会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
首页 / 专利库 / 有蹄类动物 / Ungulates with genetically modified immune systems

Ungulates with genetically modified immune systems

申请号 US11257817 申请日 2005-10-24 公开(公告)号 US20060130157A1 公开(公告)日 2006-06-15
申请人 Kevin Wells; David Ayares; 发明人 Kevin Wells; David Ayares;
摘要 The present invention provides ungulate animals, tissue and organs as well as cells and cell lines derived from such animals, tissue and organs, which lack expression of functional endogenous immunoglobulin loci. The present invention also provides ungulate animals, tissue and organs as well as cells and cell lines derived from such animals, tissue and organs, which express xenogenous, such as human, immunoglobulin loci. The present invention further provides ungulate, such as porcine genomic DNA sequence of porcine heavy and light chain immunogobulins. Such animals, tissues, organs and cells can be used in research and medical therapy. In addition, methods are provided to prepare such animals, organs, tissues, and cells.
权利要求

We claim:

1. A transgenic ungulate that lacks any expression of functional endogenous immunoglobulins.

2. The transgenic ungulate of claim 1, wherein the ungulate lacks any expression of endogenous heavy chain immunoglobulins.

3. The transgenic ungulate of claim 1, wherein the ungulate lacks any expression of endogenous light chain immunoglobulins.

4. The transgenic ungulate of claim 3, wherein the ungulate lacks any expression of endogenous kappa chain immunoglobulin.

5. The transgenic ungulate of claim 3, wherein the ungulate lacks any expression of endogenous lambda chain immunoglobulin.

6. The transgenic ungulate of claim 1, wherein the ungulate is selected from the group consisting of a porcine, bovine, ovine and caprine.

7. The transgenic ungulate of claim 6, wherein the ungulate is a porcine.

8. The transgenic ungulate of claim 1, wherein the ungulate is produced via nuclear transfer.

9. The transgenic ungulate of claim 1, wherein the ungulate expresses an exogenous immunoglobulin loci.

10. The transgenic ungulate of claim 9, wherein the exogeous immunoglobulin loci is a heavy chain immunoglobulin or fragment thereof.

11. The transgenic ungulate of claim 9, wherein the exogeous immunoglobulin loci is a light chain immunoglobulin or fragment thereof.

12. The transgenic ungulate of claim 11, wherein the light chain locus is a kappa chain locus or fragment thereof.

13. The transgenic ungulate of claim 11, wherein the light chain locus is a lambda chain locus or fragment thereof.

14. The transgenic ungulate of claim 9, wherein the xenogenous locus is a human immunoglobulin locus or fragment thereof.

15. The transgenic ungulate of claim 9, wherein an artificial chromosome contains the xenogenous immunoglobulin.

15. The transgenic ungulate of claim 15, wherein the artificial chromosomes comprise a mammalian artificial chromosome.

16. The transgenic ungulate of claim 15, wherein the mammalian artificial chromosome comprises one or more of human chromosome 14, human chromosome 2, and human chromosome 22 or fragments thereof.

17. A transgenic mammal that lacks any expression of an endogenous lambda chain immunoglobulin.

18. A transgenic ungulate that expresses a xenogenous immunoglobulin loci or fragment thereof, wherein the immunoglobulin is expressed from an immunoglobulin locus that is integrated within an endogenous ungulate chromosome.

19. The transgenic ungulate of claim 18, wherein the xenogenous immunoglobulin is a human immunoglobulin or fragment thereof.

20. The transgenic ungulate of claim 18, wherein the xenogenous immunoglobulin locus is inherited by offspring.

21. The transgenic ungulate of claim 18, wherein the xenogenous immunoglobulin locus is inherited through the male germ line by offspring.

22. The transgenic ungulate of claim 18, wherein the ungulate is a porcine, sheep, goat or cow.

23. The transgenic ungulate of claim 22, wherein the ungulate is a porcine.

24. The transgenic ungulate of claim 18, wherein the ungulate is produced through nuclear transfer.

25. The transgenic ungulate of claim 18, wherein the immunoglobulin loci are expressed in B cells to produce xenogenous immunoglobulin in response to exposure to one or more antigens.

26. The transgenic ungulateof claim 18, wherein an artificial chromosome comprises the xenogenous immunoglobulin.

27. The transgenic ungulate of claim 18, wherein the artificial chromosome comprises a mammalian artificial chromosome.

28. The transgenic ungulate of claim 27, wherein the artificial chromosomes comprises a yeast artificial chromosome.

29. The transgenic ungulate of claim 26, wherein the artificial chromosome comprises one or more of human chromosome 14, human chromosome 2, and human chromosome 22 or fragment thereof.

30. A transgenic ungulate cell, tissue or organ derived from the transgenic ungulate of claim 1.

31. A transgenic ungulate cell, tissue or organ derived from the transgenic ungulate of claim 18.

32. The cell of claim 30 or 31, wherein the cell is a somatic, reproductive or germ cell.

33. The cell of claim 32, wherein the cell is a B cell.

34. The cell of claim 33, wherein the cell is a fibroblast cell.

35. A porcine animal comprising a xenogenous immunoglobulin locus.

36. The porcine of claim 35, wherein an artificial chromosome contains the xenogenous locus.

37. The porcine of claim 36, wherein the artificial chromosome comprises one or more xenogenous immunoglobulin loci that undergo rearrangement and can produce a xenogenous immunoglobulin in response to exposure to one or more antigens.

38. The procine cell derived from the animal of claim 35.

39. The procine cell of claim 36, wherein the cell is a somatic cell, a B cell or a fibroblast.

40. The porcine of claim 35, wherein the xenogenous immunoglobulin is a human immunoglobulin.

41. The porcine of claim 36, wherein the one or more artificial chromosomes comprise a mammalian artificial chromosome.

42. The porcine of claim 41, wherein the mammalian artificial chromosome comprises one or more of human chromosome 14, human chromosome 2, and human chromosome 22 or fragments thereof.

43. A method of producing xenogenous antibodies, the method comprising the steps of: (a) administering one or more antigens of interest to an ungulate whose cells comprise one or more artificial chromosomes and lack any expression of functional endogenous immunoglobulin, each artificial chromosome comprising one or more xenogenous immunoglobulin loci that undergo rearrangement, resulting in production of xenogenous antibodies against the one or more antigens; and (b) recovering the xenogenous antibodies from the ungulate.

44. The method of claim 43, wherein the immunoglobulin loci undergo rearrangement in a B cell.

45. The method of claim 43, wherein the exogeous immunoglobulin loci is a heavy chain immunoglobulin or fragment thereof.

46. The method of claim 43, wherein the exogeous immunoglobulin loci is a light chain immunoglobulin or fragment thereof.

47. The method of claim 43, wherein the xenogenous locus is a human immunoglobulin locus or fragment thereof.

48. The method of claim 43, wherein an artificial chromosome contains the xenogenous immunoglobulin.

49. The method of claim 48, wherein the artificial chromosomes comprise a mammalian artificial chromosome.

50. The method of claim 49, wherein the mammalian artificial chromosome comprises one or more of human chromosome 14, human chromosome 2, and human chromosome 22 or fragments thereof.

51. An isolated nucleotide sequence comprising porcine heavy chain immunoglobulin or fragment thereof, wherein the heavy chain immunoglobulin includes at least one joining region and at least one constant immunoglobulin region.

52. The nucleotide sequence of claim 51, wherein the heavy chain immunoglobulin comprises at least one variable region, at least two diversity regions, at least four joining regions and at least one constant region.

53. The nucleotide sequence of claim 52, wherein the heavy chain immunoglobulin comprises Seq ID No. 29.

54. The nucleotide sequence of claim 51, wherein the heavy chain immunoglobulin comprises Seq ID No. 4.

55. The nucleotide sequence of claim 53 or 54, wherein the sequence is at least 80, 85, 90, 95, 98 or 99% homologous to Seq ID Nos 4 or 29.

56. The nucleotide sequence of claim 53 or 54, wherein the sequence contains at least 17, 20, 25 or 30 contiguous nucleotides of Seq ID No 4 or residues 1-9,070 of Seq ID No 29.

57. The nucleotide sequence of claim 53 or 54, wherein the sequence comprises residues 9,070-11039 of Seq ID No 29.

58. An isolated nucleotide sequences that hybridizes to Seq ID No 4 or 29.

59. A targeting vector comprising: (a) a first nucleotide sequence comprising at least 17 contiguous nucleic acids homologous to SEQ ID No 29; (b) a selectable marker gene; and (c) a second nucleotide sequence comprising at least 17 contiguous nucleic acids homologous to SEQ ID No 29, which does not overlap with the first nucleotide sequence.

60. The targeting vector of claim 59 wherein the selectable marker comprises an antibiotic resistence gene.

61. The targeting vector of claim 59 wherein the first nucleotide sequence represents the 5′ recombination arm.

62. The targeting vector of claim 59 wherein the second nucleotide sequence represents the 3′ recombination arm.

63. A cell transfected with the targeting vector of claim 59.

64. The cell of claim 63 wherein at least one allele of a porcine heavy chain immunoglobulin locus has been rendered inactive.

65. A porcine animal comprising the cell of claim 64.

66. An isolated nucleotide sequence comprising an ungulate kappa light chain immunoglobulin locus or fragment thereof.

67. The nucleotide sequence of claim 66, wherein the ungulate is a porcine.

68. The nucleotide sequence of claim 66, wherein the ungulate kappa light chain immunoglobulin locus comprises at least one joining region, one constant region and/or one enhancer region.

69. The nucleotide sequence of claim 66, wherein the nucleotide sequence comprises at least five joining regions, one constant region and one enhancer region.

70. The nucleotide sequence of claim 69 comprising Seq ID No. 30.

71. The nucleotide sequence of claim 69 comprising Seq ID No. 12.

72. The nucleotide sequence of claim 70 or 71, wherein the sequence contains at least 17, 20, 25 or 30 contiguous nucleotides of Seq ID No 12 or 30.

73. An isolated nucleotide sequences that hybridizes to Seq ID No 12 or 30.

74. A targeting vector comprising: (a) a first nucleotide sequence comprising at least 17 contiguous nucleic acids homologous to SEQ ID No 30; (b) a selectable marker gene; and (c) a second nucleotide sequence comprising at least 17 contiguous nucleic acids homologous to SEQ ID No 30, which does not overlap with the first nucleotide sequence.

75. The targeting vector of claim 74 wherein the selectable marker comprises an antibiotic resistence gene.

76. The targeting vector of claim 74 wherein the first nucleotide sequence represents the 5′ recombination arm.

77. The targeting vector of claim 74 wherein the second nucleotide sequence represents the 3′ recombination arm.

78. A cell transfected with the targeting vector of claim 74.

79. The cell of claim 78 wherein at least one allele of a kappa chain immunoglobulin locus has been rendered inactive.

80. A porcine animal comprising the cell of claim 79.

81. An isolated nucleotide sequence comprising an ungulate lambda light chain immunoglobulin locus.

82. The nucleotide sequence of claim 81, wherein the ungulate is a porcine.

83. The nucleotide sequence of claim 81, wherein the ungulate is a bovine.

84. The nucleotide sequence of claim 81, wherein the ungulate lambda light chain immunoglobulin locus comprises a concatamer of J to C units.

85. The nucleotide sequence of claim 81, wherein the ungulate lambda light chain immunoglobulin locus comprises at least one joining region-constant region pair and/or at least one variable region, for example, as represented by Seq ID No. 31.

