会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
首页 / 专利库 / 驾驶舱 / 用于生成驾驶舱显示的驾驶舱显示系统和方法

用于生成驾驶舱显示的驾驶舱显示系统和方法

申请号 CN201710057084.6 申请日 2017-01-26 公开(公告)号 CN107010239A 公开(公告)日 2017-08-04
申请人 霍尼韦尔国际公司; 发明人 I.S.怀亚特; D.A.屯黑姆; 何刚;
摘要 本发明涉及用于生成驾驶舱显示的驾驶舱显示系统和方法。驾驶舱显示系统(10)和方法被提供用于生成包括在评估在进近和着陆期间是否满足增强飞行可见度要求中有用的符号的驾驶舱显示。在一个实施例中驾驶舱显示系统包括配置成针对跑道参考特征监视飞机前方区域的增强飞行视觉系统(EFVS)传感器(32);在其上利用EFVS传感器数据生成EFVS图像(24)的显示设备(18);以及耦合到EFVS传感器和显示设备的控制器(12)。控制器确定针对由飞机进近的跑道的增强飞行可见度要求,然后通过例如生成标识地面位置的增强飞行可见度指示符(EFVI)图形在EFVS图像上视觉地指示当前是否满足增强飞行可见度要求,在该地面位置之外跑道参考特征的外观满足增强飞行可见度要求。
权利要求

1.一种用于飞机机上的部署的驾驶舱显示系统(10),所述驾驶舱显示系统包括:增强飞行视觉系统(EFVS)传感器(32),其被配置成针对跑道参考特征监视飞机前方区域;

驾驶舱显示设备(18),在其上利用从EFVS传感器接收的数据来生成EFVS图像(24);以及控制器(12),其可操作地耦合到EFVS传感器和驾驶舱显示设备,所述控制器被配置成:确定针对由飞机进近以用于着陆的跑道的增强飞行可见度要求;以及

在EFVS图像上视觉地指示当前针对由飞机的跑道进近是否满足增强飞行可见度要求。

2.根据权利要求1所述的驾驶舱显示系统(10),其中,在EFVS图像(24)上视觉地指示当前针对由飞机的跑道进近是否满足增强飞行可见度要求中,所述控制器(12)被配置成在EFVS图像上生成指示增强飞行可见度要求的增强飞行可见度指示符(EFVI)图形(70)。

3.根据权利要求2所述的驾驶舱显示系统(10),其中,所述控制器(12)被配置成生成EFVI图形(70)作为飞行可见度标记(72),其视觉地标识地面位置,在所述地面位置之外,EFVS图像(24)上的跑道参考特征的外观满足增强飞行可见度要求。

4.根据权利要求3所述的驾驶舱显示系统(10),还包括一个或多个数据源(22),其耦合到所述控制器(12)并且被配置成向其供应指示在跑道的进口区域以上的当前飞机高度的数据,所述控制器被配置成至少部分地基于增强飞行可见度要求和在跑道的进口区域以上的当前飞机高度来确定所述地面位置。

5.根据权利要求3所述的驾驶舱显示系统(10),其中,所述控制器(12)被配置成生成具有中央窗口(74)的飞行可见度标记(72),通过所述窗口表示跑道进近灯的图形(68)当飞机与跑道对准并进近跑道以用于着陆时可被看见。

6.根据权利要求3所述的驾驶舱显示系统(10),其中,所述控制器(12)被配置成将飞行可见度标记(72)生成为一个或多个弧(72(a)、72(b)),其被包括在以飞机的当前位置为中央的较大的、非显示的环中。

7.根据权利要求2所述的驾驶舱显示系统(10),还包括指示飞机的当前海拔的高度计(30),所述控制器(12)耦合到所述高度计并且还配置成:建立针对由飞机进近以用于着陆的跑道的决断海拔;以及

至少部分地基于相对于所建立的决断海拔的飞机的当前海拔来改变EFVI图形(70)的外观。

8.根据权利要求2所述的驾驶舱显示系统(10),还包括指示飞机的当前海拔的高度计(30),所述控制器(12)耦合到所述高度计并且还配置成:当从飞机的有利位置考虑时,确定是否由EFVS传感器(32)在EFVI图形(70)之外检测到任何进近灯;

建立针对由飞机进近以用于着陆的跑道的决断海拔;以及

在确定:(i)飞机已经下降到决断海拔的阈值距离以下或者在决断海拔的阈值距离内,以及(ii)由EFVS传感器在飞行可见度标记(72)之外没有检测到进近灯的情况下,在驾驶舱显示设备(18)上生成视觉报警。

9.根据权利要求1所述的驾驶舱显示系统(10),其中,所述控制器(12)还被配置成:至少部分地基于增强飞行可见度要求和飞机相对于跑道的当前位置来确定当前针对由飞机的跑道进近满足增强飞行可见度要求;以及在EFVS图像(24)上生成指示当前针对由飞机的跑道进近是否满足增强飞行可见度要求的一个或多个图形(90)。

