一种采用磁控溅射法制备高附着力镀铝膜的方法转让专利

申请号 : CN201610996213.3

文献号 : CN106521440B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : 张海宝陈强杨丽珍袁燕

申请人 : 北京印刷学院

摘要 :

一种采用磁控溅射法制备高附着力镀铝膜的方法,属于柔性包装薄膜材料制备技术领域。本发明是以磁控溅射法在聚合物薄膜表面沉积金属缓冲层,然后经真空蒸镀工艺沉积铝膜,获得高附着力镀铝膜。该制备工艺主要包括以下步骤:在磁控溅射腔室放置聚合物薄膜并将溅射腔室抽真空至6×10‑3Pa以下;开启磁控溅射电源,沉积金属缓冲层;以沉积有金属缓冲层的聚合物薄膜为基底在蒸发镀膜机中蒸镀铝膜,获得高附着力的镀铝膜。本发明可通过磁控溅射的工艺极大地增强镀铝膜的附着性能,可获得附着力在10N/15mm以上的高附着性能镀铝膜,溅射过程清洁环保,产品附加值高,工艺简单,容易产业化。

权利要求 :

1.一种采用磁控溅射法制备高附着力镀铝膜的方法,其特征在于,包括以下步骤:

1)将镀膜柔性基材放入磁控溅射装置,然后抽真空至本底气压6×10-3Pa以下;镀膜柔性基材选自聚酯、聚乙烯、聚丙烯或双向拉伸聚丙烯薄膜;磁控溅射装置电源采用直流、中频或高功率脉冲;

2)采用磁控溅射工艺溅射金属缓冲层,溅射气体为惰性气体,溅射靶材为金属;

3)将沉积有缓冲层的镀膜柔性基材送入镀膜室镀铝。

2.根据权利要求1所述的方法,其特征在于,步骤2)中的溅射气体惰性气体采用氩气或氦气;溅射金属靶材选自铝、铜、铬、钛、铁或上述金属的合金。

3.根据权利要求1所述的方法,其特征在于,步骤3)中的镀膜室镀铝方法包括电阻法蒸发、电子束法蒸发、高频感应蒸发或磁控溅射镀膜。

4.根据权利要求1所述的方法,其特征在于,步骤2)中所述金属缓冲层的溅射时间1-

60s,沉积厚度不超过50nm。

5.根据权利要求1所述的方法,其特征在于,步骤3)中所述的镀膜室镀铝采用磁控溅射镀膜,与步骤2)在同一套装置中完成,镀铝层的厚度为10-200nm。

说明书 :

