用于传输能量和数据的系统转让专利

申请号 : CN201810687140.9

文献号 : CN108512193B

文献日 :

基本信息:

PDF:

法律信息:

相似专利:

发明人 : M·邦德C·舍普费尔

申请人 : 索尤若驱动有限及两合公司

摘要 :

本发明涉及一种用于传输能量和数据的系统,该系统特别是包括半波控制装置,所述系统具有与电网相处于连接的控制单元,其中,所述系统具有相故障识别装置,所述相故障识别装置具有双稳态触发电路、特别是配置给相应电网相的双稳态触发电路,其中,每个双稳态触发电路具有用于进行设置的输入端和用于复位的输入端,其中,所述输入端之一与对相应电网相的正半波进行数字化的数字化装置连接,其中,所述输入端中的另一个与对相应电网相的负半波进行数字化的数字化装置连接,其中,所述双稳态触发电路的输出电压的有效值借助于比较装置与阈值相比较以识别相故障。

权利要求 :

1.一种用于传输能量和数据的系统,包括半波控制装置,所述系统具有与各个电网相处于连接的控制单元,其特征在于,在所述控制单元中将与所述电网相电压相应的电压输送给二极管(D1),所述二极管的输出信号-用作与电压相关的开关(Th)的控制电压,以及

-用于对电容(C3)充电,其中,充电电流通过另一二极管(D2)引导。

2.根据权利要求1所述的系统,其特征在于,发送装置使一线路选择性地与多个电网相之一连接,其中,接收器与所述电网相并且与所述线路电连接,

其中,所述接收器具有控制单元和负载,所述负载能由所述电网相供电,其特征在于,所述控制单元具有多个数字化装置,其中,每个数字化装置与所述电网相之一连接,在所述多个数字化装置中将与所述电网相电压相应的电压输送给二极管(D1),所述二极管的输出信号-用作与电压相关的开关(Th)的控制电压,以及

-用于对电容(C3)充电,其中,充电电流通过另一二极管(D2)引导。

3.根据权利要求1或2所述的系统,其特征在于,所述输出信号对电阻(R3)进行馈电,该电阻以其两个连接端之一与参考电势连接并且以其连接端中的另一个与所述二极管(D1)连接。

4.根据权利要求2所述的系统,其特征在于,当存在于控制输入端上的电压下降到所述电容(C3)上的电压以下时,所述与电压相关的开关(Th)释放和/或打开电流路径,其中,所述电流路径对光耦合器(V1)的输入端进行馈电。

5.根据权利要求2所述的系统,其特征在于,所述系统是轨道系统,所述接收器设置在移动部件上。

6.根据权利要求4所述的系统,其特征在于,所述光耦合器(V1)的与输入端在电流上隔离的输出信号被输送给用于探测半波的探测装置,其中,所述探测装置具有用于比较所述数字化装置的光耦合器的输出信号的比较装置,其中,配设给所述线路的输出信号与配设给所述电网相的输出信号相比较。

7.根据权利要求2所述的系统,其特征在于,每个数字化装置与所述电网相之一连接或者与所述线路连接,并且包括-配设用于使正半波数字化的数字化装置,以及

-配设用于使负半波数字化的数字化装置。

8.根据权利要求2所述的系统,其特征在于,每个数字化装置的分压器、电阻(R3)、电容(C3)、电流路径和/或光耦合器的各一个连接端相互电连接,由此形成参考电势。

9.根据权利要求1或2所述的系统,其特征在于,所述与电网相电压相应的电压是通过由电阻实现的分压器(R1、R2)产生的电压。

10.根据权利要求1或2所述的系统,其特征在于,所述电容是电容器。

11.根据权利要求2或7所述的系统,其特征在于,所述线路是命令相。

12.根据权利要求2所述的系统,其特征在于,所述多个电网相是三个电网相。

13.根据权利要求2所述的系统,其特征在于,接收器与所述电网相并且与所述线路通过滑接触点电连接。

14.根据权利要求2所述的系统,其特征在于,所述负载是对移动部件进行驱动的电机。

15.根据权利要求4所述的系统,其特征在于,所述电流路径对光耦合器(V1)的发光装置进行馈电。

16.根据权利要求5所述的系统,其特征在于,所述系统是单轨式架空轨道设备。

17.根据权利要求5所述的系统,其特征在于,所述接收器设置在轨道车辆上。

18.根据权利要求6所述的系统,其特征在于,所述探测装置是半波解码器。

说明书 :

