CCR5自体多肽疫苗及其制备方法转让专利

申请号 : CN200610104729.9

文献号 : CN1994465B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 张英起吴孔田韩苇李萌薛晓畅孟洁如包春杰郝强李维娜王增禄

申请人 : 中国人民解放军第四军医大学

摘要 :

本发明公开了一种CCR5自体疫苗及其构建方法,根据CCR5的结构应用氨基酸序列为GGGGS的linker将CCR5胞外段四个片段连接起来,模拟CCR5胞外段结构,将其称为rCCR5,同时在rCCR5的N端插入T细胞辅助表位PADRE,应用人工合成的方法获得了PADRE-rCCR5的基因,目的基因克隆入pBV-220原核表达载体,转化大肠杆菌,在大肠杆菌中高效表达,经包涵体洗涤,凝胶柱层析,透析复性获得了纯化的目的蛋白,以经纯化后得到目的蛋白PADRE-rCCR5作为CCR5自体多肽疫苗抗原免疫动物显示,PADRE-rCCR5能诱导机体产生高滴度的CCR5特异性的抗体,应用流式细胞术检测免疫抗血清对表达CCR5细胞株U937结果显示,平均结合率达到75.8%。表明免疫抗血清对表达CCR5受体的细胞具有一定的结合能力,为构建新型的CCR5自体疫苗和艾滋病疫苗研究奠定了一定的基础。

权利要求 :

1.一种CCR5自体多肽疫苗的制备方法,根据大肠杆菌偏爱密码子应用人工合成的方法获得CCR5自体疫苗的基因,基因编码CCR5胞外的四个结构域,并且彼此应用氨基酸序列为GGGGS的linker连接,同时在rCCR5的5’端插入T细胞辅助表位PADRE的基因序列,目的基因克隆入pBV-220原核表达载体,转化大肠杆菌,在大肠杆菌中高效表达,经包涵体洗涤,凝胶柱层析,透析复性和纯化,即获得目的蛋白PADRE-rCCR5,该疫苗能诱导机体产生高滴度的CCR5特异性的抗体,应用流式细胞术检测免疫抗血清对表达CCR5的细胞株U937的结合,其结果显示平均结合率达到75.8%以上;

所述的PADRE-rCCR5的氨基酸序列如下:

Met Ala Lys Phe Val Ala Ala Try Thr Leu Lys Ala Ala Ala Gly Ser Asp Tyr Gln Val Ser Ser Pro Ile Tyr Asp IleAsn Tyr Tyr Thr Ser Glu Pro Cys Gln Lys Ile Asn Val Lys Gln Ile Ala Ala Arg Gly Gly Gly Gly Ser Tyr AlaAla Ala Gln Trp Asp Phe Gly Asn Thr Met Cys Gln Gly Gly Gly Gly Ser Arg Ser Gln Lys Glu Gly Leu HisTyr Thr Cys Ser Ser His Phe Pro Tyr Ser Gln Tyr Gln Phe Trp Lys Asn Phe Gln Thr Leu Lys Gly Gly Gly GlySer Asn Thr Phe Gln Glu Phe Phe Gly Leu Asn Asn Cys Ser Ser Ser Asn Arg Leu Asp Gln Ala Met;

其特征在于,所述的PADRE-rCCR5的cDNA序列为:

atggactacc aggtttcttc tccgatttac gacatcaact actacacttc tgaaccgtgc 60cagaagatca acgttaagca gatcgcagcc cgcggtggcg gcggttctta cgctgctgca 120cagtgggact ttggtaacac tatgtgccaa ggcggcggtg gttctcgttc tcagaaagaa 180ggtctgcact acacctgctc ttctcacttt ccgtactctc agtaccaatt ctggaagaac 240ttccagactc tgaagggtgg cggtggcagc aacaccttcc aggaattttt tggcctgaac 300aactgctctt cttctaaccg tctggaccaa gctatg。 336

说明书 :