86. The nucleotide sequence of claim 82 comprising Seq ID No. 28.

87. The nucleotide sequence of claim 83 comprising Seq ID No. 31.

88. The nucleotide sequence of claim 86 or 87, wherein the sequence contains at least 17, 20, 25 or 30 contiguous nucleotides of Seq ID No 28 or 31.

89. An isolated nucleotide sequences that hybridizes to Seq ID No 28 or 31.

90. A targeting vector comprising: (a) a first nucleotide sequence comprising at least 17 contiguous nucleic acids homologous to SEQ ID No 28 or 31; (b) a selectable marker gene; and (c) a second nucleotide sequence comprising at least 17 contiguous nucleic acids homologous to SEQ ID No 28 or 31, which does not overlap with the first nucleotide sequence.

91. The targeting vector of claim 90 wherein the selectable marker comprises an antibiotic resistence gene.

92. The targeting vector of claim 90 wherein the first nucleotide sequence represents the 5′ recombination arm.

93. The targeting vector of claim 90 wherein the second nucleotide sequence represents the 3′ recombination arm.

94. A cell transfected with the targeting vector of claim 90.

95. The cell of claim 94 wherein at least one allele of a lambda chain immunoglobulin locus has been rendered inactive.

96. A porcine animal comprising the cell of claim 95.

97. A method to circularize at least 100 kb of DNA, wherein the DNA can then be integrated into a host genome via a site specific recombinase.

98. The method of claim 97, wherein at least 100, 200, 300, 400, 500, 1000, 2000, 5000, 10,000 kb of DNA can be circularized.

99. The method of claim 97, wherein the circularization of the DNA can be accomplished by attaching site specific recombinase target sites at each end of the DNA sequence and then applying a site specific recombinase to the DNA sequence.

100. The method of claim 97, wherein the site specific recombinase target site is Lox.

101. The method of claim 97, wherein an artificial chromosome contains the DNA sequence.

102. The method of claim 101, wherein the artificial chromosome is a yeast artificial chromosome or a mammalian artificial chromosome.

103. The method of claim 101, wherein the artificial chromosome comprises a DNA sequence that encodes a human immunoglobulin locus or fragment thereof.

104. The method of claim 103, the human immunoglobulin locus or fragment thereof comprises human chromosome 14, human chromosome 2, and/or human chromosome 22.

105. A transgenic ungulate that lacks expression of at least one allele of an endogenous immunoglobulin wherein the immunoglobulin is selected from the group consisting of heavy chain, kappa light chain and lambda light chain or any combination thereof.

106. The transgenic ungulate of claim 105, wherein xenogenous immunoglobulin is expressed.

107. A method to produce the transgenic ungulate of claim 106, wherein a transgenic ungulate that lacks expression of at least one allele of an endogenous immunoglobulin wherein the immunoglobulin is selected from the group consisting of heavy chain, kappa light chain and lambda light chain or any combination thereof is bred with an ungulate that expresses an xenogenous immunoglobulin.

108. The transgenic ungulate of any of claims 105-107, wherein the ungulate is a porcine.

109. The transgenic ungulate of claim 106 or 107, wherein the xenogenous immunoglobulin is a human immunoglobulin locus or fragment thereof.

110. The transgenic ungulate of claim 109, wherein an artificial chromosome contains the human immunoglobulin locus or fragment thereof.

111. A cell derived from the ungulate of claim 105.

112. The transgenic ungulate of claim 1, 18, 105 or 106, further comprising an additional genetic modifications to eliminate the expression of a xenoantigen.

113. The transgenic ungulate of claim 112, wherein the ungulate lacks expression of at least one allele of the alpha-1,3-galactosyltransferase gene.

114. The transgenic ungulate of claim 112, wherein the ungulate is a porcine.

说明书全文

This application claims priority to U.S. provisional application No. 60/621,433 filed on Oct. 22, 2004, which is herein incorporated by reference in its entirety.

FIELD OF THE INVENTION

The present invention provides ungulate animals, tissue and organs as well as cells and cell lines derived from such animals, tissue and organs, which lack expression of functional endogenous immunoglobulin loci. The present invention also provides ungulate animals, tissue and organs as well as cells and cell lines derived from such animals, tissue and organs, which express xenogenous, such as human, immunoglobulin loci. The present invention further provides ungulate, such as porcine genomic DNA sequence of porcine heavy and light chain immunogobulins. Such animals, tissues, organs and cells can be used in research and medical therapy. In addition, methods are provided to prepare such animals, organs, tissues, and cells.

BACKGROUND OF THE INVENTION

An antigen is an agent or substance that can be recognized by the body as ‘foreign’. Often it is only one relatively small chemical group of a larger foreign substance which acts as the antigen, for example a component of the cell wall of a bacterium. Most antigens are proteins, though carbohydrates can act as weak antigens. Bacteria, viruses and other microorganisms commonly contain many antigens, as do pollens, dust mites, molds, foods, and other substances. The body reacts to antigens by making antibodies. Antibodies (also called immunoglobulins (Igs)) are proteins that are manufactured by cells of the immune system that bind to an antigen or foreign protein. Antibodies circulate in the serum of blood to detect foreign antigens and constitute the gamma globulin part of the blood proteins. These antibodies interact chemically with the antigen in a highly specific manner, like two pieces of a jigsaw puzzle, forming an antigen/antibody complex, or immune complex. This binding neutralises or brings about the destruction of the antigen.

When a vertebrate first encounters an antigen, it exhibits a primary humoral immune response. If the animal encounters the same antigen after a few days the immune resonse is more rapid and has a greater magnitude. The initial encounter causes specific immune cell (B-cell) clones to proliferate and differentiate. The progeny lymphocytes include not only effector cells (antibody producing cells) but also clones of memory cells, which retain the capacity to produce both effector and memory cells upon subsequent stimulation by the original antigen. The effector cells live for only a few days. The memory cells live for a lifetime and can be reactivated by a second stimuation with the same antigen. Thus, when an antigen is encountered a second time, its memory cells quickly produce effector cells which rapidly produce massive quantities of antibodies.

By exploiting the unique ability of antibodies to interact with antigens in a highly specific manner, antibodies have been developed as molecules that can be manufactured and used for both diagnostic and therapeutic applications. Because of their unique ability to bind to antigenic epitopes, polyclonal and monoclonal antibodies can be used to identify molecules carrying that epitope or can be directed, by themselves or in conjunction with another moiety, to a specific site for diagnosis or therapy. Polyclonal and monoclonal antibodies can be generated against practically any pathogen or biological target. The term polyclonal antibody refers to immune sera that usually contain pathogen-specific antibodies of various isotypes and specificities. In contrast, monoclonal antibodies consist of a single immunoglobulin type, representing one isotype with one specificity.

In 1890, Shibasaburo Kitazato and Emil Behring conducted the fundamental experiment that demonstrated immunity can be transmitted from one animal to another by transferring the serum from an immune animal to a non-immune animal. This landmark experiment laid the foundation for the introduction of passive immunization into clinical practice. However, wide scale serum therapy was largely abandoned in the 1940s because of the toxicity associated with the administration of heterologous sera and the introduction of effective antimicrobial chemotherapy. Currently, such polyclonal antibody therapy is indicated to treat infectious diseases in relatively few situations, such as replacement therapy in immunoglobulin-deficient patients, post-exposure prophylaxis against several viruses (e.g., rabies, measles, hepatitis A and B, varicella), and toxin neutralization (diphtheria, tetanus, and botulism). Despite the limited use of serum therapy, in the United States, more than 16 metric tons of human antibody are required each year for intravenous antibody therapy. Comparable levels of use exist in the economies of most highly industrialized countries, and the demand can be expected to grow rapidly in developing countries. Currently, human antibody for passive immunization is obtained from the pooled serum of donors. Thus, there is an inherent limitation in the amount of human antibody available for therapeutic and prophylactic therapies.

The use of antibodies for passive immunization against biological warfare agents represents a very promising defense strategy. The final line of defense against such agents is the immune system of the exposed individual. Current defense strategies against biological weapons include such measures as enhanced epidemiologic surveillance, vaccination, and use of antimicrobial agents. Since the potential threat of biological warfare and bioterrorism is inversely proportional to the number of immune persons in the targeted population, biological agents are potential weapons only against populations with a substantial proportion of susceptible persons.

Vaccination can reduce the susceptibility of a population against specific threats, provided that a safe vaccine exists that can induce a protective response. Unfortunately, inducing a protective response by vaccination may take longer than the time between exposure and onset of disease. Moreover, many vaccines require multiple doses to achieve a protective immune response, which would limit their usefulness in an emergency to provide rapid prophylaxis after an attack. In addition, not all vaccine recipients mount a protective response, even after receiving the recommended immunization schedule.

Drugs can provide protection when administered after exposure to certain agents, but none are available against many potential agents of biological warfare. Currently, no small-molecule drugs are available that prevent disease following exposure to preformed toxins. The only currently available intervention that could provide a state of immediate immunity is passive immunization with protective antibody (Arturo Casadevall “Passive Antibody Administration (Immediate Immunity) as a Specific Defense Against Biological Weapons” from Emerging Infectious Diseases, Posted Dec. 12, 2002).

In addition to providing protective immunity, modern antibody-based therapies constitute a potentially useful option against newly emergent pathogenic bacteria, fungi, virus and parasites (A. Casadevall and M. D. Scharff, Clinical Infectious Diseases 1995; 150). Therapies of patients with malignancies and cancer (C. Botti et al, Leukemia 1997; Suppl 2:S55-59; B. Bodey, S. E. Siegel, and H. E. Kaiser, Anticancer Res 1996; 16(2):661), therapy of steroid resistant rejection of transplanted organs as well as autoimmune diseases can also be achieved through the use of monoclonal or polyclonal antibody preparations (N. Bonnefoy-Berard and J. P. Revillard, J Heart Lung Transplant 1996; 15(5):435-442; C. Colby, et al Ann Pharmacother 1996; 30(10):1164-1174; M. J. Dugan, et al, Ann Hematol 1997; 75(1-2):41 2; W. Cendrowski, Boll Ist Sieroter Milan 1997; 58(4):339-343; L. K. Kastrukoff, et al Can J Neurol Sci 1978; 5(2):175178; J. E. Walker et al J Neurol Sci 1976; 29(2-4):303309).

Recent advances in the technology of antibody production provide the means to generate human antibody reagents, while avoiding the toxicities associated with human serum therapy. The advantages of antibody-based therapies include versatility, low toxicity, pathogen specificity, enhancement of immune function, and favorable pharmacokinetics.

The clinical use of monoclonal antibody therapeutics has just recently emerged. Monoclonal antibodies have now been approved as therapies in transplantation, cancer, infectious disease, cardiovascular disease and inflammation. In many more monoclonal antibodies are in late stage clinical trials to treat a broad range of disease indications. As a result, monoclonal antibodies represent one of the largest classes of drugs currently in development.

Despite the recent popularity of monoclonal antibodies as therapeutics, there are some obstacles for their use. For example, many therapeutic applications for monoclonal antibodies require repeated administrations, especially for chronic diseases such as autoimmunity or cancer. Because mice are convenient for immunization and recognize most human antigens as foreign, monoclonal antibodies against human targets with therapeutic potential have typically been of murine origin. However, murine monoclonal antibodies have inherent disadvantages as human therapeutics. For example, they require more frequent dosing to maintain a therapeutic level of monoclonal antibodies because of a shorter circulating half-life in humans than human antibodies. More critically, repeated administration of murine immunoglobulin creates the likelihood that the human immune system will recognize the mouse protein as foreign, generating a human anti-mouse antibody response, which can cause a severe allergic reaction. This possibility of reduced efficacy and safety has lead to the development of a number of technologies for reducing the immunogenicity of murine monoclonal antibodies.