用于传输能量和数据的系统

[0001] 本申请是申请号为201480066637.9的专利申请的分案申请,原申请的申请日为2014年12月5日,发明名称为“用于传输能量和数据的系统”。

技术领域

[0002] 本发明涉及一种用于传输能量和数据的系统。

背景技术

[0003] 一般已知的是,在用于传输能量和数据的轨道系统中接收器可被供给以能量。

发明内容

[0004] 因此,本发明的目的在于,在用于传输能量和数据的系统中以简单的方式构造电网相故障识别,特别是其中,能量供给借助于三相电压网路、即特别是正弦三相电压网路来实施,并且传输给接收器的信息的识别应可数字地实施。
[0005] 按照本发明,所述目的在根据本发明的用于传输能量和数据的系统中来实现。
[0006] 在所述系统中本发明的重要特征在于:所述系统被设置用于传输能量和数据,特别是包括半波控制装置,所述系统具有与各个电网相(Netzphase)相连接的控制单元,其中,所述系统具有相故障识别装置,所述相故障识别装置具有双稳态触发电路、特别是配置给相应电网相的双稳态触发电路,其中,每个双稳态触发电路具有用于进行设置的输入端和用于复位的输入端,其中,所述输入端之一与对相应电网相的正半波进行数字化的数字化装置连接,其中,所述输入端中的另一个与对相应电网相的负半波进行数字化的数字化装置连接,其中,双稳态触发电路的输出电压的有效值借助于用于识别相故障的比较装置与阈值相比较,特别地其方式是:整流并且平滑输出信号,由此,借助于比较装置监测经平滑的值是超过还是低于阈值,特别是其中,比较装置的输出信号输送给“或”-逻辑运算装置以形成相识别装置的输出信号。
[0007] 在此有利的是,可快速识别电网相故障并且可仅使用成本低廉的不太复杂的触发器。在此将每个电网相传送给一个路径和另一个路径,在所述一个路径中将正半波数字化,在所述另一个路径中将负半波数字化。配置给相应半波的数字化脉冲于是可作为触发器的设置信号或复位信号来使用。由此可以以非常简单的方式识别故障。一旦输出信号不再足够快速地变化,该输出信号的有效电压就下降并且可以以简单方式识别出故障。
[0008] 在一个有利的构型中,在控制单元中将与电网相电压相应的电压、特别是通过由电阻实现的分压器(R1、R2)产生的电压输送给二极管(D1),所述二极管的输出信号[0009] -作为用于与电压相关的开关(Th)的控制电压来使用,以及
[0010] -用于对电容(C3)、特别是电容器(C3)充电,特别是其中,
[0011] 充电电流通过二极管(D2)引导。
[0012] 在此有利的是,在超过电网相的相应半波的电压的峰值之后光耦合器产生脉冲形的信号,该信号的脉冲持续时间通过电容C3的电容值确定。由此以简单的方式能实现正弦曲线的数字化。
[0013] 在一个有利的构型中,发送装置使一线路、特别是命令相(Kommandophase)选择性地与多个、特别是三个电网相之一连接,其中,接收器与电网相并且与所述线路电连接,特别是通过滑接触点电连接,其中,接收器具有控制单元和负载、特别是驱动移动部件的电机,所述负载可由电网相进行供电,其中,所述控制单元具有多个数字化装置,其中,每个数字化装置与电网相之一连接,在多个数字化装置中将与电网相电压相应的电压、特别是通过由电阻实现的分压器(R1、R2)产生的电压输送给二极管(D1),所述二极管的输出信号[0014] -作为用于与电压相关的开关(Th)的控制电压来使用,以及
[0015] -用于对电容(C3)、特别是电容器(C3)充电,特别是其中,
