控制颗粒的方法和涂布地下岩层的一部分表面的方法以及控制碎屑颗粒的处理流体转让专利

申请号 : CN200580018884.2

文献号 : CN1985067B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 马修·E.·布劳克托马斯·D.·韦尔顿菲利普·D.·阮

申请人 : 哈利伯顿能源服务公司

摘要 :

本发明涉及水性增粘剂以及使用水性增粘剂控制地下岩层中的颗粒的方法。本发明的一些实施方案提供了控制颗粒的方法,其包括:将水性增粘剂化合物放置到包括未固结颗粒的地下岩层的一部分中;并且,活化该水性增粘剂化合物。本发明的其它实施方案提供了涂布地下岩层一部分表面的方法,其包括:充分地将水性增粘剂化合物涂布到地下岩层的一部分上;并且,活化该水性增粘剂化合物。本发明的其它实施方案提供了用于控制碎屑颗粒的处理流体,其包括维护流体和水性增粘剂化合物。

权利要求 :

1.一种控制颗粒的方法,该方法包括:

将水性增粘剂化合物放置到包括未固结颗粒的地下岩层的一部分中,其中所述水性增粘剂化合物包括丙烯酸聚合物、丙烯酸酯聚合物、丙烯酸衍生物聚合物、丙烯酸均聚物、丙烯酸酯均聚物、丙烯酰胺基-甲基-丙烷磺酸酯聚合物、丙烯酰胺基-甲基-丙烷磺酸酯衍生物聚合物、丙烯酰胺基-甲基-丙烷磺酸酯共聚物、丙烯酸/丙烯酰胺基-甲基-丙烷磺酸酯共聚物、和它们的共聚物、或它们的混合物;以及,用活化剂活化所述水性增粘剂化合物,该活化剂用于促进在水性增粘剂化合物中的不溶解性,以形成在所述颗粒上的非硬化的涂层,其中所述活化剂包括有机酸、有机酸的酸酐、无机酸、无机盐、带电荷表面活性剂、带电荷聚合物、或者它们的组合。

2.权利要求1的方法,其中所述水性增粘剂化合物在被放入地下岩层的所述部分之前与维护流体混合。

3.权利要求2的方法,其中所述维护流体包括水性流体、乳液、或者泡沫。

4.权利要求2的方法,其中所述维护流体包括淡水、咸水、或它们的组合。

5.权利要求2的方法,其中所述维护流体被交联。

6.权利要求1的方法,其中所述水性增粘剂化合物在将水性增粘剂化合物引入地下岩层中之前被活化。

7.权利要求1的方法,其中所述水性增粘剂化合物在将水性增粘剂化合物引入地下岩层中的同时被活化。

8.权利要求1的方法,其中所述水性增粘剂化合物在将水性增粘剂化合物引入地下岩层中之后被活化。

9.权利要求1的方法,其中所述水性增粘剂化合物被优先粘结到具有正ξ电势的表面上。

10.权利要求1的方法,其中所述水性增粘剂化合物被优先粘结到疏水性表面上。

11.权利要求1的方法,其中所述水性增粘剂化合物被优先粘结到具有负ξ电势的表面上。

12.权利要求1的方法,其中所述水性增粘剂化合物被优先粘结到亲水性表面上。

13.权利要求1的方法,其中活化水性增粘剂化合物包括使所述水性增粘剂化合物去稳定。

14.权利要求1的方法,其中活化水性增粘剂化合物包括使所述水性增粘剂化合物暴露于活化剂。

15.权利要求1的方法,其中所述活化剂包括乙酸/乙酸酐的掺合物。

16.权利要求1的方法,其进一步包括,在将水性增粘剂化合物引入地下裂缝的一部分中之前,将预处理流体引入地下岩层的所述部分中。

17.权利要求16的方法,其中所述预处理流体在将水性增粘剂化合物引入地下裂缝中之前被引入所述地下裂缝中。

18.权利要求16的方法,其中所述预处理流体包括带电荷表面活性剂、带电荷聚合物、或者它们的组合。

19.一种涂布地下岩层的一部分表面的方法,该方法包括:充分地将水性增粘剂化合物涂布到地下岩层的一部分上,其中所述水性增粘剂化合物包括丙烯酸聚合物、丙烯酸酯聚合物、丙烯酸衍生物聚合物、丙烯酸均聚物、丙烯酸酯均聚物、丙烯酰胺基-甲基-丙烷磺酸酯聚合物、丙烯酰胺基-甲基-丙烷磺酸酯衍生物聚合物、丙烯酰胺基-甲基-丙烷磺酸酯共聚物、丙烯酸/丙烯酰胺基-甲基-丙烷磺酸酯共聚物、和它们的共聚物、或它们的混合物;以及用活化剂活化所述水性增粘剂化合物,该活化剂用于促进在水性增粘剂化合物中的不溶解性,以形成在所述颗粒上的非硬化的涂层,其中所述活化剂包括有机酸、有机酸的酸酐、无机酸、无机盐、带电荷表面活性剂、带电荷聚合物、或者它们的组合。

