] 图4显示的是测量的突变体D112的M4子代系的12个独立颗粒的总LOX活性的比较。由cv.Barke颗粒提取物组成的对照样品和cv.Barke加热失活的颗粒提取物的活性被归入进行比较。
[0126] 图5概括了对突变体D112的M5子代系的90个独立颗粒提取物的总LOX活性进行分析的结果。cv.Barke对照颗粒提取物和cv.Barke加热失活的颗粒提取物的活性被归入进行比较。
[0127] 图6对测量的突变体A618的M4子代系的40个独立颗粒的提取物的总LOX活性的比较进行了概括。对照样品cv.Barke颗粒提取物和cv.Barke加热失活的颗粒提取物的活性被归入进行比较。
[0128] 图7由两个分离的免疫印迹组成,显示突变体D112,M3代的颗粒提取物中的免疫活性LOX-1蛋白质是不可检测的。每个免疫印迹用针对大麦LOX-1的抗体作探针,样品由表达重组LOX-1的大肠杆菌细胞的提取物(第1道)、cv.Vintage(第2道)、突变系G(第3道和第7道)、cv.Barke(第6道和第8道)和突变体D112的分离系、M3代(第4-5和
9-16道)的颗粒提取物组成。标明了免疫活性LOX-1蛋白质的位点。
[0129] 图8显示了详述突变体A618、M3和M4代的颗粒提取物中缺乏LOX-1的两个分离的免疫印迹。每个免疫印迹用针对大麦LOX-1的抗体作探针,样品由突变系G(第1道)、cv.Neruda(第6道和第16道)的颗粒提取物组成。分别在第2-5和8-12道分离了随机选择的没有通过LOX选择过程的M3和M4颗粒的提取物;所有这些提取物包含LOX-1免疫活性蛋白质。突变体A618、M3代(第7道)的颗粒提取物的LOX-1无效的表型在突变体A618-82的分离的M4子代系(8-12道)中被遗传。标明了免疫活性LOX-1蛋白质的位点。
[0130] 图9概略说明了从突变体D112到cv.Prestige的回交程序的遗传学。野生型LOX-1特性被指定为NN,而LOX-1无效的突变体特性是nn。对具有下划线所示基因型的植物进行杂交。
[0131] 图10提供了七个分离的免疫印迹的图,其中每个免疫印迹都用针对大麦LOX-1的抗体作探针。免疫印迹显示在突变体D112到cv Prestige的第一回交代的分离植物的颗粒(第1-6道和第9-14道)中存在或者缺少免疫活性LOX-1蛋白质,在突变体D112到cv Prestige的第二回交代的颗粒(第17-22道,第25-30道,第33-38道,第41-45道和第48-52道)中存在或者缺少免疫活性LOX-1蛋白质。缺乏免疫活性LOX-1的突变体D112的对照颗粒提取物(第7、15、23、31、39、46、53道)和包含免疫活性LOX-1的cv.Prestige(第
8、16、24、32、40、47、54道)被用作对照。标明了免疫活性LOX-1蛋白质的位点。
[0132] 图11是没有使用添加剂,但包括浸泡大麦谷粒(1)、发麦芽(malting)(2)、窑烘(kiln)(3)、碾磨干燥的麦芽(4)、糖化(5)、过滤(6)、在添加酒花的情况下煮沸麦芽汁(wort boiling)(7)、在存在酵母的情况下发酵(8)、啤酒成熟(9)、啤酒过滤(10)、包括但不限于包装到瓶,罐等容器中的包装(11)和贴标签(12)的啤酒生产过程的简单图解概述。这些独立的步骤可以集合成包含生产麦芽(1-3)、生产麦芽汁(4-7)、发酵(8-9)和制备成品(finished)啤酒(10-12)的部分。
[0133] 图12集中描述了利用来源于LOX-1无效突变体D112的大麦的麦芽生产的啤酒的特征。图12A举例说明了在37℃强迫陈酿4周期间游离T2N的积聚。测量了由LOX-1无效突变体D112的麦芽(▲)和cv.Barke的对照麦芽(●)制备的啤酒中的醛。啤酒中T2N的味觉阈值是大约0.05ppb。图12B提供了啤酒品尝小组对20℃温育12个月的啤酒的独立味道特征进行评价后搜集的数据的图解表示。啤酒是由来源于cv.Barke大麦(实心条)或LOX-1无效突变体D112的大麦(空心条)的麦芽制成的。
[0134] 图13显示了用来测定大麦组织中9-和13-HPODEs形成的HPLC分析的色谱图。通过测量234nm处的吸光度对HPODEs水平进行分析,以毫吸光度单位(mAU)给出结果。用箭头标明了洗脱图中相当于9-HPODE和13-HPODE的峰。图13A显示9-HPODE和13-HPODE标准品的色谱图。图13B是从cv.Barke的成熟胚制备的提取物中形成的HPODEs的色谱图。图13C是从低LOX颗粒的成熟胚制备的提取物中形成的HPODEs的色谱图。图13D是从LOX-1无效突变体D112的成熟胚制备的提取物中形成的HPODEs的色谱图。
[0135] 图14描述了用来测定麦芽中9-和13-HPODEs形成的HPLC分析的色谱图。通过测量234nm处的吸光度对所述HPODEs水平进行分析,以毫吸光度单位(mAU)给出结果。用箭头标明了洗脱图中相当于9-HPODE和13-HPODE的峰。图14A显示9-HPODE和13-HPODE标准品的色谱图。用箭头标明了相当于9-HPODE和13-HPODE的色谱峰。图14B是来自cv.Barke的麦芽的提取物中形成的HPODEs的色谱图。图14C是来自低LOX大麦的麦芽的提取物中形成的HPODEs的色谱图。图14D是来自LOX-1无效突变体D112的麦芽的提取物中形成的HPODEs的色谱图。
[0136] 图15是显示跨越起始密码子(ATG)和终止密码子(TAA)的大麦LOX-1基因结构的图。长4,165bp的序列的示意图显示出7个外显子(填充盒)和6个内含子(线)。用箭头标明了经鉴定的LOX-1基因中的突变位点,即突变系G(低LOX),突变体A618和突变体D112特异的突变位点。
[0137] 图16概括了预计的与野生型大麦植物、突变体A618和突变体D112大麦植物的LOX-1基因相关的分子差异。列在栏中的标明为″结果″、″氨基酸长度和″以kDa为单位的质量″的信息是从DNA序列预计的。
[0138] 图17提供了用来实施RT-PCR突变体分析和验证与编码LOX-1的大麦基因相关的转录产物的方法。A中概略显示了用RT-PCR检测cv.Vintage和低LOX-1突变系G的正在发育的胚中的编码LOX-1的基因的特定转录产物的原理。引物由与位于长83bp的内含子5侧面的外显子复性的FL821[SEQID NO:11]和FL852[SEQ ID NO:12]组成;标明了使用基因组DNA模板或者mRNA模板的PCR产物的差异。B显示了焦点在于检测正在发育的cv.Vintage和突变系G的胚中与编码LOX-1的基因相关的特定转录产物的RT-PCR琼脂糖凝胶分析的结果。第1和5道包含标记片段,第2、3和4道分别包含来源于开花(DAF)20、40和60天后的cv.Vintage的胚组织的PCR产物。第6、7和8道分别包含来源于DAF 20、
40和60天后的突变系G的胚组织的产物。在C中,第1-5道显示与B中第1-5道详述的实验类似的实验的结果,而第6、7和8道分别包含来源于DAF 20、40和60天后的突变体D112的胚特异的LOX-1基因转录产物的RT-PCR检测的产物。D中显示了由LOX-1基因特有的RT-PCR片段的测序反应产生的的电泳图谱。序列分析显示RT-PCR目标RNA中没有DNA。黑色三角形指向显示转录产物正确拼接的拼接点。
[0139] 图18详述了大麦突变体D112的SNP协助检测的结果。分析以每个样品使用两组PCR反应产生特定的PCR片段模式为基础,在A中进行了大概说明(引物组合1由FL820[SEQ ID NO:13]和引物FL823[SEQ ID NO:15]组成,引物组合2由FL820[SEQ ID NO:13]和引物FL825[SEQ ID NO:14]组成。B中显示了良种育种材料的PCR模式分析的结果。对植物的基因组DNA进行PCR分析。利用引物组合1(偶数道)或引物组合2(奇数道)的结果显示在第2-3道(植物1)、第4-5道(植物2)、第6-7道(植物3)、第8-9道(植物4)、第10-11道(植物5)、第12-13道(植物6)、第14-15道(植物7)、第16-17道(植物8)和第
18-19道(植物9)中。与A中显示的带型进行比较显示植物1、2、4、5、7和8是纯合子突变体,而植物3、6和9的基因型可以被分为纯合子野生型。在第1和20道分离了标记DNA。
[0140] 图19表明了对包含突变体G或突变体D112的原料的大麦样品进行多重SNP分析的原理。使用多重PCR反应分析,这样使扩增片段的长度与所添加材料的基因型有关。370-bp片段的扩增将显示麦芽样品包含来源于突变系G的材料,而166-bp片段的扩增将表明存在来源于突变体D112的材料。图A是详述特异引物怎样配对的简图,其中每个引物对都具有一个包含特异性针对目的突变体的序列的引物(星号指突变系G的LOX-1的基因组克隆的核苷酸编号2279和突变体D112的位点3574)。引物组合FL918[SEQ ID NO:16]和FL920[SEQ ID NO:17]用于检测突变系G特异突变,而FL820[SEQ ID NO:13]和FL823[SEQ ID NO:15]被用来检测突变体D112特异的碱基变化。B中显示样品中突变体特异材料(第
2-7道:突变系G;第8-13道:突变体D112)的相对量怎样增强特异PCR片段的合成(第2和8道:没有添加突变体材料:第3和9道:添加了20%的突变体材料;第3和9道:添加了20%的突变体材料;第4和10道:添加了40%的突变体材料;第5和11道:添加了60%的突变体材料;第6和12道:添加了80%的突变体材料;第7和13道:添加了100%的突变体材料)。第1道由标记片段组成。
[0141] 图20给出了来自用载体质粒pET19b(第2-5道)、表达质粒pETL1(第6-10道)和表达质粒pETL2(第11-15道)转化的大肠杆菌细胞的亲合纯化的His标记的LOX-1的SDS-PAGE的结果。分析了来自包含非结合蛋白质(第2,6,11道);第一洗液(第3,7,12道);第二洗液(第4,8,13道);第一洗脱物(第5,9,14道)和第二洗脱物(第10,15道)的部分的蛋白质。上部的箭头标明了重组LOX-1(相当于野生型LOX-1)的位置,下部的箭头标明了截短的重组LOX-1(相当于大麦突变体D112中LOX-1)的位置。第1道包含分离的标记蛋白质。
[0142] 图21举例说明了转化大麦的质粒插入物。A中举例说明了由玉蜀黍泛素-1启动子和内含子1(一起称为UBI启动子)组成的指导bar基因(BAR)基本表达的表达盒,其中bar基因编码可选择的标记膦丝菌素乙酰转移酶。NOS终止序列(N)提供转录终止。B中举例说明了由上述UBI启动子组成的以有义或反义方向指导大麦LOX-1的cDNA序列的基本表达的表达盒。C中举例说明了由UBI启动子组成的指导包含内含子的发夹式构建物的基本表达的表达盒,其中脂肪酸去饱和酶FAD2内含子1(Int)的拟南芥基因的内含子1的序列的两侧侧接了LOX-1基因的大约200-bp长的片段的有义臂(→))和反义臂(←)。NOS终止序列(N)提供转录终止。为了产生显示出LOX-1基因共抑制的大麦植物,使用了包含等量含有A和B中详述的插入物的表达质粒的质粒混合物。为了产生显示出LOX-1基因完全沉默的大麦植物,使用了包含等量含有A和C中的插入物的表达质粒的质粒混合物。
[0143] 图22详述了关于降低LOX-1活性的抑制剂的试验结果。A中描述了在10%SDS-PAGE中进行的蛋白质电泳分离,分离的条带说明了来自大肠杆菌细胞的His标记的LOX-1的逐步纯化结果(参照实施例18)。载体pET19b和质粒pETL1的转化体的粗提物中的蛋白质分别显示在第1道和第2道,第3-5道包含洗液2,3和4的分离的蛋白质。在第6道(洗脱物1)、第7道(洗脱物2)、第8道(洗脱物3)和第9道(洗脱物4)中分离了来自亲和层析柱的1ml洗脱物的3ul的样品等份。水平的箭头标明了重组LOX-1的位置。如B中概括的那样,用来自洗脱物2的等分LOX-1进行抑制剂研究。其中在抑制剂,NDGA(●)或没食子酸辛酯(▲)中的任何一个存在的情况下,温育5ml的LOX-1(洗脱物2)后测量剩余的LOX-1活性。
[0144] 图23提供了详述从没有添加抑制剂的糖化过程制备的麦芽汁样品(空心条)或存在0.5mM的LOX-1抑制剂没食子酸辛酯(实心条)时制备的麦芽汁样品中的T2N水平的概要。在开始糖化(37℃)后或者在煮沸(煮沸的麦芽汁)后提取的样品包括用大麦cv.Barke或LOX-1无效大麦突变体D112的麦芽得到的碎麦芽的麦芽汁。
[0145] 6.发明详述
[0146] 将发明的详细描述分成了下列分部,其目的是为了使描述清楚,而不是限制发明:
[0147] (i)大麦植物;
[0148] (ii)制备LOX-1无效大麦;
[0149] (iii)组合物;
[0150] (iv)化学诱变;
[0151] (v)选择大麦突变体;
[0152] (vi)植物育种;
[0153] (vii)大麦杂交;
[0154] (viii)LOX酶;
[0155] (ix)LOX路径的产物;
[0156] (x)潜在的T2N;
[0157] (xi)抗病性;
[0158] (xii)真菌毒素;
[0159] (xiii)香料;
[0160] (xiv)编码LOX基因的异源表达;
[0161] (xv)LOX抑制剂。
[0162] 6.1大麦植物
[0163] 认为″野生大麦″,″Hordeum vulgare ssp.spontaneum″是今天栽培的大麦类型的祖先。在长时间里已经接受开发这一谷类能提供解释在FertileCrescent上开始谷物耕作的钥匙。人类在长夏季节期间收集谷物的事实使他们成为预先适应的驯养候选人。对来自以色列、土耳其和伊朗的野生型大麦的研究(Nevo,1992)支持早期的养驯植物可能在遗传上变化非常多的观点。已经发现野生大麦群体的等位基因含量大大不同。在27个均分位点的127个等位基因中,发现65个等位基因是独一无二的,即他们仅出现在一个国家。
[0164] 认为大麦从野生状态到耕种状态的转换与许多位点的等位基因频率的根本变化一致。珍贵的等位基因和新的突变事件被农场主积极挑选出来,其中农场主能很快确定表示为″大麦当地品种″(barley landraces)的驯养植物群体中的新特性。与野生大麦相比较,这些大麦在遗传上与现代栽培变种更密切相关,而且他们代表对更进一步繁殖工作有用的等位基因的来源(Ellis et al.,1998)。直到十九世纪晚期,大麦当地品种才作为近亲交配系的高度异种混合物和杂种分离子存在,在较早代的植物中几乎不包括来源于随机杂交的植物。通过纯系栽培变种已经将大部分当地品种转移到先进的农业中。中等水平或高水平的遗传多样性成为剩余当地品种的特性。
[0165] 最初、″现代大麦″(modern barley)栽培变种代表来自当地品种的选择物。后来他们来源于确定的纯系,例如不同地理起源的那些纯系之间的逐次循环杂交。最后导致在许多,也可能是所有先进农业中遗传碱基明显变窄。和当地品种相比,现代大麦栽培变种具有许多改进的特性(Nevo 1992 andvon Bothmer et al.,),例如,但不是限于:
[0166] (i)隐蔽和裸露的颗粒
[0167] (ii)种子休眠
[0168] (iii)抗病性
[0169] (iv)赖氨酸及其他氨基酸比例
[0170] (v)蛋白含量
[0171] (vi)氮含量
[0172] (vii)碳水化合物组成
[0173] (viii)大麦醇溶蛋白模式
[0174] 因此在本发明的一个实施方案中,大麦植物是包含的LOX-1活性少于对应野生型大麦植物的LOX-1活性的1%的修饰的现代大麦栽培变种。因此在这个实施例中,大麦植物优选不是大麦当地品种。
[0175] 本发明涉及包含的LOX-1活性小于野生型大麦植物的LOX-1活性的5%,优选小于4%,更优选小于3%,更加优选小于2%,更优选小于1%的大麦植物和其部分。包含小于1%的LOX-1活性的本发明的大麦植物在这里也被称为″LOX-1无效大麦植物″。
[0176] 大麦植物可以是任何适当形式。例如:本发明的大麦植物可以是有生活力的大麦植物、干燥的植物、均质化处理的植物,例如磨碎的大麦颗粒。植物可以是成熟植物、胚、萌发的颗粒、麦芽颗粒等等。
[0177] 大麦植物部分可以是该植物的任何适当的部分,例如颗粒、胚、叶、茎、根、花或其部分。例如,小部分可以颗粒、胚、叶、茎、根或花的一部分。大麦植物部分也可以是匀浆或磨碎的大麦植物或颗粒的小部分。
[0178] 在本发明的一个实施例中,大麦植物部分可以是所述大麦植物的细胞,优选是那些在体外组织培养中能繁殖的活细胞。
[0179] 在本发明的一个优选实施例中,LOX-1无效大麦植物包含的LOX-1活性小于野生型大麦植物活性的5%、优选小于3%,更优选小于1%,优选小于0.5%,更优选小于0.1%。可以通过任何适当的方法确定活性,但是优选使用下文实施例1中的方法确定活性。在本发明的一个非常优选的实施例中,LOX-1无效大麦植物基本上没有LOX-1活性,更优选根本没有LOX-1活性。″基本上没有LOX-1活性″指使用下文描述的LOX-1活性测定法时没有可检测的LOX-1活性。
[0180] 例如,LOX-1无效大麦几乎缺乏LOX-1活性可能是所述大麦包含不起作用的LOX-1蛋白质,例如突变的LOX-1蛋白质的结果。但是,与野生型大麦植物相比,LOX-1无效大麦仅包含微乎其微的LOX-1蛋白质,更优选不包含LOX-1蛋白质,例如包含小于5%、优选小于3%,更优选小于1%,优选小于0.5%,更优选小于0.1%的LOX-1蛋白质。更优选地,LOX-1无效大麦植物基本上不包含LOX-1蛋白质,最优选根本不包含LOX-1蛋白质。″基本上没有LOX-1蛋白质″指不包括可检测的LOX-1蛋白质。可以通过本领域熟练技术人员已知的任何合适的方法来检测LOX-1蛋白质,但是优选使用通过LOX-1特异性抗体检测LOX-1蛋白质的方法来进行检测。例如,所述方法可以是Western印迹或ELISA。所述的特异性抗体可以是单克隆或多克隆抗体,但是优选识别LOX-1蛋白质内的几个不同表位的多克隆抗体。例如,也可以通过确定LOX-1活性的方法、检测编码LOX-1的基因中的突变的方法或检测LOX-1基因表达的方法间接检测LOX-1蛋白质。例如,可以通过对编码LOX-1的基因进行测序检测所述基因中的突变。例如,通过Nothern印迹或RT-PCR可以检测LOX-1基因的表达。在本发明的一个优选实施例中,使用本公开文本的实施例4中列出的方法来检测LOX-1蛋白质。
[0181] 术语″LOX-1蛋白质″包括[SEQ ID NO:3]或[SEQ ID NO:7]中列出的全长大麦LOX-1蛋白质或其功能同系物。LOX-1的活性部位位于LOX-1的C末端部分。特别是与LOX-1的活性相关的跨越氨基酸残基520-862的区域或其部分。因此,在一个实施例中,LOX-1无效大麦优选包含编码突变体形式LOX-1的基因,其中突变体形式的LOX-1缺乏LOX-1氨基酸520-862中的部分或全部。所述突变体LOX-1也可以缺乏存在于野生型LOX-1中的其他的氨基酸残基。