[0016] 充电电流通过二极管(D2)引导。
[0017] 在此有利的是,在超过电网相的相应半波的电压的峰值之后光耦合器产生脉冲形的信号,该信号的脉冲持续时间通过电容C3的电容值确定。因此以简单的方式能实现借助于滑接导线传输给轨道车辆的能量的正弦曲线的数字化。
[0018] 在一个有利的构型中,输出信号对电阻(R3)进行馈电,所述电阻以其两个连接端之一与参考电势连接并且以其连接端中的另一个与二极管(D1)连接。在此有利的是,输出信号跟随半波的曲线。特别是电阻R3将输出信号可以说是拉到参考电势,即趋近于零。
[0019] 在一个有利的构型中,当存在于控制输入端上的电压下降到存在于电容(C3)上的电压以下时,与电压相关的开关(Th)释放电流路径和/或打开,其中,电流路径对光耦合器(V1)的输入端、特别是光耦合器(V1)的发光装置进行馈电。在此有利的是,仅仅受限的能量储备由电容提供并且由此仅仅可产生短时持续的脉冲。通过这种方式给每个正半波配置唯一的短脉冲或者作为替换方案并且在二极管D1的适合极性下给每个负半波配置唯一的短脉冲。
[0020] 在一个有利的构型中,所述系统是轨道系统、特别是单轨式架空轨道设备,并且接收器设置在移动部件、特别是轨道车辆上。在此有利的是,能实现半波控制,在所述半波控制中可由静止设置的发送器给设置在移动部件上的接收器传输信息。
[0021] 在一个有利的构型中,光耦合器(V1)的与输入端电流隔断的输出信号输送给用于探测半波的装置、特别是半波解码器,其中,所述装置具有用于对数字化装置的光耦合器的输出信号进行比较的比较装置,特别是其中,配置给所述线路的输出信号与配置给电网相的输出信号相比较。在此有利的是,由光耦合器产生的脉冲电脱耦并且可数字式地进行再处理。
[0022] 在一个有利的构型中,每个数字化单元与电网相之一连接或者与所述线路、特别是命令相连接,并且包括
[0023] -与正半波的数字化相配设的数字化装置,以及
[0024] -与负半波的数字化相配设的数字化装置。
[0025] 在此有利的是,分别对于正半波存在一个光耦合器和对于负半波存在一个光耦合器。
[0026] 在一个有利的构型中,对相应电网相的正半波进行数字化的信号、即特别是配置给相应电网相的数字化单元的光耦合器(V1)的与输入端电流隔断的输出信号被输送给双稳态触发电路的用于进行设置的输入端;对相应电网相的负半波进行数字化的信号、即特别是配置给相应电网相的数字化单元的光耦合器(V1)的与输入端电流隔断的输出信号被输送给双稳态触发电路的用于复位的输入端,其中,监测双稳态触发电路的输出信号的有效值是超过还是低于阈值,特别地其方式是:整流并且平滑输出信号,由此借助于比较装置监测经平滑的值是超过还是低于阈值。在此有利的是,可以以简单的方式实施相故障识别。特别是为此可使用触发器。
[0027] 在一个有利的构型中,将比较装置的输出信号进行“或”-逻辑运算,由此,所述“或”-逻辑运算的输出信号在电网相故障时占据第一状态、特别是“HIGH”状态,否则占据另一状态、特别是“LOW”状态。在此有利的是,可以以简单的方式特别是以类似方式借助于二极管实施“或”-逻辑运算。
[0028] 在一个有利的构型中,每个数字化装置的分压器、电阻(R3)、电容(C3)、电流路径和/或光耦合器的各一个连接端相互电连接,特别是由此形成参考电势。在此有利的是,通过这种方式可形成星接点,而不必设置根据现有技术在电网相之间利用电容器或电阻星形连接成的星接点。