10.一种由飞机机上的驾驶舱显示系统(10)执行的方法,所述驾驶舱显示系统包括:驾驶舱显示设备(18);增强飞行视觉系统(EFVS)传感器(32),其被配置成针对跑道参考特征监视飞机前方区域;以及控制器(12),其可操作地耦合到驾驶舱显示设备和前视传感器,所述方法包括:利用从EFVS传感器接收的数据在驾驶舱显示设备上生成EFVS图像(24);

在控制器处确定针对由飞机进近以用于着陆的跑道的增强飞行可见度要求;以及在EFVS图像上产生指示增强飞行可见度要求的增强飞行可见度指示符(EFVI)图形(70)。

说明书全文

用于生成驾驶舱显示的驾驶舱显示系统和方法

技术领域

[0001] 以下公开一般涉及驾驶舱显示系统,并且更具体地,涉及用于生成三维驾驶舱显示的驾驶舱显示系统和方法,所述三维驾驶舱显示包括在评估在进近和着陆期间是否满足增强飞行可见度要求中是有用的符号。

背景技术

[0002] 增强飞行视觉系统(EFVS)利用从由飞机携带的前视传感器所接收的传感器数据来生成飞行环境的三维图像。前视传感器可以是例如位于飞机下方的天线罩内的红外摄像机或毫米波雷达。EFVS图像可以在平视显示(HUD)或下视显示(HDD)设备上生成。此外,在某些实现中,EFVS图像可以与数据库依赖的合成视觉系统(SVS)图像组合以产生组合的视觉系统(CVS)显示。例如,可以通过将EFVS图像插入到更大的SVS图像的中央部分中来产生组合的视觉主飞行显示(CVPFD),该更大的SVS图像包括模拟飞机飞行环境的合成地形和其他特征。更大的数据库依赖的SVS图像提供超过EFVS图像的范围的上下文视图,而中央EFVS图像提供更接近地类似于飞机的实际飞行环境的实时、传感器导出的视觉信息。EFVS图像因此可以视觉地指示可能不以其他方式存在于纯粹作为SVS图像生成的PFD上的任何入侵飞机、地面车辆或其他障碍物。
[0003] 无论是作为独立图像生成还是集成到CVS显示中,EFVS图像提供飞机前方区域的传感器增强视图。当遍及进近和着陆在低可见度仪表计量条件(IMC)下驾驶飞机时,有用地依赖于这样的EFVS图像。然而,在IMC下,前视EFVS传感器的范围也可能减小。因此,监管机构(例如,美国的联邦飞行管理局)建立了规则,其要求飞行员在进近时在下降到决断海拔以下之前验证EFVS传感器范围满足或超过公布的值(本文中称为“可见度要求”)。可见度要求可以被指定为分配给由飞机进近以用于着陆的跑道的特定距离。为了满足可见度要求,EFVS传感器应当能够在指定距离之外(beyond)白天检测突出的未照亮物体并且夜晚检测突出的照亮物体。尽管这样的规则是清楚的,但飞行员可能难以准确地确定在IMC下是否满足这样的规则,因为用于估计飞机和飞机前方的照亮物体之间的距离的视觉参考通常是稀疏的或不存在的。因此,当执行该任务时,飞行员可能被迫采取不精确的主观判断。
[0004] 因此,期望提供一种用于生成包括EFVS图像的三维驾驶舱显示的驾驶舱显示系统和方法,其包括附加的符号,所述符号使得飞行员能够快速和准确地评估在进近和着陆期间是否满足增强飞行可见度要求。本发明的其他期望特征和特性将根据结合附图和前述背景技术所进行的随后的具体实施方式和所附权利要求书而变得显而易见。

发明内容

[0005] 提供了用于生成三维(3D)驾驶舱显示的驾驶舱显示系统,所述三维驾驶舱显示包括在评估在进近和着陆期间是否满足增强飞行可见度要求中是有用的符号。在一个实施例中,驾驶舱显示系统包括:增强飞行视觉系统(EFVS)传感器,其被配置成针对跑道参考特征监视飞机前方区域;驾驶舱显示设备,在其上利用从EFVS传感器接收的数据来生成EFVS图像;以及控制器,其可操作地耦合到EFVS传感器和驾驶舱显示设备。控制器确定针对由飞机进近以用于着陆的跑道的增强飞行可见度要求,然后在EFVS图像上提供指示当前针对由飞机的跑道进近是否满足增强飞行可见度要求的视觉信息。视觉信息可以是例如指示针对所进近的跑道是否满足增强飞行可见度要求的文本通告或消息。附加地或替代地,控制器可以生成包括增强飞行可见度指示符(EFVI)图形的EFVS图像,其视觉地表达针对所进近的跑道的增强飞行可见度要求。例如,EFVI图形可以被生成为飞行可见度标记,其视觉地标识地面位置,在该地面位置之外,进近着陆灯或另一跑道参考特征的外观(appearance)满足针对所进近的跑道的增强飞行可见度要求。
[0006] 在另一实施例中,驾驶舱显示系统包括:前视传感器,其被配置成针对跑道进近灯监视飞机前方区域;驾驶舱显示设备,在其上利用从前视传感器接收的数据来生成3D驾驶舱显示(例如EFVS显示、组合视觉主飞行显示等);以及控制器,其可操作地耦合到前视传感器和驾驶舱显示设备。控制器被配置成通常在低可见度条件下确定针对由飞机进近以用于着陆的跑道的增强飞行可见度要求。控制器可以通过例如从远程源(诸如空中交通控制)接收指示针对所进近的跑道的增强飞行可见度要求的数据或者通过从飞机机上的数据库调用与进近跑道对应的增强飞行可见度要求来确定增强飞行可见度要求。在确定增强飞行可见度要求之后,控制器在3D驾驶舱显示上生成:(i)表示由前视传感器所检测的跑道进近灯的进近灯图形,以及(ii)视觉地标识地面位置的标记,在所述地面位置之外,进近灯图形的外观满足增强飞行可见度要求。
[0007] 还提供了由飞机机上的驾驶舱显示系统执行的方法。驾驶舱显示系统可以包括:驾驶舱显示设备;EFVS传感器,其被配置成针对跑道参考特征监视飞机前方区域;以及控制器,其可操作地耦合到驾驶舱显示设备和前视传感器。在一个实施例中,该方法包括以下的步骤或过程:(i)利用从EFVS传感器接收的数据在驾驶舱显示设备上生成EFVS图像;(ii)在控制器处,确定针对由飞机进近以用于着陆的跑道的增强飞行可见度要求;以及(iii)在EFVS图像上产生指示增强飞行可见度要求的增强飞行可见度指示符(EFVI)图形。