Polyclonal antibodies are highly potent against multiple antigenic targets. They have the unique ability to target and kill a plurality of “evolving targets” linked with complex diseases. Also, of all drug classes, polyclonals have the highest probability of retaining activity in the event of antigen mutation. In addition, while monoclonals have limited therapeutic activity against infectious agents, polyclonals can both neutralize toxins and direct immune responses to eliminate pathogens, as well as biological warfare agents.

The development of polyclonal and monoclonal antibody production platforms to meet future demand for production capacity represents a promising area that is currently the subject of much research. One especially promising strategy is the introduction of human immunoglobulin genes into mice or large domestic animals. An extension of this technology would include inactivation of their endogenous immunoglobulin genes. Large animals, such as sheep, pigs and cattle, are all currently used in the production of plasma derived products, such as hyperimmune serum and clotting factors, for human use. This would support the use of human polyclonal antibodies from such species on the grounds of safety and ethics. Each of these species naturally produces considerable quantities of antibody in both serum and milk.

Arrangement of Genes Encoding Immunoglobulins

Antibody molecules are assembled from combinations of variable gene elements, and the possibilities resulting from combining the many variable gene elements in the germline enable the host to synthesize antibodies to an extraordinarily large number of antigens. Each antibody molecule consists of two classes of polypeptide chains, light (L) chains (that can be either kappa (κ) L-chain or lambda (λ) L-chain) and heavy (H) chains. The heavy and light chains join together to define a binding region for the epitope. A single antibody molecule has two identical copies of the L chain and two of the H chain. Each of the chains is comprised of a variable region (V) and a constant region (C). The variable region constitutes the antigen-binding site of the molecule. To achieve diverse antigen recognition, the DNA that encodes the variable region undergoes gene rearrangement. The constant region amino acid sequence is specific for a particular isotype of the antibody, as well as the host which produces the antibody, and thus does not undergo rearrangement.

The mechanism of DNA rearrangement is similar for the variable region of both the heavy- and light-chain loci, although only one joining event is needed to generate a light-chain gene whereas two are needed to generate a complete heavy-chain gene. The most common mode of rearrangement involves the looping-out and deletion of the DNA between two gene segments. This occurs when the coding sequences of the two gene segments are in the same orientation in the DNA. A second mode of recombination can occur between two gene segments that have opposite transcriptional orientations. This mode of recombination is less common, although such rearrangements can account for up to half of all Vκ to Jκ joins; the transcriptional orientation of half of the human Vκ gene segments is opposite to that of the Jκ gene segments.

The DNA sequence encoding a complete V region is generated by the somatic recombination of separate gene segments. The V region, or V domain, of an immunoglobulin heavy or light chain is encoded by more than one gene segment. For the light chain, the V domain is encoded by two separate DNA segments. The first segment encodes the first 95-101 amino acids of the light chain and is termed a V gene segment because it encodes most of the V domain. The second segment encodes the remainder of the V domain (up to 13 amino acids) and is termed a joining or J gene segment. The joining of a V and a J gene segment creates a continuous exon that encodes the whole of the light-chain V region. To make a complete immunoglobulin light-chain messenger RNA, the V-region exon is joined to the C-region sequence by RNA splicing after transcription.

A heavy-chain V region is encoded in three gene segments. In addition to the V and J gene segments (denoted VH and JH to distinguish them from the light-chain VL and JL), there is a third gene segment called the diversity or DH gene segment, which lies between the VH and JH gene segments. The process of recombination that generates a complete heavy-chain V region occurs in two separate stages. In the first, a DH gene segment is joined to a JH gene segment; then a VH gene segment rearranges to DJH to make a complete VH-region exon. As with the light-chain genes, RNA splicing joins the assembled V-region sequence to the neighboring C-region gene.

Diversification of the antibody repertoire occurs in two stages: primarily by rearrangement (“V(D)J recombination”) of Ig V, D and J gene segments in precursor B cells resident in the bone marrow, and then by somatic mutation and class switch recombination of these rearranged Ig genes when mature B cells are activated. Immunoglobulin somatic mutation and class switching are central to the maturation of the immune response and the generation of a “memory” response.

The genomic loci of antibodies are very large and they are located on different chromosomes. The immunoglobulin gene segments are organized into three clusters or genetic loci: the κ, λ, and heavy-chain loci. Each is organized slightly differently. For example, in humans, immunoglobulin genes are organized as follows. The λ light-chain locus is located on chromosome 22 and a cluster of Vλ gene segments is followed by four sets of Jλ gene segments each linked to a single Cλ gene. The κ light-chain locus is on chromosome 2 and the cluster of Vκ gene segments is followed by a cluster of Jλ gene segments, and then by a single Cλ gene. The organization of the heavy-chain locus, on chromosome 14, resembles that of the κ locus, with separate clusters of VH, DH, and JH gene segments and of CH genes. The heavy-chain locus differs in one important way: instead of a single C-region, it contains a series of C regions arrayed one after the other, each of which corresponds to a different isotype. There are five immunoglobulin heavy chain isotypes: IgM, IgG, IgA, IgE and IgD. Generally, a cell expresses only one at a time, beginning with IgM. The expression of other isotypes, such as IgG, can occur through isotype switching.

The joining of various V, D and J genes is an entirely random event that results in approximately 50,000 different possible combinations for VDJ(H) and approximately 1,000 for VJ(L). Subsequent random pairing of H and L chains brings the total number of antibody specificities to about 107 possibilities. Diversity is further increased by the imprecise joining of different genetic segments. Rearrangements occur on both DNA strands, but only one strand is transcribed (due to allelic exclusion). Only one rearrangement occurs in the life of a B cell because of irreversible deletions in DNA. Consequently, each mature B cell maintains one immunologic specificity and is maintained in the progeny or clone. This constitutes the molecular basis of the clonal selection; i.e., each antigenic determinant triggers the response of the pre-existing clone of B lymphocytes bearing the specific receptor molecule. The primary repertoire of B cells, which is established by V(D)J recombination, is primarily controlled by two closely linked genes, recombination activating gene (RAG)-1 and RAG-2.

Over the last decade, considerable diversity among vertebrates in both Ig gene diversity and antibody repertoire development has been revealed. Rodents and humans have five heavy chain classes, IgM, IgD, IgG, IgE and IgA, and each have four subclasses of IgG and one or two subclasses of IgA, while rabbits have a single IgG heavy chain gene but 13 genes for different IgA subclasses (Burnett, R. C et al. EMBO J 8:4047; Honjo, In Honjo, T, Alt. F. W. T. H. eds, Immunoglobulin Genes p. 123 Academic Press, New York). Swine have at least six IgG subclasses (Kacskovics, I et al. 1994 J Immunol 153:3565), but no IgD (Butler et al. 1996 Inter. Immunol 8:1897-1904). A gene encoding IgD has only been described in rodents and primates. Diversity in the mechanism of repertoire development is exemplified by contrasting the pattern seen in rodents and primates with that reported for chickens, rabbits, swine and the domesticated Bovidae. Whereas the former group have a large number of VH genes belonging to seven to 10 families (Rathbun, G. In Hongo, T. Alt. F. W. and Rabbitts, T. H., eds, Immunoglobulin Genes, p. 63, Academic press New York), the VH genes of each member of the latter group belong to a single VH gene family (Sun, J. et al. 1994 J. Immunol. 1553:56118; Dufour, V et al.1996, J Immunol. 156:2163). With the exception of the rabbit, this family is composed of less than 25 genes. Whereas rodents and primates can utilize four to six JH segments, only a single JH is available for repertoire development in the chicken (Reynaud et al. 1989 Adv. Immunol. 57:353). Similarly, Butler et al. (1996 Inter. Immunol 8:1897-1904) hypothesized that swine may resemble the chicken in having only a single JH gene. These species generally have fewer V, D and J genes; in the pig and cow a single VH gene family exists, consisting of less than 20 gene segments (Butler et al, Advances in Swine in Biomedical Research, eds: Tumbleson and Schook, 1996; Sinclair et al, J. Immunol. 159: 3883, 1997). Together with lower numbers of J and D gene. segments, this results in significantly less diversity being generated by gene rearrangement. However, there does appear to be greater numbers of light chain genes in these species. Similar to humans and mice, these species express a single K light chain but multiple λ light chain genes. However, these do not seem to affect the restricted diversity that is achieved by rearrangement.

Since combinatorial joining of more than 100 VH, 20-30 DH and four to six JH gene segments is a major mechanism of generating the antibody repertoire in humans, species with fewer VH, DH or JH segments must either generate a smaller repertoire or use alternative mechanisms for repertoire development. Ruminants, pigs, rabbits and chickens, utilize several mechanisms to generate antibody diversity. In these species there appears to be an important secondary repertoire development, which occurs in highly specialized lymphoid tissue such as ileal Peyer's patches (Binns and Licence, Adv. Exp. Med. Biol. 186: 661, 1985). Secondary repertoire development occurs in these species by a process of somatic mutation which is a random and not fully understood process. The mechanism for this repertoire diversification appears to be templated mutation, or gene conversion (Sun et al, J. Immunol. 153: 5618, 1994) and somatic hypermutation.

Gene conversion is important for antibody diversification in some higher vertebrates, such as chickens, rabbits and cows. In mice, however, conversion events appear to be infrequent among endogenous antibody genes. Gene conversion is a distinct diversifying mechanism characterized by transfers of homologous sequences from a donor antibody V gene segment to an acceptor V gene segment. If donor and acceptor segments have numerous sequence differences then gene conversion can introduce a set of sequence changes into a V region by a single event. Depending on the species, gene conversion events can occur before and/or after antigen exposure during B cell differentiation (Tsai et al. International Immunology, Vol. 14, No. 1, 55-64, January 2002).

Somatic hypermutation achieves diversification of antibody genes in all higher vertebrate species. It is typified by the introduction of single point mutations into antibody V(D)J segments. Generally, hypermutation appears to be activated in B cells by antigenic stimulation.

Production of Animals with Humanized Immune Systems

In order to reduce the immunogenicity of antibodies generated in mice for human therapeutics, various attempts have been made to replace murine protein sequences with human protein sequences in a process now known as humanization. Transgenic mice have been constructed which have had their own immunoglobulin genes functionally replaced with human immunoglobulin genes so that they produce human antibodies upon immunization. Elimination of mouse antibody production was achieved by inactivation of mouse Ig genes in embryonic stem (ES) cells by using gene-targeting technology to delete crucial cis-acting sequences involved in the process of mouse Ig gene rearrangement and expression. B cell development in these mutant mice could be restored by the introduction of megabase-sized YACs containing a human germline-configuration H- and κ L-chain minilocus transgene. The expression of fully human antibody in these transgenic mice was predominant, at a level of several 100 μg/l of blood. This level of expression is several hundred-fold higher than that detected in wild-type mice expressing the human Ig gene, indicating the importance of inactivating the endogenous mouse Ig genes in order to enhance human antibody production by mice.