附图说明

[0029] 现在借助于附图详细描述本发明。其中:
[0030] 图1中示出按照本发明的控制单元、数字化单元5和相故障识别装置3的示意性框图,该相故障识别装置监测数字化单元5的输出信号。
[0031] 图2中详细示出数字化单元5之一的配置给正半波的数字化装置,其中,数字化装置由相应的电网相电压的每个正半波产生数字电压脉冲。
[0032] 图3中详细示出数字化单元的分别配置给正半波的数字化装置的联接。
[0033] 图4中详细示出相故障识别装置3。

具体实施方式

[0034] 如图中所示,借助于控制单元能实现相电压的分析处理,特别是命令相与相应的电网相的比较。此外可实施相故障的识别。
[0035] 电网相由三相电压网路进行馈电并且引导在理想情况下呈正弦的、彼此相对移位120°或240°的相电压。
[0036] 借助于命令相可传输数据。在此由图中未示出的发送装置给命令相施加电网相(L1、L2、L3)之一的正或负半波。由此,通过给线路C1、即命令相C1施加相应电网相(L1、L2、L3)的半波中的一个相应半波可传输信息。
[0037] 在按照本发明的控制单元中然后对信息解码,其方式是:识别在相应时刻存在于命令相C1上的电网相(L1、L2、L3)。
[0038] 优选控制单元设置在移动单元上,该移动单元借助于滑接导线被供电。即电网相(L1、L2、L3)和命令相由此借助于滑接触点传输给移动部件。
[0039] 借助于相应的数字化单元5,相应的半波转换为数字信号,即给每个到达控制单元输入端的正半波分别在第一数字化装置的输出端上配置一个数字脉冲或者给每个到达控制单元输入端的负半波分别在另外的数字化装置的输出端上配置一个数字脉冲。
[0040] 如图2中在数字化单元5的对正半波进行数字化的数字化装置上所示的那样,存在于数字化单元5的输入端上的相应的电网相电压(图2:电网相L1)借助于由电阻R1和R2的串联电路形成的分压器减小并且所述减小的电压被引导通过二极管D1,由此,仅仅正半波导通。可选择地设置有用于平滑的电容器C2。二极管D1的输出电压对电阻R3进行馈电,该电阻的另一连接端接在参考电势ref1上。由此,在电阻R3上存在这样的电压:该电压成比例于并且在存在电容器C2时基本上成比例于存在于数字化装置5的输入端上的电网相(L1)的半波式曲线。由此可通过二极管D2对电容器C3进行馈电。
[0041] 与电压相关的开关Th、特别是晶闸管由存在于电容器C3上的电压进行供给。作为存在于开关Th的控制输入端上的控制电压使用存在于电阻R3上的电压。
[0042] 因此,如果现在半波超过了其峰值并且因此电阻R3上的电压下降,那么电容器C3上的电压首先保持恒定。然而一旦开关Th然后转换,那么电容器C3通过设置在开关Th的输出端上的光耦合器V1和串联电阻R4放电以便限流。放电在这样的时间间隔内进行:该时间间隔短于半波的持续时间,也就是网路交流电压的半个周期持续时间。
[0043] 电阻R2、R3和电容器C3以及光耦合器V1的发光二极管分别以其连接端之一与参考电势ref1连接。
[0044] 由此,借助于光耦合器V1可在电流隔断的输出端上产生数字化装置的输出信号dig_out。
[0045] 即由此对于每个正半波在超过该半波的峰值之后产生短脉冲作为输出信号。
[0046] 因此,如图1中所示,电网相L1输送给数字化单元5,所述数字化单元具有根据图2的用于正半波数字化的第一数字化装置以及相应的在图中未示出的用于负半波的数字化装置,该数字化装置基本上通过换极设置的二极管D1来区分。
[0047] 因此,属于正半波的信号输出dig_out和相应的属于负半波的信号输出可传导到半波解码器2。同样,属于其它电网相(L2、L3)以及属于命令相C1的数字化单元5的相应输出信号引导到半波解码器2。