附图说明

[0008] 在下文中将结合以下附图描述本发明的至少一个示例,其中相同的附图标记表示相同的元件,并且:图1是如根据本发明的示例性实施例所图示的、适于生成三维驾驶舱显示的驾驶舱显
示系统的框图,所述三维驾驶舱显示包括增强飞行视觉系统(EFVS)图像和增强飞行可见度指示符(EFVI)图形,其在评估在仪表计量条件(IMC)下在进近期间对可见度要求的满足中是有用的;
图2是如根据本发明的示例性实施例所图示的、由图1中所示的驾驶舱显示系统生成并
且包括EFVI图形的示例性组合视觉主飞行显示(CVPFD)的屏幕截图;
图3是示例性图示当EFVI图形被生成为标识地面位置的飞行可见度标记时可以确定
EFVI图形的定位所采用的方式的概念图,在所述地面位置之外跑道参考特征的出现满足飞行可见度要求;以及
图4和图5是如在其中增强飞行可见度要求在IMC下的进近时分别满足和不满足的不同
场景下所图示的、图2中所示的示例性CVPFD的EFVS部分的简化图。

具体实施方式

[0009] 以下具体实施方式本质上仅仅是示例性的,并且不旨在限制本发明或本发明的应用和使用。如贯穿本文档出现的术语“示例性”与术语“示例”同义,并且在下文中重复用来强调以下部分中出现的描述仅提供本发明的多个非限制性示例,且不应被解释为在任何方面限制如权利要求中阐述的本发明的范围。
[0010] 下文描述了用于生成三维(3D)驾驶舱显示的驾驶舱显示系统和方法,所述三维驾驶舱显示包括在评估在进近和着陆期间是否满足增强飞行可见度要求中是有用的符号。3D驾驶舱显示可以是例如组合视觉主飞行显示(CVPFD)或者包括增强飞行视觉系统(EFVS)图像或由增强飞行视觉系统(EFVS)图像组成的其他显示。在操作期间,驾驶舱显示系统的实施例可以初始地确定针对由装备有显示系统的飞机(本文中称为“本机(ownship)飞机”)进近以用于着陆的跑道的增强飞行可见度要求。增强飞行可见度要求可以基于存储在本机飞机(A/C)机上的一个或多个数据库中的信息、根据从外部源(例如,空中交通控制)无线传输到本机A/C的数据、和/或根据飞行员输入数据来确定。驾驶舱显示系统然后可以生成3D驾驶舱显示,以视觉地指示当前针对由本机A/C的跑道进近是否满足增强飞行可见度要求。在某些实施例中,这可以通过生成包括指示增强飞行可见度要求的增强飞行可见度指示符(EFVI)图形的EFVS图像来实现。EFVI图形可以被产生为例如视觉地标识地面位置的飞行可见度标记,在该地面位置之外,跑道参考特征的外观满足飞行可见度要求。以这种方式,飞行员可以在表示跑道进近灯或其他跑道参考特征的图形可以在3D驾驶舱显示上在EFVI图形处或之外的位置处看到时快速查明是否已经满足给定的增强跑道可见度要求。因此,飞行员仅需要查看EFVI图形来确定在例如在仪表计量条件(IMC)下飞行进近时是否满足特定的飞行可见度要求。因此减少了飞行员工作负荷,同时增加了符合相关规则的可能性。
[0011] 在另外的实施例中,驾驶舱显示系统可以在3D驾驶舱显示上生成指示当前是否满足针对由本机A/C的跑道进近的增强飞行可见度要求的其他图形或视觉元素。在这样的实施例中,驾驶舱显示系统可以处理由EFVS传感器提供的数据或分析EFVS图像以标识本机A/C的当前位置与位于离当前A/C位置最远的照亮标志之间的距离。然后可以将该距离与针对所进近的跑道的增强可见度要求相比较,以确定是否满足增强可见度要求。驾驶舱显示系统然后可以生成包括指示针对所进近的跑道是否满足增强可见度要求的附加图形或文本通告的EFVS图像或者更一般地3D驾驶舱显示。在这样的实施例中,驾驶舱显示系统可以或可以不生成包括EFVI图形的EFVS图像,如下面更全面地描述的。
[0012] 图1是如根据本发明的示例性实施例所图示的驾驶舱显示系统10的示意图。驾驶舱显示系统10包括以下组件(其中每个组件可以包括多个设备、系统或元件):(i)控制器12、(ii)耦合到控制器12的输入和输出的数据链路14、(iii)耦合到控制器12的输入的飞行员接口16、(iv)耦合到控制器12的一个或多个输出的至少一个驾驶舱显示设备18、(v)耦合到控制器12的输入的包含数据库的存储器20、以及(vi)耦合到控制器12的各输入的本机数据源22。显示系统10的组件可以利用任何合适的飞机架构互连,其可以包括物理连接(例如,通过航空数据总线提供)和/或无线连接。下面依次各自描述图1中所示的示例性驾驶舱显示系统10的组件。