The first humanization attempts utilized molecular biology techniques to construct recombinant antibodies. For example, the complementarity determining regions (CDR) from a mouse antibody specific for a hapten were grafted onto a human antibody framework, effecting a CDR replacement. The new antibody retained the binding specificity conveyed by the CDR sequences (P. T. Jones et al. Nature 321: 522-525 (1986)). The next level of humanization involved combining an entire mouse VH region with a human constant region such as gamma1 (S. L. Morrison et al., Proc. Natl. Acad. Sci., 81, pp. 6851-6855 (1984)). However, these chimeric antibodies, which still contain greater than 30% xenogeneic sequences, are sometimes only marginally less immunogenic than totally xenogeneic antibodies (M. Bruggemarm et al., J. Exp. Med., 170, pp. 2153-2157 (1989)).

Subsequently, attempts were carried out to introduce human immunoglobulin genes into the mouse, thus creating transgenic mice capable of responding to antigens with antibodies having human sequences (Bruggemann et al. Proc. Nat'l. Acad. Sci. USA 86:6709-6713 (1989)). Due to the large size of human immunoglobulin genomic loci, these attempts were thought to be limited by the amount of DNA, which could be stably maintained by available cloning vehicles. As a result, many investigators concentrated on producing mini-loci containing limited numbers of V region genes and having altered spatial distances between genes as compared to the natural or germline configuration (See, for example, U.S. Pat. No. 5,569,825). These studies indicated that producing human sequence antibodies in mice was possible, but serious obstacles remained regarding obtaining sufficient diversity of binding specificities and effector functions (isotypes) from these transgenic animals to meet the growing demand for antibody therapeutics.

In order to provide additional diversity, work has been conducted to add large germline fragments of the human Ig locus into transgenic mammals. For example, a majority of the human V, D, and J region genes arranged with the same spacing found in the unrearranged germline of the human genome and the human Cμ and Cδ constant regions was introduced into mice using yeast artificial chromosome (YAC) cloning vectors (See, for example, WO 94/02602). A 22 kb DNA fragment comprising sequences encoding a human gamma-2 constant region and the upstream sequences required for class-switch recombination was latter appended to the foregoing transgene. In addition, a portion of a human kappa locus comprising Vλ, Jλ and Cλ region genes, also arranged with substantially the same spacing found in the unrearranged germline of the human genome, was introduced into mice using YACS. Gene targeting was used to inactivate the murine IgH & kappa light chain immunoglobulin gene loci and such knockout strains were bred with the above transgenic strains to generate a line of mice having the human V, D, J, Cμ, Cδ. and Cγ2 constant regions as well as the human Vκ, Jκ and Cκ region genes all on an inactivated murine immunoglobulin background (See, for example, PCT patent application WO 94/02602 to Kucherlapati et al.; see also Mendez et al., Nature Genetics 15:146-156 (1997)).

Yeast artificial chromosomes as cloning vectors in combination with gene targeting of endogenous loci and breeding of transgenic mouse strains provided one solution to the problem of antibody diversity. Several advantages were obtained by this approach. One advantage was that YACs can be used to transfer hundreds of kilobases of DNA into a host cell. Therefore, use of YAC cloning vehicles allows inclusion of substantial portions of the entire human Ig heavy and light chain regions into a transgenic mouse thus approaching the level of potential diversity available in the human. Another advantage of this approach is that the large number of V genes has been shown to restore full B cell development in mice deficient in murine immunoglobulin production. This ensures that these reconstituted mice are provided with the requisite cells for mounting a robust human antibody response to any given immunogen. (See, for example, WO 94/02602.; L. Green and A. Jakobovits, J. Exp. Med. 188:483-495 (1998)). A further advantage is that sequences can be deleted or inserted onto the YAC by utilizing high frequency homologous recombination in yeast. This provides for facile engineering of the YAC transgenes.

In addition, Green et al. Nature Genetics 7:13-21 (1994) describe the generation of YACs containing 245 kb and 190 kb-sized germline configuration fragments of the human heavy chain locus and kappa light chain locus, respectively, which contained core variable and constant region sequences. The work of Green et al. was recently extended to the introduction of greater than approximately 80% of the human antibody repertoire through introduction of megabase sized, germline configuration YAC fragments of the human heavy chain loci and kappa light chain loci, respectively, to produce XenoMouse™ mice. See, for example, Mendez et al. Nature Genetics 15:146-156 (1997), Green and Jakobovits J. Exp. Med. 188:483-495 (1998), European Patent No. EP 0 463 151 B1, PCT Publication Nos. WO 94/02602, WO 96/34096 and WO 98/24893.

Several strategies exist for the generation of mammals that produce human antibodies. In particular, there is the “minilocus” approach that is typified by work of GenPharm International, Inc. and the Medical Research Council, YAC introduction of large and substantially germline fragments of the Ig loci that is typified by work of Abgenix, Inc. (formerly Cell Genesys). The introduction of entire or substantially entire loci through the use microcell fusion as typified by work of Kirin Beer Kabushiki Kaisha.

In the minilocus approach, an exogenous Ig locus is mimicked through the inclusion of pieces (individual genes) from the Ig locus. Thus, one or more VH genes, one or more DH genes, one or more JH genes, a mu constant region, and a second constant region (such as a gamma constant region) are formed into a construct for insertion into an animal. See, for example, U.S. Pat. Nos. 5,545,807, 5,545,806, 5,625,825, 5,625,126, 5,633,425, 5,661,016, 5,770,429, 5,789,650, 5,814,318, 5,591,669, 5,612,205, 5,721,367, 5,789,215, 5,643,763; European Patent No. 0 546 073; PCT Publication Nos. WO 92/03918, WO 92/22645, WO 92/22647, WO 92/22670, WO 93/12227, WO 94/00569, WO 94/25585, WO 96/14436, WO 97/13852, and WO 98/24884; Taylor et al. Nucleic Acids Research 20:6287-6295 (1992), Chen et al. International Immunology 5:647-656 (1993), Tuaillon et al. J. Immunol. 154:6453-6465 (1995), Choi et al. Nature Genetics 4:117-123 (1993), Lonberg et al. Nature 368:856-859 (1994), Taylor et al. International Immunology 6:579-591 (1994), Tuaillon et al. J. Immunol. 154:6453-6465 (1995), and Fishwild et al. Nature Biotech. 14:845-851 (1996).

In the microcell fusion approach, portions or whole human chromosomes can be introduced into mice (see, for example, European Patent Application No. EP 0 843 961 A1). Mice generated using this approach and containing the human Ig heavy chain locus will generally possess more than one, and potentially all, of the human constant region genes. Such mice will produce, therefore, antibodies that bind to particular antigens having a number of different constant regions.

While mice remain the most developed animal for the expression of human immunoglobulins in humans, recent technological advances have allowed for progress to begin in applying these techniques to other animals, such as cows. The general approach in mice has been to genetically modify embryonic stem cells of mice to knock-out murine immunoglobulins and then insert YACs containing human immunoglobulins into the ES cells. However, ES cells are not available for cows or other large animals such as sheep and pigs. Thus, several fundamental developments had to occur before even the possibility existed to generate large animals with immunoglobulin genes knocked-out and that express human antibody. The alternative to ES cell manipulation to create genetically modified animals is cloning using somatic cells that have been genetically modified. Cloning using genetically modified somatic cells for nuclear transfer has only recently been accomplished.

Since the announcement of Dolly's (a cloned sheep) birth from an adult somatic cell in 1997 (Wilmut, I., et al (1997) Nature 385: 810-813), ungulates, including cattle (Cibelli, J et al 1998 Science 280: 1266-1258; Kubota, C. et al.2000 Proc. Nat'l. Acad. Sci 97: 990-995), goats (Baguisi, A. et al., (1999) Nat. Biotechnology 17: 456-461), and pigs (Polejaeva, I. A., et al. 2000 Nature 407: 86-90; Betthauser, J. et al. 2000 Nat. Biotechnology 18: 1055-1059) have been cloned.

The next technological advance was the development of the technique to genetically modify the cells prior to nuclear transfer to produce genetically modified animals. PCT publication No. WO 00/51424 to PPL Therapeutics describes the targetted genetic modification of somatic cells for nuclear transfer.

Subsequent to these fundamental developments, single and double allele knockouts of genes and the birth of live animals with these modifications have been reported. Between 2002 and 2004, three independent groups, Immerge Biotherapeutics, Inc. in collaboration with the University of Missouri (Lai et al. (Science (2002) 295: 1089-1092) & Kolber-Simonds et al. (PNAS. (2004) 101(19):7335-40)), Alexion Pharmaceuticals (Ramsoondar et al. (Biol Reprod (2003)69: 437-445) and Revivicor, Inc. (Dai et al. (Nature Biotechnology (2002) 20: 251-255) & Phelps et al. (Science (2003) Jan 17;299(5605):411-4)) produced pigs that lacked one allele or both alleles of the alpha-1,3-GT gene via nuclear transfer from somatic cells with targeted genetic deletions. In 2003, Sedai et al. (Transplantation (2003) 76:900-902) reported the targeted disruption of one allele of the alpha-1,3-GT gene in cattle, followed by the successful nuclear transfer of the nucleus of the genetically modified cell and production of transgenic fetuses.

Thus, the feasibility of knocking-out immunoglobulin genes in large animals and inserting human immunoglobulin loci into their cells is just now beginning to be explored. However, due to the complexity and species differences of immunoglobulin genes, the genomic sequences and arrangement of Ig kappa, lambda and heavy chains remain poorly understood in most species. For example, in pigs, partial genomic sequence and organization has only been described for heavy chain constant alpha, heavy chain constant mu and heavy chain constant delta (Brown and Butler Mol Immunol. June 1994;31(8):633-42, Butler et al Vet Immunol Immunopathol. October 1994;43(1-3):5-12, and Zhao et al J Immunol. Aug. 1, 2003;171(3):1312-8).

In cows, the immunoglobulin heavy chain locus has been mapped (Zhao et al. 2003 J. Biol. Chem. 278:35024-32) and the cDNA sequence for the bovine kappa gene is known (See, for example, U.S. Patent Publication No. 2003/0037347). Further, approximately 4.6 kb of the bovine mu heavy chain locus has been sequenced and transgenic calves with decreased expression of heavy chain immunoglobulins have been created by disrupting one or both alleles of the bovine mu heavy chain. In addition, a mammalian artificial chromosome (MAC) vector containing the entire unarranged sequences of the human Ig H-chain and κ L-chain has been introduced into cows (TC cows) with the technology of microcell-mediated chromosome transfer and nuclear transfer of bovine fetal fibroblast cells (see, for example, Kuroiwa et al. 2002 Nature Biotechnology 20:889, Kuroiwa et al. 2004 Nat Genet. June 6 Epub, U.S. Patent Publication Nos. 2003/0037347, 2003/0056237, 2004/0068760 and PCT Publication No. WO 02/07648).

While significant progress has been made in the production of bovine that express human immunoglobulin, little has been accomplished in other large animals, such as sheep, goats and pigs. Although cDNA sequence information for immunoglobulin genes of sheeps, goats and pigs is readily available in Genbank, the unique nature of immunoglobulin loci, which undergo massive rearrangements, creates the need to characterize beyond sequences known to be present in mRNAs (or cDNAs). Since immunoglobulin loci are modular and the coding regions are redundant, deletion of a known coding region does not ensure altered function of the locus. For example, if one were to delete the coding region of a heavy-chain variable region, the function of the locus would not be significantly altered because hundreds of other function variable genes remain in the locus. Therefore, one must first characterize the locus to identify a potential “Achilles heel”.