20.权利要求19的方法,其中所述水性增粘剂化合物在被放入地下岩层所述部分中之前与维护流体混合。

21.权利要求20的方法,其中所述维护流体包括水性流体、乳液、或者泡沫。

22.权利要求20的方法,其中所述维护流体包括淡水、咸水、或它们的组合。

23.权利要求20的方法,其中所述维护流体被交联。

24.权利要求19的方法,其中所述水性增粘剂化合物在将水性增粘剂化合物引入地下岩层中之前被活化。

25.权利要求19的方法,其中所述水性增粘剂化合物在将水性增粘剂化合物引入地下岩层中的同时被活化。

26.权利要求19的方法,其中所述水性增粘剂化合物在将水性增粘剂化合物引入地下岩层中之后被活化。

27.权利要求19的方法,其中所述水性增粘剂化合物被优先粘结到具有正ξ电势的表面上。

28.权利要求19的方法,其中所述水性增粘剂化合物被优先粘结到疏水性表面上。

29.权利要求19的方法,其中所述水性增粘剂化合物被优先粘结到具有负ξ电势的表面上。

30.权利要求19的方法,其中所述水性增粘剂化合物被优先粘结到亲水性表面上。

31.权利要求19的方法,其中活化水性增粘剂化合物包括使水性增粘剂化合物去稳定。

32.权利要求19的方法,其中活化水性增粘剂化合物包括使水性增粘剂化合物暴露于活化剂。

33.权利要求19的方法,其中所述活化剂包括乙酸/乙酸酐的掺合物。

34.权利要求19的方法,其进一步包括,在将水性增粘剂化合物充分涂布到地下岩层的一部分上之前,将预处理流体引入地下岩层所述部分中。

35.权利要求34的方法,其中所述预处理流体包括带电荷表面活性剂、带电荷聚合物、或者它们的组合。

36.一种用于控制碎屑颗粒的处理流体,其包括维护流体和水性增粘剂化合物,其中所述水性增粘剂化合物包括丙烯酸聚合物、丙烯酸酯聚合物、丙烯酸衍生物聚合物、丙烯酸均聚物、丙烯酸酯均聚物、丙烯酰胺基-甲基-丙烷磺酸酯聚合物、丙烯酰胺基-甲基-丙烷磺酸酯衍生物聚合物、丙烯酰胺基-甲基-丙烷磺酸酯共聚物、或丙烯酸/丙烯酰胺基-甲基-丙烷磺酸酯共聚物,且还包括活化剂,该活化剂用于促进在水性增粘剂化合物中的不溶解性,以形成在所述颗粒上的非硬化的涂层,其中所述活化剂包括有机酸、有机酸的酸酐、无机酸、无机盐、带电荷表面活性剂、带电荷聚合物、或者它们的组合。

37.权利要求36的处理流体,其中所述维护流体包括水性流体、乳液、或者泡沫。

38.权利要求36的处理流体,其中所述维护流体包括淡水、咸水、或它们的组合。

39.权利要求36的处理流体,其中所述维护流体被交联。

40.权利要求36的处理流体,其中所述水性增粘剂化合物被优先粘结到具有正ξ电势的表面上。

41.权利要求36的处理流体,其中所述水性增粘剂化合物被优先粘结到疏水性表面上。

42.权利要求36的处理流体,其中所述水性增粘剂化合物被优先粘结到具有负ξ电势的表面上。

43.权利要求36的处理流体,其中所述水性增粘剂化合物被优先粘结到亲水性表面上。

44.权利要求36的处理流体,其中所述活化剂包括乙酸/乙酸酐的掺合物。

说明书 :

