会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
首页 / 专利库 / 编辑中 / 时间线 / 外圆磨削加工时间在线优化方法

外圆磨削加工时间在线优化方法

阅读:1195发布:2020-05-25

IPRDB可以提供外圆磨削加工时间在线优化方法专利检索,专利查询,专利分析的服务。并且本发明涉及一种外圆磨削加工时间在线优化方法,包括外圆磨削的粗磨阶段、半精磨阶段、精磨阶段及光磨阶段加工时间在线优化方法,其步骤为:1)磨削过程各阶段AE信号均方根值曲线的建立,2)磨削过程各阶段实际去除量的计算,3)磨削过程各阶段稳定后节点的判定,4)磨削过程各阶段加工时间的再分布计算。通过本发明能够实现当半精磨阶段、精磨阶段及光磨阶段达到稳定后立即进入下个阶段并在保证总去除量不变的情况下缩短了加工时间从而提高了加工效率。,下面是外圆磨削加工时间在线优化方法专利的具体信息内容。

1.一种外圆磨削加工时间在线优化方法,包括外圆磨削的粗磨阶段、半精磨阶段、精磨阶段及光磨阶段加工时间在线优化算法,其特征在于,其步骤为:

1)磨削过程各阶段AE信号均方根值曲线的建立把磨削过程分为粗磨阶段:0至t1、半精磨阶段:t1至t2、精磨阶段:t2至t3和光磨阶段:t3至t4四个阶段,其中t1、t2、t3、t4分别为粗磨阶段、半精磨阶段、精磨阶段、光磨阶段结束的时间;已知当前系统时间为常数τ,根据四个阶段AE信号RMS理论模型并生成相应的AE信号RMS曲线:①粗磨阶段:

上式中τ───系统的时间常数;

u1───粗磨阶段进给速度;

t───时间;

e───自然常数;

v(t)───AE信号RMS曲线变化表达式;

②半精磨阶段:

上式中u2───半精磨阶段进给速度;

③精磨阶段:

上式中u3───精磨阶段进给速度;

④光磨阶段:

将各阶段进给速度、时间常数代入式(1)、(2)、(3)、(4)得到优化前的AE信号RMS曲线;

2)磨削过程各阶段实际去除量的计算①优化前粗磨阶段加工时间为0至t1,计算粗磨阶段去除量r1得:②优化前半精磨阶段加工时间为t1至t2,计算半精磨阶段去除量r2得:③优化前精磨阶段加工时间为t2至t3,计算精磨阶段去除量r3得:④优化前光磨阶段加工时间为t3至t4,计算光磨阶段去除量r4得:⑤优化前总去除量r为:

r=r1+r2+r3+r4     (9)

3)磨削过程各阶段稳定后节点的判定①当半精磨阶段加工时间为t1至t2时,通过计算半精磨阶段曲线斜率K2(t1+i*ts)得:K2(t1+i*ts)=((v2-v1)/τ)*Exp(-(t1+i*ts-t1)/(τ))     (10)上式中ts───时间间隔,i=0,1,2,……,v1,v2分别代表粗磨阶段和半精磨阶段的进给速度;

当第n1次计算斜率K2(t1+n1*ts)的绝对值小于等于0.001时即达到稳定,此时半精磨阶段时间变为t1至t6,其中t6为:t6=t2-(t1+n1*ts)     (11)②当精磨阶段加工时间为t2至t3时,通过计算精磨阶段曲线斜率K3(t2+i*ts)得:K3(t2+i*ts)=((v3-v2)/τ)*Exp(-(t2+i*ts-t2)/(τ))    (12)当第n2次计算斜率K3(t2+n2*ts)的绝对值小于等于0.001时即达到稳定,此时精磨阶段时间变为t6至t7,其中t7为:t7=t3-(t2+n2*ts)      (13)③当光磨阶段加工时间为t3至t4时,通过计算光磨阶段曲线斜率K4(t3+i*ts)得:K4(t3+i*ts)=-(v3/τ)*Exp(-(t3+i*ts-t3)/(τ))    (14)当第n3次计算斜率K4(t3+n3*ts)的绝对值小于等于0.001时即达到稳定,此时光磨阶段时间变为t7至t8,其中t8为:t8=t4-(t2+n3*ts)    (15)

4)磨削过程各阶段加工时间的再分布计算根据半精磨阶段、精磨阶段、光磨阶段达到稳定后的节点算出优化后各阶段的去除量:①优化后半精磨阶段加工时间为t5至t6,计算半精磨阶段去除量l2得:②优化后精磨阶段加工时间为t6至t7,计算精磨阶段去除量l3得:③优化后光磨阶段加工时间为t7至t8,计算光磨阶段去除量l4得:④因为总去除量r保持不变,所以根据优化后半精磨阶段、精磨阶段及光磨阶段的去除量可知优化后粗磨阶段的去除量l1为:l1=r-l2-l3-l4   (19)⑤由优化后粗磨阶段的去除量l1算出优化后粗磨阶段的加工时间t5:此时优化后粗磨阶段加工时间变为0至t5。

