会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
首页 / 专利库 / 高升力装置 / Stress detection device for vehicle for high lift work

Stress detection device for vehicle for high lift work

申请号 JP2002376117 申请日 2002-12-26 公开(公告)号 JP2004203574A 公开(公告)日 2004-07-22
申请人 Aichi Corp; 株式会社アイチコーポレーション; 发明人 MOROTA TAKASHI; NAKAZAWA SHUNICHI;
摘要 PROBLEM TO BE SOLVED: To provide a stress detection device for a vehicle for high lift work capable of improving precision in determining fatigue.
SOLUTION: A stress detection device 60 is taken into a boom operation controller 40 controlling operation of boom actuators 15, 21, 23. The stress detection device 60 is provided with a strain gage 61 attached to a basic part of a turn base and an elapse time signal generation circuit 69 outputting an elapse time signal at a predetermined interval from the time of drive of at least any of running operation of the vehicle and boom operation to receive the elapse time signal from the elapse time signal generation circuit 69. The stress detection device 60 has a stress value taking-in circuit 73 taking in a stress value calculated by a stress computing circuit 71 in accordance with a detected value from the strain gage 61 when receiving the elapse time signal and a memory 75 storing a work base position calculated by a position calculation circuit 49 in accordance with the elapse time signal, a stress value taken in by the stress value taking-in circuit 73, and a detected value from a work base position sensor 41 by letting it correspond to the elapse time signal.
COPYRIGHT: (C)2004,JPO&NCIPI
权利要求
  • 走行可能に構成された走行体と、前記走行体に少なくとも起伏動可能に設けられたブームと、前記ブームの先端部に設けられた作業台とを有してなる高所作業車の応力検出装置であって、
    前記高所作業車のいずれか一箇所もしくは複数箇所に設けられ、この箇所に作用する応力を検出する応力検出手段と、
    前記走行体による走行動もしくは前記ブームの作動の時から所定の間隔で経過時間信号を出力する時間信号出力手段と、
    前記時間信号出力手段からの前記経過時間信号を受け取ると、この経過時間信号を受けたときの前記応力検出手段により検出された応力値を取り込む応力値取込手段と、
    前記経過時間信号及びこれに対応して前記応力値取込手段により取り込まれた応力値を記憶する記憶手段とを有して構成されていることを特徴とする高所作業車の応力検出装置。
  • 前記ブームの作動を制御するブーム作動制御手段を有し、
    前記ブーム作動制御手段は前記走行体に対する前記作業台の位置を検出する作業台位置検出手段を備え、