控制颗粒的方法和涂布地下岩层的一部分表面的方法以及

控制碎屑颗粒的处理流体

技术领域

[0001] 本发明涉及水性增粘剂及使用水性增粘剂控制地下岩层中的颗粒的方法。 背景技术
[0002] 烃生产井通常是由水力破碎处理来增产的。在水力破碎处理中,也作为载体流体的粘性压裂液被以一定的速度和压力泵送入生产区域中,以使地下岩层断裂,并在该区域中形成一个或多个裂缝。通常,当该压裂液转化为返回到表面的稀流体的时候,悬浮于一部分压裂液中的颗粒固体如分级的沙子沉积于裂缝中。这些颗粒固体,或者“支撑剂颗粒”,用来防止裂缝完全闭合,以形成了所生产的烃类能够流过的传导通道。
[0003] 一种特别适合于低闭合应力条件、通常在地壳构造延伸下浅深度蓄水池中所观察到的水力破碎处理是水压裂。在水破碎中,压裂液含有非常低的或者零支撑剂颗粒浓度。该过程不是依赖支撑剂颗粒来支撑开裂缝,而是依赖于由地层自支撑的天性所产生的天然传导性来防止裂缝闭合。煤层甲烷储层是没有水压裂的适合于支撑剂颗粒的储存井的实例。 [0004] 不幸地,生产改进和裸眼完井能够负面影响不安定的地层,例如煤层、富有机质页岩、粘土或者富有机质碎屑及高断裂易碎岩石。在这些地层中,机械力或者天然原位应力的各向异性可能会导致被称为散裂的地质工艺,其中在地层面的与应力有关的改变引起了碎屑颗粒者“碎屑”“剥落”或者从地层上脱开。这些碎屑能够阻塞支撑剂填充物或者自支撑裂缝的间隙空间,并且降低裂缝的传导性,限制井的潜在产量。此外,松散的碎屑还可能侵蚀或者引起对在回收工艺中所使用的生产装置的显著磨损,所以通常必须与所生成的流体分离出来,这对于该工艺过程增加了另外的费用。
[0005] 先前对于控制或者减轻松散碎屑的影响的尝试包括增粘、絮凝和凝聚。通过这些方法,防止了当这些颗粒在所形成的裂缝中迁移时对于在破碎过程中所产生的松散碎屑流动的阻碍。然而,大多数现有解决方案并没有强调在投产之前对地层进行预稳定的概念。此外,现有解决方案还通常缺乏补救性地处理裂缝来稳定或者控制碎屑的能力,并且很多并没有提供对处理流体活化进行控制的能力(例如,处理流体可能没有被引入裂缝中,然后被活化来控制或减轻松散碎屑的影响)。

发明内容

[0006] 本发明涉及水性增粘剂及使用水性增粘剂控制地下岩层中的颗粒的方法。 [0007] 本发明的一些实施方案提供了控制颗粒的方法,其包括:将水性增粘剂化合物放置到包括未固结颗粒的地下岩层的一部分中;以及,活化该水性增粘剂化合物。 [0008] 本发明的其它实施方案提供了涂布地下岩层的一部分表面的方法,其包括:充分地将水性增粘剂化合物涂布到一部分地下岩层上;以及,活化该水性增粘剂化合物。 [0009] 本发明的其它实施方案提供了用于控制碎屑颗粒的处理流体,其包括维护流体和水性增粘剂化合物。
[0010] 对于本领域的技术人员来说,在阅读了下面的优选实施方案以后,本发明的特点和优点将是显而易见的。

