会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 无干坞下浅埋明挖大型通道基本结构单元及建造方法 CN202110445900.7 2021-04-25 CN112982476A 2021-06-18 贺维国; 范国刚; 周华贵; 费曼利; 曹威
发明涉及一种无干坞下浅埋明挖大型通道基本结构单元及建造方法,该方法所用基本结构单元具有如下特点:每节基本结构单元长度在20‑25m,一端设置封,另一端为敞口结构,封门的下端设置排水泄压;基本结构单元的端部环绕设置橡胶止水带,内部固定有可调节进、排水容量的起浮兼压重舱室;所述基本结构单元的底部设置至少四个轴线定位脚座。本发明所述的通道基本结构单元可直接在平地上预制,无需修建大型临时干坞,减少了临时工程投入,节省了水下通道的造价和工期;基本结构单元可通过滑道由陆域滑入水域,通过调节起浮兼压重舱室内的空气体积,在水中保持悬浮状态,并由浮吊船牵引并沉放,提高了施工效率,降低了水上施工难度。
2 一种节能型斜坡道出运沉箱的方法 CN202110787571.4 2021-07-13 CN113529772B 2023-03-10 刘佳; 于宝成; 胡晓军; 冯明锦; 龚新曦; 朱冠泽
发明涉及一种节能型斜坡道出运沉箱的方法,包括,S1建造出运斜坡与浮坑,S2设置出运设备,S3将待出运沉箱移动至放置平台边缘,S4对待出运沉箱进行牵引,直至将沉箱拉送至所述斜坡且沉箱能通过自身重进行移动,S5对沉箱进行反向牵引,防止沉箱速度过快,S6浮坑内位随涨潮达到沉箱浮游吃水位后,牵引船对沉箱进行托运,完成沉箱出运。本发明通过设置斜坡,使沉箱能通过自身重力下降,充分利用自身势能,降低了搬运过程中的能量消耗,同时,通过利用海水潮汐使沉箱达到吃水位,进一步减少了沉箱出运过程中的能源消耗;充分利用沉箱自身势能与潮汐能,降低了能源的消耗,同时达到了智能出运沉箱的目的。
3 非开挖或钻进沉管、沉井或沉箱施工方法 CN201810311730.1 2018-04-09 CN108487285A 2018-09-04 卢明全
发明公开了一种沉管、沉井或沉箱施工工艺方法。本发明的沉管、沉井或沉箱由若干的下沉节构成,每个下沉节上都设有高压注管出口和高压注水管侧喷口,高压注水管向上连接于高压注浆,启动高压注浆泵,将底部土层冲开,下沉节在重作用下下沉,每个下沉节下沉到指定位置后,连接上一节下沉节,重复上述操作,直到整体施工深度达到要求。本发明可以实现桥梁、桥涵、引水工程、给水工程等工程领域的快速施工、减少工程量、节约工程用地的施工效果。解决一些海水养殖场或者海洋馆大量纯净海水的需求问题。
4 一种节能型斜坡道出运沉箱的方法 CN202110787571.4 2021-07-13 CN113529772A 2021-10-22 刘佳; 于宝成; 胡晓军; 冯明锦; 龚新曦; 朱冠泽
发明涉及一种节能型斜坡道出运沉箱的方法,包括,S1建造出运斜坡与浮坑,S2设置出运设备,S3将待出运沉箱移动至放置平台边缘,S4对待出运沉箱进行牵引,直至将沉箱拉送至所述斜坡且沉箱能通过自身重进行移动,S5对沉箱进行反向牵引,防止沉箱速度过快,S6浮坑内位随涨潮达到沉箱浮游吃水位后,牵引船对沉箱进行托运,完成沉箱出运。本发明通过设置斜坡,使沉箱能通过自身重力下降,充分利用自身势能,降低了搬运过程中的能量消耗,同时,通过利用海水潮汐使沉箱达到吃水位,进一步减少了沉箱出运过程中的能源消耗;充分利用沉箱自身势能与潮汐能,降低了能源的消耗,同时达到了智能出运沉箱的目的。
5 大型沉箱半潜驳船首倾下潜出运方法 CN201710456867.1 2017-06-16 CN107237340A 2017-10-10 安秀山; 高平原; 李亮; 李建明; 娄雅冬; 许琳丽; 朱龙
发明公开了一种大型沉箱半潜驳船首倾下潜出运方法,包括以下步骤:将大型沉箱采用顶升气囊顶升后,应用千斤顶静支撑更换成台车载运大型沉箱,之后台车依次沿纵向轨道和横向轨道平移至甲板与出驳平台平齐对接处,并通过第二拉移气囊继续平移超大沉箱至甲板指定位置后固定;将超大沉箱出运至指定地点后进行首倾下潜安装;其中,对接扣为设置在出驳平台上的侧开口的槽体,且对接扣的上方侧壁与出驳平台枢接设置;横向轨道对接板为自半潜驳船的甲板平延伸出的呈台阶样的刚性板体,横向轨道对接板可拆卸的插入所述对接扣内。本发明方法能够在保证大型沉箱平稳移动的基础上,有效减少大型沉箱的总体移动距离和缩短总体移动时间。
6 大型沉箱半潜驳船首倾下潜出运方法 CN201710456867.1 2017-06-16 CN107237340B 2019-03-29 安秀山; 高平原; 李亮; 李建明; 娄雅冬; 许琳丽; 朱龙