[0013] 如图1中一般图示的,控制器12可以利用任何合适数量的单独的微处理器、导航装备、存储器、电源、存储设备、接口卡和本领域已知的其他标准组件来实现。在这方面,控制器12(以及出现在本文档中的通用术语“控制器”)涵盖包括多个离散控制器或处理设备的系统或分布式处理架构,其操作地互连以执行本文所描述的各种方法、过程任务、计算和显示功能。此外,控制器12可以包括任何数量的软件程序(例如,飞行舱程序)、固件程序或被设计为执行下述功能的其他计算机可读指令,或与任何数量的软件程序(例如,飞行舱程序)、固件程序或被设计为执行下述功能的其他计算机可读指令配合。
[0014] 驾驶舱显示设备18可以采取任何图像生成设备的形式,其在A/C驾驶舱内操作并且在其上产生包括EFVS图像24(下面描述)的3D驾驶舱显示。驾驶舱显示设备18可以是例如以不意图用于飞行员移除的方式安装在A/C的驾驶舱内的平视显示(HUD)设备或下视显示(HDD)设备。在某些实现中,驾驶舱显示设备18可以是飞行员穿戴的显示设备,诸如近眼式或头盔安装的显示设备。作为又另一种可能性,驾驶舱显示设备18可以采取诸如平板计算机或电子飞行包(EFB)的便携式电子显示设备的形式,其在A/C驾驶舱内操作时通过物理或无线连接与飞机航空电子设备进行通信。在某些实施例中,诸如当显示设备18是HUD设备时,驾驶舱显示设备18的屏幕可以是完全或部分透明的,在该情况下,包括下述EFVI图形的EFVS图像可以叠加在跑道及其周围环境的真实世界视图之上,如通过显示屏所看到的。
[0015] 存储器20可以包括任何数量的单独存储设备或易失性和/或非易失性存储器元件,其可以遍及A/C驾驶舱分布或以其他方式部署在本机A/C机上。通常,存储器20通常将包括存储针对控制器12的操作所需的数据和编程的中央处理单元寄存器、多个临时存储区域、以及多个永久存储区域。存储器22存储包含关于本机A/C的操作环境的信息的各种集合的一个或多个数据库。例如,并且如图1中所指示的,存储器20可以包含导航数据库26和地形数据库28。导航数据库26可以包括关于航路点、航线、导航系统、跑道和机场的信息,这仅列出几个示例。通过比较,地形数据库28也可以存储关于跑道和机场的信息,还有诸如拓扑和地形数据的其他地形相关数据。如驾驶舱显示系统10的其他组件可以的那样,导航数据库26和地形数据库28可以由本机A/C机上的其他系统共享或包括在其他系统内并且根据需要由系统10利用。在一个实现中,导航数据库26被包括在未图示的飞行管理系统(FMS)内,而地形数据库28被包括在增强地面接近警告系统(EGPWS)和/或跑道感知和通知系统
(RAAS)内。
[0016] 本机数据源24包括用于监视本机A/C的操作状态、当前A/C飞行参数、气象条件等的各种传感器和设备的星座。将理解,现代飞机机上的传感器(和其他数据生成设备)的数量通常相当多,并且因此,将不描述或将在本文中仅简要描述各种传感器。在图1中具体图示并且在下面讨论了两个传感器或数据源,因为它们可能在驾驶舱显示系统10的至少一些实施例中具有特定相关性。这些传感器是地面接近传感器30和前视传感器32(下文称为“EFVS传感器”)。这些传感器在图1中的具体图示以及下面对这些传感器的讨论并不指示驾驶舱显示系统10必须在所有实施例中包括这样的传感器,或者系统10在生成下述驾驶舱显示时不能依赖于从其他传感器接收的数据。
[0017] 继续参考图1中所示的驾驶舱显示系统10,地面接近传感器30可以采取直接检测或以其他方式生成在确定当前A/C海拔并且特别是在所进近跑道的进口区域以上的当前A/C高度中是有用的数据的任何设备或传感器的形式。地面接近传感器30可以是无线电高度计、全球定位系统(GPS)设备或适于执行该功能的另一设备。通过比较,EFVS传感器32可以是适于针对与跑道相关联的地面特征(本文称为“跑道参考特征”)监视本机A/C前方区域的任何前视传感器、传感器阵列或传感器组合。例如,EFVS传感器32可以是摄像机,诸如红外或近红外摄像机;雷达设备,诸如毫米波(MMW)雷达;或其组合。在一个实施例中,EFVS传感器32是雷达或激光雷达型设备,其提供被用于将本机A/C前方区域映射到然后被再现的3D地形表示中的数据。在这样的实施例中,所检测的机场环境特征可以表现为在3D驾驶舱显示24上生成的附加3D图形特征。EFVS传感器32可以被包含在位于本机A/C的下侧上的天线罩内。在IMC下的进近时,由EFVS传感器32所检测的跑道参考特征通常将是与跑道相关联的被照亮物体,诸如具有可由传感器32检测的热标志的跑道进近灯。然而,不排除EFVS传感器32可以检测与跑道相关联的其他地面特征并且对应的图形或符号然后可以在驾驶舱显示