说明书全文

外圆磨削加工时间在线优化方法

技术领域

[0001] 本发明涉及一种机加工时间的优化算法,尤其涉及一种用于外圆磨削加工时间在线优化算法。

背景技术

[0002] 磨削加工是精密加工的关键工序,磨削质量往往决定工件最终的加工精度。其中外圆磨削是进行精密和超精密加工的主要方法,是一种非常重要的轴类零件加工方法,可以获得非常高的表面质量和几何精度。而目前在进行外圆磨削精密加工过程中,工件的磨削质量与效率主要是取决于机床操作者的技术水平,为了提高和改善外圆磨削加工工艺流程,会对加工过程进行实时监测。通常工件的加工时间对磨削加工在线监控实施具有重大的意义,它可以为评价加工效率、改善加工工艺提供重要依据。为了提高外圆切入式磨削的加工效率,本发明提出了一种利用声发射信号实现外圆切入式磨削各阶段加工时间的在线优化算法。

发明内容

[0003] 本发明为了克服现有的外圆磨削中加工效率低,加工成本高等诸多缺点,提出了一种外圆磨削各阶段加工时间的在线优化方法,从而在保证总去除量不变的情况下实现加工时间的降低,从而提高加工效率。
[0004] 本发明采用的技术方案为:一种外圆磨削加工时间在线优化方法,包括外圆磨削的粗磨阶段、半精磨阶段、精磨阶段及光磨阶段加工时间在线优化算法,步骤为:
[0005] 1)磨削过程各阶段AE信号均方根值曲线的建立
[0006] 把磨削过程分为粗磨阶段:0至t1、半精磨阶段:t1至t2、精磨阶段:t2至t3和光磨阶段:t3至t4四个阶段,其中t1、t2、t3、t4分别为粗磨阶段、半精磨阶段、精磨阶段、光磨阶段结束的时间;已知当前系统时间为常数τ,根据四个阶段AE信号RMS理论模型并生成相应的AE信号RMS曲线:
[0007] ①粗磨阶段:
[0008]
[0009] 上式中τ───系统的时间常数;
[0010] u1───粗磨阶段进给速度;
[0011] t───时间;
[0012] e───自然常数;
[0013] v(t)───AE信号RMS曲线变化表达式;
[0014] ②半精磨阶段:
[0015]
[0016] 上式中u2───半精磨阶段进给速度;
[0017] ③精磨阶段:
[0018]
[0019] 上式中u3───精磨阶段进给速度;
[0020] ④光磨阶段:
[0021]
[0022] 将各阶段进给速度、时间常数代入式(1)、(2)、(3)、(4)得到优化前的AE信号RMS曲线;
[0023] 2)磨削过程各阶段实际去除量的计算
[0024] ①优化前粗磨阶段加工时间为0至t1,计算粗磨阶段去除量r1得:
[0025]
[0026] ②优化前半精磨阶段加工时间为t1至t2,计算半精磨阶段去除量r2得:
[0027]
[0028] ③优化前精磨阶段加工时间为t2至t3,计算精磨阶段去除量r3得:
[0029]
[0030] ④优化前光磨阶段加工时间为t3至t4,计算光磨阶段去除量r4得:
[0031]
[0032] ⑤优化前总去除量r为:
[0033] r=r1+r2+r3+r4   (9)
[0034] 3)磨削过程各阶段稳定后节点的判定
[0035] ①当半精磨阶段加工时间为t1至t2时,通过计算半精磨阶段曲线斜率K2(t1+i*ts)得:
[0036] K2(t1+i*ts)=((v2-v1)/τ)*Exp(-(t1+i*ts-t1)/(τ))   (10)
[0037] 上式中ts───时间间隔,i=0,1,2,……,v1,v2分别代表粗磨阶段和半精磨阶段的进给速度;
[0038] 当第n1次计算斜率K2(t1+n1*ts)的绝对值小于等于0.001时即达到稳定,此时半精磨阶段时间变为t1至t6,其中t6为:
[0039] t6=t2-(t1+n1*ts)   (11)
[0040] ②当精磨阶段加工时间为t2至t3时,通过计算精磨阶段曲线斜率K3(t2+i*ts)得:
[0041] K3(t2+i*ts)=((v3-v2)/τ)*Exp(-(t2+i*ts-t2)/(τ))   (12)
[0042] 当第n2次计算斜率K3(t2+n2*ts)的绝对值小于等于0.001时即达到稳定,此时精磨阶段时间变为t6至t7,其中t7为:
[0043] t7=t3-(t2+n2*ts)   (13)
[0044] ③当光磨阶段加工时间为t3至t4时,通过计算光磨阶段曲线斜率K4(t3+i*ts)[0045] 得:
[0046] K4(t3+i*ts)=-(v3/τ)*Exp(-(t3+i*ts-t3)/(τ))   (14)
[0047] 当第n3次计算斜率K4(t3+n3*ts)的绝对值小于等于0.001时即达到稳定,此时光磨阶段时间变为t7至t8,其中t8为:
[0048] t8=t4-(t2+n3*ts)   (15)
[0049] 4)磨削过程各阶段加工时间的再分布计算
[0050] 根据半精磨阶段、精磨阶段、光磨阶段达到稳定后的节点算出优化后各阶段的去除量:
[0051] ①优化后半精磨阶段加工时间为t5至t6,计算半精磨阶段去除量l2得:
[0052]
[0053] ②优化后精磨阶段加工时间为t6至t7,计算精磨阶段去除量l3得:
[0054]
[0055] ③优化后光磨阶段加工时间为t7至t8,计算光磨阶段去除量l4得:
[0056]
[0057] ④因为总去除量r保持不变,所以根据优化后半精磨阶段、精磨阶段及光磨阶段的去除量可知优化后粗磨阶段的去除量l1为:
[0058] l1=r-l2-l3-l4   (19)
[0059] ⑤由优化后粗磨阶段的去除量l1算出优化后粗磨阶段的加工时间t5:
[0060]
[0061] 此时优化后粗磨阶段加工时间变为0至t5。
[0062] 本发明的有益效果是:通过本发明能够实现当半精磨阶段、精磨阶段及光磨阶段达到稳定后立即进入下个阶段并在保证总去除量不变的情况下缩短了加工时间从而提高了加工效率。比较优化前和优化后的磨削加工时间可以看出优化后的总加工时间为49s,相比于优化前的总加工时间70s更短,说明优化方法是可行的。优化结果表明该方法在保证总去除量不变的情况下缩短加工时间从而提高加工效率。