    前記記憶手段に、前記経過時間信号とこれに対応して前記応力値取込手段により取り込まれた前記応力値及び前記経過時間信号に対応して前記作業台位置検出手段により検出される作業台位置が記憶されるように構成されていることを特徴とする請求項1記載の高所作業車の応力検出装置。
  • 说明书全文

    【0001】
    【発明の属する技術分野】
    本発明は、高所作業車の応力検出装置に関し、更に詳細には、走行可能に構成された走行体と、走行体に少なくとも起伏動可能に設けられたブームと、ブームの先端部に設けられた作業台とを有してなる高所作業車の応力検出装置に関する。
    【0002】
    【従来の技術】
    高所作業を行なう高所作業車には、例えば、走行可能に構成された走行体に旋回動自在に設けられた旋回台と、旋回台に上下に揺動可能に取り付けられたブームと、ブームの先端部に上下に揺動可能に取り付けられた作業台とを有して構成されているものがある。 このような高所作業車は、走行体の走行により作業現場に移動し、ブーム及び旋回台を作動させて作業台を所望の位置に移動させることができる。
    【0003】
    ここで、作業台には作業者の負荷や作業にともなう負荷が作用するが、これらの負荷は変動荷重となってブームを介して旋回台に作用する場合が多いので、ブームを支持する旋回台は静荷重の場合よりも小さい荷重で疲労する事態を考慮した設計が行なわれている。 例えば、ブームが水平方向に延びた状態において、旋回台の基部(以下、「最弱部」と記す。)には大きな負荷が作用するため、この最弱部に想定される最大の負荷を想定される繰り返し回数与えた場合でも最弱部が破断しないように設計する。 このように変動荷重を考慮して設計することで、旋回台の寿命を向上させることができる。 なお、このように疲労を考慮した耐久性判断を行うものとして、例えば、特許文献1に開示の装置がある。
    【0004】
    また、作業台に作用する変動負荷はブームや走行体にも作用するため、旋回台と同様にブームや走行体も疲労を考慮した設計が行なわれている。
    【0005】
    ここで、旋回台、ブーム及び走行体の疲労の度合いを判定するには、疲労判定される部品に作用した応力と、応力が作用した繰返し回数(以下、応力繰返し回数と記す)を知る必要がある。 このため、高所作業車を使用する作業車から作業内容をヒアリングするとともに、アワーメータからブームの稼動時間及び走行体の走行時間を得ている。
    【0006】
    【特許文献1】実用新案登録第3066993号公報【0007】
    【発明が解決しようとする課題】
    しかしながら、作業者からの申告内容は実際のブームの使用状態と必ずしも一致しない場合があり、疲労判定の精度が低下するという問題が生じる。
    【0008】
    本発明は、このような問題に鑑みてなされたものであり、正確な疲労判定を行なうことができる高所作業車の応力検出装置を提供することを目的とする。
    【0009】
    【課題を解決するための手段】
    前記課題を解決するために本発明に係わる高所作業車の応力検出装置は、走行可能に構成された走行体(例えば、実施形態における車体3)と、走行体に少なくとも起伏動可能に設けられたブームと、ブームの先端部に設けられた作業台とを有してなる高所作業車の応力検出装置であって、高所作業車のいずれか一箇所もしくは複数箇所に設けられ、この箇所に作用する応力を検出する応力検出手段(例えば、実施形態におけるひずみゲージ61)と、走行体による走行動もしくはブームの作動の時から所定の間隔で経過時間信号を出力する時間信号出力手段(例えば、実施形態における経過時間信号発生回路69)と、時間信号出力手段からの経過時間信号を受け取ると、この経過時間信号を受けたときの応力検出手段により検出された応力値を取り込む応力値取込手段(例えば、実施形態における応力値取込回路73)と、経過時間信号及びこれに対応して応力値取込手段により取り込まれた応力値を記憶する記憶手段(例えば、実施形態におけるメモリ75)とを有して構成される。
    【0010】
    上記構成の応力検出装置によれば、高所作業車のいずれか一箇所もしくは複数箇所に応力検出手段を設け、この応力検出手段からの応力値を走行体の走行動もしくはブームの作動の時から経過時間毎に経過時間とともに記憶することで、応力検出手段が設けられた場所に作用する応力値と経過時間を正確に得ることができる。 このため、これらの応力値と経過時間とから応力が作用した回数と応力値との関係を求めることで、応力検出手段が設けられた場所の疲労判定を正確に行なうことができる。
    【0011】