24上生成的可能性。
[0018] 在驾驶舱显示系统10的操作期间,控制器12利用由EFVS传感器32供应的数据来在驾驶舱显示设备18上产生EVFS图像。如图1中一般指示的,EFVS图像可以构成在驾驶舱显示设备18上生成的3D驾驶舱显示24的全部或仅一部分。在其中EFVS图像构成驾驶舱显示24的全部或基本全部的实施例中,3D驾驶舱显示24可以简称为“EFVS显示”。替代地,在其中EFVS图像与另一类型的显示图像(诸如SVS图像)组合的实施例中,3D驾驶舱显示24可以被称为“组合视觉系统显示”或更简单地称为“CVS显示”。最后,如上所指示的,当被生成为包括EFVS图像和SVS图像二者的PFD时,3D驾驶舱显示24可以被称为“CVPFD”。现在将结合图2-5描述可以通过由驾驶舱显示系统10在驾驶舱显示设备18上生成的CVPFD图像的示例,如将描述可以被包括在由显示系统10生成的CVPFD图像中的EFVI图形的示例那样。以下示例尽管如此,但强调的是,在另外的实施例中,驾驶舱显示系统10可以被用于生成包括EFVS图像或由EFVS图像组成的各种其他类型的3D驾驶舱显示。例如,在不同但同样可行的实现中,驾驶舱显示系统10可以在由飞行员穿戴或附加到A/C的HUD显示设备上生成EFVS显示(包括下述的EFVI图形)。
[0019] 前进到图2,示出有如根据本发明的示例性且非限制性实施例所图示的、在驾驶舱显示系统10(图1)的操作期间在驾驶舱显示设备18上生成的示例性CVPFD 40的屏幕截图。CVPFD 40因此可以与图1中所示的3D驾驶舱显示24对应,尽管利用不同的附图标记来强调了CVPFD和下述的EFVI图形的外观将在不同的实施例之间变化。如可以看到的,CVPFD 40从飞机的有利位置以3D、透视图格式生成。在另外的实施例中,CVPFD 40可以从其他有利位置生成,诸如跟随本机A/C的追逐飞机的有利位置。EFVS图像42和SVS图像44被集成或组合以产生CVPFD 40。例如,EFVS图像42可以是较小的、集中式图像,其被插入到较大的SVS图像44中(例如,按其缩放、与其对准和混合)。如前所述,EFVS图像42利用从EFVS传感器34(图1)接收的实时数据来生成,以向飞行员提供更接近地类似于本机A/C的实际飞行环境的视觉信息。较大的SVS图像44利用包含在一个或多个数据库(诸如导航数据库26和/或地形数据库
28(图1))内的信息来生成,并且提供其中可以更好地理解聚焦的EFVS图像42的更宽的上下文。
[0020] CVPFD 40包括视觉地传达本机A/C的当前飞行参数的各种图形元素和符号。CVPFD 40的许多图形元素在航空电子产业内是公知的,并且本文不将详细描述。然而,为了完整性,简要地注意,所图示的CVPFD 40包含以下图形元素:(i)以A/C图标48为中央的罗盘46(位于CVPFD 40的底部中央);(ii)空速指示符或“空速带”50,其特写(feature)为精确读出窗口52(位于CVPFD 40的左上角);(iii)海拔指示符或“海拔带”54,其特写为精确读出窗口
56(位于CVPFD 40的右上角)和地面填充区域58;(iv)大气压力设定读数60(位于海拔带54下方);(v)飞行路径矢量图标或飞行路径标记62,其跨越CVPFD 40移动以反映本机A/C的飞行路径的改变;以及(vi)以英尺表达当前A/C地面上高度的地面上高度读数64(例如,无线电高度计指示符)。
[0021] 在图2中所图示的场景中,本机A/C目前正进近跑道以用于着陆。因此,CVPFD 40被产生为包括表示由本机A/C所进近的跑道的跑道图形66。尽管出现在CFPFD 40的EFVS图像42内,但是由图形66表示的跑道可以或可以不由EFVS传感器32检测。作为代替,跑道图形66因此可以基于存储在存储器22(图1)内的数据库信息来生成,如在与较大的SVS图像44组合或“混合”的EFVS图像42中出现的某些其他元素可以的那样。相比之下,除了跑道图形66之外的跑道参考特征(诸如进近灯图形)的外观指示这样的特征由EFVS传感器32检测。因此,如图2中所示,EFVS图像42内的进近灯图形68的外观指示与图形68对应的跑道进近灯当前由EFVS传感器32检测。在该特定示例中,进近灯图形68视觉地描绘所有跑道进近灯,由此指示跑道进近灯当前都由EFVS传感器32检测。然而,在其他场景中可能的情况是相对少的跑道进近灯,如果任何跑道进近灯由EFVS传感器32检测并且在EFVS图像42上图形地表示的话,如下面结合图4和图5所描述的。