具体实施方式

[0011] 本发明涉及水性增粘剂及使用水性增粘剂控制地下岩层中的颗粒的方法。 [0012] 根据本发明,可以将水性增粘剂化合物引入一部分地下裂缝中。在本文中所使用的术语“粘性的”,在它的所有形式中,通常是指触觉上本身是(或者可以被活化成为)有点粘性的物质。
[0013] 合适的水性增粘剂化合物能够在表面(例如,地层面或者颗粒)上形成至少部 分涂层。在一些实施方案中,可以首先预处理接触颗粒表面来为其涂布水性增粘剂化合物作准备。通常,合适的水性增粘剂化合物在被置于表面上的时候并不是粘性的,但是能够被“活化”(也就是被去稳定、聚结和/或反应),以使该化合物在希望的时刻被转变成为粘性的增粘化合物。这样的活化可能发生在将该水性增粘剂化合物置于地下岩层之前、之中或之后。
[0014] 在本发明具体的实施方案中,该水性增粘剂化合物一旦被活化,还能够在地下岩层的暴露表面上有效地形成粘性网络,在暴露于机械力或者天然的地层应力的各向异性时,该粘性网络可以降低地层散裂或者产生碎屑颗粒的倾向。通过用活化过的水性增粘剂化合物涂布地层的暴露表面,很少碎屑颗粒能够摆脱束缚,从而限制了碎屑对井产量可能产生的负面影响。
[0015] 本发明的一些实施方案描述了使用水性增粘剂化合物来控制存在于地下岩层中的松散颗粒及稳定地下岩层中的分界面区域,以阻碍从分界面上释放或者产生颗粒(有时也称为“碎屑”)。本文中所使用的术语“未固结的”是指颗粒松散地未粘合或者非常弱粘合地粘合在一起,以至于能够随在部分地下岩层中运动的流体一起迁移的情形。在本发明的一些实施方案中,水性增粘剂化合物一旦被活化,就有助于通过改进形式的絮凝物来稳定颗粒。在通常的絮凝物中,增粘的颗粒结块在一起;然而,通过本发明的水性增粘剂化合物产生的改进絮凝物还允许絮凝的粘性的颗粒粘附到它们所接触的表面(例如,井底地层面或者另一颗粒的表面)上。由于这些颗粒被增粘并且即使当絮凝颗粒从它们所粘附的表面上挣脱下来依然保持粘性,因此它们具有粘附到另一表面上的能力。这进一步降低了增粘的颗粒可能削弱所述井的生产量的可能性。
[0016] 本发明的具体实施方案还提供了补救地下裂缝而不需重复破碎或重新凝结可能已经沉积于裂缝中的支撑剂颗粒的方法。在本发明包括“补救操作”(即,其中支撑剂填充物已经就位,不希望的回流已经开始发生并且需要进行补救或操作,而其中地层已经开始散裂且不稳定的地层表面需要补救的操作)的实施方案中,本发明的水性增粘剂化合物可以是特别适合的,因为在某种程度上,它们可以作为非粘性物质而置于待补救的区域内,然后被活化至呈现出粘性特性。
[0017] 本发明的水性增粘化合物通常是包含以下化合物的带电荷聚合物,当处于水性溶剂或者溶液中时,该化合物可以形成非硬化的涂层(通过其自身或者与活化剂一起),并且当置于颗粒上的时侯,其与水流接触时将可以增加该颗粒的连续临界再悬浮速度(在实施例7中作了进一步描述)。该水性增粘剂化合物提高了地层中单个颗粒(它们是支撑剂颗粒、地层碎屑、或者其它颗粒)之间的粒子-粒子接触,有助于使所述颗粒固结为内聚、挠曲且可渗透的物质。
[0018] 适合于本发明中使用的水性增粘化合物的实例包括但不限于:丙烯酸聚合物、丙烯酸酯聚合物、丙烯酸衍生物聚合物、丙烯酸均聚物、丙烯酸酯均聚物(例如聚丙烯酸甲酯、聚丙烯酸丁酯和聚丙烯酸2-乙基己酯)、丙烯酸酯共聚物、甲基丙烯酸衍生物聚合物、甲基丙烯酸均聚物、甲基丙烯酸酯均聚物(例如聚甲基丙烯酸甲酯、聚甲基丙烯酸丁酯和聚甲基丙烯酸2-乙基己酯)、丙烯酰胺基-甲基-丙烷磺酸酯聚合物、丙烯酰胺基-甲基-丙烷磺酸酯衍生物聚合物、丙烯酰胺基-甲基-丙烷磺酸酯共聚物、和丙烯酸/丙烯酰胺基-甲基-丙烷磺酸酯共聚物以及它们的组合。
[0019] 虽然存在很多用于确定适合水性增粘剂的潜在方法,但是选择合适聚合物的一种实用的方法如下:将被测试的聚合物设定为浓缩形式(也就是说,约20-50%的浓度),并且向其加入活化剂。根据经验,如果该混合物看起来凝结形成固体或半固体物质的话,则表示该聚合物是本发明合适的水性增粘剂。如果该混合物看上去没有凝结形成固体或半固体物质,则应该选择另外一种活化剂并重复该测试。本领域的技术人员在知道了希望的凝结结果以后,将能够选择可能的活化剂。例如,当测试适合用作水性增粘剂的丙烯酸酯聚合物的时侯,包含50%乙酐和50%冰乙酸(v/v)的混合物是可能的活化剂。水性增粘化合物的选择可能特别取决于井下的条件(例如,盐度、温度和/或pH)。对于所有合适的水性增粘剂化合物来说,这些和其它井下条件之间的关系并不是一致的。例如,高盐度可能加速一些水性增粘剂化合物的活化,而对于其它化合物则可能延迟活化。本领域的技术人员将能够确定具体的井下条件对所选水性增粘剂化合物的影响。例如,当使用聚丙烯酸酯聚合物的时侯,高盐度、或极端的pH(高于约9 或低于约5)通常加速活化。