[0182] 因此,LOX-1无效大麦可以包含没有功能的截短形式的LOX-1,例如N-末端或C末端截短形式。所述截短形式优选包含不超过800个、更优选不超过750个、更加优选不超过700个,更优选不超过690个、更加优选不超过680个、更加优选不超过670个的LOX-1连续氨基酸,例如包含不超过665个、不超过650个、不超过600个、不超过550个、不超过500个、不超过450个、不超过425个、不超过399个的[SEQ ID NO:3]的LOX-1的连续氨基酸。
所述截短形式优选仅包含LOX-1的N-末端片段。所述截短形式优选包含最多800个、更优选最多750个、更加优选最多700个,更优选最多690个、更加优选最多680个、更加优选最多670个、更加优选最多665个的[SEQ ID NO:3]的N-末端氨基酸,例如包含不超过665个、不超过650个、不超过600个、例如最多550个、最多500个、最多450个、最多425个、最多399个的[SEQ ID NO:3]的N-末端氨基酸。
[0183] 在一个非常优选的实施例中,截短形式可以由[SEQ ID NO:3]的1-665位氨基酸组成。
[0184] 在本发明的一个优选实施例中,大麦植物包含能转录成编码LOX-1的mRNA的基因,其中所述mRNA在野生型LOX-1mRNA的终止密码子的上游包含无义密码子或终止密码子。这种无义密码子在这里被命名为早熟无义密码子。所有转录成编码所述植物的LOX-1的mRNA的基因都包含早熟无义密码子或终止密码子是优选的。无义密码子或终止密码子优选位于起始密码子下游的最多800个、更优选最多750个、更加优选最多700个,更优选最多690个、更加优选最多680个、更加优选最多670个、更加优选最多665个密码子中。[SEQ ID NO:1]或[SEQ ID NO:5]中给出了编码LOX-1的野生型基因组DNA的序列。
[0185] 在一个优选实施例中,大麦植物包含编码LOX-1的基因,从所述基因转录的前mRNA包含相当于[SEQ ID NO:2]的核糖核酸序列。
[0186] 在本发明的另一个优选实施例中,大麦植物包含编码突变LOX-1的基因,所述基因在至少一个拼接位点,例如1、2、3个拼接位点中包含至少一个突变,例如1,2、3、4、5个突变。所述突变优选导致至少一个所述拼接位点无功能。因此从这种基因转录的mRNA将由于异常拼接而变得不正常。因此,从本发明的LOX-1无效大麦植物的LOX-1基因转录的mRNA优选不编码蛋白质或编码仅包含LOX-1N-末端的蛋白质。所述蛋白质可以包含由不是来源于LOX-1基因的异常mRNA编码的其他序列。在这里,LOX-1的N-末端包含氨基酸1到氨基酸N,其中N是2-800,更优选2-750,更优选2-700,更优选2-650,更优选2-600,更优选2-550,更优选2-500,更优选2-450,更优选2-400,更优选2-378范围内的整数。
[0187] 在本发明的一个实施例中,大麦植物包含编码突变LOX-1的基因,其中所述基因在拼接位点具有一个突变,导致mRNA编码由[SEQ ID NO:3]的氨基酸1-378,以及不是来源于LOX-1的另外氨基酸序列组成的蛋白质。所述LOX-1突变体优选由[SEQ ID NO:8]中列出的序列组成。
[0188] 在本发明的一个非常优选的实施例中,编码LOX-1无效大麦植物的LOX-1突变体的基因包含无义突变,所述突变相当于[SEQ ID NO:1]的位点3574的G→A替换。更优选的LOX-1无效大麦植物是被命名为D112的植物,该植物在美国标准菌库(ATCC)的保藏号是No.PTA-5487。
[0189] 在本发明的另一个非常优选的实施例中,编码LOX-1无效大麦植物的LOX-1的基因包含无功能的内含子3供体拼接位点。因此所述植物的LOX-1mRNA编码包含LOX-1的氨基酸1-378和来自内含子3的另外氨基酸的包含在[SEQ ID NO:8]中的蛋白质。更优选的LOX-1无效大麦植物是被命名为A618的植物,该植物在美国标准菌库(ATCC)的保藏号是No.PTA-5584。
[0190] 本发明的大麦植物也可以是LOX无效大麦植物的子代。因此,大麦植物可以是被命名为D112的具有ATCC保藏号No.PTA-5487或被命名为A618的具有ATCC保藏号No.PTA-5584的植物的子代。
[0191] 采用本领域熟练技术人员所知的任何适当方法可以制备本发明的大麦植物,优选通过下文列出的方法中的一种来制备(例如,参见6.2″制备LOX-1无效大麦″)。
[0192] 在本发明的一个实施例中,本发明的LOX-1无效大麦植物优选具有可与野生型大麦相比较的植物生长生理学和谷物发育。因此LOX-1无效大麦植物在株高、每株植物的分蘖数,开花的起始和/或每一个穗的谷物数目方面与野生型大麦相似是优选的。
[0193] 提供LOX-1无效大麦植物也是本发明的一个方面,其中所述植物的特点在于:
[0194] (i)具有增强的抗病性;或
[0195] (ii)产生真菌毒素的潜能降低;或
[0196] (iii)包含供组织培养使用的可再生细胞;或
[0197] (iv)(i)到(iii)的特性的任何组合。
[0198] 在本发明的一个实施方案中,大麦植物是附带条件为所述大麦植物在内含子5的拼接供体部位不携带G突变的LOX-1无效大麦植物。本发明的一个实施方案也涉及从附带条件为所述大麦植物在内含子5的拼接供体部位不携带G突变的LOX-1无效大麦植物或其部分制备的植物产品,例如麦芽、麦芽汁、发酵或非发酵饮料、啤酒、食物或饲料产品。例如,所述G相当于SEQ ID 1的位点2968上的G。通过采用本领域技术人员已知的常规方法从植物产品分离DNA并鉴定存在或不存在所述突变可以确定所述植物产品是否是从具有给定突变的大麦植物制备的。例如,可以通过冷冻干燥、在含水缓冲液中的重悬浮、氯仿/异戊醇抽提,以及随后的乙醇沉淀从麦芽汁、啤酒或另外的饮料中分离DNA。例如:可以用与Hirota等在WO2004/085652中的描述类似的方式鉴定内含子5的拼接供体部位的G突变。
[0199] 6.2制备LOX-1无效大麦
[0200] 采用本领域熟练技术人员所知的任何适当方法可以制备本发明的大麦植物。优选通过包含诱变处理大麦植物或其部分,例如大麦颗粒的步骤的方法来制备本发明的大麦植物,其中诱变处理步骤后对大麦植物进行筛选和选择,以挑选出LOX-1活性小于5%的植物。有趣地是,本发明一方面涉及效率非常高的新筛选方法,例如显著优于Douma等在WO02/053721中的描述的筛选方法。新的筛选方法允许重现性地鉴定没有LOX-1活性或有极低LOX-1活性的大麦植物。这种新筛选法包括从诱变处理的大麦获取颗粒或其部分,例如胚,以及确定所述颗粒或其部分中的LOX-1活性。
[0201] 因此,提供制备包含的LOX-1活性小于野生型大麦植物的LOX-1活性的5%的大麦植物的方法是本发明的目标,它包括步骤:
[0202] (i)确定野生型大麦颗粒或其部分的LOX-1活性;和
[0203] (ii)诱变处理大麦植物和/或大麦细胞和/或大麦组织和/或大麦颗粒和/或大麦胚,从而获得M0代大麦;和
[0204] (iii)繁殖所述诱变处理的大麦植物、颗粒和/或胚至少2代,获得Mx代大麦植物,其中X是≥2的整数;和
[0205] (iv)从所述Mx大麦植物获取颗粒或其部分;和
[0206] (v)确定所述颗粒或其部分的LOX-1活性;和
[0207] (vi)选择诱变处理的颗粒或其部分的LOX-1活性小于野生型颗粒或其部分的LOX-1活性的5%的植物;
[0208] 从而获取包含的LOX-1活性小于野生型大麦植物的LOX-1活性的5%的大麦植物。
[0209] 上述列表中的步骤(ii)涉及诱变处理从由大麦细胞、大麦组织、大麦颗粒和大麦胚组成的组中选择出来的生活物质(living material),优选从由大麦植物、大麦颗粒和大麦胚组成的组中选择出来的生活物质,更优选从大麦颗粒中选择出来的生活物质。用确定野生型大麦颗粒的LOX-1活性时所用材料的同类材料来确定诱变处理颗粒的LOX-1活性是优选的,即步骤(i)的大麦颗粒或其部分是步骤(iv)中提到的大麦颗粒或其部分的同类是优选的。举例来说,如果在野生型大麦的胚中确定野生型大麦的LOX-1活性,那么步骤(iv)优选包括确定诱变处理的大麦植物的胚中的LOX-1活性。
[0210] 可以通过任何适当的方法完成诱变。在一个实施例中,通过用诱变处理制剂温育大麦植物或其部分,例如大麦颗粒或来自大麦的单独的细胞来完成诱变。所述制剂为本领域熟练技术人员所知,例如:不限于叠氮化钠(NaN3)、乙基甲磺酸盐(EMS)、叠氮丙三醇(AG,3-叠氮基-1,2-丙二醇)、甲基亚硝基脲(MNU)和顺丁烯二酰肼(MH)。
[0211] 在另一个实施例中,通过照射,例如通过UV照射大麦植物或其部分,例如颗粒来完成诱变。在本发明的优选实施例中,依照下文6.4″化学诱变″中列出的任何方法来完成诱变。在实施例1中给出了适当诱变规程的非限制例子。
[0212] 优选利用筛选M3大麦时,使想要的突变体的期望频率达到每10,000谷物颗粒最少0.5,例如0.5-5,例如0.9-2.3的方式完成诱变。
[0213] 在优选实施例中,对大麦颗粒实施诱变。诱变处理的颗粒被命名为M0代(也参见图1A)。
[0214] 在诱变之后,挑选出包含小于5%,优选小于1%的LOX-1活性的大麦植物或其部分。可以依照本领域熟练技术人员所知的任何适当方法完成选择。优选地,选择包含从大麦植物,例如大麦颗粒获取样品,确定所述样品中的LOX-1活性和选择植物,其中所述样品具有的LOX-1活性小于野生型大麦植物的LOX-1活性的5%,优选小于1%。
[0215] 可以从所述植物的任何适当部分获取样品。但是,样品优选取自颗粒,更优选取自颗粒的胚组织,样品更优选由颗粒的胚组织组成。通常,在确定LOX-1活性之前,必须使用任何适当的方法将样品匀化。
[0216] 在优选实施例中,样品取自Mx代颗粒,其中x是≥2的整数,x优选是2-10范围内的整数,更优选是3-8范围内的整数。在非常优选的实施例中,确定M3颗粒或来源于颗粒的样品的LOX-1活性。在那个实施例中,栽培诱变处理的大麦颗粒(M0代)获取大麦植物是优选的,杂交该大麦植物可获取颗粒M1。重复这一过程直到得到M3颗粒(参见图1A)。
[0217] 使用任何适当的测定方法,优选通过下文列出的方法中的一种,可以实现对LOX-1活性的确定。特别地,优选监测LOX-1将亚油酸双氧化成9-HPODE的测定方法。通常,测定(assaying)因此涉及步骤:
[0218] (i)提供从大麦颗粒或其部分制备的样品;和
[0219] (ii)提供亚油酸;和
[0220] (iii)用所述亚油酸温育所述样品;和
[0221] (iv)检测亚油酸双氧化成9-HPODE。
[0222] 可直接或间接完成检测。本发明可以使用任何适当的检测方法。在本发明的一个实施例中检测亚油酸氢过氧化物。例如,可以通过将所述亚油酸氢过氧化物(hydroperoxides)的降解与形成可检测化合物的氧化反应偶联来检测亚油酸氢过氧化物。例如:可以按照实施例1的描述来实施这一过程。在另一个实施例中,例如,通过实施例9中描写的分光光度分析法,HPLC可直接检测9-HPODE。在本发明的一个实施例中,通过确定来自大麦颗粒的样品中的9-HPODE的量来简单确定LOX-1活性。通过本领域普通技术人员所知的任何适当方法,例如实施例9中列出的方法可以完成这一过程。
[0223] 在什么pH条件下完成对LOX-1活性的确定很重要。优选在允许LOX-1活性高,但只允许LOX-2活性低的pH条件下完成所述确定。因此,优选在3-6.5的pH范围内,例如3-4的pH范围内,4-5的pH范围内,5-6的pH范围内,6-6.5的pH范围内进行LOX活性确定。pH优选是大约3,例如大约3.5,大约4,大约4.5,大约5,大约5.5,大约6,大约6.5,大约7。也优选在适当的pH,例如在3-6.5的pH范围内,例如3-4的pH范围内,4-5的pH范围内,5-6的pH范围内,6-6.5的pH范围内制备所述样品。pH优选是大约3,例如大约3.5,大约4,大约4.5,大约5,大约5.5,大约6,大约6.5,大约7。
[0224] 在下文的6.5″选择大麦突变体″部分中描述了依照本发明选择大麦植物的优选方法。
[0225] 在实施例1中给出了确定LOX-1活性的优选实例。
[0226] 这种选择方法适合于微滴定板分析程序或允许快速筛选许多样品的其他已知的高通量重复测定方式。优选分析至少5,000株、例如至少7,500株、例如至少10,000株、例如至少15,000株诱变处理的大麦植物的LOX-1活性。
[0227] 在挑选出有用的具有小于5%LOX-1活性的大麦植物之后,可以随意实施一种或多种另外的筛选。例如:可以更进一步地繁殖选择的突变体,并再一次筛选后代的LOX-1活性。
[0228] 在挑选出有用的大麦植物之后,可以使这些植物繁殖,例如常规繁殖。下文(6.6″植物育种″部分和6.7″大麦杂交″部分)中描述了繁殖方法。
[0229] 但是,也可以用其他方法,例如导致LOX-1转录和/或翻译降低的方法来制备本发明的大麦植物。因此,用包含操作性连接的在大麦植物中可表达的启动子部分,DNA序列和转录终止区域的核酸序列转化大麦植物可以制备LOX-1无效大麦植物,其中所述DNA序列的表达通过下列机制降低LOX-1编码基因的表达:
[0230] (i)反义沉默;或
[0231] (ii)共抑制沉默;或
[0232] (iii)RNA干扰。
[0233] 在一个实施方案中,通过涉及用能降低LOX-1编码基因转录或翻译的核酸序列,例如包含反义LOX-1序列的核酸序列转化大麦植物的方法,来制备本发明的大麦植物。例如:所述反义序列可以是[SEQ ID NO:1]的反义序列或其片段。反义序列应该操作性地与在大麦植物中表达的基因的启动子序列连接。在下文的实施例16中列出了这种方法的非限制性例子。
[0234] 可以用任何有用的方法,例如根癌土壤杆菌介导的转移或粒子轰击介导的DNA吸收来转化大麦植物。
[0235] 通过包含下列步骤的方法制备的LOX-1无效大麦植物也在本发明的范围内:
[0236] (i)诱变处理大麦植物和/或大麦颗粒和/或大麦胚;和
[0237] (ii)确定LOX-1基因中存在或缺少突变,其中所述突变导致LOX-1基因编码包含SEQ ID NO:3中所列出的序列的不到700个连续氨基酸的LOX-1多肽形式;所述多肽优选是包含[SEQ ID NO:3]的最多700个N-末端氨基酸的LOX-1的N-末端片段,
[0238] (iii)选择携带所述突变的植物,从而获取包含的LOX-1活性小于野生型大麦植物的LOX-1活性的5%的大麦植物。
[0239] 更优选地,所述突变可以导致LOX-1基因编码上述任何一个LOX-1N-末端片段。
[0240] 可以使用任何适当的方法,例如,对LOX-1基因进行测序或单核苷酸多态性(SNP)分析来检测所述突变。在下文的实施例13和实施例14中描述了怎样实施SNP分析的实例。
[0241] 一旦制备出在LOX-1基因中具有特殊突变(例如,任何上述突变)的LOX-1无效大麦植物,就可以通过本领域熟练技术人员已知的常规繁育方法来产生具有相同突变的另外的大麦植物。例如:所述LOX-1无效大麦植物可以回交到另一个大麦栽培变种环境中。图9公开了这种回交的图解实例。
[0242] 6.3组合物
[0243] 本发明也涉及包含如上所述的大麦植物或其部分的组合物,或者从所述大麦植物或其部分制备的组合物。因为所述大麦植物具有不到5%、优选具有不到1%的LOX-1活性,因此包含所述大麦植物或其部分或由所述大麦植物或其部分制备的组合物通常包含极低水平的T2N和潜在T2N。下文在这里描述了包含LOX-1无效大麦或由LOX-1无效大麦制备的有用组合物的实例。
[0244] 所述组合物与包含野生型大麦植物或由野生型大麦植物制备的相似组合物相比具有下列特点是优选的:
[0245] (i)小于30%、优选小于20%、更优选小于10%、更加优选小于5%、例如小于2%、小于1%的T2N;和/或
[0246] (ii)小于30%、优选小于20%、更优选小于10%、更加优选小于5%、例如小于2%、小于1%的潜在T2N;
[0247] 本发明一方面涉及与野生型颗粒相比包含的LOX-1活性小于1%的大麦颗粒。颗粒优选不包含LOX-1活性。本发明也涉及包含所述颗粒的组合物和从所述颗粒制备的组合物。
[0248] 一方面,本发明涉及通过发麦芽从LOX-1无效颗粒制备的麦芽组合物。应理解术语″发麦芽″指已浸泡的大麦颗粒在可控的环境条件下萌发(例如图11中的步骤2和3)。
[0249] 发麦芽(malting)是受控的浸泡和萌发过程,其中萌发后对大麦颗粒进行干燥。这一作业顺序对合成许多使谷物颗粒改良(modification)的酶很重要,其中谷物颗粒改良主要是解聚死胚乳细胞的细胞壁和动员颗粒营养素的过程。在随后的干燥过程中,由于化学褐变反应而产生风味和着色。虽然麦芽的主要用途是生产饮料,但是它也可以用于其他工业过程,例如作为焙烤食品工业的酶来源、或者作为食品工业的调味品和着色剂、作为麦芽或麦芽粉、间接地作为麦芽糖浆等等。
[0250] 一方面,本发明涉及生产所述麦芽组合物的方法。该方法优选包含步骤:
[0251] (i)提供LOX-1无效大麦颗粒;
[0252] (ii)浸泡所述颗粒;
[0253] (iii)在预先确定的条件下使浸泡的颗粒萌发;
[0254] (iv)干燥所述萌发的颗粒;
[0255] 从而产生LOX-1活性低或没有LOX-1活性的麦芽组合物。例如:可以通过Hoseney(1994)中描述的任何方法来制备麦芽。但是,产生麦芽的任何其他合适的方法,例如产生特色麦芽的方法,包括但不限于焙烧(roasting)麦芽的方法也可以用于本发明。实施例6中描述了一个非限制性实例。
[0256] 另一方面,本发明涉及从麦芽组合物制备的麦芽汁组合物,其中麦芽组合物是从LOX-1无效颗粒制备的。可以从只有LOX-1无效颗粒的颗粒或包含其他颗粒的混合物制备所述麦芽。本发明也涉及使用LOX-1无效大麦或其部分制备的单独的或与其他组分混合的麦芽汁组合物。所述麦芽汁可以是第一和/或第二和/或更进一步的麦芽汁。通常麦芽汁组合物已经有高含量的氨基氮和发酵性糖,主要是麦芽糖。在图11中,步骤4到6举例说明了从麦芽制备麦芽汁的常见方法。通常,通过用水温育麦芽,即通过糖化制备麦芽汁。在糖化期间,麦芽/水组合物中可以补充另外的富含糖类的组合物,例如大麦、玉蜀黍或稻添加剂。未萌发的谷类添加剂通常不包含活性酶,因此依靠麦芽或外来酶来提供糖转化所必需的酶。
[0257] 通常,麦芽汁生产过程的第一步是碾磨麦芽,其目的在于让水在糖化期间可以进入谷物颗粒,而这基本上是用酶解聚底物的发麦芽过程的延伸。在糖化期间,用液体部分,例如水温育磨碎的麦芽。温度可以保持恒定(等温糖化)或逐渐升高。两种情况下,在通过过滤将液体部分分离成麦芽汁和被命名为酒糟的剩余固体颗粒之前,发麦芽和糖化过程中产生的可溶性物质已经被萃取到所述液体部分。这种麦芽汁也可以表示为初次麦芽汁。过滤后可以获取第二麦芽汁。通过重复这一过程可以制备更进一步的麦芽汁。在Hoseney(上文)中描述了制备麦芽汁的适当工序的非限制性实例。