附图说明

[0063] 图1是本发明实施例的基本步骤流程示意图;
[0064] 图2是本发明实施例优化前的AE信号RMS曲线;
[0065] 图3是本发明实施例优化后的AE信号RMS曲线。

具体实施方式

[0066] 下面结合附图和实施例对本发明做进一步阐述。
[0067] 一种基于声发射信号(Acoustic Emission:AE)的外圆磨削的粗磨阶段、半精磨阶段、精磨阶段及光磨阶段加工时间在线优化方法。
[0068] 现以总加工时间70s为例,把磨削过程分为粗磨阶段(0至20s)、半精磨阶段(20s至40s)、精磨阶段(40s至55s)和光磨阶段(55s至70s)四个阶段。如图1所示,本发明外圆切入式磨削加工时间的优化,步骤包括:
[0069] 1.磨削过程各阶段AE信号均方根值(Root Mean Square:RMS)曲线的建立[0070] 由于磨削系统误差以及砂轮的磨损导致数控指令进给速度和实际的进给速度存在差异,因此对磨削系统的每个阶段建立不同的等式,其表达式为:
[0071]
[0072] 上式中τ───系统的时间常数;
[0073] ───实际的进给速度;
[0074] ───实际的进给速度求导;
[0075] ε───砂轮的磨削系数(ε=1);
[0076] ───数控指令进给速度;
[0077] 对等式(1)通过非齐次线性微分方程进行变换得:
[0078]
[0079] 上式中c1、c2───常数,r(t)───材料去除率,u(t)───进给速度e───自然常数,u───进给速度;
[0080] ⑴粗磨阶段:
[0081] 粗磨阶段开始,此时的进给速度由0变为u1,由此可得:
[0082] r(t)=0,u(t)=0。   (3)
[0083] 将式(3)代入式(2)得:
[0084]
[0085] ⑵半精磨阶段:
[0086] 粗磨阶段的结束即半精磨阶段的开始,此时的进给速度由u1变为u2,由此可得:
[0087]
[0088] 将式(5)代入式(3)得:
[0089]
[0090] ⑶精磨阶段:
[0091] 半精磨阶段的结束即精磨阶段的开始,此时的进给速度由u2变为u3,由此可得:
[0092]
[0093] 将式(7)代入式(3)得:
[0094]
[0095] ⑷光磨阶段:
[0096] 精磨阶段的结束即光磨阶段的开始,此时进给速度由u3变为0,由此可得:
[0097]
[0098] u(t3)=u3。   (10)
[0099] 将式(9)代入式(3)得:
[0100]
[0101] 对式(4)进行求导得到粗磨阶段AE信号RMS曲线的变化表达式:
[0102]
[0103] v(t)───AE信号RMS曲线变化表达式
[0104] 对式(6)进行求导得到半精磨阶段AE信号RMS曲线的变化表达式:
[0105]
[0106] 对式(8)进行求导得到精磨阶段AE信号RMS曲线的变化表达式:
[0107]
[0108] 对式(10)进行求导得到光磨阶段AE信号RMS曲线的变化表达式:
[0109]
[0110] 式(10)、(11)、(12)、(13)分别为粗磨阶段、半精磨阶段、精磨阶段、光磨阶段的AE信号RMS曲线表达式。如图2所示,将各阶段进给速度、时间常数代入即生成优化前的AE信号RMS曲线。
[0111] 2.磨削过程各阶段实际去除量的计算
[0112] ①优化前粗磨阶段加工时间为0至20s,计算粗磨阶段去除量r1得:
[0113] r1=25.9
[0114] ②优化前半精磨阶段加工时间为20s至40s,计算半精磨阶段去除量r2得:
[0115] r2=13.2
[0116] ③优化前精磨阶段加工时间为40s至55s,计算精磨阶段去除量r3得:
[0117] r3=3.6
[0118] ④优化前光磨阶段加工时间为55s至70s,计算光磨阶段去除量r4得:
[0119] r4=0.3
[0120] ⑤优化前总去除量r为:
[0121] r=43
[0122] 3.磨削过程各阶段稳定后节点的判定
[0123] ①当半精磨阶段加工时间为20s至40s时,通过计算半精磨阶段曲线斜率K2(t1+i*ts)得:
[0124] K2(t1+i*ts)=((v2-v1)/τ)*Exp(-(t1+i*ts-t1)/(τ))   (16)
[0125] 上式中ts───时间间隔,
[0126] i=0,1,2,……,
[0127] v1,v2分别代表粗磨阶段和半精磨阶段的进给速度。
[0128] 当第n1次计算斜率K2(t1+i*ts)的绝对值小于等于0.001时即达到稳定,此时t6为:
[0129] t6=9s
[0130] ②当精磨阶段加工时间为40s至55s时,通过计算精磨阶段曲线斜率K3(t2+i*ts)得:
[0131] K3(t2+i*ts)=((v3-v2)/τ)*Exp(-(t2+i*ts-t2)/(τ))   (17)
[0132] 当第n2次计算斜率K3(t2+i*ts)的绝对值小于等于0.001时即达到稳定,此时t7为:
[0133] t7=8s
[0134] ③当光磨阶段加工时间为55s至70s时,通过计算光磨阶段曲线斜率K4(t3+i*ts)得:
[0135] K4(t3+i*ts)=-(v3/τ)*Exp(-(t3+i*ts-t3)/(τ))   (18)
[0136] 当第n3次计算斜率K4(t3+i*ts)的绝对值小于等于0.001时即达到稳定,此时t8为:
[0137] t8=7s
[0138] 4.磨削过程各阶段加工时间的再分布计算
[0139] 根据半精磨阶段、精磨阶段、光磨阶段达到稳定后的节点算出优化后各阶段的去除量:
[0140] ①优化后半精磨阶段去除量l2为:
[0141] l2=6.6
[0142] ②优化后精磨阶段去除量l3为:
[0143] l3=2.2
[0144] ③优化后光磨阶段去除量l4为:
[0145] l4=0.3
[0146] ④由于总去除量r保持不变,所以根据优化后半精磨阶段、精磨阶段及光磨阶段的去除量可知优化后粗磨阶段的去除量l1为:
[0147] l1=33.9
[0148] ⑤由优化后粗磨阶段的去除量l1算出优化后粗磨阶段的加工时间t5为25s。此时优化后粗磨阶段加工时间为0至25s、半精磨阶段加工时间为25s至34s、精磨阶段加工时间为34s至42s、光磨阶段加工时间为42s至49s。
[0149] 如图2、3所示,通过本发明能够实现当半精磨阶段、精磨阶段及光磨阶段达到稳定后立即进入下个阶段并在保证总去除量不变的情况下缩短了加工时间从而提高了加工效率。比较优化前和优化后的磨削加工时间可以看出优化后的总加工时间为49s,相比于优化前的总加工时间70s更短,说明优化方法是可行的。优化结果表明该方法在保证总去除量不变的情况下缩短加工时间从而提高加工效率。
高效检索全球专利

IPRDB是专利检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,专利查询、专利分析

电话:13651749426

侵权分析

IPRDB的侵权分析产品是IPRDB结合多位一线专利维权律师和专利侵权分析师的智慧,开发出来的一款特色产品,也是市面上唯一一款帮助企业研发人员、科研工作者、专利律师、专利分析师快速定位侵权分析的产品,极大的减少了用户重复工作量,提升工作效率,降低无效或侵权分析的准入门槛。

立即试用