    また、上記構成の応力検出装置において、ブームの作動を制御するブーム作動制御手段(例えば、実施形態におけるブーム作動制御装置40)を有し、ブーム作動制御手段は走行体に対する作業台の位置を検出する作業台位置検出手段(例えば、実施形態における作業台位置センサ41)を備え、記憶手段に、経過時間信号とこれに対応して応力値取込手段により取り込まれた応力値及び経過時間信号に対応して作業台位置検出手段により検出される作業台位置を記憶するように構成されてもよい。
    【0012】
    上記構成の応力検出装置によれば、記憶手段に作業台位置検出手段からの経過時間信号に対応した作業台位置を記憶させることで、応力値と経過時間との関係から応力作用回数と応力値との関係を求める場合、作業台位置を考慮して応力が作用した回数を実状に合った数にすることができる。 このため、応力検出手段が設けられた部材の疲労判定をより正確に行なうことができる。
    【0013】
    【発明の実施の形態】
    以下、本発明の好ましい実施の形態を図1から図4に基づいて説明する。 本実施の形態は、伸縮動可能に構成されたブームの先端に作業台を備えた高所作業車の態様を示す。 先ず、本発明に係わる応力検出装置を説明する前に、この応力検出装置を搭載した高所作業車を説明する。 高所作業車1は、図1に示すように、トラック車両をベースとして構成され、車体3の前後左右両端部に一対の前輪5及び後輪7を配設して走行可能であり、車体3の前部に運転キャビン9を有して構成されている。 運転キャビン9内には後輪7を制動状態にするパーキングベレーキPが配設され、車体3の前後の左右両側部には車体3を持ち上げ支持するジャッキ11が配設されている。 運転キャビン9よりも車両後方側の車体3の前側中央部には旋回動自在に構成された旋回台13が取り付けられ、車体3に内蔵された旋回モータ15により旋回動可能に構成されている。 この旋回台13にブーム20の基部が起伏動自在に枢結され、ブーム20は起伏シリンダ21により起伏動可能である。
    【0014】
    ブーム20は複数のブーム部材を入れ子式に組み合わせて伸縮動自在であり、内蔵された伸縮シリンダ23により伸縮動可能である。 ブーム20の先端部には作業台25が上下に揺動可能に枢結され、レベリング装置29により作業台25はブーム20の起伏角度に拘わらず水平状態に支持されている。 作業台25にはブーム20の旋回動、起伏動及び伸縮動を操作するブーム操作装置31が設けられている。 ブーム20は全縮状態で車両前方側から後方側へ倒伏動した状態で車両に格納される。
    【0015】
    運転キャビン9内には、図示しないエンジンの駆動力を取り出して旋回モータ15、起伏シリンダ21及び伸縮シリンダ23(以下、これらをまとめて「ブームアクチュエータ15、21、23」と記す。)等の駆動源である図示しない油圧ポンプを駆動させるPTO機構(図示せず)の駆動を操作するPTOスイッチ(PTO SW33)が配設されている。
    【0016】
    このように構成された高所作業車1には、図2に示すように、ブームアクチュエータ15、21、23の作動をコントロールするブーム作動制御装置40が搭載されている。 ブーム作動制御装置40は、ブーム操作装置31、作業台位置センサ41及び車両コントローラ45とを有して構成されている。 ブーム操作装置31は傾動可能に構成された図1に示す操作レバー31aを備え、この操作レバー31aを前後左右方向に傾動すれば車両コントローラ45を介して旋回モータ15の旋回動作、起伏シリンダ21の伸縮動作及び伸縮シリンダ23の伸縮動作を操作可能に構成されている。 作業台位置センサ41は、図1に示す旋回台13の旋回角度を検出する旋回角センサ(図示せず)と、図1に示すブーム20の車体3に対する起伏角度を検出する起伏角センサ(図示せず)と、図1に示すブーム20の伸長量を検出する伸長センサ(図示せず)とを有して構成されている。
    【0017】
    車両コントローラ45には、ブーム操作装置31からの操作信号に応じてブームアクチュエータ15、21、23の各作動をコントロールする作動制御弁Vのそれぞれの作動を制御する作動制御回路47と、作業台位置センサ41(旋回角センサ、起伏角センサ、伸長センサ)からの検出値に応じて図1に示す作業台25の位置を算出する位置算出回路49と、位置算出回路49により算出された作業台位置が予め設定された作業台25の移動できる許容移動領域(図示せず)を越えているか否かを判定する移動判定回路51と、移動判定回路51により作業台25の位置が許容移動領域を越えていると判定されたときに作動制御回路47から作動制御弁Vへの作動制御信号の伝達を遮断してブームアクチュエータ15、21、23の作動を規制する作動規制回路53とを有して構成されている。 なお、移動判定回路51は図1に示すブーム20を介して車体3に作用するモーメントを検出するモーメントセンサ(図示せず)からのモーメント値が許容モーメントを越えたか否かを判定し、モーメント値が許容モーメントを越えた旨の判定をしたときに作動規制回路53を作動させるようにしてもよい。