[0258] 也可以通过用一种或多种适当的酶,例如酶组合物或酶混合剂组合物,例如Ultraflo或Cereflo(Novozymes)温育LOX-1无效大麦植物或其部分,例如未萌发的LOX-1无效大麦植物或其部分来制备麦芽汁组合物。也可以使用麦芽混合物和未萌发的大麦植物或其部分,通过在所述制备期间随意添加一种或多种适当的酶来制备麦芽汁组合物。
[0259] 本发明也涉及包含LOX-1无效大麦植物或其部分的食物组合物、饲料组合物或香原料组合物。例如,食物组合物可以包括,但不局限于萌发和未萌发的大麦颗粒、大麦粉、面包、粥、包含大麦的谷类混合物、保健品、例如包含大麦的饮料、大麦糖浆,以及薄片状、磨碎的或挤压的大麦组合物。例如,饲料组合物包括包含大麦颗粒和/或粗粉的组合物。下面将在这里描述香原料组合物。
[0260] 本发明也涉及本发明的组合物的混合物。例如:本发明一方面涉及通过混合(i)包含大麦植物或其部分的组合物,其包含的LOX-1活性小于野生型大麦植物的LOX-1活性的5%和(ii)从LOX-1无效颗粒制备的麦芽组合物制备得到的组合物。
[0261] 在优选方面,本发明涉及饮料、更优选的涉及麦芽衍生饮料、更加优选的涉及醇饮料,例如具有稳定感官品质的啤酒,其中所述饮料是使用LOX-1无效大麦或其部分制备的。因此,在本发明的一个优选实施例中,优选通过单独或与其他组分结合发酵LOX-1无效大麦或其部分或其提取物,例如发酵用麦芽生产的麦芽汁来制备饮料,其中麦芽是由LOX-1无效大麦产生的。
[0262] 但是,在本发明的其他实施例中,饮料是非发酵饮料,例如麦芽汁。从未萌发的大麦植物或其部分制备所述饮料也包括在本发明中。
[0263] 但是优选从麦芽组合物制备所述饮料,其中麦芽组合物是从LOX-1无效大麦颗粒制备的。所述饮料更优选是啤酒。可以是本领域熟练技术人员所知的任何一种啤酒。例如,在一个实施方案中,啤酒是贮藏(lager)啤酒。优选使用包含萌发的LOX-1无效大麦的麦芽组合物酿造啤酒。但是,麦芽组合物也可以包含其他组分,例如其他萌发的或未萌发的谷类,例如野生型大麦、LOX-1无效大麦、小麦和/或黑麦,未萌发的包含糖的原材料或来源于萌发的或未萌发的原材料的组合物,例如糖浆组合物。
[0264] ″感官品质″指对嗅觉和味觉有吸引力的品质。例如,经过训练的品尝小组可以对他们进行分析。所述的经过训练的品尝小组进行过识别醛,例如T2N异味的特别训练是优选的。通常,品尝小组将由3-30名成员组成,例如由5-15名成员组成。品尝小组可以评估存在的各种风味,例如异味、似纸的、氧化的、老化的和面包样风味。在下文的实施例6中描述了确定饮料″感官品质″的方法。在优选实施例中,稳定的感官品质至少部分是产生的T2N或潜在T2N低的结果。
[0265] 因此,提供使用大麦植物制造的饮料(例如啤酒)是本发明的目标,其中饮料在储藏至少1周,优选至少2周,更优选至少3周,更优选至少4周,例如1-3个月,3-6个月,6-12个月,一年以上以后,与从野生型大麦制备的饮料相比优选包含小于50%、优选小于40%、更优选小于35%、例如小于30%、小于20%、小于10%、例如优选小于5%、小于2%、小于1%的T2N和/或潜在T2N。在15-40℃,优选在30-37℃的温度范围,更优选在37℃进行储藏。本发明的饮料在15-40℃,优选在30-37℃的温度范围,更优选在37℃储藏至少1周,优选至少2周,更优选至少3周,更加优选至少4周,例如1-3个月,3-6个月,6-12个月,一年以上以后优选包含最多0.07、优选最多0.06、更优选最多0.05、更加优选最多0.04,例如最多0.03ppb(10亿(billon)分之几)的游离T2N。该饮料优选也包含1-10ppm(百万分之几)、更优选2-8ppm、更优选3-7ppm、更加优选4-6ppm的亚硫酸盐。在一个优选实施例中,本发明的饮料在37℃储藏2周之后包含最多0.04、更优选最多0.03,例如最多0.025ppb的游离T2N。在本发明的另一个优选实施例中,本发明的饮料在存在4-6ppm亚硫酸盐的情况下,在37℃储藏4周之后包含最多0.07、优选最多0.06,更优选最多0.05,更加优选最多
0.04,例如最多0.03ppb(10亿分之几)的游离T2N。
[0266] 本发明的饮料在15-25℃,例如大约20℃储藏至少10个月后,与从除LOX-1无效大麦外的不同大麦制备的相似饮料相比具有较少的似纸味道是优选的。优选地,经过训练的品尝小组评估,所述似纸味道小于90%、更优选小于80%、例如小于70%。
[0267] 在一个实施例中,本发明涉及具有低水平的某些三羟基十八碳烯酸的饮料,例如啤酒,特别涉及具有低水平9,12,13-THOE的饮料。三羟基十八碳烯酸具有苦味(Baur and Grosch,1977 and Baur et al.,1977),因此不受欢迎。
[0268] 因此,9,12,13-THOE的水平尽可能低是合乎需要的,优选低于1.3ppm,例如低于1ppm。但是,麦芽衍生饮料(例如啤酒)中9,12,13-THOE的总浓度也依赖于用来制备所述具体饮料的麦芽的量。因此,通常,浓啤酒比淡些的啤酒含有更多的9,12,13-THOE,而且在更浓的啤酒中可以接受总水平更高的9,12,13-THOE。因此,与类似种类的正常啤酒相比,本发明的饮料优选包含更低水平的9,12,13-THOE。通过使用制备所述饮料的LOX-1无效大麦可以获取这种饮料。因此,与内(internal)标准相比,本发明的优选饮料包含低比例的9,
12,13-THOE,其中内标准可校正制备所述饮料中使用的麦芽的量。例如,所述标准可以是另一个三羟基十八碳烯酸。
[0269] 因此,保持各种三羟基十八碳烯酸(THAs)的比例不超出特定范围,对饮料,例如啤酒的质量很重要。令人惊讶地是,除低水平的T2N之外,LOX-1路径的产物(参见图1B)--从本发明的LOX-1无效大麦制备的饮料也具有极低水平的9,12,13-THOE(参见图
1C),因此9,12,13-THA/9,10,13-THA的比例极低。因此,本发明一方面涉及具有稳定感官品质的饮料,例如啤酒,其中利用大麦植物或其部分,优选LOX-1无效大麦制造所述饮料,所述饮料中9,12,13-THA与9,10,13-THA的比例最大是1.8,优选最大是1.7,更优选最大是1.6,更优选最大是1.5,更加优选最大是1.4。因此所述比例在0-1.8的范围之内,优选在0-1.6的范围之内,例如在0-1.4的范围之内是非常优选的。在一个实施例中,所述比例是大约1.3。通过标准方法,例如Hamber,1991中描写的气相色谱-质谱分析法可以确定饮料中9,12,13-THOE和9,10,13-THOE的量。
[0270] 所述THAs优选是亚油酸转化的oxylipins。有趣地是,利用本发明的大麦植物可以制备具有这种THA比例的饮料。优选地,不使用除LOX-1无效大麦以外的其他大麦,例如不使用除从LOX-1无效大麦制备的麦芽以外的其他麦芽制备所述饮料。在本发明的一个优选实施例中,饮料包含:
[0271] (i)如上所述的9,12,13-THA/9,10,13-THA比例;和
[0272] (ii)储藏之后具有如上所述水平的游离T2N。
[0273] 在一个实施例中,本发明涉及与相似的常规饮料相比,具有改进的泡沫稳定性的饮料,例如啤酒。例如,可以从LOX-1无效大麦或其部分,例如麦芽制备这种饮料。例如,可以按照Brautechnische Analysenmetoden,2002中的描述确定泡沫稳定性。
[0274] 本发明也涉及制造所述饮料的方法。该方法优选包含步骤:
[0275] (i)提供包含萌发的LOX-1无效颗粒的麦芽组合物;
[0276] (ii)将所述麦芽组合物加工成饮料;
[0277] 从而获取感官品质稳定的饮料。
[0278] 在一个优选实施例中,这种饮料是啤酒。在这种情况下,工艺步骤优选包含通过,例如上述的任何方法从所述麦芽组合物制备麦芽汁,以及发酵所述麦芽汁。
[0279] 一般说来,可以用萌发的和/或未萌发的大麦谷物制造醇饮料,例如啤酒。除酒花和酵母之外,麦芽也促成了啤酒的风味和颜色。而且,麦芽作为发酵性糖和酶的来源起作用。啤酒制造一般步骤的简略图显示在图11中,适当的萌发和酿造方法的例子的详细描述可以在例如,Hoseney(上文)的近期出版物中找到。分析大麦、麦芽和啤酒产品的许多更新的方法已经存在[例如,但不限于;American Association of Cereal Chemist(1995)AmericanSociety of Brewing Chemists(1992);European Brewery Convention(1998);Institute of Brewing(1997]。已经认识到给定的啤酒厂使用了许多有显著差异的具体过程,这些过程与当地的消费者喜好有关。本发明可以使用任何这种制造啤酒的方法。实施例6中描述了一个非限制性实例。
[0280] 例如,可以通过上述的任何方法获取适合制备所述饮料,例如啤酒、麦芽饮料或非发酵麦芽汁的麦芽组合物。可以从所述麦芽组合物制备麦芽汁,这一点上文已经描述。
[0281] 从麦芽汁生产啤酒的第一步优选涉及煮沸所述麦芽汁。在煮沸期间,可以添加其他组分,例如提供典型的苦啤酒和芳香啤酒特征的酒花。煮沸麦芽汁也会导致多酚和变性蛋白质之间形成主要在随后的麦芽汁冷却阶段沉淀的聚集物。在冷却之后,麦芽汁被转移到包含酵母的发酵罐中。所述酵母优选是啤酒酵母、卡尔酵母(Saccharomyces Carlsbergensis)。麦芽汁可以发酵任何适当时间,一般发酵1-100天。在持续几天的发酵过程期间,糖被转变成乙醇和CO2,同时伴随有一些调味剂的发生。
[0282] 随后可以更进一步处理啤酒。一般要冷却啤酒。也可以过滤和/或陈贮啤酒,陈贮(lagered)是产生令人愉快的芳香和风味,以及较少泡沫(yeasty)的过程。最后可以在包装(例如装入瓶中或罐中)前,将啤酒巴氏灭菌或过滤啤酒。
[0283] 尽管在啤酒制造领域已经取得进步,但降低啤酒中T2N、T2N前体和潜在T2N水平是有益的。因此,仍然对新原材料有需求,特别是有助于成品啤酒产生较少异味的大麦和麦芽。因此提供这种大麦和麦芽是本发明的目标。
[0284] 6.4化学诱变
[0285] 一方面,本发明基于,至少部分基于使用大麦颗粒的化学诱变,其中化学诱变是已知的随机插入突变的方法。可以使用任何诱变处理化学制剂完成大诱变麦,但是优选通过用NaN3处理颗粒,使幸存的颗粒萌发,然后分析子代植物来完成大麦诱变。由诱变处理的颗粒长成的称为M0的一代植物包含任何给定突变的杂合子嵌合体。在自花传粉之后收集的子代称为M1代,分离给定突变的杂合子和纯合子(参照图1A和9)。
[0286] 用NaN3处理颗粒不等同于处理单个细胞,因为处理之后的颗粒将包含一些未突变细胞和具有DNA突变的多种细胞。因为那些不产生种系的细胞谱系的突变可能丢失,因此目标就是将诱变剂靶向那些发育为有助于产生M1代的再生组织的少数细胞。
[0287] 为了评价总的突变效率,白化(albino)嵌合体和白化植物分别被计算入M0和M1代。作为成活植物函数的记分突变体数给出了对突变效率的估计,而作为已处理种子函数的记分突变体数测量了突变效率和杀死的颗粒的组合。
[0288] 人们注意到事实上在每个基因表达步骤,细胞都具有可能缓和突变损害效果的质量保证机制。真核生物中的一个较好的研究例子是被命名为NMD的无义介导的mRNA衰退,NMD防止合成潜在有害的截短的早熟蛋白质(Maquat和Carmichael,2001)。在NMD中,通过终止密码子相对于下游脱稳定元件的位置已经确定终止密码子早熟。在酿酒酵母(Saccharomycescerevisiae)中,他们被宽松地限定为mRNA序列,在哺乳动物细胞中,他们是在前mRNA拼接期间存放在外显子-外显子接合处的蛋白质复合物。无义mRNAs怎样降解和他们生产的蛋白质怎样定位是将来研究的领域。
[0289] 产生早熟终止(无义)密码子(PTCs)的突变有时会增加那些跳过有害突变的替代拼接转录产物的水平,因此有可能补救蛋白质的功能(Mendelland Dietz,2001)。因为认为翻译和RNA拼接发生在不同的细胞室,因此发现无义密码子特异mRNA上调机制在哺乳动物细胞中独立于拼接增强子破坏起作用是矛盾的。但是,在当前发明的大麦植物和其他植物中都没有观察到这种机制。
[0290] NMD、PCT等等在植物育种环境中具有特殊的意义,因为这种现象会增加待筛选的颗粒或谷物颗粒的数目以鉴定出有价值的新特性。
[0291] 6.5大麦突变体的选择
[0292] 本发明一方面是提供LOX-1活性的筛选条件,在该条件下LOX-2的活性减弱。该方法基于待筛选的大麦组织的性质和反应条件可以增加来源于LOX-1酶的LOX活性和减弱来自LOX-2酶的LOX活性这一令人惊奇的发现。在Douma等的以WO02/053721A1公开的PCT申请PCT/IB01/00207中详述的低LOX突变体的筛选使用了大麦叶尖的蛋白质提取物,而且在pH7.5时确定酶活性,而当前的公开文本详述了允许重复鉴定LOX无效大麦突变体的有利筛选参数。首先,筛选LOX-1活性时,使用大麦植物特异组织很重要。优选地,所述组织包含该大麦颗粒,更优选地包含大麦颗粒的胚。一般,对所述组织的提取物,即大麦颗粒或大麦胚的提取物进行筛选。更优选地,确定LOX-1活性的提取物包含干燥大麦颗粒的匀化胚组织,最优选地,提取物由干燥大麦颗粒的匀化胚组织组成。这样,仅仅是来源于LOX-2的边缘活性有助于活性确定。第二,优选在使丙二烯氧化物合酶失活的pH条件下完成LOX-1活性测定,这样可以提供产量优良的HPODEs。
[0293] 6.6植物育种
[0294] 本发明的一个实施例的目标是提供包含LOX-1无效特性的农艺学有用大麦植物。可以把农作物发育看做仅始于引入新特性的延伸步骤。植物育种家的观点认为这一步骤通常产生与现在的市场品种相比,具有较少合乎需要的农业性状总体轮廓的植物。
[0295] 除LOX-1无效特性之外,在本领域产生商业麦芽大麦品种中要考虑其他重要因素,例如颗粒产量、颗粒大小及涉及萌发性能的其他参数。因为已经证明许多这种特性--如果不是所有的这种特性处于遗传控制下,因此提供现代的纯合高产麦芽栽培变种是非常合乎需要的,其中的麦芽栽培变种是与当前文本中公开的LOX-1无效大麦植物杂交的结果。这种大麦植物的颗粒提供了没有或仅有最低的将亚油酸转化成9-HPODE能力的优越的新原材料。因此大麦育种人员必须选择和研制具有产生丧失LOX-1功能的优良栽培变种特性的大麦植物。或者,大麦育种人员可以利用本发明的植物进行更进一步的诱变以产生来源于LOX-1无效大麦的新栽培变种。
[0296] 可以依照任何适当的方案繁殖本发明的大麦植物。
[0297] 6.7大麦杂交
[0298] 本发明的另一个目标是提供包含LOX-1无效特性的农艺学良种大麦植物。因此,本发明也涉及通过将第一亲代大麦植物与第二亲代大麦植物杂交产生LOX-1无效新大麦植物的方法,其中第一或第二植物是LOX-1无效大麦。另外,第一和第二亲代大麦植株都可以来自LOX-1无效大麦品种。因此,任何这种使用LOX-1无效大麦品种的方法都是本发明的一部分:自花授粉、回交、群体杂交等等。利用LOX-1无效大麦品种作为亲代产生的所有植物都在本发明的范围内,包括那些从衍生于LOX-1无效大麦品种的品种发展得到的植物。LOX-1无效大麦还可以用于遗传转化,在这种情况下,外源DNA被导入LOX-1无效植物或植物组织,并在其中表达。
[0299] 本发明可以使用回交方法将突变大麦植物的LOX无效特性导入另一个品种,例如都是当代高产麦芽大麦载培品种的cv.Scarlett或cv.Jersey中。在标准回交操作规程,有价值的原有(original)品种(回归亲本)与携带单个有意义的待转移基因的第二品种(非回归亲本)杂交。接着再一次将这次杂交产生的LOX-1无效子代与回归亲本杂交,重复这一步骤直到获取其中基本上全部的回归亲本特有特征都在转换的植物中被恢复的大麦植物,除转移的非回交亲本的LOX-1无效特性的遗传结构(set-up)外。然后,最后的回交代自交可产生LOX-1无效特性的纯种繁育子代(参照图9)。
[0300] 适当的回归亲本对成功的回交过程很重要,回交过程的目标将LOX-1无效特性导入原有品种。为了完成这一过程,在基本保留来自原有品种的所有剩余特性时,用来自非回交亲本的低LOX-1特性修饰回归品种的遗传结构。虽然当被转移的特征是显性等位基因时回交方法被简化,但是回交那些隐性(recessive)LOX-1无效特性是可能的,在这种情况下必须引入生化分析来评价想要的特征是否被转移。
[0301] 一种加快植物育种过程的方法包含通过应用组织培养和再生技术对所产生的突变体进行初始倍增。因此,本发明另一个方面提供生长和分化时产生具有LOX-1无效特性的大麦植物的细胞。例如:育种可以涉及传统杂交、制备可增殖的花药衍生植物或利用小孢子培养。
[0302] 6.8LOX酶
[0303] 本发明的一个重要目标是提供缺乏合成活性LOX-1酶能力的大麦植株。LOXs是具有单个非血红素铁因子的大单体蛋白质。在http://www.rcsb.org/pdb对蛋白质数据库检查显示通过X-射线晶体衍射已经确定几个LOX酶的结构。这些蛋白质共有全部折叠和域结构,每一个折叠和域结构具有较小的N-末端八链β桶状域和较大的主要由长α螺旋组成的C末端域。铁原子位于C末端域,在那里铁原子被配位到组氨酸残基和唯一的正好是异亮氨酸的多肽羧基末端上。蛋白质表面的几个通道通向铁位点附近,推测这些通道为底物、多不饱和脂肪酸和分子氧到达活性部位提供了通路。因为黄瓜类脂体LOX结合脂质体和类脂体依赖于N-末端β桶的存在(May et al.,2000),在通过钙离子增强的过程中大豆LOX-1结合双层膜(Tatulian and Steczko,1998),因此可以推测LOX酶结合脂质双层膜,而这很可能就是N-末端域的功能。确定LOX活性的方法,以及分离、特征鉴定和LOX催化作用的直接的下游产品的定量的方法本领域普通技术人员很容易得到。
[0304] 6.9LOX路径产品
[0305] 在各种实施例中,本发明涉及形成链烃T2N的能力被阻断的大麦植物或其产品。LOX酶通过顺式-1,顺式-4戊二烯系统催化不饱和脂肪酸双氧化。在植物中,C18多不饱
9,12 9,12,15
和脂肪酸亚油酸(18:2Δ )和α亚麻酸(18:3Δ )是主要的LOX底物。脂肪酸代谢的脂加氧酶路径的起始于在酰基链的C-9或C-13位置添加分子氧产生对应的9-和13-亚油酸或亚麻酸氢过氧化物。当以亚油酸作底物时,可以形成9-或13-亚油酸(HPODEs)中的任何一种,而当底物是α亚麻酸时,形成的产品是9-或13-氢过氧亚麻酸(HPOTEs)。在LOX路径的氢过氧化物裂解酶支路中,随后9-和13-氢过氧化物可以被切割成短链酮酸和醛(参照图1B)。
[0306] 值得注意的是9-HPODE可以被进一步地代谢为9,12,13-THOE(参照图1C),9,12,13-THOE是具有苦味的THOE(Baur et al.,1977;Baur and Grosch1977)。因此,LOX-1失活植物将形成比例不同于野生型植物中观察到的比例的THOEs。