CCR5自体多肽疫苗及其制备方法

技术领域

[0001] 本发明属于医药生物技术领域,具体涉及基因合成、蛋白疫苗的构建、动物免疫实验、诱导抗血清的体外检测等技术,特别是CCR5自体多肽疫苗及其制备方法。

背景技术

[0002] 艾滋病(acquired immunodeficiency syndrome简称AIDS)是由人类免疫缺陷病毒(human immunodeficiency virus简称HIV)感染所导致的一种病死率极高的慢性传染病,正在全球肆虐。全球艾滋病病毒感染者人数已达4030万,死亡2500万,2005年度新增艾滋病病毒感染者490万,其中成人达到420万,310万人因艾滋病死亡。目前艾滋病的治疗和预防并没有非常有效的措施,治疗主要集中在抗病毒治疗而预防则主要是宣传教育和切断HIV传播的途径。抗病毒药物主要包括:逆转录酶抑制剂、蛋白酶抑制剂、HIV进入/融合抑制剂、整合酶抑制剂等等,虽然高效抗逆转录病毒疗法(highly activeanti-retroviral therapy,HARRT)在临床上取得了很好的效果,但抗病毒药物的应用容易引起了HIV基因的突变,进而产生耐药性,远期治疗效果并不是很肯定,并且由于艾滋病感染人数巨大,且大都集中在发展中国家,多数AIDS患者支付不起昂贵的抗病毒药物治疗,因此抗病毒治疗并不能有效地控制AIDS的传播。切断HIV传播的途径虽然对预防HIV感染有意义重大,但不能从根本上解决问题。由于疫苗在疾病的预防和治疗中发挥了重要的作用,因此AIDS自发现之日起,人们都一直尝试研制一种艾滋病疫苗来控制和预防HIV感染,如灭活疫苗、减毒活疫苗、病毒颗粒样(VLP)疫苗、重组亚单位疫苗、重组活载体病毒疫苗、DNA疫苗等,已有近35种的HIV疫苗进入临床实验但均未达到预期的效果。分析失败的主要原因是HIV高度遗传变异性所致,因此以HIV为靶标的疫苗设计和研制陷入困境。随着对HIV感染机制研究的深入,HIV辅助受体的发现为新型抗病毒药物和HIV疫苗的研制提供了新的靶点。CCR5是HIV的重要辅助受体,参与HIV与细胞膜融合过程,是早期HIV进入细胞所需要的最重要分子之一。流行病学调查发现CCR5 Δ32突变的纯合子几乎不被感染,突变的杂合子则明显延长了AIDS的发病时间。CCR5缺失或突变对机体的正常生理功能几乎没有影响但直接影响着HIV病毒对机体的感染水平。因此近年来,以CCR5为靶点的抗HIV策略越来越受到重视,其中包括CCR5拮抗剂,CCR5单克隆抗体,RNAi干涉,CCR5自体疫苗等,其中以CCR5为靶点的自体疫苗的研究为设计和研制新型AIDS疫苗提供了一条新的思路。
[0003] 本发明在分析CCR5结构和计算机抗原表位预测的基础上设计了1种CCR5自体多肽疫苗候选抗原,并利用基因工程手段和蛋白质纯化技术,获得纯化的重组蛋白样品,以纯化的蛋白免疫动物,检测抗体滴度,和进行抗血清对表达CCR5受体的细胞结合实验,为下一步动物模型免疫和抗HIV感染研究奠定一定的基础。
[0004] 1 CCR5分子与HIV感染的关系
[0005] 1.1抗HIV感染新的靶点-CCR5
[0006] 1.1.1 CCR5的发现
[0007] 艾滋病自1981年发现以来,人们不断地研究它的发病原因、传播途径及防治方法。虽然已发现T细胞表面的CD4分子是HIV进入靶细胞的受体,但仅用CD4分子未能充分解释HIV是如何入细胞的,直到1996年人趋化因子受体CCR5的克隆成功,人们才发现在感染初期,HIV-I感染人体除通过结合T细胞表面的CD4分子外,还需结合CCR5这一辅助受体,才可感染并进入体内。辅助受体的发现,使得人们对HIV感染及作用机制的了解迈进了一大步。
[0008] 1.1.2 CCR5基因结构及其多态性
[0009] CCR5基因定位于3p21,编码蛋白长352个氨基酸。CCR5基因由一个启动子区域两个外显子和中间分隔的1.9kb内含子组成。外显子1含有43bp的5’非翻译区(5’UTR),外显子2含有11bp的5′-UTR和完整的开放阅读框。目前,在此基因的编码区和启动子区域发现了多种有意义的突变,现就几种常见的类型加以阐述。
[0010] 1.1.3 CCR5基因在编码区的突变
[0011] CCR5Δ32是指当CCR5基因编码区域第185位氨基酸以后发生了32个碱基缺失,称之为CCR5Δ32突变。CCR5Δ32包括纯合子和杂合子两种,CCR5Δ32纯合子即其两条链均发生了32个碱基的缺失,而杂合子则是指只有其中一条链发生碱基缺失。到目前为止,已有许多研究者对CCR5Δ32的作用进行了分析,一致认为其纯合性突变能有效地抵制HIV病毒的感染,其原理可能是突变后导致读码框架移位,造成翻译的多肽提前终止,在淋巴细胞膜表面产生截短的、无功能的跨膜蛋白质,从而使HIVgp120的V3环不能与CCR5Δ32有效的结合,使HIV不能进入宿主细胞,进而影响AIDS的发展。另外有些研究者认为存在CCR5Δ32突变时,CCR5的配体即趋化因子RANTES、MIP-1α、MIP-1β会增加,与HIV竞争结合CCR5从而在抵制病毒侵人及延缓疾病进展方面起作用。CCR5Δ32杂合子可以显著延迟AIDS的发生,原因可能是CCR5Δ32杂合子会减少CCR5在细胞表面的表达,从而减少进入体内的病毒量,并在慢性感染早期,可减少病毒复制,明显减少HIV病毒RNA在血清或血浆中的含量。但是CCR5Δ32杂合性突变也有其局限性,在一些研究中人们发现,其延缓AIDS进程的作用只不过是在血清转阳性后的2~4年。目前,各国学者都已在CCR5Δ32多态性方面进行了研究。经鉴定,在美国白人和欧洲后裔中,CCR5Δ32等位基因频率约为10%,在全欧洲、中东和印度次大陆为2%~5%。王福生等研究测定中国汉族人群CCR5Δ32等位基因频率为0.119%(n=1267),由此可见,在不同人种中CCR5基因突变具有相对特异性。CCR5基因编码区中还存在7个以上易发生突变的位点,如CCR5m303、CCR5-164A、664T、668A、894C、996T、1004T和1016T等。在日本和中国人中,发现有CCR5-668A和CCR5-893-894C突变频率均为4%。CCR5m303是指在编码区第303位点由T到A的点突变,这一突变会使终止密码提前产生,从而导致CCR5翻译的提前终止,导致无功能的CCR5穿膜蛋白质的产生,因此也可起抵制病毒感染的作用。但这一突变的频率远低于CCR5Δ32,Ometto等对不同人种进行检测,发现CCR5m303突变频率仅为0.0001%~0.1%,认为此突变并不是抵抗病毒感染的主要因素,它可能是和CCR5Δ32纯合性突变协同作用的。
[0012] 1.1.4 CCR5基因在启动子区域的突变
[0013] 对世界各地人群的鉴定还发现,在CCR5启动子的调控区域,也有多种基因多态性,有些研究者认为这些启动子区域的点突变,与CCR5Δ32之间存在着连锁不平衡,因此它们之间可能存在着协同作用。对不同人群CCR5基因整个序列进行测定、比较,也许会找到不同人群所具有的不同突变,这样将更有利于深入研究不同人群对HIV的遗传易感性。
[0014] 1.1.5 CCR5的分子结构和功能