    【0018】
    このように構成されたブーム作動制御装置40は、疲労判定を行なうため車両のいずれかの部分に作用する応力を検出してこれを記憶する応力検出機能を備えた応力検出装置60を取り込んでいる。 この応力検出装置60は、ひずみゲージ61、ブレーキ作動検知センサ63、PTO SW33及び車両コントローラ45に内蔵された応力検出部67とを有して構成されている。 ひずみゲージ61は旋回台13の基部13aの最弱部に取り付けられ、ブーム20の作動により旋回台13に作用する負荷及び車両走行によりブーム20が上下動等して旋回台13に作用する負荷により生じる基部13aのひずみを検出する。 ブレーキ作動検知センサ63は図1に示すパーキングブレーキPが作動状態にある、即ち、後輪7が制動状態にあることを検知するセンサである。 PTO SW33は前述したのでその説明は省略する。
    【0019】
    応力検出部67は、経過時間信号発生回路69と応力演算回路71と応力値取込回路73とメモリ75とを有して構成されている。 経過時間信号発生回路69はブレーキ作動検知センサ63からの図1に示すパーキングブレーキPが非作動状態にある旨の非作動信号、又はPTO SW33が操作されて図示しないエンジンの駆動力を取り出すためのON信号を受けたときに作動して所定間隔毎に時間信号を発生する機能を有し、所定間隔は任意に調整可能に構成されている。 応力演算回路71はひずみゲージからの検出値に応じて図1に示す旋回台13の基部13aに作用する応力を演算する機能を有する。 応力値取込回路73は経過時間信号発生回路69からの経過時間信号を受け取る毎にこの経過時間信号を受けたときの応力演算回路71により演算された応力値を取り込む機能を有する。 メモリ75には、経過時間tnと、経過時間tnに対応して応力値取込回路により取り込まれた応力値及び位置算出回路49からの経過時間tnに対応した作業台位置が記憶される。 即ち、メモリには、図3に示す経過時間t1、t2…tnと、これに対応した応力値σn及び作業台位置が記憶される。
    【0020】
    さて、このように構成された応力検出装置60を兼ね備えたブーム作動制御装置40は、車両が移動している場合には、図2に示すように、図1に示すパーキングブレーキPは非作動状態になるのでブレーキ作動検知センサ63が非作動信号を出力し、車両が作業現場に移動して図1に示すブーム20により作業が行なわれている場合には、PTO SW33からON信号が出力される。 このため、図1に示す旋回台13の基部13aに変動負荷が作用する虞のある状態になると応力検出装置60が作動して経過時間信号が発生する。 そして、応力値取込回路73が経過時間信号毎に応力演算回路71により演算された応力値を取り込み、メモリ75に、図3に示す経過時間t1、t2…tnと、これに対応した応力値σ1、σ2…σn及び作業台位置が記憶される。 なお、作業台位置は作業台位置センサ41からの検出値に応じて位置算出回路49により算出されて経過時間とともにメモリ75に記憶される。
    【0021】
    このため、変動負荷により図1に示す旋回台13の基部13aに発生する応力の殆どをメモリ75に記憶させることができる。
    【0022】
    続いて、メモリ75に記憶されたデータに基づいて図1に示す旋回台13の基部13aを構成する部材の寿命判定について説明する。 図4は旋回台13の基部13aを構成する部材の疲労特性を示しており、縦軸が応力振幅S、横軸が応力繰り返し回数Nを示したいわゆるS−N曲線である。 図4に示すように、応力がある値以下になると、いくら繰返し荷重を作用させても破断は生ぜずS−N曲線は水平になる。 この水平部はこの応力以下では永久に破壊しないと考えられるので、この曲線が水平になる限界の応力値を一般に疲れ限度と呼ばれている。 また、S−N曲線の傾斜部では疲れ限度以上の応力に対してその値に応じた破断までの繰り返し回数をS−N曲線によって推定することができる。
    【0023】
    そこで、図1に示す旋回台13の基部13aを構成する部材の寿命判定は、先ず、破断に至る繰り返し回数NをS−N曲線によって推定する。 例えば、旋回台13の基部13aに変動負荷が作用して応力σ1及び応力σ2が発生した場合、これらの応力に対応したS−N曲線から推定される応力繰返し回数NはそれぞれN1、N2となる。 続いて、応力繰返し回数Nに対する実際に基部13aの部材に作用した応力繰返し回数の比を求める。 そして、この値が諸定値を超えているか否かで部材の寿命判定を行なう。 ここで、前述したように部材に作用した負荷が変動して2種類の応力σ1、σ2が発生した場合には、直線被害法則と呼ばれる数式1により寿命判定を行なう。