[0307] 已经认识到本发明包括影响LOX-1催化作用的下游代谢物的生产,其中下游代谢物不是作为LOX-1催化反应的直接产物而产生的,它是涉及LOX-1催化作用的产物的一系列反应连续反应的结果。这些反应包括自发的、因子诱导的或酶催化的异构化。因此,通过调整氢过氧化物裂解酶(HPL)的表达可以影响这些下游代谢物的产生。
[0308] 假设亚油酸的自动氧化可以产生与T2N形成相关的前体分子,那么更进一步地降低alkenal的水平是可能的。特别地,预计编码Δ9-去饱和酶(将硬脂酸转换变成油酸)或Δ12去饱和酶(将油酸转换变成亚油酸)基因的下调将通过降低有关酶下游脂肪酸的水平和增加中间脂肪酸底物的水平,改变C18脂肪酸(硬脂酸,油酸和亚油酸)相对比例。运用天然变体或诱发突变进行选择育种的例子被用来研制含油种子农作物中改进的油范围,其中含油种子农作物包括但不限于高硬脂酸(stearic)(HS)大豆(Graef et al.,1985)、高油酸(coleic)(HO)菜籽(Auld et al.,1992),以及Osorio等(1995)和Soldatov(1976)分别研制的HS和HO向日葵。
[0309] 特别有价值的是本发明包括产生不是LOX-1作用直接产物的醛,这种醛是在LOX路径的酶的作用下产生的,或者是通过醛的异构化,例如图1B中提供的(3Z)-壬烯醛到(2E)-壬烯醛的异构化产生的。也承认本发明包括产生相当于LOX路径的酶产生的醛和/或相当于所述异构化产生的醛的醇。所述醇典型地是在醛-酮还原酶超家族的酶成员(Srivastava et al.,1999)的作用下产生的,例如通过酶将(2E)-壬烯醛转化成(2E)-壬烯醛产生的。
[0310] 6.10潜在T2N(T2N Potential)
[0311] 本发明更进一步的目标是降低或者消除与T2N形成,包括T2N前体和醛加合物的形成相关的分子。虽然与啤酒老化相关的几个化学反应仍然难以捉摸,但是认为氧化过程是啤酒产物中产生腐败味的主要原因(Narziss,1986;Ohtsu et al.,1986)。已经公知腐败味的主要的分子贡献者是T2N,这一点在第2部分(″发明背景″)中已经详述描述。在制造啤酒的过程中,当在发酵前的生产阶段产生这种醛时,这种醛可以通过结合氨基酸和蛋白质参与加合物的形成(Noёl and Collin,1995),但也可能结合核酸、谷胱甘肽等等,后来通过发酵酵母可以防止它还原或氧化(Lermusieau et al.,1999)。但是,在发酵期间还可以和亚硫酸盐形成T2N加合物使该醛保持风味非活性状态(Nyborg et al.,上文)。
[0312] 大部分T2N加合物被转入成品啤酒中,在成品啤酒中游离T2N被释放(Ligeois et al.,2002),酸度条件和温度条件是这一过程中的重要因素。T2N加合物包含在限定的反应条件下,例如在100℃,pH 4.0的条件下温育2h会降解T2N加合物释放T2N的部分潜在T2N。熟练技术人员知道如何将潜在T2N作为啤酒储藏期间怎样释放T2N的指示物,例如Drost等(上文)已经描述这一过程。
[0313] 当前发明的大麦颗粒在LOX-1催化形成9-HPODE方面受到限制,其中9-HPODE通常在LOX路径支路中作为产生T2N的前体分子起作用。因此利用LOX无效大麦颗粒生产的啤酒将不仅具有极低水平的T2N,而且也具有极低水平的潜在T2N。LOX-1无效大麦颗粒产生的完全缺乏T2N,或包含可忽略水平的潜在T2N,包括T2N加合物的啤酒产物在本发明的范围内。因此,利用LOX-1无效大麦生产的啤酒在储藏期间基本上不产生或仅仅产生可忽略的T2N特异的异味。
[0314] 6.11抗病性
[0315] 本发明更进一步地涉及抗病大麦。认为植物LOXs与活性抗病机制,总称为过敏反应(HR)的发展有关,其中过敏反应是程序性细胞死亡的一种形式(Rustérucci et al.,1999)在HR中,感染后位于传染位点附近的植物细胞的迅速死亡导致形成坏死斑。这样,病原体传播被限制,而且能防止对剩余植物器官的更进一步破坏。在几个植物病原体系统中,HR与LOXs的表达相联系,其中LOXs具有产生HPODE而且9-HPOTE的特异性(Rustérucci et al.,上文;Jalloul et al.,2002),这可能是因为氢过氧脂肪酸的大量产生导致组织坏死。
[0316] 编码LOX-1的基因主要在大麦颗粒中表达,而许多另外的LOX酶在植物的叶中表达。因此,导致9-HPODE、13-HPODE、9-HPOTE和13-HPODE形成的LOX路径分支在大麦叶中是有功能的,而且不同的oxylipins组合反映单独的感染和创伤事件。已经描述马铃薯叶相似的分子方案(Weber et al.,1999)。
[0317] 天然发生的挥发性醛抑制某些病原体在植物上生长,一些植物对特殊病原体的天然抵抗力可以归于挥发性醛的产生(Croft et al.,1993;BleéandJoyard,1996;Vancanneyt et al.,2001)。因此,相对于野生型植物,本发明的LOX-1无效大麦植物的改变的oxylipin轮廓可以防止、降低、改善或消除病原体、病原体产物或植物-病原体相互作用产物的存在。病原体的一个非限制性例子是曲霉属(Aspergillus)(参见下文)。
[0318] 因此,在一个实施例中,本发明涉及显示出抗病性增强的LOX-1无效大麦植物。
[0319] 6.12真菌毒素
[0320] 本发明也公开了曲霉群(clonization)敏感度降低的大麦植物的用途。曲霉是大麦颗粒麻烦的殖民者,经常导致污染致癌真菌毒素(mycotoxins)黄曲霉毒素(aflatoxin)和柄曲菌素(sterigmatocystin)。因为真菌产生黄曲霉毒素受高水平9-HPODE、9-HPOTE、13-HPODE和13-HPOTE的影响,因此Keller在美国专利No.5,942,661中要求保护产生的所述氢过氧脂肪酸的量足以抑制真菌毒素产生的转基因农作物。另外,所述美国专利和Burow等(2000)的资料详细说明13-HPODE抑制黄曲霉毒素的产生,而9-HPODE增强黄曲霉毒素的产生。
[0321] 因为LOX-1无效颗粒缺乏活性LOX-1酶,因此所述颗粒包含比野生型植物水平略高的13-HPODE,而且包含相对于所述颗粒的非遗传修饰亲本组织,水平较低的9-HPODE。因此相对于野生颗粒,LOX-1无效颗粒可以避免曲霉寄居,或者在曲霉污染后显示出水平降低的真菌毒素。
[0322] 因此,本发明涉及与野生型大麦植物相比,真菌毒素水平降低的大麦植物。
[0323] 6.13香料
[0324] 利用LOX-1无效大麦生产香料和青香韵化合物也是本发明的一个方面。到目前为止,大多数与大麦LOX路径的各种支路相关的研究工作都集中在从13-HPOTE产生茉莉酮酸(Turner et al.,2002)和如上所述的抗病性方面。为了选择性的商业目的对大麦氢过氧脂肪酸的注意较少。但是,值得注意的是LOX-1无效大麦颗粒中完全缺少活性LOX-1预期会导致所述颗粒中富集13-HPODE和13-HPOTE。以这种新特性为基础,新应用可能涉及大麦农作物的工业用途,例如用于生产短链脂族醛和乙醇(例如,青香韵化合物己醛/己烯醛和己醇/己烯醇)。
[0325] 与生产青香韵相关的几个方面已经在专利,包括但不限于讨论的美国专利No.s6,008,034、6,150,145和6,274,358中公开。 等的美国专利No.6,008,034中公开了利用特异的氢过氧化物裂解酶生产青香韵化合物的过程, et al.等的美国专利No.6,150,145和Holtz等的美国专利No.6,274,358中描述了利用标准植物原料的这一过程。利用LOX-1无效颗粒生产青香韵化合物包含为实现所述生产使用新原材料。不能认为来源于本发明的LOX-1无效大麦颗粒的新原材料是标准植物原料,因为它是衍生自诱变操作规程后已经经过挑选的颗粒,在本公开文本的6.4-6.7部分已经详述诱变操作规程。认为LOX-1无效大麦颗粒的工业用途超出了该专利前一段叙述的权利要求的范围,主要因为由当前发明的LOX-1无效颗粒产生的新原材料将大大改进LOX-1催化产生9-HPODE和9-HPOTE过程强加的正常限制,其中9-HPODE和9-HPOTE两氢过氧脂肪酸不能作为酶催化产生青香韵顺式3-己烯醛和顺式3-己烯醇的前体分子。
[0326] 6.14编码LOX的基因的异源表达
[0327] 在多个实施方案中,本发明涉及具有LOX-1无效特性的转基因大麦植物。预想植物基因工程将来的发展将导致产生LOX-1合成被抑制的大麦植物。已经作为控制异味形成的方式提出这一概念,但是还没有报道这种方法的结果(McElroy and Jacobsen,1995)。这里描述的发明可以与将来的这种改进结合使用,以构建具有与LOX-1序列的信使RNA(mRNA)的至少一部分互补的反义构建物的反义LOX-1植物。构建与对应mRNA杂交的反义核苷酸与在转基因大麦中表达反义SnRK1蛋白激酶序列中的描述相似(Zhang et al.,
2001)。可以构造反义序列修饰,只要该序列能与对应mRNA杂交并干扰对应mRNA的表达就可以。这样就可以使用与对应反义序列具有70%、优选80%、更优选85%的序列同一性的反义构建物。而且,反义核苷酸的部分可以用来破坏靶基因的表达。通常可以使用至少50个核苷酸、100个核苷酸、200个核苷酸或更多个核苷酸的序列。因此,本发明的适用范围并不仅限于那些通过常规诱变方法产生的植物。
[0328] 虽然经由同源重组的靶基因替换在酵母中非常容易,但是它的效率在大多数多细胞真核生物中仍然有限,而且还不允许产生这种大麦植物和一组基因组范围的基因破坏(Parinov and Sundaresan,2000)。最近已经在几个发育过程中利用基因沉默来研究秀丽隐杆线虫基因组的86%的预知基因的作用(Ashrafi et al.,;Kamath et al.,2003)。为了产生具体基因,例如LOX-1编码基因的功能完全丧失的大麦植物使用RNA干扰(RNAi)方法有几个缺点。这些缺点包括表型缺乏稳定遗传率、剩余基因活性水平不定(Hannon,2002;Bargman,2001;Wesley et al.,2001),而且不能同时沉默几个不相关基因(Kamath et al.,2000)。
[0329] 也可以以有义方向使用本发明的核苷酸序列来抑制植物中编码LOX酶的内源基因的表达。以有义方向利用本核苷酸序列抑制植物中基因表达的方法本领域已经已知(例如,参见Jorgensen和Napoli的美国专利5,283,184)。该方法通常涉及用DNA构建物转化植物,DNA构建物包含操作性地与相应于内源基因转录产物的核苷酸序列的至少一部分连接的驱动植物中的表达的启动子。典型地,这种核苷酸序列与内源基因的转录产物序列具有较高的序列同一性,优选大于大约65%的序列同一性、更优选大于大约85%的序列同一性,最优选大于大约95%的序列同一性。
[0330] 在Cahoon等的美国专利申请公布No.2003/0074693A1中描述和公开了与编码LOX酶的基因的异源表达相关的各个方面。虽然所述专利申请叙述了关于大麦LOX酶的背景技术,并公开了许多编码LOX的基因序列,但是编码LOX-1、LOX-2和LOX-3的大麦基因中没有任何一个显示出包括在Cahoon等的美国专利申请公布No.2003/0074693A1叙述的权利要求范围内的足够程度的同一性。
[0331] 当本发明已经在上述描述中进行详细描述时,认为相同的序列是作例证的,在性质上并不是限制性的,应理解来自本发明精神内的所有变化和修饰都是希望得到保护的。因此,在本发明的范围内实践某些变化和修饰,例如单个基因修饰和突变、somaclonal变体、从当前的载培品种的大量植物群体中选择的变体个体等等是很明显地,发明的范围只能由附加的权利要求的范围限定。参考下列具体的实施例更进一步地对本发明进行描述;
提供这些实施例是更进一步地举例说明本发明,不应认为他们是限制本发明的范围[0332] 6.15LOX抑制剂
[0333] 本发明也涉及降低或防止大麦LOX-1活性的方法。几个LOX抑制剂可以选自氧化还原和非氧化还原抑制剂类、抗氧化剂、铁螯合剂、包含咪唑的化合物、苯并吡喃衍生物等等。
[0334] 因此在一个实施例中,本发明涉及降低大麦LOX(优选LOX-1)活性的方法,包括步骤
[0335] (i)提供大麦植物或其部分或从大麦制备的植物产品,
[0336] (ii)提供LOX抑制剂
[0337] (iii)用所述LOX抑制剂温育所述大麦植物或其部分或从大麦制备的植物产品,因此降低大麦LOX(优选LOX-1)的活性。
[0338] 在一个实施方案中,所述植物产品是麦芽,在糖化步骤期间将所述LOX抑制剂添加到所述麦芽中。这将优选导致所述糖化步骤产生的麦芽汁中的T2N水平低些。
[0339] 所述大麦植物或其部分或从大麦制备的植物产品可以是LOX-1无效大麦或其部分或从LOX-1无效大麦制备的植物产品。但是,其他大麦可以优选用于该方法。
[0340] 在多种LOX抑制剂中,氧化还原LOX抑制剂可以选自邻苯二酚丁烷(catecholbutane)衍生物,例如Jordan等的美国专利No.s5,008,294,Allen的美国专利No.s4,708,964和Jordan的美国专利No.s4,880,637中描述的任何一种,例如去甲二氢愈创木酸(nordihydroguaiaretic acid)(NDGA)或其enatiomers中的一个。
[0341] 抗氧化剂LOX抑制剂可方便地选自石炭酸、类黄酮等等。抗氧化剂LOX抑制剂也可以选自没食子酸盐,包括没食子酸辛酯。通过下文实施例18中描述的测定可证实实际上是LOX抑制剂的化合物。
[0342] 在工业上,没食子酸辛酯已知的大豆脂加氧酶抑制剂(Ha et al.,2004),具有特殊价值,现在允许将它作为食物中的抗氧化添加剂使用(Aruoma et al.,1993)。这一特性使得在存在公认的抑制剂没食子酸辛酯的情况下测试纯化的大麦LOX-1活性有意义。有趣地是,糖化期间存在没食子酸辛酯导致T2N水平较低。
[0343] 因此当前发明的实施方案提供了添加到碎麦(mash)芽中后将使T2N水平降低的LOX-1抑制剂及其用途。
[0344] 7.实施例
[0345] 这里的例子举例说明了本发明的优选实施方式,不应认为是对本发明的限制。
[0346] 除非另有陈述,否则是按照Sambrook等(1989)和Sambrook and Russell(2001)中的描述操作核酸和细菌,完成基本的分子生物技术。
[0347] 将本部分的例子分成下列主题,其目的是为了使说明书清楚,而不是限制发明:
[0348] (i)筛选和突变体选择
[0349] (ii)大麦突变体D112和A618
[0350] (iii)大麦突变体D112和A618的生理学特性
[0351] (iv)突变体D112和A618是LOX-1无效植物
[0352] (v)糖化
[0353] (vi)利用野生型和突变体大麦的麦芽生产麦芽和啤酒
[0354] (vii)LOX-1无效麦芽的啤酒中的三羟基十八碳烯酸
[0355] (viii)啤酒中的三羟基十八碳烯
[0356] (ix)大麦中来自LOX作用的酶产物的生化特征鉴定
[0357] (x)突变大麦突变体D112中的LOX-1基因
[0358] (xi)突变大麦突变体A618中的LOX-1基因
[0359] (xii)LOX-1转录产物的RT-PCR检测
[0360] (xiii)携带D112突变的大麦突变体的遗传检测
[0361] (xiv)样品混合物中的突变体检测
[0362] (xv)突变体D112的重组LOX-1是失活的
[0363] (xvi)转基因大麦植物
[0364] (xvii)青香韵化合物
[0365] (xviii)LOX-1抑制剂
[0366] (xix)用没食子酸辛酯糖化
[0367] 实施例1
[0368] 筛选和突变体选择
[0369] 大麦诱变。依照Kleinhofs等(1978)提供的详细描述,分别用诱变剂NaN3温育从cv.s Barke Celeste、Lux Prestige、Saloon和Neruda大麦植物收集的颗粒。选择这一过程是因为已知它会在大麦基因组DNA中诱导点突变,并在诱变处理的DNA编码的那些蛋白质中产生氨基酸替换或截断。
[0370] 在当前公布的诱变实验中,选择在实验点通过随后繁殖突变的M1代谷物颗粒两代,最后产生高比例的供筛选的纯合子植物(图1A)。预计产生的M3代突变体谷物发生的频率为0.9-2.3/10,000谷物颗粒(Kleinhofs et al.,上文)。值得注意的是没有筛选M2颗粒,主要因为这些颗粒包含比例相对高的杂合点突变。
[0371] 筛选。目的在于研制检测缺乏LOX-1活性的M3突变体大麦颗粒的快速高通量筛选程序,以避免使用已知的包含几种LOX活性的叶尖的麻烦的筛选程序(在Douma等的以WO02/053721A1公开的PCT申请PCT/IB01/00207中公开)。焦点在于确定成熟大麦颗粒的胚,包括scutellum组织中的LOX活性。一般,测定条件与Anthon和Barrett(2001)描述的那些条件相似。测定基于LOX催化产生亚油酸氢过氧化物,亚油酸氢过氧化物在血红蛋白催化反应中将3-甲基-2-苯噻唑啉腙(benzothiazolinone)与3-(二甲氨基)安息香酸氧化偶联,导致形成分光光度计可以测量的蓝颜色。
[0372] 实际上,一个测定系列起始于将96个大麦胚组织,包括胚鳞(scutellum)分开均化成细粉组合物。这些细粉被转入冰冷的存储板(ABgene),其中1.2ml的96个孔中的每一个孔都包含一个圆的5-mm的玻璃珠和200ul水。然后在MM 300实验型磨机(Retsch)-1中温育存储板35秒,电子调节摇动频率为27秒 。随后,在4℃用Allegra 6R离心机(Beckman-Coulter)以4,000rpm离心储存板15分钟沉淀不溶性物质,此后继续保存在冰上最多120分钟直到下一个步骤。
[0373] 96孔板被转入能依照Anthon和Barrett(上文)中描述的LOX测定,按程序移液的Biomek 2000实验室自动化工作站(Beckman-Coulter)。最后,96x26ul的胚提取物被转入标准的96孔微量滴定板(Nunc),接着添加90ul的试剂A[12.5mM 3-(二甲氨基)安息香酸,0.625mM亚油酸(实施例9详细描述了其制备过程)]和90ul试剂B(0.25mM 3-甲基-2-苯噻唑啉腙(benzothiazolinehydrazone),0.125mg/ml血红蛋白);试剂A是通过先混合相当于134mg游离酸的155ul亚油酸(Sigma,L-1376)和257ul Tween-20,然后加入水使体积达到5ml,接下来添加600ul的1M NaOH,当溶液变清澈时,用另外的水将其调节为20ml而制备的。利用Flourostar Galaxy分光光度计(BMG Labtechnologies)测量96孔板的每一孔中的A595,其中氢过氧化物产物的颜色形成是测量存在的总LOX活性的尺度[因此以A595单位(A595U)给出活性]。
