会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
首页 / 专利库 / T桁条 / 一种碳纤维复合材料卫星支承舱及其制备方法

一种碳纤维复合材料卫星支承舱及其制备方法

申请号 CN202310796888.3 申请日 2023-07-03 公开(公告)号 CN116518795A 公开(公告)日 2023-08-01
申请人 江苏亨睿航空工业有限公司; 发明人 顾勇涛; 朱月琴; 王一飞; 王文轩; 单柯;
摘要 本发明公开了一种碳纤维复合材料卫星支承舱,包括截锥型壳体以及在截锥型壳体外壁上辐向设置的长桁;所述截锥型壳体包括锥面、上端环形翻边、下端环形翻边;其特征在于所述长桁为变截面T型长桁,包括腹板和缘条;所述长桁两端的缘条宽度大于中段区域缘条的宽度;所述锥面、上端环形翻边、下端环形翻边以及变截面T型长桁为全碳共固化一体成型。该结构通过碳纤维复合材料加筋长桁蒙皮结构,同时通过将长桁设置为变截面T型长桁,长桁头部和尾部的缘条加宽的设计结构,实现了在无内部支撑框架等支撑结构情况下增强支承舱整体强度和刚度。
权利要求

1.一种碳纤维复合材料卫星支承舱,包括截锥型壳体以及在截锥型壳体外壁上辐向设置的长桁;所述截锥型壳体包括锥面、上端环形翻边、下端环形翻边;其特征在于所述长桁为变截面T型长桁,包括腹板和缘条;所述变截面T型长桁两端的缘条宽度大于中段区域缘条的宽度;所述锥面、上端环形翻边、下端环形翻边以及变截面T型长桁为全碳共固化一体成型。

2.根据权利要求1所述的一种碳纤维复合材料卫星支承舱,其特征在于所述截锥型壳体由第一碳纤维单向带预浸料层和碳纤维织物预浸料层复合而成;所述第一碳纤维单向带预浸料层作为中间层,所述碳纤维织物预浸料层包括粘附在第一碳纤维单向带预浸料层一侧的第一碳纤维织物预浸料层和粘附在第一碳纤维单向带预浸料层另一侧的第二碳纤维织物预浸料层;所述变截面T型长桁由第二碳纤维单向带预浸料层复合而成,所述第二碳纤维单向带预浸料层中铺层角度为0°的比例大于等于60%。

3.根据权利要求2所述的一种碳纤维复合材料卫星支承舱,其特征在于所述变截面T型长桁的第二碳纤维单向带预浸料层的铺层角度为0°:±45°:90°=6:3:1。

4.根据权利要求1所述的一种碳纤维复合材料卫星支承舱,其特征在于所述相邻变截面T型长桁位于头部的缘条外侧相互抵接。

5.根据权利要求4所述的一种碳纤维复合材料卫星支承舱,其特征在于所述变截面T型长桁头部的顶壁抵接支撑截锥型壳体的上端环形翻边。

6.根据权利要求1所述的一种碳纤维复合材料卫星支承舱,其特征在于所述截锥型壳体的上端环形翻边和下端环形翻边的厚度大于锥面厚度。

7.一种碳纤维复合材料卫星支承舱的制备方法,基于权利要求1‑6任一所述的一种碳纤维复合材料卫星支承舱,其特征在于包括以下步骤:铺贴截锥型壳体部分,在模具的贴膜面铺贴截锥型壳体的第一碳纤维织物预浸料层;

在第一碳纤维织物预浸料层上铺贴第一碳纤维单向带预浸料层;在第一碳纤维单向带预浸料层上铺贴第二碳纤维织物预浸料层;

铺贴变截面T型长桁部分,按铺层比例为0°:±45°:90°=6:3:1铺贴第二碳纤维单向带预浸料层;

合模热固,将模具合模后进行加热固化;