[0015] CCR5是细胞内β趋化因子的受体,该类受体的第一和第二个半胱氨酸紧靠在一起,因而被称为CC趋化因子,CCR5也因此得名。CCR5表达于记忆性的静止期的T淋巴细胞、单核细胞、未成熟的树突状细胞等的细胞膜上,分子量为40.6kD,由352个氨基酸残基组成。可分为以下几部分:胞外N末端,3个胞外环(ECL1-3),3个胞内环(ICL1-3),7个跨[42]膜α螺旋和胞内C末端,如图6所示 。CCR5的胞外结构中最重要的就是其N末端。N末端含有几个硫酸化修饰的酪氨酸残基,带有负电荷,这些负电荷在CCR5与其天然配体以及HIV病毒的表面糖蛋白gp120的结合过程中起关键作用。CCR5的胞外区含有4个Cys残基,分别位于N末端的20位,第一胞外环的101位,第二胞外环的178位,第三胞外环的269位,这些Cys残基是维持其胞外结构所必需的。一般认为第101和第178位的Cys之间形成了二硫键,而第20位和第269位的Cys之间是否形成二硫键则存在争论。CCR5在细胞膜上的位置并非固定不变。在病毒与细胞接触时,受胞内信号的指导,CCR5可以迅速向细胞膜上胆固醇含量丰富的“巢”附近迁移。在那里,CD4分子已经被“招募”过来。HIV病毒以其表面糖蛋白(gp120和gp41)与CD4和CCR5分子在“巢”附近相互作用,并最终引起病毒和细胞的膜融合。
[0016] 1.1.6 CCR5与HIV gp120的相互作用
[0017] HIV和细胞的融合过程可分为三步:第一步,gp120与CD4分子高亲和力结合,病毒吸附到宿主细胞上;第二步,gp120与共同受体(CCR5/CXCR4等)相互作用后构象进一步发生变化,并与gp41分离,gp41形成融合前构象;第三步,gp41产生一系列构象变化,自身形成螺旋六聚体结构,导致病毒包膜与细胞膜的融合,病毒的遗传物质进入细胞。上述的融合过程中,gp120和共同受体的结合是其中关键的一步。这一步使得gp41暴露出来形成融合前构象,并直接导致病毒和细胞的膜融合,但是gp120与CCR5的具体结合机制尚不清楚。HIVgp120/17b/CD4复合物和SIV病毒gp120核心晶体结构的解析为我们认识gp120与CCR5的结合机制提供了较为直接的认识。根据解析的复合物结构,研究者发现17b结合于gp120上的β2、β3、β20和β21四个β片层共同组成的“bridging sheet”结构域。该结构域可能也是CCR5的结合位点,因为17b的重链CDR3与CCR5富含硫酸化的酪氨酸和酸性氨基酸残基的N端很相似。无配体的SIV病毒gp120核心结构中β2、β3和β20、β21在空间上存在2.0~2.5nm的距离,该结构域的形成推测与CD4与gp120的结合直接相关。除了“bridging sheet”结构域外,CCR5还同gp120的V3环相互作用。证据主要有:针对V3环的抗体可以有效地抑制gp120-CD4复合物与CCR5的结合;V3环的缺失或者突变可使病毒利用CCR5作为共同受体的能力削弱或消失;衍生于V3环的多肽能同CCR5结合,抑制病毒和细胞的融合。最近在一些病程进展缓慢的人血液中检测到可溶性的CCR5,其表达水平甚至超过存在于细胞膜上的CCR5分子。抗体结合试验表明,其仅包含有正常分子的N末端和第一、二胞外区及第一到四个跨膜螺旋区。这种可溶性的CCR5可能通过与正常表达的CCR5竞争同gp120的结合而起到延缓病程的作用。因其基因结构并未发生改变,推测可能是一种未知的酶降解正常表达的CCR5的结果。研究发现,将CXCR4的N末端与CCR5的N末端互换后二者均不能支持R5嗜性的病毒进入细胞。另外,单独替换人CCR5的任何区段为鼠的相应区段并不能显著地影响人CCR5的功能,而鼠与人类的CCR5有82%的序列相同。由此推测,可能CCR5的多个区域参加了与的gp120结合。目前认为,gp120和CCR5的相互作用可能遵循两步结合机制:第一步,CCR5的N末端区域采取恰当的构象识别并结合gp120;
第二步,gp120与CCR5的构象发生变化,CCR5的第二胞外区与gp120的V3区相互作用,最终导致膜融合和病毒遗传物质进入细胞。
[0018] 1.1.7 CCR5与HIV嗜性
[0019] HIV感染靶细胞时,其胞膜蛋白gp120首先和细胞膜上CD4结合,在CD4的诱导下,gp120的V3环(位于可变区)与CCR5的胞外环间形成静电相互作用,驱动CCR5的N-TERM结合gp120的保守区。gp120与趋化因子受体CCR5的结合最终导致了HIV穿膜蛋白gp41与细胞的融合和病毒进入细胞。单核细胞/巨噬细胞嗜性的病毒株利用β-趋化因子受体CCR5侵入细胞,称为R5嗜性;T细胞嗜性的病毒株利用α-趋化因子受体CXCR4侵入细胞,称为X4嗜性;还有一些病毒株即能利用CCR5,又能利用CXCR4侵入细胞,称它们为R5X4嗜性。HIV在感染一个新的个体时,首先感染单核细胞/巨噬细胞,以及部分的初生的T细胞,未分化成熟的DC细胞,通常是R5嗜性的,随着病程的发展,HIV既利用CCR5又可以利用CXCR4受体演化成为R5X4嗜性,一般是典型病程感染4-5年后,病毒株在个体中约50%发生衍变进化,不仅感染初生的T-细胞还能感染T-细胞系,并介导其表达细胞与T细胞的融合,成为T-tropic病毒株,即X4嗜性病毒株。这种变化的发生机制一般认为有以下可能:(1)早期HIV感染的靶细胞之一DC,其表面有CCR5的表达,它们被感染后可激活T细胞,使之表达CCR5而成为HIV敏感的靶细胞,这样,DC等有效的介导了M-tropic病毒的扩散。(2)HIV包膜蛋白Env V3 loop是协同受体利用的主要决定族,HIV利用协同受体的改变可能是由于位于Env V3 loop(148-155)的几个氨基酸残基的突变而导致发生的,EnvV3的突变是HIV易感染难治疗的根本原因之一。(3)疾病后期,外周淋巴器官遭到破坏,这些器官的基质细胞分泌高水平的SDF-1,而SDF-1又是CXCR4的特异配体可竞争HIV对CXCR4的利用,SDF-1分泌的减少必然导致HIV利用CXCR4的增多,HIV即逐渐演变为R4病毒株。因此,通过降低或缺失CCR5的作用,是阻断HIV进入机体,阻止病毒株演变转化,对抑制HIV的传染,控制病程发展将是非常有效的方法。
[0020] 1.2以CCR5为靶标的抗HIV药物研究进展
[0021] CCR5是HIV感染初期最主要的HIV辅助受体,HIV感染过程中,病毒膜蛋白与HIV第一受体CD4及辅助受体CCR5结合是病毒融合进入靶细胞的关键。HIV辅助受体的发现为抗HIV治疗提供了新的作用靶点。针对辅助受体的AIDS治疗法具有以下优点:①针对保守的细胞表面受体,可在一定程度上避免高度的病毒变异的影响;②可阻止病毒进入靶细胞,并非干扰病毒复制和成熟,因而在细胞存活率及功能保持上优于其他疗法。
[0022] 1.2.1受体拮抗剂以CCR5为靶点的HIV受体拮抗剂主要包括以下几种:
[0023] 1.2.1.1趋化因子衍生物:
[0024] β趋化因子RANTES,MIP-1α及MIP-1β作为CCR5的天然配体是HIV受体当然的拮抗剂,在一定程度上可以保护细胞免受HIV的感染,其主要作用机制是诱导了CCR5的内吞。实验表明,RANTES诱导的CCR5内吞作用是可逆的,即去除RANTES的作用后,CCR5可再回到细胞表面。并且,天然配基具有诱导趋化的功能,会给自身造成损伤,因此人们对天然配基作了一些修饰,AOP(氨基氧戊烷)-RANTES是通过将AOP基团偶联到RANTES的氨基末端得到的1个很强的CCR5拮抗剂,在AOP(氨基氧戊烷)-RANTES的作用下,CCR5被修饰后内吞,通过内体的再循环被阻断,细胞表面的表达量不可逆地减少,因此具有抑制R5嗜性HIV感染的作用,并且没有诱导趋化的功能。LD78β是MIP-1β的同种型,两者的区别是仅有3个氨基酸不同,但是它可以下调CCR5在人类单核细胞和巨噬细胞上的表达,抑制R5感染,最近,有实验室应用基因工程技术,把RANTES,MIP-1α和MIP-1β在原核和真核表达系统中分别融合表达,得到融合蛋白,动物实验表明,融合蛋白对CCR5受体也具有较强的抑制作用。
[0025] 1.2.1.2低分子量非肽类化合物
[0026] 低分子量非肽类CCR5拮抗剂主要有TAK-779,SCH-C,E-913和AD101。TAK-779属于季铵衍生物,可以阻断膜融合阶段gp120与CCR5的结合,其作用位点在受体的细胞外侧面,跨膜α螺旋1.2.3.7形成的袋状结构内。SCH-C是小分子肟哌啶类化合物,对CCR5有很高的亲和性,啮齿类和灵长类动物的体内实验表明,R5病毒株的复制显著减少,具有良好的应用前景。E-913属于螺旋二酮哌啶衍生物,与CCR5的ECL2结构域C末端结合,造成gp120与CCR5相互作用的空间阻碍,切断R5的感染。AD101是与SCH-C结构类似的一种小分子,能特异地与人CCR5和短尾猿CCR5结合但不产生钙流信号,对各种基因亚型的R5 HIV都有强烈的抑制活性。其抑制活性约为TAK-779的500倍,IC50约为1nM,是一种很有前途的HIV抑制剂。
[0027] 1.2.1.3单克隆抗体
[0028] 已知的单克隆抗体类的CCR5拮抗剂主要有PRO140,2D7和CCR-02[59-60],PRO140是鼠源的单克隆抗体,结合位点覆盖CCR5的多个细胞外结构域,在不影响CCR5趋化因子受体功能的情况下,能封闭CCR5的辅助受体功能,有效抑制HIV的粘附,2D7与CCR5的ECL2结构域N端特异性结合,阻塞gp120的结合位点,起到抗R5病毒侵袭的作用,CCR-02是CCR5的N末端结构域特异性单克隆抗体,能使CCR5形成二聚体,不干扰趋化因子、gp120,与CCR5的结合,但是,二聚体形成所引发的受体构象细微变化阻止了gp120与CCR5的进一步相互作用,从而有效拮抗HIV感染。
[0029] 1.2.1.4肽类化合物
[0030] 具有抑制gp120-CCR5相互作用的肽类化合物也是拮抗剂研究的一个方向[63].S肽含有CCR5的N末端22个氨基酸,不同的是只有10和14位的Tyr被硫化,而20位的Cys换成了Ser。实验结果提示,S肽的结合位点可能位于gp120表面的CCR5结合区,它通过干扰gp120与CCR5的结合而阻断HIV的侵入。噬菌体表面呈现技术是将编码外源多肽或蛋白的基因片断与噬菌体衣壳蛋白的基因融合,使外源多肽或蛋白呈现于噬菌体衣壳蛋白表面的一项技术。这项技术已被广泛的应用到生物技术的许多领域。应用噬菌体表面肽呈现技术,人们筛选出CCR5配体的模拟多肽,竞争结合CCR5而达到抑制HIV感染的目的。
[0031] 1.2.2基因治疗药物
[0032] 核酶是分子简单,具有催化活性的小分子RNA。它能识别和切割特定的RNA分子并且具有很高的特异性和切割效率,早期核酶主要针对HIV,但HIV的特点是高度变异,因此HIV靶向核酶受到一定限制,人们逐渐把目标转向基因比较保守稳定的HIV辅助受体CCR5,动物实验显示CCR5基因剔除的小鼠几乎没有任何的病理改变,进一步研究还发现CCR5失活对淋巴细胞没有明显的副作用:淋巴细胞保持正常的发育速率和存活率;细胞表面标志CD3,CD4,CCR2保持正常;对抗原的再刺激,淋巴细胞能够正常发育和分泌。人们同时还发现CCR5突变的纯合子个体生理活动和正常人一样,不会引起机体免疫缺陷和其他临床症状,但对HIV具有较强的抵抗能力甚至可以不感染,因此靶向的CCR5核酶研究已经进入一个新的阶段。目前国外核酶的研究已进入临床II期。国外几家实验室已经尝试应用RNAi技术来干预细胞膜上CCR5分子的表达水平,从而达到预防和治疗HIV感染的目的。
[0033] 1.2.3细胞因子
[0034] 趋化因子分泌和趋化因子受体表达之间存在复杂的相互作用,它们之间的平衡使靶细胞对感染具有一定的抗性,人们在研究细胞因子的时候发现,细胞因子在调节两者的平衡方面具有重要的作用,于是细胞因子在抑制CCR5方面的研究出现了一定的进展,虽然相关的报道不多,但一些研究显示,TNF-α和IL-2,IL-4,IL-13能够诱导CCR5 mRNA下调,抑制CCR5的表达,同时TNF-α,INF-γ可以一起促进β趋化因子RANTES,MIP-1α及MIP-1β的分泌,而β趋化因子可以与HIVgp120竞争结合CCR5,达到抑制HIV感染的目的。临床上已经尝试应用IL-2来治疗HIV感染的患者,其作用的机理一定程度上是抑制了细胞表面CCR5的表达,应用细胞因子来调节CCR5的表达,开辟了预防和治疗HIV感染的另一条途径。
[0035] 1.2.4以CCR5为靶点的自体疫苗研究
[0036] 早期HIV疫苗的免疫策略主要针对HIV病毒的衣壳蛋白gp120,gp41,以及gp120,gp41与CD4结合的复合物,但由于HIV高度变异的特性,疫苗虽然诱导出较高的抗体,但动物实验显示治疗效果不显著,因此新型疫苗的研究成为抗HIV的目标和热点。随后相继出现了核酸疫苗,基因工程疫苗等等。以CCR5为靶点的疫苗策略为预防和治疗HIV感染提供了一条新的途径。其中几种CCR5的自体疫苗在动物模型试验中已显示了很好的效果。随着对CCR5结构和功能的进一步认识,发现CCR5膜外片断N-TERM,和ECL2是与HIVgp120结合最为关键的片断,CCR5膜外片断偶联抗原肽成为HIV疫苗设计的一个重要策略,MAP(multiple antigen peptide)是多聚赖氨酸的多肽,本身没有免疫原性,MAP与ECL2偶联构建了CCR5靶向的多肽抗原疫苗,动物实验诱导出高滴度,高亲合力的特异构象的CCR5抗体。在此基础上人们合成CCR5膜外N-TERM片断与HSP70偶联已取得了很好的免疫效果。为了打破B细胞的免疫耐受,诱导出高滴度的抗体,Chackerian,B等人把CCR5膜外片断与牛乳头状病毒衣壳蛋白L1 VLPs(papillomavirus-like particles)偶联,免疫小鼠获得了小鼠CCR5的保护性抗体,接着Chackerian,B等人以短尾猿为动物模型,先把短尾猿CCR5四膜外片断用GGGGS连接,和SA(streptavidin,链菌素)融合表达,后再与VLPs偶联免疫小鼠得到针对短尾猿CCR5的抗体,构建的抗原免疫短尾猿,诱导出高滴度CCR5特异性的抗体,以SHIV感染动物模型,构建的抗原诱导出的抗体表现出很好的保护作用,阻断了SHIV的感染。最近文献报道日本科学家应用随机肽库筛选CCR5单克隆抗体,得到的多肽可直接诱导产生针对CCR5的抗体。以CCR5为靶标的多肽疫苗抗原的设计和多肽疫苗的研究虽然起步较晚,但发展比较迅速,效果也比较显著,已成为HIV疫苗的研究新的方向。