[0374] 潜在突变体的鉴定。筛选大麦cv.Barke(来源于总共2,160个系)、cv.Celeste(2,867 个 系 )、cv.Lux(2,625 个 系 )、cv.Prestige(1,379 个 系 )、cv.Saloon(1,743个系)和cv.Neruda(3,780个系)的谷物颗粒的LOX活性,目的在于鉴定和野生型颗粒相比所述活性大大降低的颗粒。在M3代鉴定了总共90个潜在的未加工突变体[cv.Barke(12个系)、cv.Celeste(38个系)、cv.Lux(9个系)、cv.Prestige(16)、cv.Saloon(12个系)和cv.Neruda(3个系)]。从这些突变体中的每一个突变体获得的谷物被繁殖到M4代,然后再收获,筛选与极低LOX活性相关的特性。最后表明只有命名为突变体D112的一个cv.Barke系和命名为突变体A618的一个cv.Neruda系显示出所述总LOX活性极低。
[0375] 用成熟静态(quiescene)谷物的提取物来完成对LOX活性的详细测量,成熟静态谷物中的活性几乎专门由LOX-1提供(Schmitt and van Mechelen,1997)。按照如上所述的比色LOX测定确定的突变体D112的干燥成熟M3谷物胚的总LOX活性(参照图2;表1)是0.407±5.8%A595U/胚,而cv.Barke的是1.245±7.6%A595U/胚。在第二组实验中,发现突变体A618的M3代成熟干燥谷物的胚提取物中的LOX活性是0.221±2.6%A595U/胚,而野生型cv.Neruda的提取物是0.721±3.6%A595U/胚(图3,表1)。
[0376] 实施例2
[0377] 大麦突变体D112和A618
[0378] 进行分析确定M4和M5代LOX-1无效植物是否是对应突变表型的纯合子。这类分析对确定M3代中的目的突变是隐性性状或显性性状有用。换句话说,如果M3代植物是显性突变的杂合体,那么后代将使那个表型分离开。
[0379] 测量大麦突变体D112和A618的M3、M4和M5代胚中的总LOX活性,并将活性与分别来自cv.Barke和cv.Neruda的活性进行比较。在当前公布文本的实施例1中描述了对LOX活性的确定。在所有实验中,来自cv.Barke胚的标准提取物和加热失活的来自cv.Barke胚的标准提取物被用作对照样品。
[0380] 突变体D112M4代谷物胚的平均总LOX活性是0.334±1.5%A595U(n=12),而对于突变体D112M5代胚的是0.294±4.1%A595U(n=90)。对比的野生型cv.Barke的M4代胚和M5代胚分别产生0.738±3.2%A595U(n=2)和0.963±7.5%A595U(n=90)(参照图4;图5;表1,实验1)。
[0381] 大麦突变体A618的M4代胚产生0.222±2.1%A595U的平均LOX活性(n=4)。这一实验的其他结果显示cv.Neruda胚中的LOX活性是0.684±5.8%A595U(n=90)。结果概括在图6,表1和实验2中。
[0382] 总之,实验数据证实突变体D112的M4和M5代谷粒是总LOX活性极低的特异遗传特性的纯合子。突变体A618的M4代谷物显示相同的特性。
[0383] 实施例3
[0384] 大麦突变体D112和A618的生理学特性
[0385] 在温室繁殖植物。cv.Barke和突变体D112的谷物(M4和M5代)在温室中,在相对湿度为65%,光照为20h,温度为12℃的条件下萌发和生长。突变体D112和野生型cv.Barke植物的在株高、每株植物的分蘖数,开花的起始(on-set)和/或每一个穗的谷物数目方面的生长特点与野生型大麦相似。因此,不仅能推断出突变体D112具有野生型植物的生长生理学,而且可推断出突变体D112具有正常的谷物发育。
[0386] 突变体A618谷粒的M4代和cv.Neruda谷物在温室中,在相对湿度为65%,光亮/黑暗条件为20h/4h,温度为12℃的条件下萌发和生长。进行比较时,没有观察到突变体A618和cv.Neruda在株高、每株植物的分蘖数,开花的起始和/或每一个穗的谷粒数目方面存在差异。但是,突变体A618的背侧(dorsal side)谷物因为异常的洞样(hole-like)结构不同于母本cv.Neruda。总之可以推断出突变体A618显示出与野生型植物类似的生长生理学,但是显示出异常的谷物发育。
[0387] 在田间条件下,突变体D112的农学性能。在田间试验中比较鉴定突变体D112和cv.Barke植物在株高、抽穗期、抗病性、倒伏(lodging)、穗断裂、成熟时间和产量方面的可能差异(参见表2)。
[0388] 依照田间试验的标准程序完成该试验。因此,将等份的突变体D112和cv.Barke2
颗粒种植在2个地点的7.88m 地块里,其中每个样品包含3份复制。在整个生长季节,仔细地观察农学数据特征,重点是如上所述的特性。观察到的突变体D112和cv.Barke的农业性状都不是没有差异。
[0389] 实施例4
[0390] 突变体D112和A618是LOX-1无效植物
[0391] 蛋白质分析。进行下列分析以表征突变体D112和A618的突变表型特征。对从静态大麦谷物中除去的胚的提取物进行Western印迹分析。在motar中的300ul冰冷的水中提取一个胚,提取物被转入微量离心管中以10,000g的离心力离心。依照Laemmli(1970)提供的描述,通过十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)分离包含10ul粗提物的样品等分。此后,通过Towbin等(1979)已经详细描述的半干印迹将分离的蛋白质转移到硝酸纤维膜上。用1∶500稀释的LOX-1特异单克隆抗体5D2(Holtman et al.,1996)作为探针探察印迹,然后用与碱性磷酸酶偶连的山羊抗小鼠抗体温育,并用碱性磷酸酶底物氮蓝四唑和5-溴-4-氯-3-吲哚-磷酸盐进行检测,这一点Holtman等已经描述(上文)。通过5D2抗体识别cv.Barke胚的提取物中的LOX-1,在SDS-PAGE中蛋白质的迁移与来自cv.Vintage的LOX-1相似。
[0392] 在突变体D112的样品中没有免疫可检测LOX-1,但是在cv.Barke、突变系G和cv.Vintage的提取物中可以鉴定这种蛋白质。cv.Barke和突变体D112的M4子代系的Western分析显示来自cv.Barke胚的谷物中存在LOX-1蛋白质,而不是突变体D112的任何子代谷物中存在LOX-1蛋白质(图7),因此证实LOX-1无效特性在遗传上是稳定的。通过卡方检验(chi-square)确定这些数据在统计上有显著意义(p<3.84)。如上所述,分析突变体A618和cv.Neruda的M3和M4代胚中的LOX-1蛋白质。在两代cv.Neruda的胚提取物中都可以检测到LOX-1蛋白质。但是,在未加工突变体A618和子代系的胚中(图8)观察到非常模糊的LOX-1蛋白质条带,这可能是因为其他LOX酶的交叉反应引起的。
[0393] 回交。利用重复回交将LOX-1无效表型从突变体D112转移到回归亲本里(参照图9),在本公开文本中回归亲本是cv.Prestige。在图9中举例说明了计划的与选择有价值的特性结合的回交程序。目的是逐步用回归亲本的基因组取代突变体D112的基因组。这样,可以消除在NaN3诱变处理期间引入突变体D112基因组的其他潜在的不利突变。
[0394] 预计纯合的LOX-1无效突变体D112(基因型表示为nn)与cv.Prestige(基因型表示为NN)第一次回交的子代系包含杂合的基因型(基因型表示为Nn)。值得注意的是由于低LOX表型是隐性性状,因此在是这种突变的杂合体的系中它将逃脱检测。预计自花传粉后代产生以正常孟德尔模式分离的植物群体,也就是比例为1NN∶2Nn∶1nn的植物群体。包含LOX-1无效基因型的由第一个回交产生的纯合nn基因型包含cv.Prestige的50%的遗传背景。在10轮回交之后,回归亲本背景预计达到99.9%。
[0395] 在整个回交程序中,在温室繁殖cv.Prestige和LOX-1无效突变体D112的大麦植物。按照实施例1中的描述分析回交子代的胚提取物中LOX-1蛋白质的存在。在第一和第二回交代的分离的子代中LOX-1无效表型的期望频率是25%的隐性突变(图10)。利用western印迹分析作为检测缺乏LOX-1蛋白质条带的大麦突变系的基础,第一回交代的频率相当于3个系/12个总回交系。在第二回交代中,9个系/28个总回交系在western印迹分析中缺少LOX-1蛋白条带(图10)。因为在第二回交子代中回归亲本背景达到大约75%,因此LOX-1突变基因和对应LOX-1无效表型的共遗传证实了他们的遗传连锁。卡方检验显示观测到的数据统计上有显著意义。p值低(<3.84),p值是显示第一、第二、第三和第四回交代有意义的特性。
[0396] 回交程序表明产生LOX-1无效表型的突变体等位基因可以被转入替换的遗传背景中,而且以遵循孟德尔分离法则的隐性单因素方式遗传。
[0397] 实施例5
[0398] 糖化
[0399] 制备麦芽汁。为了测试新大麦载培品种的特性,制备了新大麦载培品种的25-225g麦芽样品(参照图11)。利用包含外部搅拌器和配备了恒温器的水浴装备的实验室麦芽糖化系统,可以小规模地完成糖化过程,其中恒温器能够以明确限定的梯度匀变温度。用纸过滤器过滤最后的碎麦芽。利用加热壁炉台和连接到回流冷凝器上的圆底烧瓶,以实验室规模完成麦芽汁煮沸。
[0400] 实施例6
[0401] 利用野生型和突变体大麦的麦芽生产麦芽和啤酒
[0402] 为了获取足够的制麦芽和酿造的谷物原料,在田间繁殖cv.Barke和突变体D112大麦几季。对成品啤酒的T2N分析和感官分析表明用突变体D112麦芽酿造的啤酒具有改进的风味稳定性。
[0403] 使来源于突变体D112和cv.Barke的颗粒萌发。在麦芽作坊实施20kg规模的制麦芽过程,步骤如下:突变体D112大麦谷物(在2003年收获),cv.Barke谷物(在2002年收获)。浸泡条件是:8h湿润;14h干燥;8h湿润;10h干燥;16℃在浸泡水中润湿4h。萌发条件是:18℃12h;16℃24h;14℃24h;12℃60h。干燥条件是:60℃12h;68℃3h;74℃4h;80℃3h。
[0404] 在表3中比较了利用来源于突变体D112和cv.Barke麦芽的麦芽样品进行麦芽制造分析的数据。结果表明突变体D112和cv.Barke的麦芽满足麦芽规范,而且证实这些麦芽适合酿造。突变体D112的麦芽与cv.Barke麦芽相比,其中T2N水平明显降低,相当于降低~64%(表4)。
[0405] 用来源于突变体D112和cv.Barke的麦芽进行酿造。进行的50-1规模的酿造,涉及下列步骤:(i)制备麦芽汁;(ii)分离麦芽汁;(iii)煮沸麦芽汁;(iv)发酵;(v.)贮藏;(vi)浅色(bright)啤酒过滤;和(v)装入瓶中。利用突变体D112或cv.Barke的麦芽制备麦芽汁,其中后者用作参比样品。每种酿造,总共使用13.5kg麦芽。按照47℃20分钟,接着加热18分钟,其中加热过程中温度从48℃升高到67℃;在67℃暂停30分钟;然后加热5分钟到72℃;在72℃暂停15分钟,加热6分钟到78℃;在78℃暂停5分钟的条件进行糖化。依照标准酿造实践的规范完成酿造步骤中的麦芽汁过滤和煮沸、涡流分离、发酵、贮藏和包装到绿玻璃瓶中。总共装瓶331啤酒。
[0406] 风味稳定性和T2N分析。如上所述利用突变体D112和cv.Barke的麦芽生产啤酒。新近装瓶的啤酒储存在5℃,并在生产2个月内对其进行分析。在两个不同类型的啤酒储存条件后,评估新鲜和储存啤酒的风味稳定性。在一个试验系列中,让啤酒在37℃经受1-4周的强迫老化过程。
[0407] 基本上按照 等的(1993)描述,在用O-(2,3,4,5,6-五氟苯甲基)-羟胺衍生羰基后,通过用质谱检测的气相色谱法确定啤酒样品的T2N水平。
[0408] 受过训练的啤酒品尝小组评估啤酒的总风味得分。检查包括对啤酒中指示游离T2N的纸板风味的检测。值得注意的是,两种新鲜啤酒都包含相似水平的亚硫酸盐,即来源于突变体D112和cv.Barke麦芽的啤酒的亚硫酸盐分别是4ppm和5ppm。
[0409] 强迫老化。研究和比较由cv.Barke麦芽和来源于突变体D112的麦芽生产的瓶装碑酒,有关在强迫老化期间游离T2N产生的特异数据显示在图12A和表5中。可以看到,啤酒在T2N的产生动力学方面有显著差异,因此能互相区分。参考啤酒的结果正如所料,在来源于突变体D112的啤酒中观察到出乎意料且显著低的T2N发生。
[0410] 强迫老化实验加强了两个啤酒之间的差异。在2周半之后,参考啤酒的T2N水平超过了味觉阈值水平,而利用突变体D112麦芽生产的啤酒在温育2-3周后,T2N浓度稳定在0.025ppb。
[0411] 考虑到味道和风味的稳定性,一组风味专家评估了利用LOX-1无效大麦突变体D112生产的啤酒。焦点集中在37℃经历了强迫老化的啤酒样品上。品尝小组发现新鲜和强迫老化啤酒两种类型都显示令人满意地风味轮廓。但是,参考啤酒的似纸味道评分高于利用LOX无效突变体D112麦芽生产的啤酒(表5),即提及的异味在参考啤酒中具有更强烈的味道。一般,品尝小组优选由LOX-1无效突变体D112麦芽产生的啤酒(风味接受得分,表5)。
[0412] 当在20℃温育了12个月时,10位啤酒品尝者组成的小组比较了由LOX-1无效突变体D112和对照麦芽产生的啤酒,其中品尝者是经过训练的品尝啤酒异味的专家。对包括例如″似纸的″、″氧化的″、″老化的″、″面包样的″、″焦糖″、″烧焦″和″甜″的味道特征的全面评价显示对照啤酒中老化特异异味的水平高于从LOX-1无效麦芽制备的啤酒(图12B)。
[0413] 利用标尺为0-5的等级评定,其中数值高是优选的,判定对照啤酒和用LOX-1无效大麦突变体D112的麦芽生产的啤酒的一般风味接受得分分别是1.0和2.0。
[0414] 总之,从大麦突变体D112的麦芽酿造的啤酒的改进的风味稳定性是显著的,这主要是因为37℃贮藏后的啤酒中T2N水平低。集中于使用LOX-1无效大麦芽的酿造试验为制造麦芽和酿造过程中LOX-1的作用构成老化啤酒中主要的异味化合物-T2N出现的关键决定因素提供了证据。
[0415] 实施例7
[0416] LOX-1无效麦芽的啤酒中的三羟基十八碳烯酸
[0417] 在30多年前已经描述来源于亚油酸的啤酒特异的三羟基十八碳烯酸(THAs;也可以缩写为THOEs)(Drost et al.,1974)。从那时起,多份报告已经证实啤酒中THAs的总量在5.7-11.4μg/ml间变化(Hamberg 1991;和其中的参考文献)。9,12,13-THA通常构成啤酒THAs的75-85%,而9,10,13-THA通常只占15-25%。也发现痕量的其他异构体。
[0418] 由大麦突变体D112的麦芽(即LOX-1无效制麦芽)产生的啤酒中的9,12,13-THA的浓度与由cv.Barke的麦芽制成的参考啤酒相比降低到了20%(即几乎5倍),那就是说在利用LOX无效突变体D112麦芽生产的啤酒中,异构体9,12,13-THA和9,10,13-THA几乎等量存在。利用标准的HPLC质谱分析进行测量。
[0419] 实施例8
[0420] 啤酒中的三羟基十八碳烯酸
[0421] 市场上可买到的啤酒样品的宽范围的THAs浓度显示在表7中。如表7所示,对啤酒样品中关于THAs的结果的严格检查显示9,12,13-THA∶9,10,13-THA的比例总是超过3.5。相反,由D112产生的啤酒中9,12,13-THA∶9,10,13-THA的比例是1.3。因此,由LOX-1无效大麦产生的啤酒包含显著降低的比例,确定9,12,13-THA/9,10,13-THA比例为确定啤酒是否是利用LOX无效大麦突变体的麦芽,例如大麦突变体D112的麦芽生产的提供了工具。值得注意的是,由来源于LOX-1无效突变体大麦D112的麦芽生产的啤酒与由正常麦芽产生的啤酒相比,具有显著低水平总9,12,13-THA。
[0422] 实施例9
[0423] 大麦中来自LOX作用的酶产物的生化特征鉴定
[0424] 成熟野生型大麦谷物包含来源于LOX-1和LOX-2酶的两种主要LOX活性。这种酶催化亚油酸双氧化成过氧氢亚油酸(HPODEs),酶LOX-1催化形成9-HPODE,酶LOX-2催化形成13-HPODE。在成熟谷物中,LOX衍生活性限制在胚中。为了研究LOX-1基因的突变怎样影响HPODE形成,利用高压液相色谱(HPLC)分析对来自cv.Barke的胚提取物,来自大麦系G(低LOX颗粒,在Douma等的以WO02/053721A1公开的PCT申请PCT/IB01/00207中)和LOX无效突变体D112的胚提取物进行了研究。
[0425] 大麦胚。通过先利用解剖刀在胚鳞和胚乳之间切割,从成熟大麦谷物分割出器官来从胚制备粗蛋白提取物。然后将每份由4个胚组成的样品放置在两张称重纸之间,轻轻锤击产生同质粉末。将粉末转入1.5ml微量离心管中,添加200mM,pH 4.5的乳酸缓冲液600ul,在利用塑料研棒更进一步均化之前,将管在冰上放置10分钟。随后,每个管中添加
600μl水,以20,000g离心样品2分钟。100ul产生的上层清液等分被转入15ml离心管[从Greiner Bio-One购买的Cellstar(Cat.No.188271)中准备分析LOX作用后的反应产物。通过将10ml 100mM,pH 6.5的磷酸钠缓冲液与100ml 24mM的亚油酸原液混合,制备2ml的包含260mM亚油酸[底物,通过先混合155ul亚油酸(相当于134mg游离酸;Sigma,L-1376)和257ul Tween-20,然后加入水使体积达到5ml,接下来添加600ul的1M NaOH,当溶液变清澈时,用H2O将其最终容积调节为20ml而制备的]的pH 6.5的100mM的磷酸钠缓冲液。
在旋转振荡器上温育15分钟之后,添加2ml乙酸乙酯,为了提取9-HPODE和13-HPODE,通过用力摇振混合样品内容物。然后以800g离心样品10分钟,将1ml乙酸乙酯转入1.5ml微量离心管中,其中乙酸乙酯在氮气流作用下会蒸发。随后,将HPODEs再悬浮在300ul甲醇中,用0.45um的膜(Millex-HN过滤器,Millipore)过滤。
[0426] 通过HPLC完成对HPODE含量的分析。每个样品总共15ul被注入配备有4.6×250mm Symmetry C18柱(Waters)的HPLC仪器(HP 1100系列、Hewlett Packard)中。
使用的流动相是16∶12∶12∶10∶0.5(v∶v∶v∶v∶v)的水∶甲醇∶乙腈∶四氢呋喃∶三氟乙酸的混合物。流动相的流量是每分钟1ml,柱前面测量的压力是140bar。在
30℃完成分离。在234nm处完成对共轭双键氢过氧化物的检测。标准样品包含9(S)-过氧氢-10(E),12(Z)-十八碳二烯酸[(9(S)-HPODE]和13(S)-过氧氢-9(Z),11(E)-十八碳二烯酸[(13(S)-HPODE]的混合物,图13A已经详细描述这一点。