开模脱模,将加热固化后的卫星支承舱进行脱模处理。

8.根据权利要求7所述的一种碳纤维复合材料卫星支承舱的制备方法,其特征在于所述模具包括阳模、挡圈模具和若干个扇形滑块;所述扇形滑块和挡圈模具与阳模合模后形成支承舱模腔;所述扇形滑块包括金属扇形滑块和硅胶扇形滑块;所述金属扇形滑块和硅胶扇形滑块间隔布置。

说明书全文

一种碳纤维复合材料卫星支承舱及其制备方法

技术领域

[0001] 本发明属于航天技术领域,具体涉及一种碳纤维复合材料卫星支承舱及其制备方法。

背景技术

[0002] 随着高性能复合材料在航天领域的应用在逐渐扩大,特别是在火箭及其内部结构领域,由于复合材料的轻质、高强、纤维方向的可设计性,正在逐步代替铝合金和钛合金等金属结构,以实现对火箭箭体进行减重。卫星支承舱是一种处于火箭箭体内部用于搭载卫星的结构,其通常呈圆锥形,通过串联或并联形式,搭载多颗卫星,实现“一箭多星”的发射目标。因此,使用碳纤维复合材料及相应的结构设计,对传统的铝合金制卫星支承舱进行改进,能够满足航天领域减重的迫切要求,以减少燃料消耗和降低发射成本。
[0003] CN102748999公开了一种碳纤维铺层薄壳加筋支承舱,包含碳纤维铺层截锥舱体,连接设置在所述碳纤维铺层截锥舱体内壁上的碳纤维铺层中间框,以及连接设置在所述碳纤维铺层截锥舱体外壁上的碳纤维铺层帽型加强筋;其中,所述碳纤维铺层截锥舱体包含设置在其顶端的上端框,设置在其底端的下端框,以及按压固定所述上端框和下端框并铺设在碳纤维铺层截锥舱体外壁上的蒙皮。该发明所提供的的碳纤维铺层薄壳加筋支承舱,虽然大部分结构由碳纤维铺层模压制成,但是总体结构较复杂,需要紧固件连接装配,模具工时成本和重量等不占优势。