[0020] 合适的水性增粘剂化合物通常是带电荷聚合物,它们被优先粘结在具有相反电荷的表面上。例如,具有负电荷的水性增粘剂化合物可以优先粘结在具有正至中性ξ电势的表面上和/或疏水性表面上。同样地,使用类似化学物,带正电荷的水溶性增粘剂化合物可以优先粘附到具有负至中性ξ电势的表面和/或亲水性表面上。例如,人们可以使用预处理材料例如阳离子聚合物来处理具有负ξ电势的表面,或者使用阴离子预处理物来处理具有正ξ电势的表面。本领域的技术人员可以理解,也可以使用两性的和两性粒子的预处理流体,只要在它们使用中的暴露条件下可以使它们显示出希望的电荷。在其中被处理表面(地层或颗粒)缺乏足够的接受表面的具体实施方案中(即,被处理的表面缺乏与被选择的水性增粘剂化合物基本相反的电荷),可以使用预处理流体来使得所述表面更能接受水性增粘化合物。合适的预处理流体包括带电荷流体,其包括带电荷表面活性剂、带电荷聚合物或者它们的组合。本领域的技术人员应当理解,在本申请公开内容的帮助下,预处理的使用是任选的并且至少部分地取决于电荷的不均匀性,或在所选水性增粘剂化合物与被处理表面之间的电荷缺乏性。
[0021] 几乎任何地下岩层部分都可以用本发明的水性增粘剂化合物处理。地层的实例包括但不限于:煤地层以及含有含铁矿如菱铁矿、磁铁矿和赤铁矿的地层。表现出天然的疏水特性的粘土矿也显示为是可以处理的。
[0022] 通常,本发明的水性增粘剂化合物是通过混合水性增粘剂化合物和维护流体而被置入地下岩层的一部分中。本发明的合适的维护流体可以是水性流体、乳液、泡沫,或者是本领域中已知的任何其它形式的地下流体。在一些实施方案中,本发明的维护流体包括淡水。在一些实施方案中,咸水溶液也可以用作维护流体,只要流体的盐浓度不会不令人满意地活化和/或去稳定所述水性增粘剂化合物。根据本发明,还可以使用含水凝胶、泡沫、直接氮(straight nitrogen)、二氧化碳、乳液和其它合适的压裂液(交联的或者未交联的)。含水凝胶通常包括水和一种或多种凝胶剂。乳液可以由两种不混溶的液体,例如水凝胶化的液体和液化的、通常为气体的流体如氮气或二氧化碳构成。在本发明的示例性实施 方案中,载体流体是由水、用来凝胶化水并且增加其粘度的凝胶剂、以及任选用于交联所述凝胶并且进一步增加流体粘度的交联剂组成的含水凝胶。该凝胶化的或者凝胶且交联的载体流体增加的粘度特别降低了流体损失,并且可能允许维护流体运送大量的悬浮支撑剂颗粒。用来形成维护流体的水可以是淡水、咸水、盐水或者任何其它不负面地与其它组分反应的水性液体。根据本发明,通过使用水性维护流体,对地下处理的环境影响可以最小化或者降低,特别是在维护流体被倒入到表面陆地、水、或海环境中,或者所述流体是根据U.S.EPASafe Drinking Water Act(Section 1425,42 U.S.C.3000h-4(a),Section1422(b),U.S.C.300h-l(b))调节的情况下。
[0023] 如上面所提及的那样,水性增粘剂化合物在与载体流体混合的时候通常是非粘性的。可以包括大量不同化合物的“活化剂”被用来活化(即,增粘)该水性增粘剂化合物。通常,活化剂是有机酸(或能够在水中水解产生有机酸的有机酸酸酐)、无机酸、无机盐(例如盐水)、带电荷表面活性剂、带电荷聚合物、或者它们的组合,但是根据本发明的教导,任何一种能够使得水性增粘剂化合物不溶解于水性溶液中的物质都可以用作活化剂。活化剂的选择可以根据特别是水性增粘剂化合物的组成来改变。适合使用于本发明的活化剂的一个实例是乙酸/乙酸酐的掺合物。其它的酸、酸性盐、酸酐和它们的混合物也可以是合适的。此外,这与凝结是类似的。例如,很多天然橡胶乳胶在生产过程中与乙酸或甲酸凝结。
合适的盐包括(但不限于):氯化钠、氯化钾、氯化钙和它们的混合物。在本发明的另一个示例性实施方案中,存在于地下水中的盐或其他活性化合物自身的浓度可以足以活化该水性增粘剂化合物。在这样的实施方案中,可能没有必要加入外部活化剂。通常,当使用的时候,活化剂以流体量的约0.1重量%-约20重量%的范围存在的;然而,在一些情况下,例如在使用盐水的情况下,活化剂可以超过处理流体和水性增粘剂化合物。然而,在本发明的教导中,不考虑触发水性增粘剂化合物活化所必需的活化剂浓度,任何引起水性增粘剂化合物活化的化合物(例如,引起水性增粘剂化合物变成不溶性的)都可以使用。 [0024] 合适的活化剂种类与合适的预处理流体的种类基本相同;差别至少部分地 在于所使用的量和它的使用时间。例如,在使用相同的化学试剂或化学药品作为预处理流体和作为活化剂的情况下,预处理流体可以仅仅占所使用总量的约0.1体积%-约5体积%。本领域的技术人员可以认识到,预处理流体主要是用来为表面接受水性增粘剂化合物作准备的,通常不是以足以充分活化该水性活化剂化合物的量使用的。此外,在一些实施方案中,可以完全不必使用活化剂。例如,被处理的地下岩层部分在地下流体中可能含有足量的盐,以至于简单地将水性增粘剂化合物放入地层中并且让它与现有的流体接触,就将导致所希望的活化。