一种采用磁控溅射法制备高附着力镀铝膜的方法

技术领域

[0001] 本发明属于柔性包装薄膜材料技术领域,涉及一种制备高附着力镀铝膜的方法,尤其涉及一种以磁控溅射技术沉积金属缓冲层制备高附着力镀铝膜的方法。

背景技术

[0002] 在柔性包装领域,特别是在食品包装领域,聚合物薄膜由于具有价廉、质轻、透光性好的等优点,越来越多的被人们用于替代玻璃或金属包装制品。但是,聚合物薄膜对氧气、水蒸气等小分子物质的阻隔性较差,严重地影响其在包装领域的广泛应用。在聚合物薄膜表面蒸镀铝膜可以提高其阻隔性能,镀铝膜表面致密的“铝光泽”有较好的阻隔效果,从而既起到美化产品包装,提高产品档次,又可减少包装成本。正因为镀铝膜产品具有美观、价廉及较好的阻隔性能,所以许多厂家都采用镀铝膜复合包装。目前,镀铝膜在国内外复合膜市场中已经被使用广泛,但镀铝膜附着力差的问题严重制约着其大规模推广和应用。当前国内普通镀铝膜的市场价约为7000元/吨,而高附着力镀铝膜的市场价在20000元/吨以上,为普通镀铝膜的3倍左右,并且可以出口。如何有效增强镀铝膜的附着性能,成为整个印刷、包装行业亟待解决的问题。
[0003] 塑料薄膜的镀铝工艺一般采用直镀法,即将铝层直接镀在基材薄膜表面。BOPET(双向拉伸聚酯)、BOPA(双向拉伸尼龙)薄膜基材镀铝前不需进行表面处理,可直接进行蒸镀。而BOPP(双向拉伸聚丙烯薄膜)、CPP(流延聚丙烯薄膜)、PE(聚乙烯)等非极性塑料薄膜,在蒸镀前需对薄膜表面进行涂布粘合层、电晕处理或者低温等离子体表面改性的方法,使其表面张力达到38-42达因/厘米或具有良好的粘合性,否则在其表面的蒸镀铝膜的附着力较差,受外力容易脱落。为此,国内外许多研究组开展了等离子体改性聚合物薄膜表面改性的研究工作。如大连理工大学任春生等采用空气介质阻挡放电(DBD)等离子体改性处理聚乙烯薄膜并在改性聚乙烯薄膜表面沉积Cu薄膜。研究发现,等离子体处理50s可以使得聚乙烯薄膜的水接触角从原始的93.28°降低到53.38°,表面能从27.3J/m增加到51.89J/m。聚乙烯薄膜表面沉积Cu薄膜的剥离强度从改性前仅为0.8MPa增加到1.5MPa。DBD等离子体表面改性可以显著的提高沉积Cu膜在聚乙烯薄膜表面的附着力。中国科学院电工研究所邵涛等采用两种不同放电模式的DBD等离子体处理聚酰亚胺薄膜,研究发现,经两种放电模式的DBD等离子体处理后,聚酰亚胺薄膜的表面形貌和化学成分都发生了变化,具体表现为聚酰亚胺表面亲水性增强、表面O含量以及粗糙度增加。北京印刷学院张海宝等采用大气压roll-to-roll介质阻挡放电等离子体前处理聚乙烯薄膜,经过不同活性单体等离子体气氛改性,聚乙烯薄膜表面能明显提高,并且聚乙烯薄膜表面能可以维持3个月稳定状态,有利于镀铝膜附着力的提高和阻隔性能的稳定。虽然上述薄膜改性方面在改善薄膜表面性能方面取得了一定的效果,但是在实际的实施过程中仍然存在一定的局限性,阻碍了长期的应用和发展。比如涂布粘合过程复杂、工艺影响因素较多,而电晕处理以及低温等离子体表面改性的方法由于作用粒子能量较低,薄膜表面改性往往只是集中在纳米级表层,能够承受的磨损时间很短,随着放置时间的延长,由于薄膜内部非极性基团的迁移,薄膜表面张力下降很快,严重影响镀铝膜质量的稳定性。
[0004] 非极性聚合物薄膜,如聚乙烯薄膜等质软且韧,而阻隔层材料如Al、Al2O3、SiO2等材料属于金属或者陶瓷,质地较硬,所以二者在物理性能特别是力学性能上存在很大的差异,正是由于这种差异的存在,导致膜基结合力较差,承载过程中膜层容易脱落。为了解决复合材料由于物理性能之间的差异导致的复合结合力较差的问题,在硬质合金研究领域,常常采用引入一种物理性质介于基膜二者之间的过渡层,以缓减由于基膜晶格常数、热膨胀系数等物理性质的突变,缓减应力集中的问题,从而提高膜层附着力。南京航空航天大学的徐峰等采用物理气相沉积(PVD)方法,在YG10硬质合金基体上制备了Cr、Nb、Ta等纯金属过渡层,并采用压痕试验来检测金刚石涂层的附着力。试验表明Nb过渡层改善金刚石涂层附着力的效果最好,而Ta过渡层由于与硬质合金基体附着力不足,导致其改善效果不明显。此外,一些研究人员还制备了Cu、Pt、Ni、Mo等纯金属过渡层,并且研究了这些过渡层与金刚石薄膜间的结合力,为扩大纯金属过渡层在金刚石刀具上的应用做出了启示性的工作。尽管如此,将金属过渡层用于增强高分子薄膜基材与无机涂层之间的附着力的研究较少。为增强超高分子量聚乙烯(UHWMPE)薄膜基体与表面无定型碳(DLC)薄膜之间的膜基结合力,裴亚楠等在UHWMPE薄膜表面引入金属Ti过渡层,因为Ti具有良好的生物相容性,Ti金属膜不仅可以使表面导电,解决膜沉积时的电荷累积问题,而且Ti的弹性模量介于UHWMPE与DLC之间,可以降低与膜的力学不匹配度,有利于提高DLC膜与UHWMPE基体间的膜基结合力。
[0005] 磁控溅射镀膜是在近十几年来发展迅速的一种表面薄膜技术,它是利用磁场控制辉光放电产生的等离子体来轰击出靶材表面的粒子并使其沉积到基体表面的一种技术。磁控溅射具有诸多优点:(1)溅射出来的粒子能量为几十电子伏特,粒子能量较大,因而薄膜/基体结合力较好,薄膜致密度较高;(2)溅射沉积速率高,基体温升小;(3)可以沉积高熔点金属、合金及化合物材料,溅射范围广;(4)能够实现大面积靶材的溅射沉积,且沉积面积大、均匀性好;(5)操作简单,工艺重复性好,易于实现工艺控制自动化。目前磁控溅射已经较大范围的应用于大规模集成电路、磁盘、光盘等高新技术产品的连续生产,以及大面积高质量镀膜玻璃等产品的连续生产中,其发展前景非常可观。从溅射粒子的能量角度考虑,真空蒸镀中到达基片的粒子能量只有约0.2eV,而磁控溅射粒子的平均能量分布在10eV左右,相比之下,即使考虑到在低压气体中溅射粒子的碰撞能量损失,磁控溅射粒子也还是比真空蒸发粒子的能量大得多,这也为采用磁控溅射的方式增强溅射镀膜在基片上的优良附着性能提供了有力的理论依据。尽管如此,目前还未见有采用磁控溅射金属缓冲层增强镀铝膜附着性能的相关研究和报道。