发明公开了一种大型沉箱半潜驳船首倾下潜出运方法,包括以下步骤:将大型沉箱采用顶升气囊顶升后,应用千斤顶静支撑更换成台车载运大型沉箱,之后台车依次沿纵向轨道和横向轨道平移至甲板与出驳平台平齐对接处,并通过第二拉移气囊继续平移超大沉箱至甲板指定位置后固定;将超大沉箱出运至指定地点后进行首倾下潜安装;其中,对接扣为设置在出驳平台上的侧开口的槽体,且对接扣的上方侧壁与出驳平台枢接设置;横向轨道对接板为自半潜驳船的甲板平延伸出的呈台阶样的刚性板体,横向轨道对接板可拆卸的插入所述对接扣内。本发明方法能够在保证大型沉箱平稳移动的基础上,有效减少大型沉箱的总体移动距离和缩短总体移动时间。
7 大型吊箱、围堰气囊下方法 CN201010129188.1 2010-03-22 CN101775811A 2010-07-14 米长江
发明属于公路、桥梁施工领域,特别是大型吊箱、围堰气囊下方法,它分六个步骤完成,提供了一种可使单位面积的压减少,且受力均匀,对场地的适应性强,便于施工,其具有省时、省力、机动灵活、安全可靠、综合经济效益显著的大型钢吊箱、围堰气囊下水方法。其工作原理与滚筒搬运重物的工作原理基本相同,即底部与地面之间有规律的支垫若干个气囊,通过外力牵引使气囊向前滚动,从而使钢吊箱与地面之间产生定向相对移动,到达钢吊箱移动下水的目的。
8 液压顶推出运沉箱的方法 CN200810126713.7 2008-06-20 CN101545263A 2009-09-30 刘德进; 张宝昌; 曲俐俐; 陆连洲; 王国之; 张祚森
发明涉及一种液压顶推出运沉箱的方法,将夹轨器与平液压油缸放置于沉箱后的轨道上,油缸的活塞杆与沉箱底部的台车铰接;接通推进油路,使油缸连接的夹轨器有后移的推,使得夹轨器内的楔形齿条夹紧轨道顶部的两个侧面,夹轨器与轨道保持不动,高压油将活塞杆推出,推动台车及沉箱前进;接通复位油路,油缸有杆腔内油压升高,夹轨器内楔形齿条与轨道顶部的两个侧面松开,高压油使油缸体及夹轨器前行复位,台车及沉箱保持静止不动;如此往复,台车及沉箱不断被液压顶推设备顶推前移。本发明的主要优点是:结构紧凑,机动灵活,自成体系,易于操作,场地利用率高,安全可靠,提高工作效率,降低成本,不易出现故障,减少了维护时间及维修成本。
9 无干坞下浅埋明挖大型通道快速建造方法 CN202110445900.7 2021-04-25 CN112982476B 2021-08-03 贺维国; 范国刚; 周华贵; 费曼利; 曹威
发明涉及一种无干坞下浅埋明挖大型通道快速建造方法,该方法所用基本结构单元具有如下特点:每节基本结构单元长度在20‑25m,一端设置封,另一端为敞口结构,封门的下端设置排水泄压;基本结构单元的端部环绕设置橡胶止水带,内部固定有可调节进、排水容量的起浮兼压重舱室;所述基本结构单元的底部设置至少四个轴线定位脚座。本发明所述的通道基本结构单元可直接在平地上预制,无需修建大型临时干坞,减少了临时工程投入,节省了水下通道的造价和工期;基本结构单元可通过滑道由陆域滑入水域,通过调节起浮兼压重舱室内的空气体积,在水中保持悬浮状态,并由浮吊船牵引并沉放,提高了施工效率,降低了水上施工难度。
10 一种适用于大吨位沉井下施工的滑道系统 CN202011507618.9 2020-12-18 CN112502179A 2021-03-16 于宏伟; 乔力; 潘济; 洪海涛; 张玉东; 毛家序; 唐生银
发明涉及一种适用于大吨位沉井下施工的滑道系统,用于钢沉井滑动下水,其包括:滑道基础,其自陆地倾斜延伸至水中;用于承载所述钢沉井的滑板,其卡设于所述滑道基础,且可在所述滑道基础上滑动;止滑组件,其固设于所述滑道基础,通过所述止滑组件控制所述滑板的定与释放。本发明涉及的一种适用于大吨位钢沉井下水施工的滑道系统,使钢沉井下水路线可控,适用性广,能够有效减小下水过程中对钢沉井造成质量及安全险。
11 基础结构 CN201080062369.5 2010-12-17 CN102822421A 2012-12-12 理查德·埃尔顿; 菲利浦·吉尔森
一种基础结构(10),用于将安装在该基础结构(10)上的物体(14)安置在海床或河床上,该基础结构(10)包括:具有可变浮和刚性控制表面(23)的整体式浮力装置(22)。整体式浮力装置(22)相对于基础结构(10)可移动,以便改变刚性控制表面(23)的位置并相对于重心的位置控制浮力中心的位置。这样在浸没和浮出面期间,稳定基础结构(10)。还描述了一种用于控制基础结构(10)的布置和收回的方法。