Despite some advancements in expressing human antibodies in cattle, greater challenges remain for inactivation of the endogenous bovine Ig genes, increasing expression levels of the human antibodies and creating human antibody expression in other large animals, such as porcine, for which the sequence and arrangement of immunoglobulin genes are largely unknown.

It is therefore an object of the present invention to provide the arrangement of ungulate immunoglobin germline gene sequence.

It is another object of the presenst invention to provide novel ungulate immunoglobulin genomic sequences.

It is a further object of the present invention to provide cells, tissues and animals lacking at least one allele of a heavy and/or light chain immunoglobulin gene.

It is another object of the present invention to provide ungulates that express human immunoglobulins.

It is a still further object of the present invention to provide methods to generate cells, tissues and animals lacking at least one allele of novel ungulate immunoglobulin gene sequences and/or express human immunoglobulins.

SUMMARY OF THE INVENTION

The present invention provides for the first time ungulate immunoglobin germline gene sequence arrangement as well as novel genomic sequences thereof. In addition, novel ungulate cells, tissues and animals that lack at least one allele of a heavy or light chain immunoglobulin gene are provided. Based on this discovery, ungulates can be produced that completely lack at least one allele of a heavy and/or light chain immunoglobulin gene. In addition, these ungulates can be further modified to express xenoogenous, such as human, immunoglobulin loci or fragments thereof.

In one aspect of the present invention, a transgenic ungulate that lacks any expression of functional endogenous immunoglobulins is provided. In one embodiment, the ungulate can lack any expression of endogenous heavy and/or light chain immunoglobulins. The light chain immunoglobulin can be a kappa and/or lambda immunoglobulin. In additional embodiments, transgenic ungulates are provided that lack expression of at least one allele of an endogenous immunoglobulin wherein the immunoglobulin is selected from the group consisting of heavy chain, kappa light chain and lambda light chain or any combination thereof. In one embodiment, the expression of functional endogenous immunoglobulins can be accomplished by genetic targeting of the endogenous immunoglobulin loci to prevent expression of the endogenous immunoglobulin. In one embodiment, the genetic targeting can be accomplished via homologous recombination. In another embodiment, the transgenic ungulate can be produced via nuclear transfer.

In other embodiments, the transgenic ungulate that lacks any expression of functional endogenous immunoglobulins can be further genetically modified to express an xenogenous immunoglobulin loci. In an alternative embodiment, porcine animals are provided that contain an xenogeous immunoglobulin locus. In one embodiment, the xenogeous immunoglobulin loci can be a heavy and/or light chain immunoglobulin or fragment thereof. In another embodiment, the xenogenous immunoglobulin loci can be a kappa chain locus or fragment thereof and/or a lambda chain locus or fragment thereof. In still further embodiments, an artificial chromosome (AC) can contain the xenogenous immunoglobulin. In one embodiment, the AC can be a yeast AC or a mammalian AC. In a further embodiment, the xenogenous locus can be a human immunoglobulin locus or fragment thereof. In one embodiment, the human immunoglobulin locus can be human chromosome 14, human chromosome 2, and human chromosome 22 or fragments thereof. In another embodiment, the human immunoglobulin locus can include any fragment of a human immunoglobulin that can undergo rearrangement. In a further embodiment, the human immunoglobulin loci can include any fragment of a human immunoglobulin heavy chain and a human immunoglobulin light chain that can undergo rearrangement. In still further embodiment, the human immunoglobulin loci can include any human immunoglobulin locus or fragment thereof that can produce an antibody upon exposure to an antigen. In a particular embodiment, the exogenous human immunoglobulin can be expressed in B cells to produce xenogenous immunoglobulin in response to exposure to one or more antigens.

In another aspect of the present invention, transgenic ungulates are provided that expresses a xenogenous immunoglobulin loci or fragment thereof, wherein the immunoglobulin can be expressed from an immunoglobulin locus that is integrated within an endogenous ungulate chromosome. In one embodiment, ungulate cells derived from the transgenic animals are provided. In one embodiment, the xenogenous immunoglobulin locus can be inherited by offspring. In another embodiment, the xenogenous immunoglobulin locus can be inherited through the male germ line by offspring. In still further embodiments, an artificial chromosome (AC) can contain the xenogenous immunoglobulin. In one embodiment, the AC can be a yeast AC or a mammalian AC. In a further embodiment, the xenogenous locus can be a human immunoglobulin locus or fragment thereof. In one embodiment, the human immunoglobulin locus can be human chromosome 14, human chromosome 2, and human chromosome 22 or fragments thereof. In another embodiment, the human immunoglobulin locus can include any fragment of a human immunoglobulin that can undergo rearrangement. In a further embodiment, the human immunoglobulin loci can include any fragment of a human immunoglobulin heavy chain and a human immunoglobulin light chain that can undergo rearrangement. In still further embodiment, the human immunoglobulin loci can include any human immunoglobulin locus or fragment thereof that can produce an antibody upon exposure to an antigen. In a particular embodiment, the exogenous human immunoglobulin can be expressed in B cells to produce xenogenous immunoglobulin in response to exposure to one or more antigens.

In another aspect of the present invention, novel genomic sequences encoding the heavy chain locus of ungulate immunoglobulin are provided. In one embodiment, an isolated nucleotide sequence encoding porcine heavy chain is provided that includes at least one variable region, two diversity regions, at least four joining regions and at least one constant region, such as the mu constant region, for example, as represented in Seq ID No. 29. In another embodiment, an isolated nucleotide sequence is provided that includes at least four joining regions and at least one constant region, such as as the mu constant region, of the porcine heavy chain genomic sequence, for example, as represented in Seq ID No. 4. In a further embodiment, nucleotide sequence is provided that includes 5′ flanking sequence to the first joining region of the porcine heavy chain genomic sequence, for example, as represented in Seq ID No 1. Still further, nucleotide sequence is provided that includes 3′ flanking sequence to the first joining region of the porcine heavy chain genomic sequence, for example, as represented in the 3′ region of Seq ID No 4. In further embodiments, isolated nucleotide sequences as depicted in Seq ID Nos 1, 4 or 29 are provided. Nucleic acid sequences at least 80, 85, 90, 95, 98 or 99% homologous to Seq ID Nos 1, 4 or 29 are also provided. In addition, nucleotide sequences that contain at least 10, 15, 17, 20, 25 or 30 contiguous nucleotides of Seq ID Nos 1, 4 or 29 are provided. In one embodiment, the nucleotide sequence contains at least 17, 20, 25 or 30 contiguous nucleotides of Seq ID No 4 or residues 1-9,070 of Seq ID No 29.

In another embodiment, the nucleotide sequence contains residues 9,070-11039 of Seq ID No 29. Further provided are nucleotide sequences that hybridizes, optionally under stringent conditions, to Seq ID Nos 1, 4 or 29, as well as, nucleotides homologous thereto.

In another embodiment, novel genomic sequences encoding the kappa light chain locus of ungulate immunoglobulin are provided. The present invention provides the first reported genomic sequence of ungulate kappa light chain regions. In one embodiment, nucleic acid sequence is provided that encodes the porcine kappa light chain locus. In another embodiment, the nucleic acid sequence can contain at least one joining region, one constant region and/or one enhancer region of kappa light chain. In a further embodiment, the nucleotide sequence can include at least five joining regions, one constant region and one enhancer region, for example, as represented in Seq ID No. 30. In a further embodiment, an isolated nucleotide sequence is provided that contains at least one, at least two, at least three, at least four or five joining regions and 3′ flanking sequence to the joining region of porcine genomic kappa light chain, for example, as represented in Seq ID No 12. In another embodiment, an isolated nucleotide sequence of porcine genomic kappa light chain is provided that contains 5′ flanking sequence to the first joining region, for example, as represented in Seq ID No 25. In a further embodiment, an isolated nucleotide sequence is provided that contains 3′ flanking sequence to the constant region and, optionally, the 5′ portion of the enhancer region, of porcine genomic kappa light chain, for example, as represented in Seq ID Nos. 15, 16 and/or 19.

In further embodiments, isolated nucleotide sequences as depicted in Seq ID Nos 30, 12, 25, 15, 16 or 19 are provided. Nucleic acid sequences at least 80, 85, 90, 95, 98 or 99% homologous to Seq ID Nos 30, 12, 25, 15, 16 or 19 are also provided. In addition, nucleotide sequences that contain at least 10, 15, 17, 20, 25 or 30 contiguous nucleotides of Seq ID Nos 30, 12, 25, 15, 16 or 19 are provided. Further provided are nucleotide sequences that hybridizes, optionally under stringent conditions, to Seq ID Nos 30, 12, 25, 15, 16 or 19, as well as, nucleotides homologous thereto.

In another embodiment, novel genomic sequences encoding the lambda light chain locus of ungulate immunoglobulin are provided. The present invention provides the first reported genomic sequence of ungulate lambda light chain regions. In one embodiment, the porcine lambda light chain nucleotides include a concatamer of J to C units. In a specific embodiment, an isolated porcine lambda nucleotide sequence is provided, such as that depicted in Seq ID No. 28. In one embodiment, nucleotide sequence is provided that includes 5′ flanking sequence to the first lambda J/C region of the porcine lambda light chain genomic sequence, for example, as represented by Seq ID No 32. Still -further, nucleotide sequence is provided that includes 3′ flanking sequence to the J/C cluster region of the porcine lambda light chain genomic sequence, for example, approximately 200 base pairs downstream of lambda J/C, such as that represented by Seq ID No 33. Alternatively, nucleotide sequence is provided that includes 3′ flanking sequence to the J/C cluster region of the porcine lambda light chain genomic sequence, for example, as represented by Seq ID No 34, 35, 36, 37, 38, and/or 39. In a further embodiment, nucleic acid sequences are provided that encode bovine lambda light chain locus, which can include at least one joining region-constant region pair and/or at least one variable region, for example, as represented by Seq ID No. 31. In further embodiments, isolated nucleotide sequences as depicted in Seq ID Nos 28, 31, 32, 33, 34, 35, 36, 37, 38, or 39 are provided. Nucleic acid sequences at least 80, 85, 90, 95, 98 or 99% homologous to Seq ID Nos 28, 31, 32, 33, 34, 35, 36, 37, 38, or 39 are also provided. In addition, nucleotide sequences that contain at least 10, 15, 17, 20, 25 or 30 contiguous nucleotides of Seq ID Nos 28, 31, 32, 33, 34, 35, 36, 37, 38, or 39 are provided. Further provided are nucleotide sequences that hybridizes, optionally under stringent conditions, to Seq ID Nos 28, 31, 32, 33, 34, 35, 36, 37, 38, or 39, as well as, nucleotides homologous thereto.