发明内容

[0006] 本发明的目的在于提供一种采用磁控溅射法制备高附着力镀铝膜的方法,以克服传统镀铝膜附着性能差、易脱落的问题。
[0007] 为实现上述目的,本发明的技术方案如下:
[0008] 一种采用磁控溅射法制备高附着力镀铝膜的方法,其特征在于该方法包括以下步骤:
[0009] 1)将镀膜基材放入磁控溅射装置,然后抽真空至本底气压6×10-3Pa以下;
[0010] 2)采用磁控溅射工艺溅射金属缓冲层,溅射气体为惰性气体,溅射靶材为金属;
[0011] 3)将沉积有缓冲层的镀膜基材送入镀膜室镀铝。
[0012] 在一些具体实施方案中,所述步骤1)中的镀膜基材包括常规镀铝基材的聚酯(PET)、聚乙烯(PE)、聚丙烯(PP)、双向拉伸聚丙烯(BOPP);磁控溅射装置电源采用直流、中频或高功率脉冲;步骤2)中的溅射气体惰性气体采用氩气或氦气;溅射金属靶材包括:铝(Al)、铜(Cu)、铬(Cr)、钛(Ti)、铁(Fe)或这些金属的合金;步骤3)中的镀膜室镀铝采用的镀膜方法包括电阻法蒸发、电子束法蒸发、高频感应蒸发或磁控溅射镀膜。
[0013] 在一些具体实施方案中,所述步骤2)中金属缓冲层的厚度为5-50nm;所述步骤3)中镀铝层的厚度为10-200nm。
[0014] 在一些具体实施方案中,所述步骤3)中的镀膜室镀铝采用磁控溅射镀膜,可以与步骤2)在同一套装置中完成。
[0015] 本发明通过磁控溅射的工艺可以极大地增强镀铝膜的附着性能,可获得附着力在10N/15mm以上的高附着性能镀铝膜,溅射过程清洁环保,产品附加值高,工艺简单,容易产业化。