[0022] 在所图示的实施例中并且仅以非限制性示例的方式,控制器12还生成包括EFVI图形70的CVPFD 40。EFVI图形70可以被生成为增强飞行可见度标记,其视觉地标识地面位置,在所述地面位置之外,表示跑道参考特征的图形的外观满足飞行可见度要求。出于该原因,EFVI图形70在下文中将被称为“飞行可见度标记70”。这尽管如此,但是强调的是,EFVI图形可以采取当在CVPFD 40或另一3D驾驶舱显示上产生时图形地传达针对所进近的跑道的增强飞行可见度要求的任何形式。此外,飞行可见度标记70的外观将在驾驶舱显示系统10和CVPFD 40的不同实施例之间变化。在图2的示例中,飞行可见度标记70被生成为较大范围环的一个或多个前向(forward)部分72,其以当前A/C位置为中央,并且其不以其他方式显示。因此,飞行可见度标记70可以表现为两个平缓弯曲的线或弧形段72(a)-(b),其由中央窗口
74横向分离。中央窗口74的提供使飞行可见度标记70模糊跑道图形66、进近灯图形68和CVPFD 40的其他图形元素的程度最小化。进近灯图形68可以连续地通过窗口74,当本机A/C以正面进近着陆时;也就是说,当A/C遍及进近保持基本上与由图形66表示的跑道的中央线对准时。
[0023] 当生成CVPFD 40时,控制器12(图1)确定飞行可见度标记70在EFVS图像42的虚拟、3D环境内的适当定位。在一个实施例中,控制器12可以执行两个一般步骤或过程以确定飞行可见度标记70在CVPFD 40的EFVS图像42内的适当定位。首先,控制器12可以建立与由本机A/C当前进近以用于着陆目的的跑道相关联或分配给该跑道的增强飞行可见度要求。其次,控制器12可以计算或以其他方式确定与所建立的飞行可见度要求对应的地面位置。之后,控制器12然后可以生成包括如根据所确定的地面位置适当定位的飞行可见度标记70的CVPFD 40。控制器12可以重复地执行这些步骤并以相对快速的刷新速率更新CVPFD 40,以确保CVPFD 40准确地反映本机A/C的实时或近实时的飞行环境。
[0024] 控制器12可以以多种不同方式建立分配给所进近的跑道的增强飞行可见度要求。在某些实施例中,控制器12可以从存储在存储器22中的数据库调用飞行可见度要求。例如,导航数据库26或地形数据库28可以包含与本机A/C的范围内的各不同跑道对应的进近图表。图表可以为每个跑道设置跑道视程(RVR)值或状态英里值,其然后可以由控制器12提取并且被用作所需的飞行可见度值。在其他实施例中,存储器22可以包含多维查找表或用于调用对应于不同跑道的增强飞行可见度要求的其他工具。控制器12还可以根据经由飞行员接口16(诸如,包括在多用途控制显示单元(MCDU)上的字母数字键区)接收的飞行员输入数据来建立增强飞行可见度要求。替代地,控制器可以根据经由数据链路14无线地接收并由空中交通控制(ATC)或另一识别的命令机构提供的数据来建立飞行可见度要求。在又另外的实施例中,可以利用前述方法的组合。例如,控制器12可以从存储器22调用用于针对所进近的跑道的增强飞行可见度要求的默认值,同时允许默认值被经由飞行员接口16或经由数据链路14接收的信息覆写。在某些实施例中,控制器12还可以被配置成关于天气条件的改变、关于影响制动动作的跑道条件等调整基线飞行可见度要求值。
[0025] 在建立针对所进近的跑道的增强飞行可见度要求之后,控制器12然后计算或以其他方式确定在其处应当生成飞行可见度标记70的对应的地面位置。图3是图示可以确定飞行可见度标记70的地面位置所采用的不同方式的示意图。共同地参考图1-3,可以通过首先建立在跑道进口以上的当前A/C高度来确定地面位置。在这方面,地面接近传感器30(图1)可以供应在地平面以上的当前A/C高度,并且在其中地形数据库28指示在跑道进口区域和本机A/C之间存在非水平表面拓扑的实例中,控制器12可以根据这样的非水平地面拓扑来调整在地平面以上的当前A/C高度。替代地,如果跑道进口的高度或海拔是已知的(例如,相对于海平面),并且地面接近传感器30提供A/C的GPS坐标,则控制器12可以计算这两个值之间的差以得到在跑道进口区域以上的当前A/C高度。在另外的实施例中,还可以由控制器12采用各种其他方法来确定在跑道进口以上的当前A/C高度。