[0037] 以HIV辅助受体CCR5为靶标的抗HIV药物取得了很大的进展,受体拮抗剂,RNAi技术,核酸疫苗等应用开辟了阻断HIV感染的新的途径,但有研究表明强拮抗剂的应用会加剧HIV R5病毒株向R4病毒株转化。RNAi技术对整个生物体的影响仍不明确,RNAi的安全性等仍待有进一步研究。核酸疫苗等基因疫苗的长期效果和安全性有待证实。以CCR5为靶点的自体疫苗的研究由于其较高的安全性,动物实验显示预防和治疗效果比较明显,相信随着研究的进一步深入,以CCR5为靶标的自体疫苗将有一个非常好的应用前景。
[0038] 2自体疫苗的研究进展
[0039] 用预防性疫苗诱导抗体以治疗感染性疾病是人类历史上最有效的治疗方法。最近,针对人类自身蛋白的单克隆抗体在治疗急、慢性疾病的过程中显示出了良好的效果。但是,造价的昂贵和使用上的不便限制了单克隆抗体的广泛应用,因此,由被动地接受这种抗体蛋白转向寻求针对人类自身蛋白的主动免疫疫苗成为蛋白药物的发展方向,因为后者造价较低,病人容易接受并产生良好的顺应性。
[0040] 目前,自体疫苗的研究已成为一个热点,涉及很多疾病,如:慢性病毒感染、过敏、肿瘤、阿尔海默茨病、糖尿病、高血压、肥胖症以及风湿性关节炎等。
[0041] 绝大多数的预防性疫苗都是通过诱导抗体的产生来保护机体的,这就证明通过诱导抗体来治疗感染性疾病是一种有效的治疗方法。与预防性疫苗相比,自体疫苗的发展就要缓慢的多,直到近几年自体疫苗才看到成功的希望。但是,单克隆抗体在治疗疾病方面所取得的巨大成功预示着能够在体内诱导自身抗体产生的疫苗有着广阔的发展前景。实际上,已经有动物试验表明诱导出一定水平的内源性特异性抗体来治疗疾病是可能的,如:阻断TNF-α以治疗炎症性疾病就是一个很好的例子。
[0042] 人源化的抗TNF-α单克隆抗体已经被证明在治疗类风湿性关节炎和Crohn’s病方面十分有效。目前已经有几种TNF-α的阻断剂上市,包括两种单克隆抗体(infliximab,adalimumab)和一种受体阻断剂etanercept,它们正在帮助成千上万的病人减轻痛苦,而且年收入达到20亿美元。所以阻断过量表达的TNF-α能够达到治疗疾病的效果。在动物试验中已经证实通过主动免疫可以特异性诱导出TNF-α的中和性抗体,而且诱导的抗体滴度足以治疗动物关节炎模型。
[0043] 其他的动物试验表明可以通过诱导体内产生高滴度抗体来治疗以下疾病:针对血管紧张素的疫苗可以治疗高血压;针对IL-9的疫苗可以治疗病原体引起的嗜酸性细胞增多症,针对IL-5的疫苗可以治疗哮喘;针对N-methyl-D-aspartate receptor-1(NMDAR1)的疫苗可以治疗中风。另外,针对一些性激素如人绒毛膜促性腺激素(human chorionicgonadotro-pin HCG)的免疫可以降低妇女体内的激素水平而达到避孕效果;针对促性腺素释放激素(GnRH)的疫苗可以治疗晚期前列腺病人。在晚期胰腺癌病人中,利用自体疫苗诱导出针对胃泌素(gastrin)的抗体可以延长病人的生命。
[0044] 针对自身蛋白的自体疫苗是如何诱导自身免疫系统产生针对自身蛋白的抗体呢?要产生足够高的滴度的特异性抗体以治疗相关疾病,自体疫苗必须克服三个障碍:T细胞耐受、B细胞耐受、在没有佐剂和抗原长效制剂的情况下诱导出抗体。众所周知,人体免疫系统主要是对外来入侵者发动攻击的,而对机体本身是不攻击的,这可能是由于机体具有能够识别“非我”与“自我”的能力。免疫系统的这种特性通常被称为耐受或无反应性。耐受发生在B细胞和T细胞水平。一般来说,T细胞耐受更严格一些。对许多抗原来说,在发生T细胞耐受的同时,正常的B细胞株却在体内存在。实际上,有三种机制导致了免疫耐受:细胞株剔除,即特异性的淋巴细胞从淋巴细胞群中被彻底剔除;免疫无能,即特异性的淋巴细胞存在,但其功能不能被激活;免疫忽略,即具有免疫功能的淋巴细胞存在,但是由于没有遇到以抗原形式存在的自身抗原,所以不能被激活。对T细胞来说,诱导耐受和无能的主要器官是胸腺(中心耐受),但诱导耐受也可以在外周进行。B细胞耐受主要在骨髓中诱导,但也可在外周诱导。通常,对于普遍表达的丰富抗原的免疫耐受更容易阐明。三个例子可以帮助我们区分不同:那些只在隔离区表达的抗原,比如大脑中的抗原,不能诱导T、B细胞耐受而是被免疫忽略;相反,在大部分外周细胞丰富表达的膜蛋白(比如I类组织相容性抗原)能有效地诱导B、T细胞的剔除;可溶性抗原是第三个例子,能诱导T细胞的剔除或无能,而却被B细胞忽略。这就使针对自身可溶性抗原的疫苗的研制成为可能。
[0045] 在针对外来抗原的免疫反应中,T细胞和B细胞互相配合才能有效地产生抗体:当受到外来抗原免疫时,特异性的B细胞结合抗原,产生起始的激活信号。另外,B细胞内吞抗原,在其表面呈现抗原肽和MHC II类分子的复合物。通常,B细胞不能激活TH细胞。要激活TH细胞,树突状细胞是必不可少的,树突状细胞摄取抗原,并在其细胞表面呈递抗原肽和MHC II类分子的复合物,激活TH细胞。激活后的TH细胞识别B细胞表面呈现的抗原肽和MHC II类分子的复合物,引起B细胞增殖、抗体的产生以及抗体类别的转换。如果因为免疫耐受而缺乏TH细胞的协同作用,那么就不会产生抗体。在针对自身蛋白的疫苗的设计过程中,如果将自身抗原与外源蛋白或多肽载体融合或偶联在一起,就有可能绕过TH细胞耐受:自身抗原特异性的B细胞就能够摄取该自身抗原以及与其相连的载体蛋白,并在其表面呈现载体肽与MHC II类分子的复合物,由于TH细胞对载体蛋白没有免疫耐受,所以能够被激活,从而协同自抗原特异性的B细胞产生针对自身抗原的特异性抗体。
[0046] 与T细胞耐受相比,B细胞耐受要宽松得多。实际上,在许多情况下,自身特异性B细胞在体内以正常的频率出现,如果受到抗原和TH细胞的共同作用就会被激活。所以对许多可溶性自身蛋白来讲,体内存在其特异性B细胞株,尤其当这种蛋白不是非常富余表达的时候更是这样。对于这类蛋白或多肽,将其与载体蛋白相连,绕过T细胞耐受,就有可能产生有效的疫苗。实际上,利用这种策略,针对多种自身激素的抗体反应已经被诱导出来了。
[0047] 膜结合蛋白和以多价形式存在的蛋白能诱导B细胞免疫无能,即在通常情况下对抗原刺激无反应,有的甚至可以导致特异性B细胞克隆的剔除。虽然不可能刺激被剔除的特异性B细胞克隆,但是通过适当的免疫策略,B细胞免疫无能有可能被打破。高拷贝数的抗原能有效地和B细胞受体交联,提供强烈的激活刺激,从而打破B细胞耐受。有人已经证实与病毒样颗粒(VLPs)偶联的多拷贝TNF-α诱导的抗体反应比单体TNF-α诱导的要强得多。这说明使抗原能够被高度识别,从而打破B细胞耐受是可能的。这一方法还有可能解决利用佐剂的问题,因为与VLPs偶联的抗原在没有佐剂的情况下可以诱导出强的抗体反应。与VLPs偶联的抗原不仅在小鼠体内具有高度的抗原性,而且在人体内也具有高度的抗原性。50μg与VLPs偶联的多肽或化学物质在没有佐剂的情况下就可以在人体内诱导出较强的抗体反应。
[0048] 目前,有大约500种生物制品药物正在进行临床研究,其中有近100种疫苗,主要是针对肿瘤和感染性疾病的。目前,有许多针对自身抗原的自体疫苗临床前试验进展顺利,有理由相信会有更多的自体疫苗进入人们的研究范围。