In another embodiment, nucleic acid targeting vector constructs are also provided. The targeting vectors can be designed to accomplish homologous recombination in cells. These targeting vectors can be transformed into mammalian cells to target the ungulate heavy chain, kappa light chain or lambda light chain genes via homologous recombination. In one embodiment, the targeting vectors can contain a 3′ recombination arm and a 5′ recombination arm (i.e. flanking sequence) that is homologous to the genomic sequence of ungulate heavy chain, kappa light chain or lambda light chain genomic sequence, for example, sequence represented by Seq ID Nos. 1, 4, 29, 30, 12, 25, 15, 16, 19, 28 or 31, as described above. The homologous DNA sequence can include at least 15 bp, 20 bp, 25 bp, 50 bp, 100 bp, 500 bp, 1 kbp, 2 kbp, 4 kbp, 5 kbp, 10 kbp, 15 kbp, 20 kbp, or 50 kbp of sequence homologous to the genomic sequence. The 3′ and 5′ recombination arms can be designed such that they flank the 3′ and 5′ ends of at least one functional variable, joining, diversity, and/or constant region of the genomic sequence. The targeting of a functional region can render it inactive, which results in the inability of the cell to produce functional immunoglobulin molecules. In another embodiment, the homologous DNA sequence can include one or more intron and/or exon sequences. In addition to the nucleic acid sequences, the expression vector can contain selectable marker sequences, such as, for example, enhanced Green Fluorescent Protein (eGFP) gene sequences, initiation and/or enhancer sequences, poly A-tail sequences, and/or nucleic acid sequences that provide for the expression of the construct in prokaryotic and/or eukaryotic host cells. The selectable marker can be located between the 5′ and 3′ recombination arm sequence.

In one particular embodiment, the targeting vector can contain 5′ and 3′ recombination arms that contain homologous sequence to the 3′ and 5′ flanking sequence of the J6 region of the porcine immunoglobulin heavy chain locus. Since the J6 region is the only functional joining region of the porcine immunoglobulin heavy chain locus, this will prevent the exression of a functional porcine heavy chain immunoglobulin. In a specific embodiment, the targeting vector can contain a 5′ recombination arm that contains sequence homologous to genomic sequence 5′ of the J6 region, including J1-4, and a 3′ recombination arm that contains sequence homologous to genomic sequence 3′ of the J6 region, including the mu constant region (a “J6 targeting construct”), see for example, FIG. 1. Further, this J6 targeting construct can also contain a selectable marker gene that is located between the 5′ and 3′ recombination arms, see for example, Seq ID No 5 and FIG. 1. In other embodiments, the targeting vector can contain a 5′ recombination arm that contains sequence homologous to genomic sequence 5′ of the diversity region, and a 3′ recombination arm that contains sequence homologous to genomic sequence 3′ of the diversity region of the porcine heavy chain locus. In a further embodiment, the targeting vector can contain a 5′ recombination arm that contains sequence homologous to genomic sequence 5′ of the mu constant region and a 3′ recombination arm that contains sequence homologous to genomic sequence 3′ of the mu constant region of the porcine heavy chain locus.

In another particular embodiment, the targeting vector can contain 5′ and 3′ recombination arms that contain homologous sequence to the 3′ and 5′ flanking sequence of the constant region of the porcine immunoglobulin heavy chain locus. Since the present invention discovered that there is only one constant region of the porcine immunoglobulin kappa light chain locus, this will prevent the expression of a functional porcine kappa light chain immunoglobulin. In a specific embodiment, the targeting vector can contain a 5′ recombination arm that contains sequence homologous to genomic sequence 5′ of the constant region, optionally including the joining region, and a 3′ recombination arm that contains sequence homologous to genomic sequence 3′ of the constant region, optionally including at least part of the enhancer region (a “Kappa constant targeting construct”), see for example, FIG. 2. Further, this kappa constant targeting construct can also contain a selectable marker gene that is located between the 5′ and 3′ recombination arms, see for example, Seq ID No 20 and FIG. 2. In other embodiments, the targeting vector can contain a 5′ recombination arm that contains sequence homologous to genomic sequence 5′ of the joining region, and a 3′ recombination arm that contains sequence homologous to genomic sequence 3′ of the joining region of the porcine kappa light chain locus.

In another embodiment, primers are provided to generate 3′ and 5′ sequences of a targeting vector. The oligonucleotide primers can be capable of hybridizing to porcine immunoglobulin genomic sequence, such as Seq ID Nos. 1, 4, 29, 30, 12, 25, 15, 16, 19, 28 or 31, as described above. In a particular embodiment, the primers hybridize under stringent conditions to Seq ID Nos. 1, 4, 29, 30, 12, 25, 15, 16, 19, 28 or 31, as described above. Another embodiment provides oligonucleotide probes capable of hybridizing to porcine heavy chain, kappa light chain or lambda light chain nucleic acid sequences, such as Seq ID Nos. 1, 4, 29, 30, 12, 25, 15, 16, 19, 28 or 31, as described above. The polynucleotide primers or probes can have at least 14 bases, 20 bases, 30 bases, or 50 bases which hybridize to a polynucleotide of the present invention. The probe or primer can be at least 14 nucleotides in length, and in a particular embodiment, are at least 15, 20, 25, 28, or 30 nucleotides in length.

In one embodiment, primers are provided to amplify a fragment of porcine Ig heavy-chain that includes the functional joining region (the J6 region). In one non-limiting embodiment, the amplified fragment of heavy chain can be represented by Seq ID No 4 and the primers used to amplify this fragment can be complementary to a portion of the J-region, such as, but not limited to Seq ID No 2, to produce the 5′ recombination arm and complementary to a portion of Ig heavy-chain mu constant region, such as, but not limited to Seq ID No 3, to produce the 3′ recombination arm. In another embodiment, regions of the porcine Ig heavy chain (such as, but not limited to Seq ID No 4) can be subcloned and assembled into a targeting vector.

In other embodiments, primers are provided to amplify a fragment of porcine Ig kappa light-chain that includes the constant region. In another embodiment, primers are provided to amplify a fragment of porcine Ig kappa light-chain that includes the J region. In one non-limiting embodiment, the primers used to amplify this fragment can be complementary to a portion of the J-region, such as, but not limited to Seq ID No 21 or 10, to produce the 5′ recombination arm and complementary to genomic sequence 3′ of the constant region, such as, but not limited to Seq ID No 14, 24 or 18, to produce the 3′ recombination arm. In another embodiment, regions of the porcine Ig heavy chain (such as, but not limited to Seq ID No 20) can be subcloned and assembled into a targeting vector.

In another aspect of the present invention, ungulate cells lacking at least one allele of a functional region of an ungulate heavy chain, kappa light chain and/or lambda light chain locus produced according to the process, sequences and/or constructs described herein are provided. These cells can be obtained as a result of homologous recombination. Particularly, by inactivating at least one allele of an ungulate heavy chain, kappa light chain or lambda light chain gene, cells can be produced which have reduced capability for expression of ungulate antibodies. In other embodiments, mammalian cells lacking both alleles of an ungulate heavy chain, kappa light chain and/or lambda light chain gene can be produced according to the process, sequences and/or constructs described herein. In a further embodiment, porcine animals are provided in which at least one allele of an ungulate heavy chain, kappa light chain and/or lambda light chain gene is inactivated via a genetic targeting event produced according to the process, sequences and/or constructs described herein. In another aspect of the present invention, porcine animals are provided in which both alleles of an ungulate heavy chain, kappa light chain and/or lambda light chain gene are inactivated via a genetic targeting event. The gene can be targeted via homologous recombination.

In other embodiments, the gene can be disrupted, i.e. a portion of the genetic code can be altered, thereby affecting transcription and/or translation of that segment of the gene. For example, disruption of a gene can occur through substitution, deletion (“knock-out”) or insertion (“knock-in”) techniques. Additional genes for a desired protein or regulatory sequence that modulate transcription of an existing sequence can be inserted. To achieve multiple genetic modifications of ungulate immunoglobulin genes, in one embodiment, cells can be modified sequentially to contain multiple genentic modifications. In other embodiments, animals can be bred together to produce animals that contain multiple genetic modifications of immunoglobulin genes. As an illustrative example, animals that lack expression of at least one allele of an ungulate heavy chain gene can be further genetically modified or bred with animals lacking at least one allele of a kappa light chain gene.

In embodiments of the present invention, alleles of ungulate heavy chain, kappa light chain or lambda light chain gene are rendered inactive according to the process, sequences and/or constructs described herein, such that functional ungulate immunoglobulins can no longer be produced. In one embodiment, the targeted immunoglobulin gene can be transcribed into RNA, but not translated into protein. In another embodiment, the targeted immunoglobulin gene can be transcribed in an inactive truncated form. Such a truncated RNA may either not be translated or can be translated into a nonfunctional protein. In an alternative embodiment, the targeted immunoglobulin gene can be inactivated in such a way that no transcription of the gene occurs. In a further embodiment, the targeted immunoglobulin gene can be transcribed and then translated into a nonfunctional protein.

In a further aspect of the present invention, ungulate, such as porcine or bovine, cells lacking one allele, optionally both alleles of an ungulate heavy chain, kappa light chain and/or lambda light chain gene can be used as donor cells for nuclear transfer into recipient cells to produce cloned, transgenic animals. Alternatively, ungulate heavy chain, kappa light chain and/or lambda light chain gene knockouts can be created in embryonic stem cells, which are then used to produce offspring. Offspring lacking a single allele of a functional ungulate heavy chain, kappa light chain and/or lambda light chain gene produced according to the process, sequences and/or constructs described herein can be breed to further produce offspring lacking functionality in both alleles through mendelian type inheritance.

In one aspect of the present invention, a method is provided to disrupt the expression of an ungulate immunoglobulin gene by (i) analyzing the germline configuration of the ungulate heavy chain, kappa light chain or lambda light chain genomic locus; (ii) determining the location of nucleotide sequences that flank the 5′ end and the 3′ end of at least one functional region of the locus; and (iii) transfecting a targeting construct containing the flanking sequence into a cell wherein, upon successful homologous recombination, at least one functional region of the immunoglobulin locus is disrupted thereby reducing or preventing the expression of the immunoglobulin gene. In one embodiment, the germline configuration of the porcine heavy chain locus is provided. The porcine heavy chain locus contains at least four variable regions, two diversity regions, six joining regions and five constant regions, for example, as illustrated in FIG. 1. In a specific embodiment, only one of the six joining regions, J6, is functional. In another embodiment, the germline configuration of the porcine kappa light chain locus is provided. The porcine kappa light chain locus contains at least six variable regions, six joining regions, one constant region and one enhancer region, for example, as illustrated in FIG. 2. In a further embodiment, the germline configuration of the porcine lambda light chain locus is provided.

In further aspects of the present invention provides ungulates and ungulate cells that lack at least one allele of a functional region of an ungulate heavy chain, kappa light chain and/or lambda light chain locus produced according to the processes, sequences and/or constructs described herein, which are further modified to express at least part of a human antibody (i.e. immunoglobulin (Ig)) locus. In additional embodiments, porcine animals are provided that express xenogenous immunoglobulin. This human locus can undergoe rearrangement and express a diverse population of human antibody molecules in the ungulate. These cloned, transgenic ungulates provide a replenishable, theoretically infinite supply of human antibodies (such as polyclonal antibodies), which can be used for therapeutic, diagnostic, purification, and other clinically relevant purposes. In one particular embodiment, artificial chromosomes (ACs), such as yeast or mammalian artificial chromosomes (YACS or MACS) can be used to allow expression of human immunoglobulin genes into ungulate cells and animals. All or part of human immunoglobulin genes, such as the Ig heavy chain gene (human chromosome 414), Ig kappa chain gene (human chromosome #2) and/or the Ig lambda chain gene (chromosome #22) can be inserted into the artificial chromosomes, which can then be inserted into ungulate cells. In further embodiments, ungulates and ungulate cells are provided that contain either part or all of at least one human antibody gene locus, which undergoes rearrangement and expresses a diverse population of human antibody molecules.