[0026] 在一个实现中,控制器12根据在跑道进口以上的当前A/C高度和所建立的飞行可见度要求的值来确定地面位置。这可以通过求解直角三角形的邻边来实现,所述直角三角形包括(i)由从跑道进口区域朝向本机A/C延伸的水平线形成的斜边,以及(ii)由从本机A/C向下延伸以遇到斜边的竖直线形成的对边;如本文出现的,术语“竖直”被定义为平行于重力矢量的轴,而术语“水平”被定义为垂直于竖直轴的轴。在图3中示出了两个示例。第一个示例由具有三个边的三角形80表示,所述三个边是:(i)斜边“H1”,(ii)邻边“A1”以及(iii)对边“O”。斜边“H1”的长度等于飞行可见度要求,其在该示例中建立(例如,从存储在存储器22中的进近图表提取)为2400英尺的RVR值。对边“O”的长度是在跑道进口以上的当前A/C高度,其已被确定为200英尺。由于斜边“H1”和对边“O”的相应长度是已知量,所以控制器12仅需要求解邻边“A1”的长度来确定在其处应当放置飞行可见度标记70的地面位置。在该情况下,控制器12确定邻边“A”的长度为2392英尺,如在图3中由箭头82所指示的。然后,控制器
12生成将要根据该值定位的飞行可见度标记70,如在CVPFD 40(图2)的虚拟3D上下文中所考虑的。在其中飞行可见度标记70被生成为以当前A/C位置为中央的范围环的两个前向部分72(a)-(b)的所图示的示例中,三角形80的邻边“A1”用作范围环的半径,如在图3中由箭头88所指示的。
[0027] 图3中所图示的第二示例性场景在概念上由较小的三角形84表示,所述较小的三角形84被包含于较大的三角形80并与其共享重叠的对边。如图3中所标记的,三角形84包括以下边:(i)斜边“H2”,(ii)邻边“A2”和(iii)对边“O”。在该示例中,飞行可见度要求(RVR值)已经减少到1400英尺,而在跑道进口以上的当前A/C高度在200英尺处保持不变。因此,知晓,三角形84的斜边“H2”的长度为1400英尺,而三角形84的对边“O”的长度为200英尺。控制器12因此可以利用标准几何或数学技术来求解邻边“A2”的长度。如图3中由箭头86所指示的,在该第二示例中,控制器12确定三角形84的邻边“A2”的长度为1384英尺。在驾驶舱显示系统10(图1)的另外的实施例中,控制器12可以利用不同的方法或技术来确定飞行可见度标记70的地面位置。
[0028] 再次简要地参考图2中所示的示例性CVPFD 40,进近灯图形68描绘了由本机A/C所进近的跑道前方的所有跑道进近灯。如上所述,这指示EFVS传感器34的当前范围超过当前分离本机A/C和跑道(或位于最靠近跑道的跑道进近灯的至少最后一行)的进口的距离。因此,在图2中所图示的场景中,EFVS传感器34的范围相对深远,并且可能更足以满足任何公布的增强可见度要求。然而,通常的情况将是,EFVS传感器34的范围由IMC或其他低可见度条件缩减。在这样的情况下,灯进近图形68将在CVPFD 40的EFVS图像42上描绘得比所有跑道进近少,如下面结合图4和图5所描述的。
[0029] 图4和图5是其中针对在IMC下进近以用于着陆的跑道分别满足和不满足增强飞行可见度要求的不同场景下的CFPFD 40的EFVS图像42的简化视图。在图4中所图示的场景中,示出了表示七行进近灯的图形并且标记为68(a)-(g),其中进近灯行68(a)和68(g)分别位于最靠近和最远离本机A/C。如可以通过参考图4容易地收集的,当从本机A/C的有利位置考虑时,若干个进近轻行(例如,行68(e)-(g))在飞行可见度标记70之外或向前是可见的。参考图4中所示的EFVS图像42的飞行员因此可以快速且直观地推断已经满足跑道可见度要求。相反,在图5中所图示的场景中,在如EFVS图像42上生成的飞行可见度标记70之外没有进近灯图形的行是可见的。EFVS图像42(图5)因此向飞行员提供当前不满足跑道可见度要求的直观视觉提示。因此,飞行员应考虑拒绝着陆尝试,如果这继续是该情况的话,因为本机A/C进近或下降到决断海拔或高度以下。