发明内容

[0049] 本发明的目的在于,构建能够在体内诱导出针对CCR5特异性抗体的CCR5自体多肽疫苗及其制备方法,为研制新型的HIV疫苗以预防艾滋病提供新的思路和途径。
[0050] 为了实现上述目的,本发明所采用的技术方案是:构建一种CCR5自体多肽疫苗,其特征在于,制得的该疫苗含有模拟CCR5胞外段结构的rCCR5氨基酸片段和一个为增强疫苗免疫原性的T细胞辅助表位PADRE,所述的模拟CCR5胞外段结构片段(rCCR5)的氨基酸序列如下:
[0051] Met Asp Tyr Gln Val Ser Ser Pro Ile Tyr Asp Ile Asn Tyr Tyr Thr Ser Glu Pro CysGln LysIle Asn Val Lys Gln Ile Ala Ala Arg Gly Gly Gly Gly Ser Tyr Ala Ala AlaGln Trp Asp Phe GlyAsn Thr Met Cys Gln Gly Gly Gly Gly Ser Arg Ser Gln Lys GluGly Leu His Tyr Thr Cys SerSer His Phe Pro Tyr Ser Gln Tyr Gln Phe Trp Lys AsnPhe Gln Thr Leu Lys Gly Gly Gly GlySer Asn Thr Phe Gln Glu Phe Phe Gly Leu AsnAsn Cys Ser Ser Ser Asn Arg Leu Asp Gln AlaMet。
[0052] T细胞辅助表位PADRE的氨基酸序列如下:
[0053] AlaLysPheValAlaAlaTryThrLeuLysAlaAlaAla
[0054] 该疫苗能诱导机体产生高滴度的CCR5特异性的抗体,应用流式细胞术检测免疫抗血清对表达CCR5细胞株U937结果显示,平均结合率达到75.8%
[0055] 上述CCR5自体多肽疫苗的制备方法,其特征在于,根据CCR5的结构应用linker(氨基酸序列为GGGGS)将CCR5胞外段四个片段连接起来,模拟CCR5胞外段结构,将其称为rCCR5,同时在rCCR5的N端插入T细胞辅助表位PADRE,应用人工合成的方法获得了PADRE-rCCR5的基因,目的基因克隆入pBV-220原核表达载体,转化大肠杆菌,在大肠杆菌中高效表达,经包涵体洗涤,凝胶柱层析,透析复性和纯化,即可获得纯化的目的蛋白PADRE-rCCR5,该疫苗能诱导机体产生高滴度的CCR5特异性的抗体,应用流式细胞术检测免疫抗血清对表达CCR5的细胞株U937的结合,其结果显示平均结合率达到75.8%以上。
[0056] 制备的具体内容是:
[0057] 1合成rCCR5基因序列
[0058] 分析Swiss-Pro蛋白质数据库CCR5的结构,结合文献,截取CCR5胞外4个片断N-TERM ECL1,ECL2,ECL3氨基酸序列,应用柔性linker分别串联,获得模拟CCR5胞外片段的氨基酸序列(命名为:rCCR5),其氨基酸序列为:
[0059] MDYQVSSPIYDINYYTSEPCQKINVKQIAARGGGGSYAAAQWDFGNTMCQGGGGSRSQKEGLHYTCSSHFPYSQYQFWKNFQTLKGGGGSNTFQEFFGLNNCSSSNRLDQAM。
[0060] 按照Gene-bank公布的人CCR5的基因序列,5端插入BamHI酶切位点,3端引进终止密码子TGA并插入PstI酶切位点,依据大肠杆菌偏爱的密码子,合成目的基因。合成的基因序列如下:
[0061] BamHI
[0062] GATCCGACTACCAGGTTTCTTCTCCGATTTACGACATCAACTACTACACTTCTGAACCGTGCCAGAAGATCAACGTTAAGCAGATCGCAGCTGGACCAAGCTATGGGCGGTGGTGTAACACTATGTGCCAAGGCGGCGGTGGTTCTCGTTCTCAGAAAGAAGGTCTGCACTACACCTGCTCTTCTCACTTTCCGTACTCTCAGTACCAATTCTGGAAGAACTTCCAGACTCTGAAGGGTGGCGGTGGCAGCAACACCTTCCAGGAATTTTTTGGCCTGAACAACTGCTCTTCTTCTAACCGTCCCGCGGTGGCGGCGGTTCTTACGCTGCTGCACAGTGGGACTTTGTGAC
[0063] PstI
[0064] 同时合成T细胞辅助表位PADRE的基因序列并在两端引入EcoR I和BamHI酶切位点,在5’端引入起始密码子ATG。合成的序列如下:
[0065] EcoR I
[0066] CGAATTCATGGCTAAATTCGTTGCTGCTTGGACTCTGAAAGCTGCTGCTGGATCCG
[0067] BamHI
[0068] 2构建重组质粒pBV-220/PADRE-rCCR5
[0069] 以EcoR I和BamHI两个酶切位点对合成的PADRE基因片断和原核表达质粒pBV-220分别进行酶切,2.0%琼脂糖凝胶电泳分离酶切产物,分别回收酶切后的PADRE基因片断和原核表达质粒的大片断,回收后用T4连接酶在16℃连接过夜,转化大肠杆菌DH5α感受态细胞,铺板、培养,挑取单克隆,进行酶切鉴定。得到含有PADRE基因片断的阳性克隆,称为pBV-220/PADRE。而后提取该阳性克隆所含有的质粒,用BamHI和PstI双酶切,回收大片段。与合成的rCCR5基因片断共同建立连接体系,16℃连接过夜。连接产物转化感受态DH5α细胞,提取质粒,经酶切鉴定和DNA测序,获得含有PADRE和rCCR5融合基因原核克隆载体,命名pBV-220/PADRE-rCCR5。
[0070] 3重组蛋白的诱导表达、纯化与鉴定
[0071] 3.1 pBV-220/PADRE-rCCR5/DH5α工程菌的诱导表达
[0072] 含重组表达质粒的大肠杆菌DH5α单菌落接种于5ml新鲜LB培养液(含氨苄青霉素100mg/L)中,摇床30℃培养过夜,次日以1∶100的比例接种于新鲜LB培养液(含氨苄青霉素100mg/L)中,30℃继续培养至细菌密度达到OD600=0.4~0.6,迅速升温至42℃,诱导表达后分别1h,2h,3h,4h,5h,6h收集菌体,以确定合适的诱导后时间,小规模培养及诱导后离心收集菌体,用SDS-PAGE检测目的蛋白的表达和存在形式。
[0073] 3.2 pBV-220/PADRE-rCCR5/DH5α工程菌的发酵
[0074] 从活化的LB平板上挑选单菌落接种于含LB的试管中,30℃培养10h,然后转种至含200ml LB的三角瓶中,30℃培养过夜。次日,将种子液接种于5L发酵罐。控制发酵温度30℃、转速250~450rpm/min、通气量3~5L/min、pH7.3。培养至OD600=8左右时,迅速升温至42℃进行诱导,继续培养4h,终止发酵,收集菌体、称重,-20℃冰箱保存备用。取少量菌体处理后,用SDS-PAGE检测目的蛋白的表达。
[0075] 3.3目的蛋白包涵体的分离和洗涤
[0076] 取10g发酵菌体,按1g湿重对7ml的比例,用裂解缓冲液STE(50mmol/L Tris.ClpH 8.0,50mmol/L NaCl,1mmol/L EDTA)重悬,-20℃冻过夜。次日于室温水浴中融化,参照分子克隆第三版溶菌酶法裂菌,接着再采用400W超声破菌,其中超声5s,间隔10s,共进行100次。超声完成后,12000rpm/min,4℃离心20min,弃除上清,沉淀用包涵体洗涤液A(1%TritonX-100,1mmol/L EDTA,1%DOC,50mmol/LTris.Cl pH8.5,100mmol/L NaCl)重悬,12000r/min,4℃离心20min,弃上清。接着再用包涵体洗涤液B(50mmol/L Tris.ClpH8.5,2.5mol/L尿素,100mmol/L NaCl,5mmol/L β-巯基乙醇,1mmol/L EDTA)重复洗涤3次,直至离心后的上清液澄清为止。最后用包涵体洗涤液C(50mmol/L Tris.Cl pH8.5,
1mmol/L EDTA)洗涤一次后离心,离心条件不变。
[0077] 3.4表达产物变性条件下的纯化
[0078] 经洗涤的包涵体以1g湿重对10ml的比例,溶于50mmol/L Tris.Cl pH 8.5,5mmol/L β-巯基乙醇,1mmol/L EDTA,8mol/L尿素的缓冲液中,4℃搅拌过夜,12000r/min离心30min,收集上清,即为目的蛋白粗提液。SephacrylS-300(1.6cm×80cm)凝胶层析,以工作液(8mol/L尿素,50mmol/L Tris.Cl pH 8.5,1mmol/L EDTA,100mmol/L NaCl)充分平衡后,目的蛋白粗提液2ml上柱,以工作液洗脱,流速1ml/min,分部收集,测定蛋白质含量,并以SDS-PAGE确定目的蛋白所在位置,收集纯度较高的洗脱组分。
[0079] 3.5目的蛋白的复性
[0080] 应用包涵体溶解液稀释SephacrylS-300凝胶柱层析后样品,使蛋白浓度约为0.1mg/ml,梯度透析,透析外液加入CuSO4和β-巯基乙醇作为氧化还原系统,4℃透析,每
6小时换液一次,梯度为,4M尿素,2M尿素,1M尿素,最后透析到双蒸水,离心留上清,冻干。
凝胶层析柱上复性Sephacryl S-100凝胶柱(1.6cm×60cm),以工作液(50mmol/L Tris.Cl pH 8.5,1mmol/L EDTA,100mmol/L NaCl)充分平衡后,取SephacrylS-300凝胶层析目的蛋白样品,用凝胶柱工作液调整蛋白样品浓度为20mg/ml,用蛋白复性液(50mmol/L Tris.Cl,
1mmol/L EDTA,100mmol/L NaCl,1.25mmol/L GSH,and0.25mmol/L GSSG,pH8.5)洗脱,流速
0.5ml/min,分部收集,测定蛋白质含量,并以SDS-PAGE确定目的蛋白所在位置,收集纯度较高的洗脱组分,目的蛋白洗脱峰直接对水透析,4℃,24小时,其中换液3次。透析后样品
12000rpm/min,4℃离心30min,冻干上清,收集样品。HPLC检测蛋白纯度。
[0081] 本发明的CCR5自体疫苗抗原免疫动物显示,可以在小鼠体内诱导出针对该蛋白的抗血清,且免疫抗血清具有结合表达CCR5细胞的能力,为下一步抗血清阻断HIV感染细胞试验奠定了基础。

附图说明

[0082] 图1是重组表达质粒的构建。为了获得目的蛋白PADRE-rCCR5,首先构建重组表达质粒pBV220/PADRE-rCCR5,构建的质粒示意图如图A,重组质粒经限制性内切酶EcoRI和PstI酶切鉴定,得到相应的片断与预期大小相一致图B。质粒送交上海华诺公司测序,质粒测序结果完全正确。
[0083] 图2是蛋白质的表达纯化与鉴定。重组质粒转化大肠杆菌后,经诱导表达,稳定筛选,构建工程菌。经发酵后,收集大量菌体,裂菌显示目的蛋白以包涵体形式存在,经对包涵体洗涤,SephacrylS-300凝胶柱层析(图A),SDS-PAGE显示蛋白单一条带(图B),SephacrylS-100凝胶层析复性,获得纯化的目的蛋白(图C),HPLC纯度鉴定蛋白纯度达到95%以上(图D),Western-blot鉴定显示能与CCR5单克隆抗体特异性结合(图E)。
[0084] 图3是以ELISA检测免疫小鼠血清抗体滴度。在实验的过程中由于没有商品化的CCR5作为标准抗原来进行免疫抗血清抗体滴度的检测,在实验的过程中,表达和纯化了CCR5胞外段蛋白rCCR5在检测大肠杆菌残存蛋白的基础上,进行抗体滴度的检测。在构建CCR5自体多肽疫苗PADRE-rCCR5的同时,还构建了其它三种CCR5自体多肽疫苗候选抗原作为比较,经免疫动物,抗血清抗体滴度检测显示,PADER-rCCR5免疫抗血清抗体滴度最高(图A),应用CCR5单克隆抗体最为阳性对照抗体滴度达到1∶100000以上(图B)。
[0085] 图4是应用流式细胞术检测免疫抗血清结合细胞试验。应用CCR5单克隆抗体筛选出表达CCR5细胞株U937和不表达CCR5的Wish细胞株。经对抗血清的流式细胞术检测,发现免疫抗血清与表达CCR5的U937结合率达到75%以上。
[0086] 以下结合附图和实施例对本发明作进一步的详细描述。