[0427] 色谱图分析显示主要的9-HPODE由从cv.Barke的成熟大麦胚中提取的LOX酶形成(图13B),而9-和13-HPODE都在低LOX系G的成熟胚的提取物中形成(图13C)。突变体D112胚的提取物形成极低量的9-HPODE,但是形成的13-HPODE的量高,因此证实突变体D112缺乏LOX-1活性(图13D)。因此,与野生型大麦系相比较,突变体D112的胚提取物形成的9-HPODE较少。
[0428] 大麦芽。大麦芽包含来源于LOX-1和LOX-2酶的两种主要LOX活性。LOX-1催化形成9-HPODE,LOX-2作用产生13-HPODE。为了研究LOX-1编码基因的突变对麦芽提取物中HPODE形成的影响,利用HPLC分析对从来源于cv.Barke、低LOX系大麦和突变体D112的麦芽制备的提取物进行了分析。
[0429] 按照下列方法制备来自麦芽的粗蛋白提取物样品。将一个萌发的大麦颗粒放置在两张称重纸之间,轻轻锤击产生同质粉末。所有后续工序、温育混合物和HPLC分析方法与本申请上述的与测量胚提取物中的LOX产物有关的实施例部分相同。
[0430] 为了进行HPLC分析,使用了包含9(S)-过氧氢-10(E),12(Z)-十八碳二烯酸[(9(S)-HPODE]和13(S)-过氧氢-9(Z),11(E)-十八碳二烯酸[(13(S)-HPODE]的混合物的标准样品,图14A中已经举例说明这一点。对萌发的Barke、低LOX和D112的提取物中的HPODE形成活性的分析表明在cv.barke中9-和13-HPODE形成活性的分布为60∶40(图14B)、在衍生自低LOX大麦的麦芽中有一些9-HPODE形成活性(图14c),在突变体D112的麦芽中9-HPODE形成的水平极低(图14d)。这些数据表明与来源于其他大麦系的麦芽提取物相比,突变体D112的麦芽提取物中的9-HPODE的形成显著降低。
[0431] 实施例10
[0432] 突变大麦突变体D112中的LOX-1基因
[0433] 获取突变体D112[SEQ ID NO:2]和cv.Barke[SEQ ID NO:1]中的LOX-1基因的核苷酸序列,并进行比较以确定突变体D112LOX-1无效表型的分子基础,已经发现LOX-1无效表型表现的特征是谷物颗粒中缺乏对应的LOX-1酶。
[0434] 利用 植物DNA分 离试 剂盒 (Roche Applied Science),依 照厂 家的 介绍,从幼苗的叶组织分离突变体D112和野生型cv.Barke的大麦基因组DNA。利用 引 物 5 ′ > GAAAGCGAGGAGAGGAGGCCAAGAACAA< 3 ′ [SEQ ID NO:9] 和5 ′ >TTATTCATCCATGGTTGCCGATGGCTTAGA<3′[SEQ ID NO:10],通过PCR扩增突变体D112和cv.Barke基因组DNA中在LOX-1的蛋白质编码区侧面的4,224-bp的序列。引物序列的基础是LOX-1基因的基因组序列(van Mechelen et al.,1995;Rouster et al.,1997,跨越LOX-1编码区的起始终止密码子的基因组序列的简图显示在图15中)。20ul体积的PCR反应包括基因组DNA100ng,每个引物5pmol和伸展高保真度聚合酶3.5U(Roche Applied Science)。在MJ循环控制装置中进行PCR扩增,利用下列循环参数:96℃2分钟,1个循环;95℃1分钟、69℃1分钟和72℃5分钟,30个循环;72℃10分钟,1个循环。在1.0%的琼脂糖凝胶上分离PCR产物。利用QiaexII凝胶抽提试剂盒(Qiagen)纯化长度与被扩增区域对应的DNA片段,并将片段插入质粒载体pCR2.1-TOPO(Invitrogen)中。用特异的寡核苷酸引物,通过双脱氧核苷酸链终止反应确定编码区的两条链的核苷酸序列,在MegaBACE
1000DNA测序仪(Amersham)进行分析。利用Lasergene序列分析软件包ver.5(DNASTAR)完成序列比较。
[0435] 野生型cv.Barke的LOX-1序列[SEQ ID NO:1]和突变体D112的LOX-1序列[SEQ ID NO:2]之间的直接比较显示突变体的核苷酸序列在外显子7的位置3574处有一个G→A替换形式的点突变(图15;图16)。野生型LOX-1序列编码长862个残基的预计分子量为96.4kDa的蛋白质[SEQ ID NO:3]。相反,突变体D112的对应序列在位置3574处的突变导致引入早熟终止密码子。
[0436] 预计突变体D112的LOX-1编码基因中的终止密码子导致对应蛋白质C末端截断197个氨基酸,因此编码序列列在[SEQ ID NO:4]中的74.2kDa的蛋白质。
[0437] 实施例11
[0438] 突变大麦突变体A618中的LOX-1基因
[0439] 大麦突变体A618和野生型cv.Neruda的基因组DNA的制备、PCR反应、DNA序列确定和基因组DNA分析与实施例10中描述的突变体D112和cv.Barke的相应处理相同。
[0440] 大麦突变体A618的LOX-1的核苷酸[SEQ ID NO:6]和亲本cv.Neruda的LOX-1的核苷酸[SEQ ID NO:5]之间的比较显示突变体序列有一个相当于基因组序列位置2311处的G→A替换的点突变(图15;图16)。
[0441] cv.Neruda的野生型LOX-1序列编码长862个残基的预计分子量为96.4kDa的蛋白质[SEQ ID NO:7]。相反,突变体A618的对应序列在位置2311处的突变使内含子3供体部位发生了突变。这导致内含子3出现拼接错误,从理论上说,在翻译399个氨基酸之后会在内含子3中产生早熟终止密码子。
[0442] 突变体A618LOX-1基因结构内的终止密码子将产生44.5kDa的截短的翻译蛋白质[SEQ ID NO:8]。
[0443] 实施例12
[0444] LOX-1转录产物的RT-PCR检测
[0445] 在2002年春季期间,在丹麦的哥本哈根将cv.Vintage、突变系G(低LOX,在Douma等的以WO02/053721A1公开的PCT申请PCT/IB01/00207中)、cv.Barke和突变体D112的大麦植物栽培在温室中。在开花那天标记麦穗,在开花(DAF)20、40和60天后收获麦穗。将麦穗保持在-80℃,直到可以同时处理全部样品。在每个时间点,从正在发育的颖果上分割出总共10个胚,利用FastRNA、Green RNA分离试剂盒(Qbiogene),依据厂家的介绍提取RNA。
[0446] RT-PCR反应模板由100ng上述胚RNA组成。20ul RT-PCR反应包含每个引物50pmol,RT-PCR酶混合物5U(Promega)。在MJ循环控制装置中进行RT-PCR扩增:48℃45分钟,1个循环;95℃ 1分钟,1个循环;94℃1分钟、65℃1分钟和72℃1分钟,30个循环;
最后72℃10分钟,1个循环。
[0447] 利用正向引物5′>AGGGACTGCCGGACGATCTCA<3′[SEQ ID NO:11]和反向引物5′>GCCAGCTCCGGCACACTT<3′[SEQ ID NO:12]产生292bp的RT-PCR片段。在1.0%的琼脂糖凝胶上分离RT-PCR产物。利用QiaexII凝胶抽提试剂盒(Qiagen)纯化长度与被扩增区域对应的DNA片段,并将片段插入质粒载体pCR2.1-TOPO(Invitrogen)中。利用ABI Prism 310遗传分析器(ABI)对质粒插入物的核苷酸序列进行测序。利用Lasergene序列分析软件包ver.5(DNASTAR)完成DNA序列比较。
[0448] 产生的PCR产物跨越相当于基因组克隆[SEQ ID NO:1]的核苷酸位置3283-3659的区域。这一区域包含长83bp的内含子5,而不含有DNA的RNA制备物的RT-PCR模板缺少内含子5(图17A)。因为DNA序列分析证实分离的片段是LOX-1基因的组成部分,而且也证实缺少内含子5序列,因此可以排除错误扩增产生来自LOX-2酶的大麦基因片段(图17D)。因此,扩增的片段代表RNA转录产物扩增的产物。
[0449] 从cv.Vintage和突变系G的20、40和60DAF大麦胚纯化的RNA的RT-PCR比较分析显示,相似发育阶段的两个品种的LOX-1转录产物的水平相似。在从20DAF到60DAF的时间期限里LOX-1的转录产物水平逐步增加(图17B)。
[0450] 与此相反,当对cv.Barke和突变体D112的相似数据集进行研究时,却观察到显著差异。RT-PCR实验显示和cv.Barke相比,突变体D112中的LOX-1转录产物的丰度基本上低于cv.Barke(图17C)。
[0451] 总之,用突变体D112的LOX-1基因的启动子区域的潜在突变可以解释这一观察结果。其他仍未知的因素也可能参与突变体D112中LOX-1基因的转录调节。在这方面,不能排除突变体D112的LOX-1的转录产物中的终止密码子产生了无义密码子介导的mRNA分解(Isshiki et al.,2001)。
[0452] 实施例13
[0453] 携带D112突变的大麦突变体的遗传检测
[0454] 现代大麦育种策略经常包含加速诱变到商业化过程的生物技术。因此,就检测有价值基因中的单核苷酸多态性而言,早期筛选植物材料是有用的。将这一技术用于基因组DNA技术,并将其与高通量系统结合有可能在幼苗期将培育系的数目减少50%。
[0455] CAPS测定。突变体D112子代系的LOX-1基因的克隆和测序已经显示突变被传送到下一代。这是一项费劲的技术,对实际的大麦育种没有用处。
[0456] 利用酶切扩增多态序列测定(CAPS)在育种材料中可以鉴定低LOX系G特异的突变,在Douma等的以WO02/053721A1公开的PCT申请PCT/IB01/00207的实施例4中已经公开这一点。但是,突变体D112的LOX-1基因中的突变性质不能用来在包含该突变的60-bp的区域中产生改变的限制性酶切图谱。
[0457] SNP测定。这种方法的备用方案是进行包含单个核苷酸多态性(SNP)的分析。SNP是在一个位点表现出至少两个不同核苷酸的突变点。该分析以两组基因组PCR反应的组合为基础。两个反应都包含一个位点特异性引物,以及两个SNP引物中的一个(每个引物分别针对该系列的每个等位基因)。每个植物系进行两组PCR反应,PCR反应的结果是SNP引物结合突变体等位基因的序列或者结合野生型等位基因的序列(图18A)。在这几种方法的一种方法中,SNP分析以电泳PCR产物后评估染色体带型鉴定突变系为基础。
[0458] 利用植物DNA分离试剂盒(Roche Applied Science),依照厂家的介绍,从幼苗的叶组织分离17个培育系和野生型cv.Barke的大麦基因组DNA。
[0459] 用 来 扩 增 野 生 型 LOX-1基 因 的SNP 的 寡 核 苷 酸 引 物 是 5 ′ >CAAGGTGCGGTTGCTGGTGTC<3′[SEQ ID NO:13]和5′>CTCGCGCGTCTCCTTCCAC<3′[SEQ ID NO 14]。对应突变体D112基因的引物是5′>CAAGGTGCGGTTGCTGGTGTC<3′[SEQ ID NO:13]和5′>CTCGCGCGTCTCCTTCCAT<3′[SEQ ID NO:15]。
[0460] 在扩增包含突变体D112或cv.Barke的部分LOX-1编码区域的166bp的DNA片段的PCR反应中可以使用这些引物组合(图18A)。
[0461] 依照厂家的说明,20ul体积的PCR反应包括基因组DNA100ng,25pmol引物和2.5U FastStart Taq DNA聚合酶(Roche)。在MJ循环控制装置中进行PCR扩增:96℃5分钟,1个循环;95℃1分钟、70℃1分钟和72℃1min,20个循环;最后72℃10分钟,1个循环。
[0462] 在1.0%琼脂糖凝胶上分离PCR产物。利用Qiaex II凝胶抽提试剂盒(Qiagen)纯化长度与被扩增区域对应的DNA片段。利用双脱氧核苷酸链终止反应,在ABI Prism310遗传分析器(ABI)直接对PCR产物进行测序。利用Lasergene序列分析软件包ver.5(DNASTAR)完成序列比较。
[0463] SNP分析筛选总共17个育种系的数据和直接对PCR产物测序的实验数据编辑后产生相同结果。以这些实验为基础推断出SNP技术可用于证实原材料包含和大麦突变体D112的LOX-1基因的序列相同的基因序列(图18B)。
[0464] 实施例14
[0465] 检测样品混合物中的突变体
[0466] 酿造工业可以使用大麦和麦芽的混合物来生产啤酒,这样可以掩蔽具体麦芽品种不需要的化学特性。单纯证实种子材料的用途可以包含通过PCR分析扩增突变基因。
[0467] 利用突变体D112和cv.Barke的样品混合物和突变系G(Douma等的以WO02/053721A1公开的PCT申请PCT/IB01/00207)和cv.Barke的样品混合物对麦芽混合物样品进行了SNP分析。分析了包含0、20、40、60、80和100%突变体D112谷物的六个大麦样品。在另一个系列中,分析了包含0、20、40、60、80和100%突变系G谷物的六个大麦样品。
利用NucleonPhytopure DNA分离试剂盒(Amersham),依照厂家的介绍从磨碎的谷物中分离DNA。
[0468] 用来扩增突变体D112的LOX-1基因的166-bp的SNP的寡核苷酸引物是5′>CAAGGTGCGGTTGCTGGTGTC <3 ′[SEQ ID NO:13] 和5 ′ > CTCGCGCGTCTCCTTCCAT<3′[SEQ ID NO 15]。用来,扩增突变系G的LOX-1基因的370-bp的SNP的引物是5′>TACGTGCCGCGGGACGAGAAG<3′[SEQ ID NO:16]和5′>TGATCATGACCGGGTTGACGT<3′[SEQ ID NO 17]。同时利用四个引物以多重反应完成PCRs(图19A)。依照酶供应商提供的说明,每个20ul体积的反应包括基因组DNA100ng,每个引物50pmol和10ul RedTaq聚合酶溶液(Sigma)。在MJ循环控制装置中进行PCR扩增:95℃1分钟,1个循环;94℃1分钟、66℃1分钟和72℃30秒,25个循环;最后72℃10分钟,1个循环。在1.0%琼脂糖凝胶上分离PCR产物。利用Qiaex II凝胶抽提试剂盒(Qiagen)纯化长度与被扩增区域对应的DNA片段,并将片段插入质粒载体pCR2.1-TOPO(Invitrogen)中。用特异的寡核苷酸引物,通过双脱氧核苷酸链终止反应确定质粒插入物的两条链的核苷酸序列,在MegaBACE
1000DNA测序仪(Amersham)进行分析。利用Lasergene序列分析软件包ver.5(DNASTAR)完成序列比较。
[0469] 存在于图19B中的凝胶分析显示所有来源于包含突变体D112谷物的混合物的样品的SNP分析都是阳性。类似地,鉴定包含来自突变系G的材料的样品也是可能的。总之,遗传分析可以很容易地证实是否使用了包含突变系G或者突变体D112的突变体LOX植物的大麦混合物。
[0470] 实施例15
[0471] 突变体D112的重组LOX-1是失活的
[0472] 已经显示突变体D112的LOX-1基因包含早熟终止密码子(参照实施例10)。因此,期待该基因在植物中的表达会导致合成仅包含野生型LOX-1中发现的665个起始氨基酸残基的截短形式的对应LOX酶。在大肠杆菌细胞中表达限定截短形式的LOX-1的核苷酸序列以证实这种形式的LOX-1是失活的酶,不能催化大麦突变体D112的细胞中形成HPODEs。
[0473] 在大肠杆菌中表达野生型LOX-1和突变体LOX-1的质粒。通过使用标准的PCR规程扩增编码LOX-1的全部开放读框。使用的模板是大麦cDNA(van Mechelen,1999),引物是5′>CATATGCTGCTGGGAGGGCTG<3′(SEQ ID NO:18;起始密码子用黑体字标记;NdeI位点下面划下划线)和5′>GAATTCTTAGATGGAGATGCTGTTGGG<3′(SEQ ID NO:19;用黑体字显示野生型终止密码子的互补序列;EcoRI位点下面划下划线)。获取和纯化扩增的2,597bp的DNA片段。用NdeI-EcoRI消化PCR片段,并将其连接到pET19b载体(Novagen)的大NdeI-EcoRI片段上,产生在下游的长10个残基的His尾的编码序列的框架内克隆了LOX-1的pETL1表达质粒。DNA测序分析证实质粒插入物包含正确的序列。
[0474] 下一个实验包含构建表达截短形式的LOX-1的质粒。目标是将pETL1中的LOX-1的开放读码框的666号密码子变成终止密码子,这样使大肠杆菌细胞中蛋白质合成产生截短形式的LOX-1。为了完全防止大肠杆菌中核糖体读遍终止密码子,构建pETL1的LOX-1的665号密码子下游的所有密码子都被终止密码子TGA移走和取代的表达质粒。使用下列操作规程。在存在引物5′>CTACCCGTACGCGGCGGACGGGCT<3′([SEQ ID NO:20],退火连接突变体D112的LOX-1基因中突变上游的序列;BsiWI位点下划下划线)和5′>TCCTGAATTCACGCCTGCACCTCCGTATCGC<3′([SEQ ID NO:21],EcoRI位点下划下划线;黑体字标明插入的终止密码子的互补序列)的情况下,使用PCR从pETL1扩增129bp的片段。扩增将终止密码子和EcoRI位点插入片段中。随后用BsiWI-EcoRI消化片段,并将其与质粒pETL1的大BsiWI-EcoRI片段连接。得到的表达质粒被命名为pETL2,而且通过DNA测序对插入物的正确序列进行了验证。
[0475] 转化的大肠杆菌细胞合成重组LOX蛋白质。用载体pET19b,表达质粒pETL1和pETL2(如上所述)分别转化从Novagen购买的大肠杆菌BL21细胞。在标准Luria Broth(LB)培养基上接种包含质粒的细菌细胞,并在37℃生长2h。此后,添加1mM IPTG诱导异源基因表达,并在20℃培养整夜。通过以14,000g离心1分钟收获细胞,接着将细胞团重悬浮在由50mM磷酸钠盐缓冲液组成的变性溶液中,其中磷酸钠盐缓冲液中补充有6M盐酸胍(hydrochloride)、0.3M NaCl和10mM咪唑。在冰上声波处理后,14,000g离心溶解的细胞1分钟,将上层清液与镍-树脂(Novagen)混合,接着在4℃温育30分钟。通过离心沉淀镍-树脂,用如上所述的变性溶液冲洗两次。最后,利用补充有0.3M NaCl和0.5M咪唑的50mM的磷酸钠缓冲液,从树脂洗脱His标记的蛋白质两次。通过SDS-PAGE分离等分的分级洗脱的样品(图20)。从携带pETL1和pETL2中的细胞中分别获得100kDa的相当于LOX-1的清晰条带和66kDa的相当于计算的截短LOX-1的质量的清晰条带。携带pET19b的细胞在洗脱部分不产生条带。