[0030] 以上述方式,飞行可见度标记70提供了方便的视觉参考,通过所述视觉参考,飞行员可以在IMC下飞行进近时快速查明是否已经满足特定的飞行可见度要求。在某些情况下,控制器12(图1)可以改变飞行可见度标记70的外观,以向飞行员视觉地传达关于增强飞行可见度要求的附加相关信息。例如,控制器12可以通过例如从存储器22调用决断海拔(DA)或通过基于当前飞行参数计算DA来针对所进近的跑道建立DA。控制器12然后可以至少部分地基于本机A/C相对于所建立的DA的当前海拔来改变EFVI图形的外观。此外,在某些实施例中,控制器12可以分析EFVS图像42以确定是否有任何进近灯图形68出现在飞行可见度标记70前方,当从本机A/C的有利位置考虑时。如果确定进近灯图形68在本机A/C下降到DA的阈值距离以下或者在DA的阈值距离内时不出现在飞行可见度标记70前方,则控制器12可以在CVPFD 40上生成视觉警告警报或报警。例如,控制器12可以生成具有明显的外观(例如,增大的尺寸)的飞行可见度标记70或以其他方式将飞行员的注意力吸引到飞行可见度标记
70;例如通过向标记70施加闪烁效果或其他动画效果。在一个实施例中,通过从默认格式改变飞行可见度标记70的外观来生成警告警报,其中标记70以信息颜色(例如,白色或绿色;
在图5中由第一交叉阴影图案表示)被颜色编码为警告格式,其中标记70以预先建立的警告颜色(例如,琥珀色;由第二交叉阴影图案表示)被颜色编码。附加地或替代地,描述警告警报的文本消息或通告90可以在CVPFD 40上生成,如图5的右上角所指示的。
[0031] 在另外的实施例中,驾驶舱显示系统10(图1)可以在EFVS图像42或更一般地CVPFD 40上生成指示当前是否满足针对由本机A/C的跑道进近的增强飞行可见度要求的其他图形或视觉元素。在这样的实施例中,驾驶舱显示系统10的控制器12可以处理由EFVS传感器32(图1)提供的数据或分析EFVS图像42(图2、图4和图5),以建立本机A/C的当前位置和位于离当前A/C位置最远的被照亮标志之间的距离。然后可以将该距离与针对所进近的跑道的增强可见度要求相比较,以确定当前是否满足增强可见度要求。在做出该确定之后,控制器12然后可以生成包括指示针对所进近的跑道是否满足增强可见度要求的附加图形或文本通告的EFVS图像42(或CVPFD 40)。例如,如果确定当前针对所进近的跑道进近不满足增强飞行可见度要求,则控制器12可以生成包括类似于或等同于图5中所示的通告90的文本通告的EFVS图像42。相反,如果确定当前满足增强飞行可见度要求,则控制器12可以生成包括对应的文本通告的EFVS图像42。在这样的实施例中,驾驶舱显示系统10的控制器12可以或可以不生成进一步包括飞行可见度标记70的EFVS图像42。
[0032] 前述内容因此提供了用于生成驾驶舱显示的驾驶舱显示系统和方法的实施例,所述驾驶舱显示包括在评估在进近和着陆期间是否满足增强飞行可见度要求中是有用的符号。上述驾驶舱显示系统的实施例利用附加的视觉信息来补充EFVS图像,所述视觉信息指示在进近和着陆期间(特别是在IMC下进行时)是否满足增强飞行可见度要求。例如,可以在EFVS图像上生成EFVI图形。EFVI图形可以是标识地面位置的飞行可见度标记,在所述地面位置之外,跑道参考特征(例如,象征或描绘一个或多个跑道进近灯的图形)的外观满足飞行可见度要求。EFVS图像可以被生成为独立的图像或被包括在CVS显示(诸如CVPFD)中,其当位于A/D的驾驶舱内时被产生各种不同类型的显示设备设备(例如,HDD或HUD显示设备)。以该方式,EFVI图形提供确定的参考,以确定增强飞行可见度,由此减轻对高工作负荷环境中的飞行员的心理负担。作为附加的益处,EFVI图形可以帮助简化飞行员的当在IMC或其他低可见度条件下进行EFVS进近时定位所需的视觉参考的任务。
[0033] 尽管以上在完全功能化的计算机系统(例如,以上结合图1描述的驾驶舱显示系统10)的上下文中描述了本发明的示例性实施例,但是本领域技术人员将认识到,本发明的机制能够作为程序产品而分布,并且此外,本发明的教导适用于程序产品,而不管被用于执行其分布的特定类型的计算机可读介质(例如,软盘、硬盘驱动器、存储器卡、光盘等)如何。在某些实现中,驾驶舱显示系统可以包括图形用户界面(例如,ARINC 661)组件,其可以包括用户应用定义文件(“UADF”)。如本领域技术人员将理解的,这样的UADF被加载到驾驶舱显示系统中并且定义显示的“观感”、菜单结构层次以及图形用户界面的各种其他静态组件。
[0034] 尽管在前面的具体实施方式中已经呈现了至少一个示例性实施例,但是应当理解,存在大量的变型。还应当理解,一个或多个示例性实施例仅仅是示例,并且不旨在以任何方式限制本发明的范围、适用性或配置。相反,前面的具体实施方式将为本领域技术人员提供用于实现本发明的示例性实施例的方便的指南。在不脱离如所附权利要求中阐述的本发明的范围的情况下,可以在示例性实施例中描述的元件的功能和布置方面做出各种改变。