[0025] 通常,本发明的增粘处理可以在井的开采周期的任何时间进行,在可能包括或者不包括支撑剂填充物的井中通常不需要重新破碎。例如,在具体的实施方案中,通过在任何载颗粒流体之前将水性增粘剂化合物放入裂缝中,本发明的水性增粘剂化合物可以用来预处理裂缝。在本发明的另一个实施方案中,通过简单地使用该处理流体(包括维护流体和水性增粘剂化合物)作为破碎流体,水性增粘剂化合物可以被用来处理裂缝。并且,在本发明的又另外一个实施方案中,该水性增粘剂化合物可以在破碎处理、载粒子之后或者相反立刻放置在裂缝中。通过这种方法,处理成本可以大大降低,并且井的产量衰减可以被改进,由此延长井的生产寿命。
[0026] 此外,可以在水力破碎处理中使水性增粘剂化合物以任意多次的不同次数暴露于活化剂。在本发明的具体的实施方案中,活化剂可以几乎和水性增粘剂化合物同时与载体流体混合。以此方式,引入地下岩层中的水性增粘剂化合物已被活化或者至少处于被活化的过程中。在本发明的另一个实施方案中,活化剂可以在将水性增粘剂化合物引入地层后的某些时间引入地下岩层中(例如,水性增粘剂化合物可以在其被活化前一段时间存在于地下岩层中)。以这种方式,在发生水泥散裂或者支撑剂颗粒或者碎屑需要被再固结的情况下,水性增粘剂化合物提供了补救性地增粘裂缝的能力。本领域的技术人员将意识到,是否预混合活化剂和水性增粘剂化合物的决定至少部分取决于所选择的活化剂。例如,盐活化剂可能趋向于比带电荷表面活性剂更快地活化水性增粘剂化合物。
[0027] 为了便于更好地理解本发明,给出了下面的优选实施方案的实施例。下面的实施例决不应该被理解为是对本发明范围的限制或定义。
[0028] 实施例
[0029] 实施例1
[0030] 通过混合1升含有20克KCl盐的水、4.2克干瓜尔胶聚合物和0.2ml乙酸/乙酸铵混合物(用作pH缓冲剂来将混合物的pH降低到约6.5),并且在混合机中混合约10分钟使瓜尔胶水合,以制备1000加仑含有35lb干瓜尔胶聚合物的硼酸盐交联压裂液的碱性凝胶。在水合步骤以后,加入2.5ml碳酸钾(用作pH缓冲剂),将最后的碱性凝胶的pH升高到约10.2。
[0031] 用1ml季铵盐(每250克砂)的表面活性剂来处理Brady砂子(20/40目),然后用3重量%、由40%聚丙烯酸酯聚合物溶液形成的涂料对其进行干法涂布。 [0032] 然后将250克涂布过的20/40 Brady砂放置在干净的1升烧杯中,加入300ml所述碱性凝胶溶液,其后将该烧杯放入具有高架混合器的140 的水浴中。在混合的同时,用约2分钟将0.32ml硼酸盐交联剂加入到该碱性凝胶/支撑剂浆液中,使交联开始。 [0033] 得到了稳定的交联,将其与使用了没有用本发明处理的支撑剂所进行的对照试验进行比较。两种流体都保持稳定,这表明本发明的溶液对于流体稳定性没有显著的负面影响;也就是说,其没有表现出例如不能交联或者太早断裂的有害影响。 [0034] 在用HCl破坏交联凝胶的时候,将涂布的砂分开并进行测试,结果证实其具有希望的粘性和改进的T测试性能(参见实施例7)。此外,发现涂布过的砂不需要另外的活化剂来得到希望的涂布性能,这至少部分是因为含有活化剂如KCl的破碎凝胶系统,并且其对丙烯酸基聚合物也表现出令人满意的活化pH。
[0035] 实施例2
[0036] 使用粒度小于100目的Brazos River砂子来模拟地层砂子。将该材料填充到 5英寸长1英寸ID的锥形特氟龙管套中。将约0.5英寸厚的20/40目的Ottawa砂子填充到Brazos River砂材料的下面和上面。然后用3%的KCl盐水使砂柱饱和,并且用该盐水以5mL/min的速度以几种孔隙体积(pore volume)进行冲洗,以确定砂子填充物的初始渗透度。然后用2倍孔隙体积的处理流体(4体积%的40%的聚丙烯酸酯聚合物溶液、0.5%活化剂、0.1%阳离子表面活性剂、0.1%两性表面活性剂、余量为水)处理Brazos River砂子。其后用5倍孔隙体积的KCl盐水(3%)超量冲洗该砂子填充物。然后将处理过的砂柱放在烘箱中,在175 下固化20个小时。