具体实施方式

[0087] 1 CCR5自体多肽疫苗PADRE-rCCR5的构建,表达及纯化
[0088] 1.1 rCCR5基因的构建
[0089] 分析Swiss-Pro蛋白质数据库CCR5的结构,结合文献,截取CCR5胞外4个片断N-TERM ECL1,ECL2,ECL3氨基酸序列,应用柔性linker分别串联,获得模拟CCR5胞外片段的氨基酸序列(命名为:rCCR5),截取受体CCR5膜外四个氨基酸片段及Linker序列如下:
[0090]N-TERM:MDYQVSSPIYDINYYTSEPCQKINVKQIAAR
(31aa)
ECL1:YAAAQWDFGNTMCQ(14aa)
ECL2:RSQKEGLHYTCSSHFPYSQYQFWKNFQTLK(30aa)
[0091]ECL3:NTFQEFFGLNNCSSSNRLDQAM(22aa)
Linker:GGGGS
[0092] 1.1.1 rCCR5基因的合成
[0093] 按照Gene-bank公布的人CCR5的基因序列,5端插入EcoRI酶切位点,3端引进中止密码子TGA并插入BamHI酶切位点,依据大肠杆菌偏爱的密码子,送交上海生工生物技术公司合成目的基因。合成的基因序列如下,目的基因被克隆入pUC57载体(上海生工生物技术公司合成并提供)。
[0094] 1.1.2感受态细胞的制备
[0095] 取DH5α甘油菌种按1∶100的比例接种入的LB培养基中,37℃振荡培养过夜,次日转接一次,继续培养至OD600约0.4左右。(无菌操作)将菌液冰浴10min,离心(3000rpm×5min,4℃)后弃去上清,加入1/2体积预冷的100mmol/L CaCl2,轻轻吹起沉淀,冰浴40min,离心(3000rpm×5min,4℃),弃上清后加入1/25体积的含25%甘油的100mmol/L CaCl2,吹起沉淀,分装入Eppendorf管中,-70℃保存备用。
[0096] 1.1.3感受态细胞的转化、培养
[0097] 将大肠杆菌感受态细胞从-70℃中取出,冰浴融解5-10分钟,加入含有目的基因的pUC57,轻微混匀,继续冰浴30分钟,然后铺板,37℃培养过夜。
[0098] 1.1.4质粒的提取与鉴定
[0099] 在质粒转化后37℃过夜培养的培养皿上挑取边缘整齐,生长状态良好的克隆,接种到10ml含Amp的LB培养基中,37℃、200rpm培养8小时,用质粒提取试剂盒提取质粒,用EcoRI和BamHI双酶切后,行琼脂糖凝胶电泳观察是否有插入片断以及插入的片断是否与预期的长度一致,将酶切鉴定阳性的克隆送上海博亚公司进行DNA测序。
[0100] 1.2 pBV-220/PADRE-rCCR5/DH5α工程菌的构建、表达及目的蛋白的纯化鉴定1.2.1 PCR扩增
[0101] 为了将rCCR5基因克隆入表达载体pBV-220/PADRE中,需要将两端的酶切位点突变成BamHI和PstI,设计PCR引物如下:
[0102] Primer1:5’GCGGATCCATGGACTACCAGGTTTCTTCTCC 3’
[0103] Primer2:5’GCCTGCAGTCACATAGCTTGGTCCAGAC 3’
[0104] PCR扩增rCCR5基因:取1μL含有目的基因的克隆质粒pUC-57为模板,加入10×PCR缓冲液5μL,25mmol/L MgCl2 3μL。25mmol/L 4×dNTPs 4μL,25μmol/L的引物
1、2各0.5μL,加入TaqDNA聚合酶0.5μL,用水补足体积至50μL。95℃预变性5min后,按下列参数循环30次:94℃变性1min,55℃退火1min,72℃延伸1min,最后一个循环72℃延伸10min。
[0105] 1.2.2 pGEM-3zf/PADRE-rCCR5克隆载体的构建
[0106] PCR产物用2.0%琼脂糖凝胶电泳分离,回收。回收后PCR产物与T载体用T4连接酶在16℃连接过夜,转化DH5α感受态细胞,铺板、培养,挑取单克隆,进行酶切鉴定。回收酶切的目的片断,同时用BamHI和PstI双酶切pGEM-3zf(-)/PADRE,回收大片段。建立连接体系,16℃连接过夜。连接产物转化感受态DH5α细胞,提取质粒,经酶切鉴定和DNA测序,获得含有PADRE-rCCR5融合基因原核克隆载体,命名pGEM-3zf/PADRE-rCCR5。
[0107] 1.2.3 pBV-220/PADRE-rCCR5/DH5α工程菌的构建
[0108] 上述pGEM-3zf/PADRE-rCCR5经EcoRI和PstI双酶切,回收大约400bP左右的小片断和用EcoRI和PstI酶处理过的pBV220质粒连接,16℃过夜。连接产物转化感受态DH5α细胞,提取质粒,经酶切鉴定和DNA测序获得含有PADRE-rCCR5融合基因原核表达载体,命名pBV220/PADRE-rCCR5。
[0109] 1.2.4 pBV-220/PADRE-rCCR5/DH5α工程菌的诱导表达
[0110] 含重组表达质粒的大肠杆菌DH5α单菌落接种于5ml新鲜LB培养液(含氨苄青霉素100mg/L)中,摇床30℃培养过夜,次日以1∶100的比例接种于新鲜LB培养液(含氨苄青霉素100mg/L)中,30℃继续培养至细菌密度达到OD600=0.4~0.6,迅速升温至42℃,诱导表达后分别1h,2h,3h,4h,5h,6h收集菌体,以确定合适的诱导后时间,小规模培养及诱导后离心收集菌体,用SDS-PAGE检测目的蛋白的表达和存在形式。
[0111] 1.2.5 pBV-220/PADRE-rCCR5/DH5α工程菌的发酵
[0112] 从活化的LB平板上挑选单菌落接种于含LB的试管中,30℃培养10h,然后转种至含200ml LB的三角瓶中,30℃培养过夜。次日,将种子液接种于5L发酵罐。控制发酵温度30℃、转速250~450rpm/min、通气量3~5L/min、pH7.3。培养至OD600=8左右时,迅速升温至42℃进行诱导,继续培养4h,终止发酵,收集菌体、称重、-20℃冰箱保存备用。取少量菌体处理后,用SDS-PAGE检测目的蛋白的表达。
[0113] 1.2.6目的蛋白包涵体的分离和洗涤
[0114] 取10g发酵菌体,按1g湿重对7ml的比例,用裂解缓冲液STE(50mmol/L Tris.Cl pH 8.0,50mmol/L NaCl,1mmol/L EDTA)重悬,-20℃冻过夜。次日于室温水浴中融化,参照分子克隆第三版溶菌酶法裂菌,接着再采用400W超声破菌,其中超声5s,间隔10s,共进行100次。超声完成后,12000rpm/min,4℃离心20min,弃除上清,沉淀用包涵体洗涤液A(1%TritonX-100,1mmol/L EDTA,1 % DOC,50mmol/LTris.Cl pH8.5,100mmol/LNaCl) 重 悬,
12000r/min,4℃离心20min,弃上清。接着再用包涵体洗涤液B(50mmol/LTris.Cl pH 8.5,
2.5mol/L尿素,100mmol/L NaCl,5mmol/L β-巯基乙醇,1mmol/L EDTA)重复洗涤3次,直至离心后的上清液澄清为止。最后用包涵体洗涤液C(50mmol/L Tris.ClpH 8.5,1mmol/L EDTA)洗涤一次后离心,离心条件不变。
[0115] 1.2.7表达产物变性条件下的纯化