[0048] 因此在半波解码器中命令相C1可与电网相(L1、L2、L3)比较并且传输的信息由此是可解码的并且可输送给控制装置4。
[0049] 借助于相故障识别装置3可识别电网相的故障。如果电网相至少之一故障,那么为此将相应的警告信号传输给控制装置4。由此,在分析处理时可考虑警告信号。
[0050] 由此可提高信息传输的可靠性。
[0051] 相故障识别装置3具有三个双稳态触发电路40,所述双稳态触发电路优选构造成触发器、特别是RS或JK触发器。每个双稳态触发电路40具有一个输入端S、即用于进行设置的输入端和一个输入端R、即用于复位的输入端。
[0052] 相应的用于进行设置的输入端与相应数字化单元5的配置给正半波的数字化装置的相应输出端dig_out连接。
[0053] 相应的用于复位的输入端与相应数字化单元5的配置给负半波的数字化装置的相应输出端连接。
[0054] 由此,配置给电网相L1的第一双稳态触发电路40的输出端通过电网相L1的正半波的引入来设置并且通过负半波的随后引入来复位。
[0055] 相应的双稳态触发电路40的输出信号被引导通过电容器C4并且由此抑制直流电压分量。通过这种方式滤波的输出信号借助于整流装置41整流并且借助于平滑装置42、特别是电容器进行平滑,由此基本上产生直流电压。
[0056] 借助于平滑装置42平滑的电压值借助于比较装置43与临界电压值比较。临界电压值这样选择,使得在临界电压值被超过时不存在电网相的故障并且在低于临界电压值时存在电网相的故障。
[0057] 配置给电网相(L1、L2、L3)的比较装置的输出信号输送给逻辑运算装置44、特别是累计装置,该逻辑运算装置对三个信号这样逻辑运算,使得在电网相(L1、L2、L3)之一或多个故障时产生相应输出信号45。由此,电网相故障的识别可以以简单的方式实施并且可显示在唯一输出信号中。
[0058] 因为如果电网相(L1、L2、L3)之一故障,那么所属的双稳态触发电路40不再改变其输出状态。由此,在平滑装置42的输出端上的电压下降并且比较装置43作为输出电压产生“HIGH”(高)电平代替在存在该电网相时产生的“LOW”(低)电平。
[0059] 所有数字化单元5的所有数字化装置的参考电势电连接并且因此形成星接点,即基准电势。附加的借助于电阻和/或其它构件在电网相之间形成的星接点因此是不必要的。
[0060] 在另一按照本发明的实施例中,警告信号甚至传输给半波解码器2并且在那里在信息解码时予以考虑。
[0061] 附图标记列表:
[0062] 1 半波分析处理装置
[0063] 2 半波解码器
[0064] 3 相故障识别装置
[0065] 4 控制装置
[0066] 5 数字化单元
[0067] 40 双稳态触发电路、特别是触发器、特别是RS或JK触发器
[0068] 41 整流装置
[0069] 42 平滑装置
[0070] 43 比较装置
[0071] 44 逻辑运输装置、特别是累计装置
[0072] 45 输出信号
[0073] L1 第一电网相
[0074] L2 第二电网相
[0075] L3 第三电网相
[0076] C1 命令相
[0077] VCC 供给电压
[0078] GND 接地
[0079] Ref1 参考电势
[0080] Dig_out 数字化单元5的输出信号
[0081] Th 与电压相关的开关装置、特别是晶闸管
[0082] C2 电容器
[0083] C3 电容器
[0084] C4 电容器
[0085] D1 二极管
[0086] D2 二极管
[0087] R1 电阻
[0088] R2 电阻
[0089] R3 电阻
[0090] R4 电阻
[0091] R5 电阻
[0092] V1 光耦合器