12 Verfahren zur Herstellung von in das Erdreich hineinragenden Bauwerken unter Verwendung eines Senkbaukörpers. CH299641D 1951-02-23 CH299641A 1954-06-30 DR LORENZ HANS PROF ING
13 FOUNDATION STRUCTURE CA2784455 2010-12-17 CA2784455A1 2011-06-23 ALLTON RICHARD; GILSON PHILIPPE
A foundation structure (10) for locating an object (14) mounted on the foundation structure (10) on a sea bed or a river bed comprises an integral buoyancy device (22) having variable buoyancy and a rigid control surface (23). The integral buoyancy device (22) is movable relative to the foundation structure (10) to vary the position of the rigid control surface (23) and to control the position of the centre of buoyancy relative to the position of the centre of gravity. This stabilises the foundation structure 10 during submergence and surfacing. A method for controlling the deployment and retrieval of the foundation structure (10) is also described.
14 CONSTRUCTION OF CONCRETE STRUCTURE JP16400683 1983-09-06 JPS6055110A 1985-03-30 KAMISAKA KAZUO; KONDOU NORIO
PURPOSE:To miniaturize a concrete box structure as well as construct the box structure in a short time by a method in which a concrete structure is formed on a cover floating on water, a bottom slab is formed on the concrete structure to form a box structure, and the box structure is upside down and floated on water. CONSTITUTION:A formwork for one lot is assembled on a steel cover 1 as a temporary bottom plate for a structure 14, floating on water, and concrete is placed into the formwork to form the first concrete 7. The second, third, fourth concretes 8-10 are connectedly placed on the first concrete 7 to construct a concrete structure 14. A bottom slab timbering and a formwork are assembled between the upper concretes 10, and a bottom slab concrete 13 is provided to provide a box 14. Water is supplied to or discharged from the box 14 through a ballast charging tube 5 and a discharge tube 6 provided in the side wall, and the box 14 is upside down. Afterwards, the cover 1 is removed out.