[0116] 经洗涤的包涵体以1g湿重对10ml的比例,溶于50mmol/L Tris.Cl pH 8.5,5mmol/L β-巯基乙醇,1mmol/L EDTA,8mol/L尿素的缓冲液中,4℃搅拌过夜,12000r/min离心30min,收集上清,即为目的蛋白粗提液。SephacrylS-300(1.6cm×80cm)凝胶层析,以工作液(8mol/L尿素,50mmol/L Tris.Cl pH 8.5,1mmol/L EDTA,100mmol/L NaCl)充分平衡后,目的蛋白粗提液2ml上柱,以工作液洗脱,流速1ml/min,分部收集,测定蛋白质含量,并以SDS-PAGE确定目的蛋白所在位置,收集纯度较高的洗脱组分。
[0117] 1.2.8目的蛋白的复性
[0118] 凝胶层析柱上复性Sephacryl S-100凝胶柱(1.6cm×60cm),以工作液(50mmol/LTris.Cl pH 8.5,1mmol/L EDTA,100mmol/L NaCl)充分平衡后,取Sephacryl S-300凝胶层析目的蛋白样品,用凝胶柱工作液调整蛋白样品浓度为20mg/ml,用蛋白复性液(50mmol/L Tris.Cl,1mmol/L EDTA,100mmol/L NaCl,1.25mmol/L GSH,and 0.25mmol/LGSSG,pH8.5)洗脱,流速0.5ml/min,分部收集,测定蛋白质含量,并以SDS-PAGE确定目的蛋白所在位置,收集纯度较高的洗脱组分,目的蛋白洗脱峰直接对水透析,4℃,24小时,其中换液3次。透析后样品12000rpm/min,4℃离心30min,冻干上清,收集样品。HPLC检测蛋白纯度。
[0119] 1.2.9目的蛋白的鉴定
[0120] SDS-PAGE结束后,拆下凝胶,按照Bio-Rad产品说明,将凝胶靠近阴极一侧、硝酸纤维(NC)膜靠近阳极一侧,在预冷的转移缓冲液(25mmol/L Tris,192mmol/L Glycine,20%甲醇)中100V恒压1小时电泳,将蛋白转移至NC膜上。电泳结束后,取出NC膜,洗涤液TBST(20mmol/LTris·HCl pH7.5,150mmol/LNaCl,0.05%Tween20)清洗后浸入封闭液(含2%BSA的TBST)中37℃ 1小时,用小鼠抗人CCR5单克隆抗体(1∶1000稀释)孵育膜,室温,3小时,TBST洗膜3次,每次10min,再以HRP标记的羊抗小鼠IgG抗体(1∶1000稀释)孵育膜,室温,3h,TBST洗膜3次,用DAB显色液显色5-10min,观察结果。
[0121] 2.动物免疫及免疫抗血清生物学活性检测
[0122] 2.1小鼠免疫方法
[0123] 将30只BALB/c小鼠分成5组,每组6只,分别为阴性对照组、PADRE-rCCR5组、和其它三组对照rCCR5组、GST-C1组、GST-C2组。所有蛋白都溶解于生理盐水中,背部皮下多点注射,剂量为20μg/只,第一次免疫后每两周进行一次加强免疫,一共两次加强免疫。第一次免疫用弗氏完全佐剂,后两次加强免疫用弗氏不完全佐剂,佐剂与抗原1∶1充分混合。最后一次免疫后一周进行摘眼球取血,收集血清。
[0124] 2.2大肠杆菌菌体蛋白残留量测定
[0125] 因为没有商品化的CCR5标准品作为包被抗原来进行抗血清滴度的检测,所以我们采用在检测大肠杆菌菌体蛋白残留量的基础上,以纯化的rCCR5作为包被抗原进行检测。检测大肠杆菌菌体蛋白残留量采用夹心ELISA法,具体步骤如下:用包被液稀释兔抗大肠杆菌菌体蛋白抗体至10ug/ml,以100μl/孔加至96孔酶标板中,4℃过夜(16-18h);次日清晨,洗板后每孔加入200ul的1%牛血清白蛋白,37℃2h;用稀释液稀释菌体蛋白标准品至下列浓度梯度:500ng/ml、250ng/ml、125ng/ml、62.5ng/ml、31.25ng/ml、15.625ng/ml、7.8125ng/ml;同时用稀释液稀释待测样品至250ug/ml左右。将封闭好的酶标板洗板3次,标准品和待测样品均以100μl/孔加至板内,37℃ 2h;用稀释液按1∶1000稀释HRP标记的兔抗大肠杆菌菌体蛋白抗体,以100μl/孔加至板内,37℃ 1h;以100μl孔加入临时配制的底物液,37℃40min;再以50μl/孔加入终止液终止反应;最后将酶标板放入酶标仪中,选择490nm波长测OD值。以标准品OD值对标准品浓度作曲线,并以待测样品OD值在曲线上读出相应菌体蛋白含量,按以下公式计算待测样品中菌体蛋白残留含量。
[0126]
[0127] 2.3 ELISA法测定血清抗体滴度
[0128] 所需溶液的配制:
[0129] 包被缓冲液:碳酸盐缓冲液
[0130] Na2CO3 0.32g(终浓度0.015mol/L)
[0131] NaHCO3 0.59g(终浓度0.035mol/L)
[0132] 纯水定容至200ml(pH 9.6) 有效期:两周
[0133] 洗涤液:含0.05%Tween-20的PBS(pH 7.4)
[0134] 封闭液:含1%BSA的洗涤液
[0135] 稀释液:含0.5%BSA的洗涤液
[0136] 底物缓冲液:Na2HPO4.12H2O 1.84g
[0137] 柠檬酸 0.51g
[0138] 纯水定容至100ml(pH5.0)
[0139] 底物显色液:OPD 8mg
[0140] 30%H2O2 30μl
[0141] 底物缓冲液 10ml
[0142] 终止液:H2SO4 1mol/L
[0143] 操作方法:
[0144] 包被:取96孔ELISA板,将抗原溶解于包被缓冲液中(2-5μg/ml),加入板孔
[0145] 中(100μl/孔),4℃包被过夜。
[0146] ↓
[0147] 倒掉包被液,加入封闭液,37℃封闭2小时;
[0148] ↓
[0149] 弃去封闭液,用洗涤液洗6次,每次2分钟;
[0150] ↓
[0151] 加入10倍倍比稀释的抗血清(从100倍起),100μl/孔,37℃孵小时;
[0152] ↓
[0153] 弃去抗血清,用洗涤液洗6次,每次2分钟;
[0154] ↓
[0155] 加入HRP标记的抗小鼠的二抗,100μl/孔,37℃孵育1小时;
[0156] ↓
[0157] 弃去二抗,用洗涤液洗6次,每次2分钟;
[0158] ↓
[0159] 加入底物显色液,100μl/孔,37℃,显色10-20分钟;
[0160] ↓
[0161] 加入终止液,100μl/孔,终止反应;
[0162] ↓
[0163] 酶标仪读数,测定每孔在490nm的吸光值。
[0164] 2.4流式细胞仪分析样品制备
[0165] 将冻存的U937和Wish细胞复苏,孵箱培养后,1000rpm离心收集细胞,1640培养6 7
液洗涤2次后,重悬细胞为5×10 ~1×10/mL。
[0166] 取40μL细胞悬液加入预先有工作浓度特异性CCR5mAb(5-50μL)小玻璃管中,用50μL 1∶20(用DPBS稀释)正常兔血清,4℃封闭30分钟。
[0167] 用洗涤液洗涤2次,每次加入2mL(1000rpm×5min)。
[0168] 弃上清,加入50μL工作浓度的羊抗小鼠FITC荧光标记物,4℃30分钟。
[0169] 洗涤液洗涤2次,弃上清,加入适量的固定液,进行FCM分析。
[0170] 试剂配制如下:
[0171] DPBS(10×,贮存液):NaCl 80g
[0172] KCl 2g
[0173] Na2HPO4 11.5g
[0174] KH2PO4 2g
[0175] 蒸馏水加至1000mL,临用前稀释;
[0176] 洗涤液:DPBS×1 900mL
[0177] FCS 50mL
[0178] 4%NaN3 50mL;
[0179] 固定液: DPBS×1 1000mL
[0180] Glucose 20g
[0181] Formaldehyde 10mL
[0182] NaN3 0.2g。