发明内容

[0004] 本发明的目的在于提供一种碳纤维复合材料卫星支承舱,其在满足卫星支承舱各个工况载荷、结构强度的前提下,结构简单,无胶接或铆接,整个结构由碳纤维一体成型,相比同规格的铝合金结构减重25%以上。
[0005] 为达到上述目的,本发明提供的技术方案如下:一种碳纤维复合材料卫星支承舱,包括截锥型壳体以及在截锥型壳体外壁上辐向
设置的长桁;所述截锥型壳体包括锥面、上端环形翻边和下端环形翻边;所述长桁为变截面T型长桁,包括腹板和缘条,所述变截面T型长桁头部和尾部的缘条宽度大于中间部位的缘条宽度;所述锥面、上端环形翻边、下端环形翻边和变截面T型长桁全碳共固化一体成型。
[0006] 通过采用上述技术方案,利用变截面T型长桁,可分流压缩载荷,提高支承舱整体刚度。长桁位于头部的缘条进行加宽设计,可以改善拉伸工况下上端环向翻边的应力集中问题。长桁位于尾部的缘条进行加宽设计,可以减小相邻缘条的跨距,避免截锥型壳体屈曲。
[0007] 在一个具体的可实施方案中,所述截锥型壳体由第一碳纤维单向带预浸料层和碳纤维织物预浸料层复合而成;所述第一碳纤维单向带预浸料层作为中间层;所述碳纤维织物预浸料层包括粘附在第一碳纤维单向带预浸料层一侧的第一碳纤维织物预浸料层,和粘附在第一碳纤维单向带预浸料层另一侧的第二碳纤维织物预浸料层;所述变截面T型长桁由第二碳纤维单向带预浸料层复合而成,所述第二碳纤维单向带预浸料层的铺层角度为0°的比例大于等于60%。所述铺层角度以截锥型壳体轴向为基准。
[0008] 通过采用上述技术方案,截锥型壳体采用第一碳纤维单向带预浸料层可抵抗轴压,碳纤维织物预浸料层可防止支承舱沿锥面竖直方向上发生劈裂。变截面T型长桁铺层采用大比例0°碳纤维单向带预浸料可增强抵抗轴压和压缩的能力。
[0009] 在一个具体的可实施方案中,所述变截面T型长桁的第二碳纤维单向带预浸料的铺层比例为0°:±45°:90°=6:3:1,所述铺层角度以截锥型壳体轴向为基准。
[0010] 通过采用上述技术方案,高比例碳纤维单向带预浸料可保证较高的压缩和拉伸强度。
[0011] 在一个具体的可实施方案中,所述截锥型壳体上端相邻的变截面T型长桁的缘条外侧相互抵接,变截面T型长桁头部的顶壁抵接支撑截锥型舱体的上端环形翻边。
[0012] 通过采用上述技术方案,可改善拉伸工况下,上端环形翻边根部的应力集中问题。
[0013] 在另一个具体的可实施方案中,所述上端环形翻边做加厚设计;所述下端环形翻边做加宽加厚设计,上端环形翻边和下端环形翻边的厚度应大于锥面厚度。
[0014] 通过采用上述技术方案,可改善翻边的承拉强度。
[0015] 第二方面,本申请还提供了一种碳纤维复合材料卫星支承舱的制备方法,采用以下技术方案:铺贴截锥型壳体部分,在模具上铺贴第一碳纤维织物预浸料层;在第一碳纤维织
物预浸料层上铺贴第一碳纤维单向带预浸料层;在第一碳纤维单向带预浸料层上铺贴第二碳纤维织物预浸料层;
铺贴变截面T型长桁,在第二碳纤维预浸料层上铺设第二碳纤维单向带预浸料层,铺设角度按0°:±45°:90°=6:3:1进行;依次铺设完若干个变截面T型长桁;
合模热固,将模具合模打袋,对模具中的支承舱进行加热固化;
脱模,对经过加热固化的支承舱进行脱模处理,即可获得产品。
[0016] 所述模具包括阳模、挡圈模具和若干个扇形滑块;所述扇形滑块和挡圈模具与阳模合模后形成支承舱模腔;所述扇形滑块包括金属扇形滑块和硅胶扇形滑块;所述金属扇形滑块和硅胶扇形滑块间隔布置。
[0017] 综上所述,本申请具有以下有益效果:本申请通过使用碳纤维复合材料加筋长桁蒙皮结构,同时通过将长桁设置为变截
面T型长桁,长桁头部和尾部的缘条加宽的设计结构,实现了在无内部支撑框架等支撑结构情况下增强支承舱整体强度和刚度。
[0018] 此外,本申请中,截锥型壳体的锥面与上端环形翻边和下端环形翻边在辐向上连续,一体成型,使结构的整体性加强,提高了支承舱整体强度和刚度,同时还降低了装配复杂程度和工装成本。

附图说明

[0019] 图1是支承舱的结构示意图;图2是长桁结构示意图;
图3是支承舱截锥型壳体上端面局部示意图;
图4为支承舱承拉仿真示意图;
图5为支承舱承压仿真示意图;
图 6为支承舱承拉翻边应变仿真示意图;
图7为阳模示意图;
图8为模具整体示意图。
[0020] 附图标记说明:1、截锥型壳体;11、锥面; 12、上端环形翻边;13、下端环形翻边;2、变截面T型长桁;21、腹板;22、缘条;3、阳模;4、挡圈模具;5、扇形滑块。