[0037] 在固化阶段之后,使用3%的KCl盐水建立从相反方向流过被处理砂柱的流动。将流动速率保持在恒定的5mL/min来确定砂子填充物所保留的渗透度,用来与初始渗透度相比较。被处理的砂子填充物保留了大于95%的渗透度,在用来建立重新得到渗透的5mL/min KCl流动过程中所收集的流出液中,没有产生碎屑的迹象。
[0038] 该实施例的结果确定了该处理流体能够稳定地层砂子材料,没有引起对砂子填充物渗透度的过度破坏。
[0039] 实施例3
[0040] 除了使用了不同浓度的处理流体外,在本实施例中重复实施例2中所描述的相似的制备和测试程序。使用Brazos River砂子模拟地层碎屑。将该材料填充到5英寸长1英寸ID锥形特氟龙管套中。将约0.5英寸厚的具有20/40目粒度的Ottawa砂子填充到Brazos River砂子材料的下面和上面。然后用3%的KCl盐水使砂柱饱和,并且用该盐水以5mL/min的速度以几种孔隙体积进行冲洗,以确定砂子填充物的初始渗透度。然后加入2倍孔隙体积的处理流体(2体积%的40%聚丙烯酸酯聚合物溶液、0.5%活化剂、0.1%阳离子表面活性剂、0.1%两性表面活性剂、余量为水)。随后再用5倍孔隙体积的KCl盐水(3%)超量冲洗该砂子填充物。
[0041] 然后将处理过的砂柱放在烘箱中,在175 下固化20个小时。在固化阶段 后,使用3%KCl盐水建立从相反方向流过被处理砂柱的流动。将流动速率保持在恒定的5mL/min,确定砂子填充物保留的渗透度,用来与初始渗透度相比较。
[0042] 被处理过的砂子填充物保留了大于97%的渗透度。再一次在重新获得渗透的流动过程中所收集的流出液中,没有产生碎屑的迹象。
[0043] 实施例4
[0044] 使用Brazos River砂子来模拟地层砂子。将该材料填充到两个1.5英寸ID的黄铜单元中,并且将其夹在由70/170目砂子构成的砂子填充物之间。用3倍孔隙体积的3%的KCl盐水冲洗砂柱,接下来用2倍孔隙体积的处理流体(5体积%的40%的聚丙烯酸酯聚合物溶液、0.5%活化剂、0.2%表面活性剂、余量为水)冲洗砂柱,并且用3倍孔隙体积的3%KCl盐水超量冲洗砂柱。
[0045] 然后将一个单元放在175 的烘箱中20个小时,将一个放在325 的烘箱中20个小时来模拟井的井下固化。在固化阶段之后,将处理过的砂子从单元中取出来并且观察它的结构、形状和挠曲性。处理过的Brazos River砂子表现为呈现所述单元形状的坚固结构。尽管具有与通常从固结岩石所观察到的可以忽略的固结强度,但是处理过的Brazos River砂粒粘结在一起形成稳定的结构。
[0046] 实施例5
[0047] 使用了Brazos River砂子来模拟地层砂子。将该材料填充到两个1.5英寸ID的黄铜单元中,并将其夹在由70/170目砂子构成的砂子填充物之间。用3倍孔隙体积的3%的KCl盐水冲洗砂柱,接下来用2倍孔隙体积的处理流体(5体积%的40%的聚丙烯酸酯聚合物溶液、0.5%活化剂、0.2%表面活性剂、余量为水)冲洗砂柱,不再采用超量冲洗。 [0048] 然后将一个处理过的柱子放在175 的烘箱中20个小时,并且将一个放在325 的烘箱中20个小时来模拟井的井下固化。在固化阶段之后,将处理过的砂子从单元中取出并且观察结构、形状和曲挠性。处理过的Brazos River砂子再次表现为呈现单元形状的坚固结构。尽管具有通常从固结岩石所观察到的可以 忽略的固结强度,但处理过的Brazos River砂粒粘结在一起形成稳定的结构。
[0049] 实施例6
[0050] 使用筛分粒度为200目及更小的Brazos River砂碎屑来模拟地下碎屑。将该材料填充到1英寸ID的透明丙烯酸流动单元中,以便于观察。将20/40目筛眼的Ottawa砂子填充到该地层碎屑材料的下面和上面。然后然后用3%的KCl盐水使砂柱饱和,并且用5倍体积的该盐水对其进行冲洗,接下来用2倍孔隙体积的处理流体(2体积%的40%的聚丙烯酸酯聚合物溶液、0.5%活化剂、0.2表面活性剂、余量为水)对其冲洗,然后用2倍孔隙体积的3%的KCl盐水超量冲洗砂柱。
[0051] 然后将处理过的砂柱放在烘箱中在140 下固化20个小时。在固化阶段之后,使用3%的KCl盐水建立与处理过程相反方向流过被处理砂柱的流动。流动速率开始为10mL/min,并逐渐增加到80mL/min。收集流出液以帮助确定流动过程中在所述单元中所观察到的结果。所有结果都表明,与对照物相比,被处理的柱子能够在所有流速内完全控制碎屑的迁移。