15 DEL0008090 1951-01-11 DE954588C 1956-12-20 LORENZ DR-ING HANS
16 FR1041661D 1951-03-12 FR1041661A 1953-10-26
17 Process for the production and sinking of caissons of any desired form GB493251 1951-02-28 GB692227A 1953-06-03
692,227. Caissons sinking etc.; borehole linings. LORENZ, H. Feb. 28,1951 [March 11, 1950; Dec. 22, 1950; Jan. 10, 1951], No. 4932/51. Classes 68(ii) and 85 In a process for the production and sinking of caissons a liquid with thixotropic properties is introduced between the outer wall surfaces of the caisson and the ground and/or above the ceiling of a working chamber forming part of the caisson, the properties of the liquid being such that it does not penetrate into the pores of the ground but by forming a fluid-tight film sets up. a liquid resistance to the earth wall of the caisson which, according to the concentration of the liquid, may be greater than the hydrostatic pressure and thereby secure the cavity wall against collapse and also produce only horizontal readily determinable forces on the walls of the caisson without producing on the walls any vertical components caused by friction, the process being such that the dimensions and reinforcement of the caisson are only such as are necessary to take up the stresses in the sunk and loaded condition. A suitable liquid is a suspension of pure bentonite in water, and to increase the specific gravity finely ground heavy spar may be added. The thixotropic liquid filling the space above the working chamber may decrease in concentration in stages from the soil side to the centre, if necessary to zero, since the columns do not mix with one another. The liquids are preferably introduced through pipe lines and nozzles in or on the top of the unit and fed through delivery tubes during sinking from above or from the working chamber, short partitions being fitted' on the ceiling of the unit to influence the direction of flow of the different liquids. As shown in Fig. 2 the thixotropic liquid 1 is introduced between the caisson jacket 2 and the soil 3 as soon as the curb 7 is below the land surface, and is continuously added so as to fill that space, being prevented from entering the working chamber 5 bv the cutting edge 4 making contact with the soil. The caisson is guided by. a roller guide system 6. When the caisson has reached the required depth the liquid may be recovered by filling the space between the jacket and the soil with concrete. The same method may be used to form foundations under water, the thixotropic liquid remaining in the cavity between the jacket and the soil since its specific gravity is greater than that of the water. The method may be used with open caissons or those having compressed air chambers. The caisson may have no jacket, as in Fig. 10, the working chamber being connected to the outside by a shaft tube 8. The entire space 9 above the caisson is then filled with thixotropic liquid. The caisson is guided and prevented from sudden uenetration by suspension cables secured to bearers over the shaft opening or to containers 10 floating in the liquid. At the required depth first the working chamber and then the space 9 is filled with concrete. Fig. 13 shows a caisson in different stages of an inclined sinking operation, more soil being excavated beneath one cutting edge 11, and the thixotropic liquid filling the space 13 'between the soil and the rearward projections 12 of the caisson and the space 14 between the soil walls. The angle of rotation of the caisson may be increased to 90 degrees or more. Shuttering may be erected on the sunken caisson 15, and a wall 16 of tapering crosssection formed, when the remaining spaces 17, 18 filled with thixotropic liquid may be filled with soil or thin concrete. The wall 16 with the form 19 of the hull of a ship may serve as a quay, the soil on the open side of the wall being dredged away: The space 18 may remain filled with the thixotropic liquid which serves to distribute any load over the whole wall. Excavation may be carried out manually or mechanically, e.g. by automatic flushing devices, and the weight of the thixotropic liquid aids the sinking of the caisson.
18 ФУНДАМЕНТНАЯ КОНСТРУКЦИЯ RU2012130424 2010-12-17 RU2012130424A 2014-03-20
1. Фундаментнаяконструкциядляразмещенияобъекта, установленногонафундаментнойконструкции, наморскомднеилиречномдне, приэтомфундаментнаяконструкциясодержитфундаментныйэлементи нераздельноеустройствоплавучести, имеющееизменяемуюплавучестьи жесткуюуправляющуюповерхность, приэтомнераздельноеустройствоплавучестивыполненоподвижнымотносительнофундаментногоэлементадляизмененияположенияжесткойуправляющейповерхностии управленияположениемцентраплавучестиотносительноположенияцентратяжести.2. Фундаментнаяконструкцияпоп.1, котораясодержитмножестводополнительныхнераздельныхустройствплавучести, имеющихиндивидуальноизменяемуюплавучесть.3. Фундаментнаяконструкцияпоп.2, вкоторойодноилиболееиздополнительныхнераздельныхустройствплавучестивыполненыв виденеподвижныхустройствплавучести.4. Фундаментнаяконструкцияпоп.2 или 3, вкоторойодноилиболеедополнительныхнераздельныхустройствплавучестикаждоевключаетв себяжесткуюуправляющуюповерхностьи выполненыподвижнымиотносительнофундаментногоэлементадляизмененияположенияжесткойуправляющейповерхности.5. Фундаментнаяконструкцияпоп.1, вкоторойтакоеиликаждоенераздельноеподвижноеустройствоплавучестисодержитмножествожесткихповерхностей, заключающихв себеплавучийобъем, иоднаилиболееизжесткихповерхностейработаетв качествежесткойуправляющейповерхности.6. Фундаментнаяконструкцияпоп.1, котораявключаетв себяпарууказанныхнераздельныхподвижныхустройствплавучести, расположенныхсимметричнонафундаментнойконструкции.7. Фундаментнаяконструкция
19 DEL0102593 1940-12-03 DE765323C 1953-06-22 LENK KURT DR-ING
20 DEG0059769 DE440616C 1927-02-07