In additional embodiments, methods of producing xenogenous antibodies are provided, wherein the method can include: (a) administering one or more antigens of interest to an ungulate whose cells comprise one or more artificial chromosomes and lack any expression of functional endogenous immunoglobulin, each artificial chromosome comprising one or more xenogenous immunoglobulin loci that undergo rearrangement, resulting in production of xenogenous antibodies against the one or more antigens; and/or (b) recovering the xenogenous antibodies from the ungulate. In one embodiment, the immunoglobulin loci can undergo rearrangement in a B cell.

In one aspect of the present invention, an ungulate, such as a pig or a cow, can be prepared by a method in accordance with any aspect of the present invention. These cloned, transgenic ungulates (e.g., porcine and bovine animals) provide a replenishable, theoretically infinite supply of human polyclonal antibodies, which can be used as therapeutics, diagnostics and for purification purposes. For example, transgenic animals produced according to the process, sequences and/or constructs described herein that produce polyclonal human antibodies in the bloodstream can be used to produce an array of different antibodies which are specific to a desired antigen. The availability of large quantities of polyclonal antibodies can also be used for treatment and prophylaxis of infectious disease, vaccination against biological warfare agents, modulation of the immune system, removal of undesired human cells such as cancer cells, and modulation of specific human molecules.

In other embodiments, animals or cells lacking expression of functional immunoglobulin, produced according to the process, sequences and/or constructs described herein, can contain additional genetic modifications to eliminate the expression of xenoantigens. Such animals can be modified to elimate the expression of at least one allele of the alpha-1,3-galactosyltransferase gene, the CMP-Neu5Ac hydroxylase gene (see, for example, U.S. Ser. No. 10/863,116), the iGb3 synthase gene (see, for example, U.S. Patent Application 60/517,524), and/or the Forssman synthase gene (see, for example, U.S. Patent Application 60/568,922). In additional embodiments, the animals discloses herein can also contain genetic modifications to expresss fucosyltransferase and/or sialyltransferase. To achieve these additional genetic modifications, in one embodiment, cells can be modified to contain multiple genentic modifications. In other embodiments, animals can be bred together to achieve multiple genetic modifications. In one specific embodiment, animals, such as pigs, lacking expression of functional immunoglobulin, produced according to the process, sequences and/or constructs described herein, can be bred with animals, such as pigs, lacking expression of alpha-1,3-galactosyl transferase (for example, as described in WO 04/028243).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates the design of a targeting vector that disrupts the expression of the joining region of the porcine heavy chain immunoglobulin gene.

FIG. 2 illustrates the design of a targeting vector that disrupts the expression of the constant region of the porcine kappa light chain immunoglobulin gene.

FIG. 3 illustrates the genomic organization of the porcine lambda immunoglobulin locus, including a concatamer of J-C sequences as well as flanking regions that include the variable region 5′ to the JC region. Bacterial artificial chromosomes (BAC1 and BAC2) represent fragments of the porcine immunoglobulin genome that can be obtained from BAC libraries.

FIG. 4 represents the design of a targeting vector that disrupts the expression of the JC clusterregion of the porcine lambda light chain immunoglobulin gene. “SM” stands for a selectable marker gene, which can be used in the targeting vector.

FIG. 5 illustrates a targeting strategy to insert a site specific recombinase target or recognition site into the region 5′ of the JC cluster region of the porcine lambda immunoglobulin locus. “SM” stands for a selectable marker gene, which can be used in the targeting vector. “SSRRS” stands for a specific recombinase target or recognition site.

FIG. 6 illustrates a targeting strategy to insert a site specific recombinase target or recognition site into the region 3′ of the JC cluster region of the porcine lambda immunoglobulin locus. “SM” stands for a selectable marker gene, which can be used in the targeting vector. “SSRRS” stands for a specific recombinase target or recognition site.

FIG. 7 illustrates the site specific recombinase mediated transfer of a YAC into a host genome. “SSRRS” stands for a specific recombinase target or recognition site.

DETAILED DESCRIPTION

The present invention provides for the first time ungulate immunoglobin germline gene sequence arrangement as well as novel genomic sequences thereof. In addition, novel ungulate cells, tissues and animals that lack at least one allele of a heavy or light chain immunoglobulin gene are provided. Based on this discovery, ungulates can be produced that completely lack at least one allele of a heavy and/or light chain immunoglobulin gene. In addition, these ungulates can be further modified to express xenoogenous, such as human, immunoglobulin loci or fragments thereof.

In one aspect of the present invention, a transgenic ungulate that lacks any expression of functional endogenous immunoglobulins is provided. In one embodiment, the ungulate can lack any expression of endogenous heavy and/or light chain immunoglobulins. The light chain immunoglobulin can be a kappa and/or lambda immunoglobulin. In additional embodiments, transgenic ungulates are provided that lack expression of at least one allele of an endogenous immunoglobulin wherein the immunoglobulin is selected from the group consisting of heavy chain, kappa light chain and lambda light chain or any combination thereof. In one embodiment, the expression of functional endogenous immunoglobulins can be accomplished by genetic targeting of the endogenous immunoglobulin loci to prevent expression of the endogenous immunoglobulin. In one embodiment, the genetic targeting can be accomplished via homologous recombination. In another embodiment, the transgenic ungulate can be produced via nuclear transfer.

In other embodiments, the transgenic ungulate that lacks any expression of functional endogenous immunoglobulins can be further genetically modified to express an xenogenous immunoglobulin loci. In an alternative embodiment, porcine animals are provided that contain an xenogeous immunoglobulin locus. In one embodiment, the xenogeous immunoglobulin loci can be a heavy and/or light chain immunoglobulin or fragment thereof. In another embodiment, the xenogenous immunoglobulin loci can be a kappa chain locus or fragment thereof and/or a lambda chain locus or fragment thereof. In still further embodiments, an artificial chromosome (AC) can contain the xenogenous immunoglobulin. In one embodiment, the AC can be a yeast AC or a mammalian AC. In a further embodiment, the xenogenous locus can be a human immunoglobulin locus or fragment thereof. In one embodiment, the human immunoglobulin locus can be human chromosome 14, human chromosome 2, and human chromosome 22 or fragments thereof. In another embodiment, the human immunoglobulin locus can include any fragment of a human immunoglobulin that can undergo rearrangement. In a further embodiment, the human immunoglobulin loci can include any fragment of a human immunoglobulin heavy chain and a human immunoglobulin light chain that can undergo rearrangement. In still further embodiment, the human immunoglobulin loci can include any human immunoglobulin locus or fragment thereof that can produce an antibody upon exposure to an antigen. In a particular embodiment, the exogenous human immunoglobulin can be expressed in B cells to produce xenogenous immunoglobulin in response to exposure to one or more antigens.

In another aspect of the present invention, transgenic ungulates are provided that expresses a xenogenous immunoglobulin loci or fragment thereof, wherein the immunoglobulin can be expressed from an immunoglobulin locus that is integrated within an endogenous ungulate chromosome. In one embodiment, ungulate cells derived from the transgenic animals are provided. In one embodiment, the xenogenous immunoglobulin locus can be inherited by offspring. In another embodiment, the xenogenous immunoglobulin locus can be inherited through the male germ line by offspring. In still further embodiments, an artificial chromosome (AC) can contain the xenogenous immunoglobulin. In one embodiment, the AC can be a yeast AC or a mammalian AC. In a further embodiment, the xenogenous locus can be a human immunoglobulin locus or fragment thereof. In one embodiment, the human immunoglobulin locus can be human chromosome 14, human chromosome 2, and human chromosome 22 or fragments thereof. In another embodiment, the human immunoglobulin locus can include any fragment of a human immunoglobulin that can undergo rearrangement. In a further embodiment, the human immunoglobulin loci can include any fragment of a human immunoglobulin heavy chain and a human immunoglobulin light chain that can undergo rearrangement. In still further embodiment, the human immunoglobulin loci can include any human immunoglobulin locus or fragment thereof that can produce an antibody upon exposure to an antigen. In a particular embodiment, the exogenous human immunoglobulin can be expressed in B cells to produce xenogenous immunoglobulin in response to exposure to one or more antigens.

Definitions

The terms “recombinant DNA technology,” “DNA cloning,” “molecular cloning,” or “gene cloning” refer to the process of transferring a DNA sequence into a cell or orgaism. The transfer of a DNA fragment can be from one organism to a self-replicating genetic element (e.g., bacterial plasmid) that permits a copy of any specific part of a DNA (or RNA) sequence to be selected among many others and produced in an unlimited amount. Plasmids and other types of cloning vectors such as artificial chromosomes can be used to copy genes and other pieces of chromosomes to generate enough identical material for further study. In addition to bacterial plasmids, which can carry up to 20 kb of foreign DNA, other cloning vectors include viruses, cosmids, and artificial chromosomes (e.g., bacteria artificial chromosomes (BACs) or yeast artificial chromosomes (YACs)). When the fragment of chromosomal DNA is ultimately joined with its cloning vector in the lab, it is called a “recombinant DNA molecule.” Shortly after the recombinant plasmid is introduced into suitable host cells, the newly inserted segment will be reproduced along with the host cell DNA.

“Cosmids” are artificially constructed cloning vectors that carry up to 45 kb of foreign DNA. They can be packaged in lambda phage particles for infection into E. coli cells.

As used herein, the term “mammal” (as in “genetically modified (or altered) mammal”) is meant to include any non-human mammal, including but not limited to pigs, sheep, goats, cattle (bovine), deer, mules, horses, monkeys, dogs, cats, rats, mice, birds, chickens, reptiles, fish, and insects. In one embodiment of the invention, genetically altered pigs and methods of production thereof are provided.

The term “ungulate” refers to hoofed mammals. Artiodactyls are even-toed (cloven-hooved) ungulates, including antelopes, camels, cows, deer, goats, pigs, and sheep. Perissodactyls are odd toes ungulates, which include horses, zebras, rhinoceroses, and tapirs. The term ungulate as used herein refers to an adult, embryonic or fetal ungulate animal.

As used herein, the terms “porcine”, “porcine animal”, “pig” and “swine” are generic terms referring to the same type of animal without regard to gender, size, or breed.

A “homologous DNA sequence or homologous DNA” is a DNA sequence that is at least about 80%, 85%, 90%, 95%, 98% or 99% identical with a reference DNA sequence. A homologous sequence hybridizes under stringent conditions to the target sequence, stringent hybridization conditions include those that will allow hybridization occur if there is at least 85, at least 95% or 98% identity between the sequences.

An “isogenic or substantially isogenic DNA sequence” is a DNA sequence that is identical to or nearly identical to a reference DNA sequence. The term “substantially isogenic” refers to DNA that is at least about 97-99% identical with the reference DNA sequence, or at least about 99.5-99.9% identical with the reference DNA sequence, and in certain uses 100% identical with the reference DNA sequence.

“Homologous recombination” refers to the process of DNA recombination based on sequence homology.

“Gene targeting” refers to homologous recombination between two DNA sequences, one of which is located on a chromosome and the other of which is not.

“Non-homologous or random integration” refers to any process by which DNA is integrated into the genome that does not involve homologous recombination.

A “selectable marker gene” is a gene, the expression of which allows cells containing the gene to be identified. A selectable marker can be one that allows a cell to proliferate on a medium that prevents or slows the growth of cells without the gene. Examples include antibiotic resistance genes and genes which allow an organism to grow on a selected metabolite. Alternatively, the gene can facilitate visual screening of transformants by conferring on cells a phenotype that is easily identified. Such an identifiable phenotype can be, for example, the production of luminescence or the production of a colored compound, or the production of a detectable change in the medium surrounding the cell.