[0052] 作为对比,将同样制备但是没有用增粘流体处理过的砂柱作为对照物。观察到一旦建立了流动,碎屑颗粒就立即开始迁移到砂子填充物中,并且作为流出液的一部分而产生,即使流动速率为10mL/min。
[0053] 实施例7
[0054] 基于总处理流体的体积,以约2%(v/w)的量处理20/40 Brady砂子试样(41.25%的聚丙烯酸酯聚合物浓缩液、3.75%表面活性剂、30%水、接下来25%的活化剂)。然后将试样放入下面所描述的T检测中:对用作增粘化合物的化合物液体或溶液的评价通过下面的测试完成:首先,确定将要涂布该增粘化合物的材料的临界再悬浮速度。一种合适的测试装置包括连接到入口水源的1/2″的玻璃T型管,出口处理管线对于流体流动是封闭的。通过入口管将颗粒的水基浆料吸入到T型管中,并且通过筛子收集过滤到的一部分。当T型部分充满的 时侯,除去真空源并且使用塞子来密封该部分的端部。然后将从入口到出口的流动通道擦洗干净,并将控制体积的泵连接到入口,开始受控制的水流动。缓慢地增加通过入口的流体速度,直到流动的水流得到了第一颗粒的粒子材料。这确定了开始再悬浮速度的基线。接下来,进一步增加流体速率,直到颗粒的迁移变为连续。这确定了连续的再悬浮速度的基线。接下来,可以结束该测试并且将该装置中再填满颗粒,所述该颗粒具有相应于被涂布颗粒约0.5重量%活性材料的涂层。在所测试浓度为约0.1-约3%的时侯,在结果中看到了大体相同的趋势,然而,在优选涂覆范围内0.5%含量对于标准化的程序来说是优选的。可以重复该测试来确定颗粒移动的起始点,以及所述移动变得连续的速度。然后基于初始的或者连续的基线值确定速度增加(或降低)的百分数。
[0055] 与未处理过的支撑剂颗粒相比,有效处理过的支撑剂颗粒可以抵抗输送。即使当测试装置以其最大速率2,000mL/min流动的时候,测试试样也没有显示出运动的迹象。未被处理的20/40 Brady砂子在速度为154mL/min时开始流动;处理过的砂抵抗高于未被处理的砂13倍流动速率的流动。
[0056] 实施例8
[0057] 基于总处理流体的体积,以约2%(v/w)的量处理20/40的Brady砂子试样(40%的聚丙烯酸酯聚合物浓缩液、5%表面活性剂、10%活化剂、余量为水)。与未经处理的20/40 Brady砂相比,本试样显示出对支撑剂填充物传导性有13%的提高。还观察到被处理的支撑剂表现出所希望的粘合特性,其中单个支撑剂胶着并且有弹性地粘合在一起。 [0058] 实施例9
[0059] 确定聚合物是否适合用作水性增粘剂的一种方法是:制备由50%乙酸酐和50%冰乙酸(v/v)组成的混合物。将10ml测试聚合物放入60ml玻璃瓶中。接下来,加入40ml去离子水并且用手旋动使其混合。然后加入15ml乙酸/乙酸酐(或其它活化剂)。剧烈地摇动瓶子30s。合适的聚合物将形成固体的或者半固体物质。 重复用其它已知的活化剂进行筛选,例如乙酸/乙酸酐的掺合物、其它酸、酸的盐、酸酐、带电荷聚合物、带电荷表面活性剂、氯化钠、氯化钾、氯化钙和它们的混合物。
[0060] 实施例10
[0061] 对表现出相对低的单口井产量的煤层甲烷地进行处理。据估计井的产量至少部分地受到阻止气体流入钻井的煤碎屑的削弱。这些井已经在多个煤层中进行了预先水力破碎。用在水中包括乙酸酐、冰乙酸、聚丙烯酸酯聚合物水性增粘剂化合物、酶和氧化剂的溶液处理两口井。
[0062] 第一口井从处理前约43MCFD(千立方英尺/天)的甲烷产量变成处理后的约75MCFD。类似地,第二口井从处理前约80MCFD的甲烷产量变成处理后的约105MCFD。此外,这些被处理井的观察结果显示,与其在处理前的状态相比,所生成的水中没有碎屑颗粒;从而支持了对地层颗粒达到了有效稳定的假设。
[0063] 实施例11
[0064] 用研钵和杵从干燥的煤地层制备50ml地下煤颗粒(Subitmunious A)浆料,并将其放置到盛放有淡水的瓶子中,并且使其变成浆液。然后用10ml包括乙酸酐、冰乙酸、水和聚丙烯酸酯聚合物水性增粘剂化合物的溶液处理该煤/水浆液。处理之后,在约12小时的时间内观察到了煤颗粒的初始絮凝,其后观察到这些煤颗粒成为能够在搅拌时破裂并且重新形成的凝聚物质。水相澄清,没有可见的碎屑颗粒保留在溶液中。该实施例从视觉上解释了所描述的煤碎屑稳定和从水溶液中除去的过程。
[0065] 实施例12
[0066] 将约2cm平方的固体煤试样放置到盛有水的60ml瓶中。然后将该瓶子放在超声发生器中10分钟。结果是从较大块的表面破碎的大量可见的煤颗粒。在另一个瓶中,用包含乙酸酐、冰乙酸、水和聚丙烯酸酯聚合物水性增粘剂化合物 的溶液处理几乎相同的煤试样,然后将其置入水中,再放入超声发生器中10分钟。对被处理煤试样的视觉观察表明几