[0476] 截短形式的LOX-1是失活的。在标准LB培养基上接种携带pET19b、pETL1和pETL2的大肠杆菌BL21,并在37℃生长2h。此后,添加1mM IPTG诱导异源基因表达,并在20℃培养整夜。通过以14,000g离心1分钟收获细胞,通过将细胞团重悬浮在BugBuster和Benzonase(Novagen)的混合物中获取细胞溶解产物。利用包含6.25mM 3-二甲基氨基苯甲酸(dimethylaminobenzoic acid)、0.3125mM亚油酸、0.1mM 3-甲基-2-苯噻唑啉腙(benzothiazolinehydrazone)和0.05mg/ml血红蛋白的脂加氧酶测定试剂测量溶解产物中的LOX活性。将180ul这种试剂与10ul各自的细胞溶解产物混合,在室温下温育10分钟。通过分光光度计测量595nm处的吸光度确定的温育期间产生的吲达胺的数值相当于细胞溶解产物的脂加氧酶活性。用pETL1(产生His标记LOX-1)转化的细胞显示出大的LOX-1活性,而生产突变体D112特异的截短LOX-1的细胞与仅用载体转化的对照细胞具有相同的LOX活性(表8)。这表明大麦突变体D112的截短的LOX-1是失活的。
[0477] 实施例16转基因大麦植物
[0478] 质粒构建物。基因序列被插入标准质粒载体,例如pUC18的聚合接头区域。图21中列出了插入物。在一个构建物中(图21A),包含相同基因的内含子1的玉蜀黍泛素-1启动子(Christensen et al.,1992;Jensen et al.,1996)指导bar基因转录(White et al.,1990),其中bar基因编码可选择标记phoshinothricin乙酰转移酶(PAT)。在第二个构建物中,计划有义抑制LOX-1基因(Dougherty and Parks,1995),大麦LOX-1的开放阅读框被立即插入玉蜀黍泛素-1启动子和内含子1的下游(图21B)。图21C中显示了使大麦LOX-1基因表达沉默的构建物。大麦细胞中该构建物的表达通过形成内含子拼接的发夹式RNA使所述基因完全沉默,依照Smith等(2000)公开的图1a中详细描述的数据来设计该构建物。特别地,在图21C的构建物中表示为″内含子1″的序列(上文)与Smith等(上文)公开的图1a中显示的内含子序列相同。图21C中的构建物的有义和反义臂代表相同的包含编码大麦LOX-1的开放阅读框节断的长200bp的片段的相反方向,阅读框的所述节段位于LOX-1开放阅读框的任何地方。或者,长200bp的序列是从大麦LOX-1编码基因的终止密码子下游的序列中选出来的。
[0479] 转化和再生转基因植物。为了共抑制编码LOX-1的大麦基因,用包含图21A,B中显示的插入物的质粒的混合物轰击温室生长的cv.GoldenPromise供体大麦植物的不成熟的大麦胚,以及为了沉默所述基因用图21A,C中显示的质粒混合物进行轰击。可以按照Wan和Lemaux(1994)和Jensen等(上文)的详细描述来完成转化、转化细胞的选择和转基因植物的繁殖。
[0480] 可以生长转基因植物几代,或者用不同的大麦cv.对它授粉,然后鉴定具有想要的表型的后代植物。可以生长两代或更多代以保证想要的表型特征的表达能稳定地保持和遗传。收获想要的表型特征已经实现的种子进行研究。
[0481] 为了研究编码LOX-1的大麦基因的共抑制或沉默效果,首先分析转基因颗粒来源于LOX-1的酶活力,本公开文本的实施例1中已经详述这一点。随后在制麦芽和酿造实验中研究没有或有极少LOX-1活性的转基因颗粒,本公开文本的实施例5和实施例6中已经详述了对LOX-1无效颗粒进行研究的方法。另外,对没有或有极少LOX-1活性的转基因颗粒的提取物进行分析,利用Keller的美国专利No.5,942,661中描述的方法鉴定对曲霉生长有消极效果的提取物。
[0482] 实施例17
[0483] 青香韵化合物
[0484] 生产青香韵化合物的过程包括:
[0485] (i)将LOX-1无效大麦颗粒转换成磨得很细的粉末;
[0486] (ii)将粉末悬浮到水里或指定的缓冲液中;
[0487] (iii)温育悬浮液。或者,让粉末悬浮液和(a)脂肪酸(亚油酸或亚麻酸或其混合物);或(b)对13-HPODE或13-HPOTE或两者具有特异性的氢过氧化物裂解酶;或(c)包含所述脂肪酸和所述酶的混合物发生反应;
[0488] (iv)让产生的醛与乙醇脱氢酶发生反应;
[0489] (v)纯化醛或乙醇,制备有用的香料制品或香料组合物。
[0490] 实施例18
[0491] LOX-1抑制剂
[0492] 用新近制备的重组LOX-1溶液进行分析。在这一实验中,利用供应商(Remel)介绍制备100ml的补充有100ug/ml氨苄青霉素的AB3菌种生长培养基,然后接种用质粒pETL1(编码His标记LOX-1;参照实施例15)转化的整夜培养的大肠杆菌BL21(DE3)pLysS细胞5ml。在37℃繁殖获得的细菌培养物直到细胞密度达到OD600=0.8。在20℃温育培养物30分钟,然后补充0.4mM IPTG诱导异源基因表达,在20℃温育整夜。
[0493] 离 心15 分 钟 使 培 养 细 胞 形 成 小 丸,然 后 将 其 再 悬 浮 在 5ml BugBusterHT(Novagen)中,温育20分钟,同时温和摇振水解核酸。此后,通过离心除去细胞碎片,过滤通过0.45μm过滤器使上层清液清澈,将上层清液添加到等体积的结合缓冲液中(50mM磷酸钠缓冲液、pH 7.5、补充有0.3MNaCl、10mM咪唑)。依照厂家的介绍,将得到的提取物加样到HisTrap HP柱(Amersham Biosciences)上,用洗涤缓冲液(和结合缓冲液相同,除[咪唑=150mM外)冲洗一次,用洗脱缓冲液(和结合缓冲液相同,除[咪唑=500mM外)洗脱结合的蛋白质。
[0494] 通过SDS-PAGE分析包含洗液和洗脱物蛋白质的1ml级分的3ul等分(图22A),结果显示洗脱物2的1ml级分包含~0.7mg的重组LOX-1。
[0495] 随后纯化的LOX-1被用于确定选择的LOX抑制剂是否降低酶活性的测定中。首先,将亚油酸原液(按照实施例9的详细描述制备)稀释到初始浓度的1/10,产生2.4mM的亚油酸溶液。45ul的等份补充5ul包含0、5、12和24mM没食子酸辛酯或NDGA(公认的LOX-1抑制剂)的乙醇溶液。10ul等份的亚油酸抑制剂混合物被添加990ul的100mM的pH 6.0的磷酸钠缓冲液中,在添加5ul重组LOX-1(洗脱物2,参见上面)之前,在20℃温育1分钟。
[0496] 添加LOX-1后,记录A2543分钟。A254对时间的曲线图的斜率决定LOX-1酶活力。结果概括在图22B中,显示微摩尔级浓度的抑制剂显著抑制LOX-1。
[0497] 实施例19
[0498] 用LOX-1抑制剂--没食子酸辛酯糖化
[0499] 利用与实施例5中描述的设备相似的设备可以对100ml包含25g大麦cv.Barke的麦芽或25g LOX-1无效突变体D112的麦芽的液体进行糖化。37℃Mashing-in 15分钟、68℃糖化30分钟、77℃mashing-off 10分钟,接下来最后煮沸麦芽汁60分钟;温度变化调节为1℃/分钟。
[0500] 为了测试存在LOX-1抑制剂时的糖化效果,大麦cv.Barke的麦芽的碎麦芽在mashing-in阶段补充0.5mM没食子酸辛酯。平行开动的糖化包含用没有添加没食子酸辛酯的大麦cv.Barke的麦芽进行试验,以及在存在或缺少0.5mM没食子酸辛酯的情形下用LOX-1无效大麦突变体D112的麦芽进行的糖化试验。
[0501] 在15分钟mashing-in阶段之后,在麦芽汁煮沸阶段之后收集所有四种糖化的样品等分,然后按照实施例6的描述确定T2N水平。结果概括在图23中。
[0502] 在存在没食子酸辛酯的情况下,观察到用大麦cv.Barke的麦芽进行糖化的麦芽汁样品中T2N明显下降,在mashing-in之后的样品和煮沸的麦芽汁样品中都是如此。此外,值得注意的是两种麦芽的煮沸的麦芽汁中的T2N浓度达到相似的水平。
[0503] 总之,在mashing-in期间补充LOX-1抑制剂到碎麦芽中提供了一种产生以T2N水平降低为特征的麦芽汁的新方法。
[0504] 表1.未加工突变体(M3代)和子代(M4和M5代)的胚提取物的总LOX活性[0505]
[0506] 表2.农学性能比较
[0507]特性 突变体D112 野生型cv.
Barke
播种日期(2003年) 3月21日 3月21日
成熟时的长度(cm) 76 76
抽穗日期(2003年) 6月14日 6月14日
白粉病(powdery 0 0
mildew)
斑枯(spot blotch)a 2 1
褐斑(scald)a 2 3
a
叶锈病(leaf rust) 1 1
倒伏a 1 1
成熟日期(2003年) 7月31日 7月31日
产量b 100 100
[0508] a在标尺上指0-9,0代表没有感染或倒伏,9代表严重感染或倒伏。
[0509] b两个不同地点的三个重复实验的相对平均产量。
[0510] 表3.pilot麦芽制造实验后的分析
[0511]
[0512]
[0513] 表4.突变体D112产物中T2N水平降低。
[0514]
[0515] 表5.啤酒储藏对风味的影响
[0516]
[0517] a的等级评定标度-0:不存在;1:弱;2:显著;3;中间;4:强烈;5:非常强烈。优选低值
[0518] b的等级评定标度是1-5,优选的高值,
[0519] nd=未确定
[0520] 表6.由正常大麦和突变体D112的麦芽产生的啤酒中的THAs
[0521]
[0522] 表7.市场上可买到的啤酒中的THAs
[0523]
[0524]
[0525]
[0526] 表8.从携带标明的载体,在LB和IPTG中生长过夜的细胞获取的细胞粗提物的脂加氧酶活性
[0527]a
质粒 活性
pET19b 0.0723±0.0002
pETL1 1.0612±0.004
pETL2 0.0690±0.0002
[0528] a给出的是用方差标明的四个单独测量的平均值的结果。
[0529] 表9.序列表
[0530]序列编 序列类 说明


NO:1 核酸 跨越LOX-1编码基因的起始和终止密码子的
cv.Barke的大麦基因组序列
NO:2 核酸 跨越相当于cv.Barke的LOX-1编码基因的起始
和终止密码子之间区域的片段的突变体D112
的大麦基因组序列
NO:3 蛋白质 cv.Barke的全长LOX-1蛋白质的序列
NO:4 蛋白质 截短失活的突变体D112的LOX-1的蛋白序列
NO:5 核酸 跨越LOX-1编码基因的起始密码子和终止密码
子的cv.Neruda的大麦基因组序列
NO:6 核酸 跨越相当于cv.Neruda的LOX-1编码基因的起
始和终止密码子之间区域的片段的突变体
A618的大麦基因组序列
NO:7 蛋白质 cv.Neruda的全长LOX-1蛋白质的序列
NO:8 蛋白质 截短失活的突变体A618的LOX-1的蛋白序列
NO:9 核酸 用于PCR扩增的寡核苷酸引物(有义引物;参照
实施例10)
NO:10 核酸 用于PCR扩增的寡核苷酸引物(反义引物;参照
实施例10)
NO:11 核酸 用于PCR扩增的寡核苷酸引物(有义引物;参照
实施例11,图17)
[0531]NO:12 核酸 用于PCR扩增的寡核苷酸引物(反义引物;参照
实施例11,图17)
NO:13 核酸 用于PCR扩增的寡核苷酸引物(有义引物;参照
实施例12,15,和图18,20)
NO:14 核酸 用于PCR扩增的寡核苷酸引物(反义引物;参
照实施例12,和图18,)
NO:15 核酸 用于PCR扩增的寡核苷酸引物(反义引物;参
照实施例12,15,和图18,20)
NO:16 核酸 用于PCR扩增的寡核苷酸引物(有义引物;参
照实施例14,和图19)
NO:17 核酸 用于PCR扩增的寡核苷酸引物(反义引物;参
照实施例14,和图19)
NO:18 核酸 用于PCR扩增的寡核苷酸引物(有义引物;参
照实施例15)
NO:19 核酸 用于PCR扩增的寡核苷酸引物(反义引物;参
照实施例15)
NO:20 核酸 用于PCR扩增的寡核苷酸引物(有义引物;参
照实施例15)
NO:21 核酸 用于PCR扩增的寡核苷酸引物(反义引物;参
照实施例15)
[0532] 8.保藏信息
[0533] 已经在美国的Va.20110的Manassas的Boulevard大学10801的美国典型培养物保藏中心(ATCC)对上面公开的并在附加权利要求中叙述的Carlsberg A/S所有大麦突变体D112进行保藏。保藏突变体D112的日期是2003年9月11日,由本申请的申请日之前取自在Carlsberg A/S的保藏物的2,500个颗粒组成。保藏突变体A618的日期是2003年10月13日,由本申请的申请日之前取自在Carlsberg A/S的保藏物的2,500个颗粒组成。为了满足专利程序和其规则(布达佩斯条约)的要求,按照布达佩斯条约中有关国际承认的微生物保存的条款来进行这些保藏。这种保藏保证从保藏日起的30年里保持保藏物存活。保藏要满足37C.F.R§1.801-1.809的全部要求,包含提供样品成活的指征。突变体D112的ATCC登记号是PTA-5487。突变体A618的ATCC登记号是PTA-5584。通过说明登记号码和接受ATCC强加的标准限制,可以从ATCC获得等分的保藏材料。但是,应理解保藏物的可获得性不构成毁损政府行为授与的专利权而实施本发明主题的许可。
[0534] 在整个申请中,参考了多种出版物、专利和专利申请。为了更充分地描述本发明所属领域的现状,将这些出版物公开的内容在此全部引入本申请中作为参考。发明的上述说明书是示范性的,其目的是为了说明和解释发明。应理解可以不脱离本发明的精神和范围对本发明作各种修饰。因此欲将下列权利要求书解释为包含所有这种修饰。
[0535] 参考文献
[0536] 专利文件
[0537] US 4,683,195;Mullis,K.B.et al.
[0538] US 4,708,964;Allen,L.M.
[0539] US 4,800,159;Mullis,K.B.et al.
[0540] US 4,880,637;Jordan,R.T.
[0541] US 5,008,294;Jordan,R.T.et al.
[0542] US 5,283,184;Jorgensen,R.A.and Napoli,C.A.
[0543] US 5,942,661;Keller,N.P.
[0544] US 6,008,034; et al.
[0545] US 6,150,145; A.et al.
[0546] US 6,274,358;Holtz,R.B.et al.
[0547] US 6,355,862 B1;Handa,A.K.and Kausch,K.D;
[0548] US 专利申请2003/0074693A1;Cahoon et al.
[0549] WO 02/053721A1;12/2000;PCT Int′l Appl.;Douma,A.C.et al.[0550] WO 2004/085652A1;10/2004;PCT Int′l Appl.;Hirota,N.et al.[0551] 其他出版物
[0552] Alonso,J.M.et al., ″ Genome-wide insertional mutagenesis of Arabidopsisthaliana.″Science 301,653-657,2003.
[0553] American Association of Cereal Chemists, ″ Approved methods of theAmerican Association of Cereal Chemists.″ISBN 0-913250-86-4(1995).[0554] American Society of Brewing Chemists, ″ Methods of analysis of theAmerican Society of Brewing Chemists.″ISBN 1-881696-01-4(1992).[0555] Anthon,G.E.and Barrett,D.M., ″ Colorimetric method for the determinationof lipoxygenase activity. ″ J.Agric.Fodd Chem.49:32-37,2001.of lipoxygenase activity.″J.Agric.Food Chem.49:32-37,2001.
[0556] Aruoma,O.I.et al., ″ Evaluation of the antioxidant and prooxidant actions ofgallic acid and its derivatives.″J.Agric.Food Chem.41:1880-1885,1993.
[0557] Ashrafi,K.et al., RNAi analysis of Caenorhabditiselegansfat regulatory genes.″Nature 421:268-272,2003.
[0558] Auld,D.L.et al., ″ Rapeseed mutants with reduced levels of polyunsaturatedfatty acids and increased levels of oleic acid.″Crop Sci.32:657-662,1992.
[0559] Axelrod,B.et al.,″Lipoxygenase from soybeans.″Methods Enzymol.71:442-451,1981.
[0560] Bargmann,C.I., reverse genetics:RNAi screensinCaenorhabditis elegans.″Genome Biol.2:Reviews1005.1-1005.3,2001.[0561] Baur,C.and Grosch,W. ″ Investigation about the taste of di-,tri-andtetrahydroxy fatty acids.″Z.Lebensm.Unters. Forsch.165:82-84,1977a.[0562] Baur,C.et al. ″ Enzymatic oxidation of linoleic acid:Formation ofbittertasting fatty acids.″Z.Lebensm.Unters.Forsch.164:171-176,1977b.[0563] Bell,E.et al., ″ A chloroplast lipoxygenase is required for jasmonic acid accumulation in Arabidopsis.″Proc.Natl.Acad.
Sci.USA92:8675-8679,1995.
[0564] Bell,E.and Mullet,J.E.,″Lipoxygenase gene expression is modulated inplants by water deficit,wounding,and methyl jasmonate.″Mol.Gen.Genet.230:456-462,1991.