具体实施方式

[0021] 以下结合附图对本申请做进一步说明。
[0022] 在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。实施例
[0023] 参照图1‑3,一种碳纤维复合材料卫星支承舱,包括截锥型壳体1和辐向设置在截锥壳体1外壁上的变截面T型长桁2;所述截锥型壳体1包括锥面11、上端环形翻边12和下端环形翻边13;所述变截面T型长桁2包括腹板21和腹板21两侧的缘条22;所述缘条22上端和下端的宽度大于中间部位的宽度;所述变截面T型长桁2的上端抵接并支撑上端环形翻边12;所述相邻的变截面T型长桁2头部的缘条外侧相互抵接;所述上端环形翻边12和下段环形翻边13做加厚设计;所述锥面11、上端环形翻边12、下端环形翻边13和变截面T型长桁2共固化一体成型。
[0024] 进一步的,所述截锥型壳体1由第一碳纤维单向带预浸料层和碳纤维织物预浸料层复合而成;所述第一碳纤维单向带预浸料层的铺层角度按0°铺设,所述碳纤维织物预浸料层包括粘附在第一碳纤维单向带预浸料层一侧的第一碳纤维织物预浸料层,以及粘附在第一碳纤维单向带预浸料层另一侧的第二碳纤维织物预浸料层;所述变截面T型长桁2由第二碳纤维单向带预浸料层复合而成,所述第二碳纤维单向带预浸料层的铺层角度比例为0°:±45°:90°=6:3:1,铺层角度是以支承舱轴向为基准。
[0025] 更具体的,所述截锥型壳体1的上端环形翻边12的外直径为1248mm,厚度为6mm,宽度不小于40mm,周向均布36个螺栓孔;所述下端面环形翻边13的外直径为3486mm,厚度为6mm,宽度不小于40mm,周向均布48个螺栓孔;所述截锥型壳体1的高度小于等于1100mm;所述变截面T型长桁2有18根,其腹板21的厚度为3mm,缘条22的厚度为2mm。
[0026] 参见图4,为发明人对本实施例中的卫星支承舱进行承拉450kN时的强度仿真计算,得到该结构最大拉伸应变4582μ,最大压缩应变2889μ,最大剪切应变2655μ。根据《复合材料结构设计手册》可知,目前使用的碳纤维树脂基复合材料层压板,在设计载荷下的许用应变值一般为:压缩=4000μ,拉伸=5500μ,剪切=7600μ。所以该结构在拉伸载荷下强度满足要求。
[0027] 参见图5,为发明人对本实施例中卫星支承舱进行承压450kN时的强度仿真计算,得到该结构最大拉伸应变4017μ,最大压缩应变3700μ,最大剪切应变2543μ。根据《复合材料结构设计手册》可知,目前使用的碳纤维树脂基复合材料层压板,在设计载荷下的许用应变值一般为:压缩=4000μ,拉伸=5500μ,剪切=7600μ。所以该结构在压缩载荷下强度满足要求。
[0028] 参见图6为发明人对承拉450KN翻边局部细节应变,得到最大主应变(拉伸)在4000‑5000微应变左右,小于许用应变。
[0029] 本申请实施例还公开了一种碳纤维复合材料卫星支承舱的制备方法,包括以下步骤:铺贴截锥型壳体1部分,在模具贴膜面铺贴第一碳纤维织物预浸料层;在第一碳纤维织物预浸料层上铺贴第一碳纤维单向带预浸料层;在第一碳纤维单向带预浸料层上铺贴第二碳纤维织物预浸料层;第一碳纤维单向带预浸料层的铺贴角度为0°;
铺贴变截面T型长桁2部分,将第二碳纤维单向带预浸料按铺层角度比例为0°:±
45°:90°=6:3:1进行铺层;
合模热固,将模具合模打袋后进行加热固化;
开模脱模,将加热固化后的卫星支承舱进行脱模处理。
[0030] 附图7‑8,模具包括阳模3、挡圈模具4和若干个扇形滑块5,所述挡圈模具4和若干个扇形滑块5与阳模合模后形成支承舱模腔;所述扇形滑块包括金属扇形滑块和硅胶扇形滑块,二者间隔布置。
[0031] 以上为本申请的较佳实施例,并非依此限制本申请的保护范围,故,凡依本申请的结构、形状、原理所做的等效变化均应涵盖与本申请的保护范围之内。