附图说明

[0016] 图1为本发明所制备的高附着力镀铝膜剖视结构示意图。
[0017] 附图标记:1表示镀铝层,2表示缓冲层,3表示柔性基材。

具体实施方式

[0018] 本发明提供的一种采用磁控溅射法制备高附着力镀铝膜的方法,是以磁控溅射法在聚合物薄膜表面沉积金属缓冲层,然后经镀膜工艺沉积铝膜,获得高附着力镀铝膜,以克服传统镀铝膜附着性能差、易脱落的问题。
[0019] 本发明的具体工艺步骤如下:
[0020] 1)首先将镀膜基材放入磁控溅射装置,然后抽真空至本底气压6×10-3Pa以下;所述的镀膜基材包括常规镀铝基材的聚酯(PET)、聚乙烯(PE)、聚丙烯(PP)、双向拉伸聚丙烯(BOPP);磁控溅射装置电源采用直流、中频或高功率脉冲;磁控溅射电源的具体功率根据实际溅射过程来确定。
[0021] 2)采用磁控溅射工艺溅射金属缓冲层,溅射气体为惰性气体,溅射靶材为金属;所述的溅射气体采用氩气或氦气;溅射金属靶材包括铝(Al)、铜(Cu)、铬(Cr)、钛(Ti)、铁(Fe)或金属合金;所溅射的金属缓冲层的厚度为5-50nm。
[0022] 3)将沉积有缓冲层的聚合物基材送入镀膜室镀铝,所述的镀膜室镀膜采用的镀膜方法包括电阻法蒸发、电子束法蒸发、高频感应蒸发或磁控溅射镀膜,采用磁控溅射镀膜时可以和步骤2)在同一套装置中完成。
[0023] 下面举出几个具体实施例以进一步理解本发明:
[0024] 实施例1
[0025] 以PET为镀膜基材,放入直流磁控溅射装置样品台固定,然后抽真空至本底气压5-3×10 Pa;通入溅射气体氩气,气压为0.8Pa,以Al靶为溅射靶材,溅射电压380V,溅射电流
6.0A时,维持稳定的溅射状态3s,形成金属Al缓冲层。将镀有Al缓冲层的PET薄膜送入钨丝蒸发镀膜室蒸镀铝膜,铝膜厚度95nm,获得附着力为12.15N/15mm的镀铝膜。
[0026] 实施例2
[0027] 以PE为镀膜基材,放入直流磁控溅射装置样品台固定,然后抽真空至本底气压6×10-3Pa;通入溅射气体氩气,气压为0.6Pa,以Cr靶为溅射靶材,溅射电压385V,溅射电流6.2A时,维持稳定的溅射状态5s,形成金属Cr缓冲层。将镀有Cr缓冲层的PE薄膜送入电子束蒸发镀膜室蒸镀铝膜,铝膜厚度120nm,获得附着力为15.37N/15mm的镀铝膜。
[0028] 实施例3
[0029] 以PET为镀膜基材,放入高功率脉冲磁控溅射装置样品台固定,然后抽真空至本底-3气压5×10 Pa;通入溅射气体氩气,气压为0.5Pa,以Cr靶为溅射靶材,高功率脉冲电压
1000V,频率200Hz,脉宽:50us,维持稳定的溅射状态30s,形成金属Cr缓冲层。将镀有Cr缓冲层的PET薄膜送入钨丝蒸发镀膜室蒸镀铝膜,铝膜厚度100nm,获得附着力为16.58N/15mm的镀铝膜。
[0030] 实施例4
[0031] 以BOPP为镀膜基材,放入高功率脉冲磁控溅射装置样品台固定,然后抽真空至本底气压5×10-3Pa;通入溅射气体氩气,气压为0.5Pa,以Ti靶为溅射靶材,高功率脉冲电压900V,频率200Hz,脉宽:100us,维持稳定的溅射状态60s,形成金属Ti缓冲层。将镀有Ti缓冲层的BOPP薄膜送入钨丝蒸发镀膜室蒸镀铝膜,铝膜厚度90nm,获得附着力为11.62N/15mm的镀铝膜。
[0032] 实施例5
[0033] 以PET为镀膜基材,放入中频磁控溅射装置中,然后抽真空至本底气压6×10-3Pa;通入溅射气体氩气,气压为0.8Pa,以Al靶为溅射靶材,中频溅射功率11kW,维持稳定的溅射状态10s,形成金属Al缓冲层。将镀有Al缓冲层的PET薄膜送入高频感应蒸发镀膜室蒸镀铝膜,铝膜厚度150nm,获得附着力为10.25N/15mm的镀铝膜。