[0565] Bell,E.and Mullet,J.E., ″ Characterization of an Arabidopsis lipoxygenasegene responsive to methyl jasmonate and wounding. ″ Plant Physiol.103:1133-1137,1993.
[0566] Bios International,″Data.″Bios Intern.4:38-42,2001.
[0567] Blée,E.and Joyard,J.,″Envelope membranes from spinach chloroplasts area site of metabolism of fatty acid hydroperoxides. ″ Plant Physiol.110:445-454,1996.
[0568] Bohland,C.et al.,″Differential induction of lipoxygenase isoforms in Wheatupon treatment with rust fungus elicitor,chitin oligosaccharides,chitosan,andmethyl jasmonate.″Plant Physiol.114:679-685,1997.
[0569] Brautechnische Analysenmetoden,Band II,Metodensammlungder Brautechnischen Analysenkommission.Section
2.19:″Schaum,″pp.118-125.Selbstverlag der MEBAK.ISBN 3-9805814-5-4(2002)[0570] Burow,G.B.et al., ″ A peanut seed lipoxygenase responsive to Aspergilluscolonization.″Plant Mol.Biol.42:689-701,2000.
[0571] Casey,R.,″Lipoxygenases in the breadmaking process.″In:″First EuropeanSymposium on Enzymes and Grain Processing. ″ Angelino,S.A.G.F.,van Hamer,R.J.,Hartingsveldt,W.,Heidekamp,F.,van der Lugt,J.P.,eds.,pp.188-194.TNO Nutrition and Food Research Institute.1997.ISBN 90-75202-04-0.
[0572] Christensen,A.H.et al., ″ Maize polyubiquitin genes:Structure,thermalperturbation of expression and transcript splicing,and promoter activityfollowing transfer to protoplasts by electroporation. ″ Plant Mol.Biol.18:675-689,1992.
[0573] Colben,T.et al., ″ High-throughput screening for induced point mutations.″Plant Physiol.126:480-484,2001.
[0574] Cornish-Bowden,A., ″ Nomenclature for incompletely specified bases innucleic acid sequences:Recommendations 1984. ″ Nucleic Acids Res.13:3021-3030,1985.
[0575] Croft,K.P.C.et al.,″Volatile products of the lipoxygenase pathway evolvedfrom Phaseolus vulgaris(L.)leaves inoculated with Pseudomonas syringae pvphaseoliola.″Plant Physiol.101:13-24,1993.
[0576] Davies,C.S.and Nielsen,N.C., ″ Genetic analysis of null-allele forlipoxygenase-2 in soybean.″Crop Sci.26:460-463,1986.
[0577] Dougherty,W.G.and Parks,T.D., ″ Transgenes and gene suppression:Tellingus something new?″Curr.Opin.Cell Biol.7:399-405,1995.
[0578] Drost,B.W.et al., ″ Role of individual compounds in beer staling.″Tech.Q.MBAA 11:127-134,1974.
[0579] Drost,B.W.et al.,″Flavor stability.”J.Am.Soc.Bre W.Chem.48:124-131,1990.
[0580] Ellis,R.P.et al.,″Barley domestication-Hordeum spontaneum,a source of new genes for crop improvement.″Scottish Crop Research Institute,AnnualReport1998/99:97-100,1999.Also available athttp://www.scri.sari.ac.uk/SCRI/upload/[0581] annualreportdocuments/99Indiv/14Barley.pdf.
[0582] European Brewery Convention, ″ Analytica-EBC. ″ ISBN3-418-00759-7(1998).
[0583] Feussner,I.and Wasternack,C.,″The lipoxygenase pathway.″Annu.Rev.Plant Physiol.Plant Mol.Biol.53:275-297,2002.
[0584] Forster,C.et al., ″ Molecular analysis of a null mutant for pea(Pisumsativum L.)seed lipoxygenase-2.″Plant Mol.Biol.39:1209-1220,1999.[0585] Gardner,H.W.and Grove,M.J.,″Method to produce 9(S)-hydroperoxides oflinoleic and linolenic acids by maize lipoxygenase.″Lipids 36:529-533,2001.[0586] Giaever,G.et al., ″ Functional profiling of the Saccharomyces cerevisiaegenome.″Nature 418:387-391,2002.
[0587] Goenczy,P.et al.,″Functional genomic analysis of cell division in C.elegans using RNAi of genes on chromosome III.″Nature 408:331-336,2000.[0588] Graef,G.L.et al.″Fatty acid development in a soybean mutant with highstearic acid.″J.Am.Oil Chem.Soc.62:773-775,1985.
[0589] Griffiths,A.et al., ″ Fruit-specific lipoxygenase suppression inantisense-transgenic tomatoes.″Postharvest Biol.Technol.17:163-173,1999.[0590] Groenqvist,A.et al.,″Carbonyl compounds during beer production in beer.″Proceedings of the 24th EBC Congress,Oslo,pp.421-428,1993.[0591] Grosch,W.and Schwartz,J.M.,″Linoleic and linolenic acid as precursors ofthe cucumber flavor.″Lipids 6:351-352,1971.
[0592] Ha,T.J.et al.,″Lipoxygenase inhibitory activity of octyl gallate.″J.Agric.Food Chem.52:3177-3181,2004.
[0593] Hamberg,M., ″ Trihydroxyoctadecenoic acids in beer:Qualitative andquantitative analysis.″J.Agric.Food Chem.39:1568-1572,1991.
[0594] Hannon,G.J.,″RNA interference.″Nature 418:244-251,2002.[0595] Hildebrand,D.F.and Hymowitz,T., ″ Inheritance of lipoxygenase-1 activityin soybean seeds.″Crop Sci.22:851-853,1982.
[0596] Holtman,W.L.et al., ″ Differential evnression of lipoxygenase isoenzymesin embryos of germinating barley.″Plant Physiol.111:569-576,1996.[0597] Husson,F.and Belin,J.M.,″Purification of hydroperoxide lyase from greenbell pepper(Capsicum annuum L.)fruits for the generation of C6-aldehydes invitro.″J.Agric.Food Chem.50:1991-1995,2002.
[0598] Institute of Brewing,″Institute of Brewing.Methods of analysis.″ISBN0-900489-10-3(1997).
[0599] IUPAC-IUB Joint Commission on Biochemical Nomenclature,″Nomenclature and symbolism for amino acids and peptides.Recommendations1983. ″ Biochem.J.219:345-373,1984.
[0600] Isshiki,M.et al., ″ Nonsense-mediated decay of mutant waxy mRNA inrice.″Plant Physiol.125:1388-1395,2001.
[0601] Jalloul,A.et al., ″ Lipid peroxoidation in cotton:Xanthomonas interactionsand the role of lipoxygenases during the hypersensitive reaction.″Plant J.32:1-12,2002.
[0602] Jamieson,A.M.and Van Gheluwe,J.E.A., ″ Identification of a compoundresponsible for cardboard flavor in beer.″Proc.Am.Soc.Brew.Chem.29:192-197,1970.
[0603] Jende-Strid,B., ″ Gene-enzyme relations in the pathway of flavonoidbiosynthesis in barley.″Theor.Appl.Genet.81:668-674,1991.[0604] Jende-Strid,B., ″ Genetic control of flavonoid biosynthesis in barley.″Hereditas 119:187-204,1993.
[0605] Jensen,L.G.et al.,″Transgenic barley expressing a protein-engineered,thermostable(1,3-1,4)- -glucanase during germination.Proc.Natl.Acad.Sci.USA93,3487-3491,1996.
[0606] Kamath,R.S.et al., ″ Effectiveness of specificinterferencethrough ingested RNA in Caenorhabdtis
elegans.″Genome Biol.2:Research0002.1-0002.10,2000.
[0607] Kamath,R.S.et al., ″ Systematic functional analysis of the Caenorhabditiselegans genome using RNAi.″Nature 421:231-237,2003.[0608] Kitamura et al.,″Genetic analysis of a null-allele fbr lipoxygenase-3 insoybean seeds.″Crop Sci.23:924-927,1983.
[0609] Kleinhofs,A.et al., ″ Induction and selection of specific gene mutations inHordeum and Pisum.″ Mut.Res.51:29-35,1978.
[0610] Kolomiets,M.V.et al.,″Lipoxygenase is involved in the control of potatotuber development.″plant Cell 13:613-626,2001.
[0611] Kuroda et al.,″Characterization of factors involved in the production of2(E)-壬烯醛 during mashing.″Biosci.Biotechnol.Biochem.67:691-697,2003.[0612] Kusaba,M.et al., ″ Low glutelin contentl:A dominant mutation thatsuppresses the Glutelin multigene family via RNA silencing in rice.″Plant Cell15:1455-1467,2003.
[0613] Laemmli,U.K.,″Cleavage of structural proteins during the assembly of thehead of bacteriophage T4.″Nature 227:680-685,1970.
[0614] León,J.et al.,″Lipoxygenase H1 gene silencing reveals a specifc role insupplying fatty acid hydroperoxides for aliphatic aldehyde production.″J.Biol.Chem.277:416-423,2002.
[0615] Lermusieau,G.et al., ″ Nonoxidative mechanism for development oftrans-2-壬烯醛 in beer.″J.Am.Soc.Brew.Chem.57(1):29-33,1999.
[0616] Liégeois,C.et al., ″ Release of deuterated (E)-2- 壬 烯 醛 during beer agingfrom labeled precursors synthesized before boiling.″J.Agric.Food Chem.50:7634-7638,2002.
[0617] Maquat,L.E.and Carmichael,G.G., ″ Quality control of mRNA function.″Cell 104:173-176,2001.
[0618] Matsui,K.et al., ″ Effects of overexpression of fatty acid9-hydroperoxidelyase in tomatoes (Lycopersicon esculentum Mill.).″J.Agric.Food Chem.49:5418-5424,2001.
[0619] May,C.et al., ″ The N-terminal -barrel structure of lipid bodylipoxygenase mediates its binding to liposomes and lipid bodies.″Eur.J.Biochem. 267:1100-1109,2000.
[0620] McElroy,D.and Jacobsen,J., ″ What ′ s brewing in barley biotechnology?″Bio/Technology 13:245-249,1995.
[0621] Meilgaard,M.C.,″Flavor chemistry of beer:Part II:Flavor and threshold of239 aroma volatiles.″Tech.Q.MBAA 12:151-167,1975.
[0622] Melan,M.A.et al.,″An Arabidopsis lipoxygenae gene can he induced bypathogens,abscisic acid,and methyl jasmonate.Plant Physiol.101:441-450,1993.[0623] Mendell,J.T.and Dietz,H.C., ″ When the message goes awry:Disease-producing mutations that influence mRNA content and performance.″Cell
107:411-414,2002.
[0624] Narziss,L., ″ Centenary Review:Technological factors of flavour stability.″J.Inst.Brew.92:346-353,1986.
[0625] Nero,E.,″Resources for Breeding of Wild Barley.″In:″Barley:Genetics,Biochemistry,Molecular Biology and Biotechnology.″Shewry,P.R.,ed.,pp.3-18.C.A.B.International.ISBN 0-85198-725-7(1992).
[0626] Noёl,S.and Collin,S., ″ Trans-2- 壬 烯 醛 degradation products duringmashing.″Eur.Brew.Cony.Proc.Congr.25th,Brussels:483-490,1995.[0627] Noordermeer,M.A.et al., ″ Fatty acid hydroperoxide lyase:A plantcytochrome P450 enzyme involved in wound healing and pest
resistance.″ChemBioChem 2:494-504,2001.
[0628] Noordermeer,M.A.et al.,″Development of a biocatalytic process for theproduction of C6-aldehydes from vegetable oils by soybean lipoxygenase andrecombinant hydroperoxide lyase.″J.Agric.Food Chem.50:4270-4274,2002.[0629] Norden,A.J.et al.,″Variability in oil quality among peanut genotypes in theFlorida breeding program.″Peanut Sci.14:7-11,1987.
[0630] Nyborg,M.et al., ″ Investigations of the protective mechanism of sulfiteagainst beer staling and formation of adducts with trans-2-壬烯醛.″J.Am.Soc.Brew.Chem.57:24-28,1999.
[0631] Ohtsu,K.et al.,″Flavor stability of packaged beer in relation to theoxidation of wort.″Brew.Dig.61(6):18-23,1986.
[0632] Olsen,O.et al.,″Preferential generation of A·T G·C transitions in thebarley Ant18 gene.″Proc.Natl.Acad.Sci.USA 90:8043-8047,1993.
[0633] Osorio,J.et al., ″ Mutant sunflower with high concentration of saturatedfatty acids in the oil.″Crop Sci.35:739-742,1995.
[0634] Parinov,S.and Sundaresan,V., ″ Functional genomics inArahidopsis: insertional mutagenesis complements the genome
sequencingproject.″Curr.Opin.Biotechnol.11:157-161,2000.
[0635] Phillips,D.R.and Galliard,T.,″Flavour biogenesis partial purification andproperties of a fatty acid hydroperoxide cleaving enzyme from fruits ofcucumber.″Phytochemistry 17:355-358,1978.
[0636] Ramezanzadeh,F.M.et al.,″Prevention of oxidative rancidity in rice branduring storage.″J.Agric.Food Chem.47:2997-3000,1999.
[0637] Rancé,I.et al., ″ The incompatible interaction betweenPhytophthoraparasitica var.nicotianae race 0 and tobacco is suppressed in transgeniv plantsexpressing antisense lipoxygenase sequences.″Proc.Natl.Acad.Sci.USA95:6554-6559,1998.
[0638] Rasmussen,S.K.and Hatzak,F., ″ Identification of twolow-phytate barley(Hordeum vulgate L.)grain mutants by TLC and genetic analysis.″Hereditas129:107-112,1998.
[0639] Rogers,K.R.et al., ″ Lipid peroxidation is a consequence of elicitoractivity.″Plant Physiol.86:547-553,1988.
[0640] Rouster,J.et al.,″Identification of a methyl jasmonate-responsive region inthe promoter of a lipoxygenase 1 gene expressed in barley grain.″Plant J.11:513-523,1997.
[0641] Royo,J.et al., depletion of a potatolipoxygenasereduces wound induction of proteinase inhibitors and increases weight gain ofinsect pests.″Proc.Natl.Acad.Sci.USA 96:1146-115,1999.[0642] Rustérucci,C.et al.,″Involvement of lipoxygenase-dependent production offatty acid hydroperoxides in the development of the hypersensitive cell deathinduced by cryptogein on tobacco leaves.″J.Biol.Chem. 274:36446-36455,
1999.
[0643] Sambrook,J.et al.,″Molecular Cloning:A Laboratory Manual,2nd Ed.″,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,New York,1989.ISBN0-87969-309-6.
[0644] Sambrook,J.and Russell,D.W.,″Molecular Cloning. A Laboratory Manual,3rd Ed.″,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,New York,2001.ISBN 0-87969-577-3.
[0645] Saravitz,D.M.and Siedow,J.N., ″ The differential expression of lipoxygenase genes in soybean leaves.″Plant Physiol.110:287-299,1996.
[0646] Schmitt,N.F.and Van Mechelen,J.R., ″ Expression oflipoxygenaseisoenzymes in developing barley grains.″Plant Sci.128:141-150,
1997.
[0647] Soldatov,K.I., ″ Chemical mutagenesis in sunflowerbreeding.″In:″Proceedings of the VIIth International Sunflower Conference,
27 July,1976,Krasnodar,USSR,Vol.1 ″,pp 352-357.International SunflowerAssociation,Toowoomba,Australia,1976.
[0648] Srivastava,S.et al., ″ Structural and kinetic determinants of aldehydereduction by aldose reductase.″Biochemistry 38:42-54,1999.[0649] Start,W.G.et al.,″Two soybean seed lipoxygenase nulls accumulate reducedlevels of lipoxygenase transcripts.″Plant Mol.Biol.7:11-23,1986.[0650] Tatulian,S.A.et al., ″ Uncovering a calcium-regulatedmembrane-bindingmechanism for soybean lipoxygenase-1. ″ Biochemistry 37:
15481-15490,1998.
[0651] Tijet,N.et al., ″ Biogenesis of volatile aldehydes from fatty acidhydroperoxides:Molecular cloning of a hydroperoxide lyase (CYP74C) withspecificity for both the 9-and 13-hydroperoxides of linoleic and linolenic acids.″Arch.Biochem. Biophys.386:281-289,2001.
[0652] Tingay,S.et al., ″ Agrobacterium tumefaciens-mediatedbarleytransformation.″Plant J.11:1369-1376,1997.
[0653] Towbin,H.et al., ″ Electrophoretic transfer of proteins from polyacrylamidegels to nitrocellulose sheets:Procedure and some applications.″Proc.Natl.Acad.Sci.USA 76:4350-4354,1979.
[0654] Turner,J.G.et al.,″The jasmonate signal pathway.″Plant Cell 14:S153-S164,2002.
[0655] Vancanneyt,G.et al.,″Hydroperoxide lyase depletion in transgenic potatoplants leads to an increase in aphid performance.″Proc.Natl.Acad.Sci.USA98:8139-8144,2001.
[0656] van Mechelen,J.R.et al.,″Primary structure of a lipoxygenase from barleygrain as deduced from its cDNA sequence. ″ Bioche.Biophys.Acta 1254:221-225,1995.
[0657] van Mechelen,J.R.et al., ″ Molecular characterization of two lipoxygenasesfrom barley.″Plant Mol.Biol.39:1283-1298,1999.
[0658] von Bothmer,R.et al., ″ Diversity in barley (Hordeumvulgate).″In:″Diversity in Barley(Hordeum vulgate).″von Bothmer, van Hintum, Knüpffer,H.,Sato,K.,eds.,pp.129-136.ISBN 0-444-50587-7(2003).Also available athttp://www.genres,de/IGRREIHE/IGRREIHE/DDD/22-16.pdf.
[0659] von Wettstein,D.et al., ″ Biochemical mutant in barley renders chemicalstabilization of beer superfluous.″Carlsberg Res.Commun.42:341-351,1977.
[0660] von Wettstein,D.et al.,″Proanthocyanidin-free barley for brewing:Progress in breeding for high yield and research tool in polyphenol chemistry.″Tech.Q.MBAA 22:41-52,1985.
[0661] Wan,Y.and Lemaux,P.G., ″ Generation of large numbers of independentlytransformed fertile barley plants. ″ Plant Physiol.104:37-48,1994.
[0662] Wang,J.et al.,″Alternatively spliced TCR mRNA induced by disruption ofreading frame. ″Science 297:108-110,2002.
[0663] Wang,M.-B.et al.,″Agrobacterium tumefaciens-mediated transformation ofan elite Australian barley cultivar with virus resistance and reporter genes.″Aust.J.Plant Physiol.28:149-156,2001.
[0664] Wang,W.H.et al., ″ Molecular basis of a null mutation in soybeanlipoxygenase 2:Substitution of glutamine for an iron-ligand histidine.″Proc.Natl.Acad.Sci.USA 91:5828-5832,1994.
[0665] Wang,W.-H.et al.,″Two substitutions involved in altering in a of AAATAC in the promoter region of soybean lipoxygenase L-3geneimpair the promoter function in tobacco cells.″Plant Sci.109:67-73,1995.[0666] Weber,H.et al., ″ Divinyl ether fatty acid synthesis in late potato leaves.″Plant Cell 11:485-493,1999.
[0667] Wesley,S.V.et al., ″ Construct design for efficient,effective and gene silencing in plants.″Plant J.27:581-590,2001.
[0668] White,J.et al., ″ A cassette containing the bar gene of Streptomyceshygroscopicus:A selectable marker for plant transformation.Nucleic Acids Res.18:1062,1990.
[0669] Zhang Y.et al., ″ Expression of antisense SnRK1 protein kinase sequencecauses abnormal pollen development and male sterility in transgenic barley.″Plant J.28:431-441,2001.