    【0024】
    【数1】
    n1/N1+n2/N2=C
    【0025】
    ここで、n1は応力σ1が発生した回数であり、N1はS−N曲線上のσ1に対応する応力繰り返し回数であり、n2は応力σ2が発生した回数であり、N2はS−N曲線上のσ2に対応する応力繰り返し回数であり、Cは定数で通常C=1である。 即ち、n1/N1+n2/N2=1になると部材が破壊することを意味している。
    【0026】
    さて、応力σ1が発生した回数n1と応力σ2が発生した回数n2は、図2に示すメモリ75に記憶されたデータに基づいて数えられる。 メモリ75に記憶されたデータは、図3に示すように、経過時間tとともに応力σが記憶されており、このデータは図2に示すパソコン80等に読み込まれて回数n1、n2が数えられる。 ここで、例えば、回数n2を数える場合、図3の矢印Aが示すように、隣接する経過時間tの各応力σ2が一定であるときには図2に示す位置算出回路49からの経過時間tに対応した図1に示す作業台25の位置情報を加味する。 即ち、応力値と作業台位置情報が同じであれば、この経過時間における応力繰り返し回数は4回ではなく1回として数える。 これは、この経過時間内では負荷変動が無く、発生した応力は一回だからである。 なお、回数n1も回数n2の場合と同様にして数えられる。 このため、応力繰り返し回数n1、n2は実状に合った数となる。
    【0027】
    続いて、図2に示すパソコン80は、前述した数式1に図4に示すS−N曲線から推定されたN1、N2と前述した数えた応力繰り返し回数n1、n2を代入して演算し、演算された値と1との比較を行なう。 そして、パソコン80は演算された値が1を越えていれば旋回台13の基部13aは疲労寿命と判定し、演算された値が1よりも小さければ使用可能状態にあると判定する。 なお、パソコン80による疲労判定は、パソコン80に設定されたプログラムに従って行なわれ、プログラムの内容は変更可能である。 すなわち、上記数式1における定数Cの値を適宜変更設定したり、上記直線被害法則とは異なる疲労被害法則に基づく疲労寿命計算を行っても良い。 なお、疲労被害法則については、直線被害法則を修正したものなど、従来から種々の法則が提案されており、これらは公知であるのでこれらに基づく疲労寿命計算についての説明は省略する。
    【0028】
    このように、図1に示す旋回台13の基部13aに変動負荷が作用すると考えられる状態において、この基部13aに生じる応力の全てが経過時間に対応させて図2に示すメモリ75に記憶され、また応力繰り返し回数n1、n2は実状に合った数として計数されるので、寿命判定を正確に行なうことができる。
    【0029】
    なお、前述した実施の形態では、旋回台13の基部13aにひずみゲージ61を取り付けたが、この場所に限るものではなく、高所作業車1のいずれの場所に取り付けてもよい。
    【0030】
    【発明の効果】
    以上説明したように、本発明における高所作業車の応力検出装置によれば、高所作業車のいずれか一箇所もしくは複数箇所に応力検出手段を設け、この応力検出手段からの応力値を走行体の走行動もしくはブームの作動の時から経過時間毎に経過時間とともに記憶することで、応力検出手段が設けられた場所に作用する応力値と経過時間を正確に得ることができる。 このため、これらの応力値と経過時間とから応力が作用した回数と応力値との関係を求めることで、応力検出手段が設けられた場所の疲労判定を正確に行なうことができる。
    【図面の簡単な説明】
    【図1】本発明の一実施の形態における応力検出装置を搭載した高所作業車の正面図を示す。
    【図2】本発明の一実施の形態における応力検出装置のブロック図を示す。
    【図3】本発明の一実施の形態における応力検出装置のメモリに記憶されるデータを示す。
    【図4】本発明の一実施の形態における疲労判定時に使用されるS−N曲線を示す。
    【符号の説明】
    1 高所作業車3 車体(走行体)
    20 ブーム25 作業台40 ブーム作動制御装置(ブーム作動制御手段)
    41 作業台位置センサ(作業台位置検出手段)
    60 応力検出装置61 ひずみゲージ(応力検出手段)
    69 経過時間信号発生回路(時間信号出力手段)
    73 応力値取込回路(応力値取込手段)
    75 メモリ(記憶手段)