The term “contiguous” is used herein in its standard meaning, i.e., without interruption, or uninterrupted.

“Stringent conditions” refers to conditions that (1) employ low ionic strength and high temperature for washing, for example, 0.015 M NaCl/0.0015 M sodium citrate/0.1% SDS at 50° C., or (2) employ during hybridization a denaturing agent such as, for example, formamide. One skilled in the art can determine and vary the stringency conditions appropriately to obtain a clear and detectable hybridization signal. For example, stringency can generally be reduced by increasing the salt content present during hybridization and washing, reducing the temperature, or a combination thereof. See, for example, Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York, (1989).

I. Immunoglobulin Genes

In one aspect of the present invention, a transgenic ungulate that lacks any expression of functional endogenous immunoglobulins is provided. In one embodiment, the ungulate can lack any expression of endogenous heavy and/or light chain immunoglobulins. The light chain immunoglobulin can be a kappa and/or lambda immunoglobulin. In additional embodiments, transgenic ungulates are provided that lack expression of at least one allele of an endogenous immunoglobulin wherein the immunoglobulin is selected from the group consisting of heavy chain, kappa light chain and lambda light chain or any combination thereof. In one embodiment, the expression of functional endogenous immunoglobulins can be accomplished by genetic targeting of the endogenous immunoglobulin loci to prevent expression of the endogenous immunoglobulin. In one embodiment, the genetic targeting can be accomplished via homologous recombination. In another embodiment, the transgenic ungulate can be produced via nuclear transfer.

In another aspect of the present invention, a method is provided to disrupt the expression of an ungulate immunoglobulin gene by (i) analyzing the germline configuration of the ungulate heavy chain, kappa light chain or lambda light chain genomic locus; (ii) determining the location of nucleotide sequences that flank the 5′ end and the 3′ end of at least one functional region of the locus; and (iii) transfecting a targeting construct containing the flanking sequence into a cell wherein, upon successful homologous recombination, at least one functional region of the immunoglobulin locus is disrupted thereby reducing or preventing the expression of the immunoglobulin gene.

In one embodiment, the germline configuration of the porcine heavy chain locus is provided. The porcine heavy chain locus contains at least four variable regions, two diversity regions, six joining regions and five constant regions, for example, as illustrated in FIG. 1. In a specific embodiment, only one of the six joining regions, J6, is functional.

In another embodiment, the germline configuration of the porcine kappa light chain locus is provided. The porcine kappa light chain locus contains at least six variable regions, six joining regions, one constant region and one enhancer region, for example, as illustrated in FIG. 2.

In a further embodiment, the germline configuration of the porcine lambda light chain locus is provided.

Isolated nucleotide sequences as depicted in Seq ID Nos 1-39 are provided. Nucleic acid sequences at least 80, 85, 90, 95, 98 or 99% homologous to any one of Seq ID Nos 1-39 are also provided. In addition, nucleotide sequences that contain at least 10, 15, 17, 20, 25 or 30 contiguous nucleotides of any one of Seq ID Nos 1-39 are provided. Further provided are nucleotide sequences that hybridizes, optionally under stringent conditions, to Seq ID Nos 1-39, as well as, nucleotides homologous thereto.

Homology or identity at the nucleotide or amino acid sequence level can be determined by BLAST (Basic Local Alignment Search Tool) analysis using the algorithm employed by the programs blastp, blastn, blastx, tblastn and tblastx (see, for example, Altschul, S. F. et al (1 997) Nucleic Acids Res 25:3389-3402 and Karlin et al, (1 900) Proc. Natl. Acad. Sci. USA 87, 2264-2268) which are tailored for sequence similarity searching. The approach used by the BLAST program is to first consider similar segments, with and without gaps, between a query sequence and a database sequence, then to evaluate the statistical significance of all matches that are identified and finally to summarize only those matches which satisfy a preselected threshold of significance. See, for example, Altschul et al., (1994) (Nature Genetics 6, 119-129). The search parameters for histogram, descriptions, alignments, expect (ie., the statistical significance threshold for reporting matches against database sequences), cutoff, matrix and filter (low co M'plexity) are at the default settings. The default scoring matrix used by blastp, blastx, tblastn, and tblastx is the BLOSUM62 matrix (Henikoff et al., (1 992) Proc. Natl. Acad. Sci. USA 89, 10915-10919), which is recommended for query sequences over 85 in length (nucleotide bases or amino acids).

Porcine Heavy Chain

In another aspect of the present invention, novel genomic sequences encoding the heavy chain locus of ungulate immunoglobulin are provided. In one embodiment, an isolated nucleotide sequence encoding porcine heavy chain is provided that includes at least one variable region, two diversity regions, at least four joining regions and at least one constant region, such as the mu constant region, for example, as represented in Seq ID No. 29. In another embodiment, an isolated nucleotide sequence is provided that includes at least four joining regions and at least one constant region, such as as the mu constant region, of the porcine heavy chain genomic sequence, for example, as represented in Seq ID No. 4. In a further embodiment, nucleotide sequence is provided that includes 5′ flanking sequence to the first joining region of the porcine heavy chain genomic sequence, for example, as represented in Seq ID No 1. Still further, nucleotide sequence is provided that includes 3′ flanking sequence to the first joining region of the porcine heavy chain genomic sequence, for example, as represented in the 3′ region of Seq ID No 4. In further embodiments, isolated nucleotide sequences as depicted in Seq ID Nos 1, 4 or 29 are provided. Nucleic acid sequences at least 80, 85, 90, 95, 98 or 99% homologous to Seq ID Nos 1, 4 or 29 are also provided. Further provided are nucleotide sequences that hybridizes, optionally under stringent conditions, to Seq ID Nos 1, 4 or 29, as well as, nucleotides homologous thereto.

In addition, nucleotide sequences that contain at least 10, 15, 17, 20, 25 or 30 contiguous nucleotides of Seq ID Nos 1, 4 or 29 are provided. In one embodiment, the nucleotide sequence contains at least 17, 20, 25 or 30 contiguous nucleotides of Seq ID No 4 or residues 1-9,070 of Seq ID No 29. In other embodiments, nucleotide sequences that contain at least 50, 100, 1,000, 2,500, 4,000, 4,500, 5,000, 7,000, 8,000, 8,500, 9,000, 10,000 or 15,000 contiguous nucleotides of Seq ID No. 29 are provided. In another embodiment, the nucleotide sequence contains residues 9,070-11039 of Seq ID No 29.

In further embodiments, isolated nucleotide sequences as depicted in Seq ID Nos 1, 4 or 29 are provided. Nucleic acid sequences at least 80, 85, 90, 95, 98 or 99% homologous to Seq ID Nos 1, 4 or 29 are also provided. In addition, nucleotide sequences that contain at least 10, 15, 17, 20, 25 or 30 contiguous nucleotides of Seq ID Nos 1, 4 or 29 are provided. Further provided are nucleotide sequences that hybridizes, optionally under stringent conditions, to Seq ID Nos 1, 4 or 29, as well as, nucleotides homologous thereto.

In one embodiment, an isolated nucleotide sequence encoding porcine heavy chain is provided that includes at least one variable region, two diversity regions, at least four joining regions and at least one constant region, such as the mu constant region, for example, as represented in Seq ID No. 29. In Seq ID No. 29, the Diversity region of heavy chain is represented, for example, by residues 1089-1099 (D(pseudo)), the Joining region of heavy chain is represented, for example, by residues 1887-3352 (for example: J(psuedo): 1887-1931, J(psuedo): 2364-2411, J(psuedo): 2756-2804, J (functional J): 3296-3352), the recombination signals are represented, for example, by residues 3001-3261 (Nonamer), 3292-3298 (Heptamer), the Constant Region is represented by the following residues: 3353-9070 (J to C mu intron), 5522-8700 (Switch region), 9071-9388 (Mu Exon 1), 9389-9469 (Mu Intron A), 9470-9802 (Mu Exon 2), 9830-10069 (Mu Intron B), 10070-10387 (Mu Exon 3), 10388-10517 (Mu Intron C), 10815-11052 (Mu Exon 4), 11034-11039 (Poly(A) signal).

Seq ID No. 29

tctagaagacgctggagagaggccagacttcctcgga

acagctcaaagagctctgtcaaagccagatcccatca

cacgtgggcaccaataggccatgccagcctccaaggg

ccgaactgggttctccacggcgcacatgaagcctgca

gcctggcttatcctcttccgtggtgaagaggcaggcc

cgggactggacgaggggctagcagggtgtggtaggca

ccttgcgccccccaccccggcaggaaccagagaccct

ggggctgagagtgagcctccaaacaggatgccccacc

cttcaggccacctttcaatccagctacactccacctg

ccattctcctctgggcacagggcccagcccctggatc

ttggccttggctcgacttgcacccacgcgcacacaca

cacttcctaacgtgctgtccgctcacccctccccagc

gtggtccatgggcagcacggcagtgcgcgtccggcgg

tagtgagtgcagaggtcccttcccctcccccaggagc

cccaggggtgtgtgcagatctgggggctcctgtccct

tacaccttcatgcccctcccctcatacccaccctcca

ggcgggaggcagcgagacctttgcccagggactcagc

caacgggcacacgggaggccagccctcagcagctggc

tcccaaagaggaggtgggaggtaggtccacagctgcc

acagagagaaaccctgacggaccccacaggggccacg

ccagccggaaccagctccctcgtgggtgagcaatggc

cagggccccgccggccaccacggctggccttgcgcca

gctgagaactcacgtccagtgcagggagactcaagac

agcctgtgcacacagcctcggatctgctcccatttca

agcagaaaaaggaaaccgtgcaggcagccctcagcat

ttcaaggattgtagcagcggccaactattcgtcggca

gtggccgattagaatgaccgtggagaagggcggaagg

gtctctcgtgggctctgcggccaacaggccctggctc

cacctgcccgctgccagcccgaggggcttgggccgag

ccaggaaccacagtgctcaccgggaccacagtgactg

accaaactcccggccagagcagccccaggccagccgg

gctctcgccctggaggactcaccatcagatgcacaag

ggggcgagtgtggaagagacgtgtcgcccgggccatt

tgggaaggcgaagggaccttccaggtggacaggaggt

gggacgcactccaggcaagggactgggtccccaaggc

ctggggaaggggtactggcttgggggttagcctggcc

agggaacggggagcggggcggggggctgagcagggag

gacctgacctcgtgggagcgaggcaagtcaggcttca

ggcagcagccgcacatcccagaccaggaggctgaggc

aggaggggcttgcagcggggcgggggcctgcctggct

ccgggggctcctgggggacgctggctcttgtttccgt

gtcccgcagcacagggccagctcgctgggcctatgct

taccttgatgtctggggccggggcgtcagggtcgtcg

tctcctcaggggagagtcccctgaggctacgctgggg

*ggggactatggcagctccaccaggggcctggggacc

aggggcctggaccaggctgcagcccggaggacgggca

gggctctggctctccagcatctggccctcggaaatgg

cagaacccctggcgggtgagcgagctgagagcgggtc

agacagacaggggccggccggaaaggagaagttgggg

gcagagcccgccaggggccaggcccaaggttctgtgt

gccagggcctgggtgggcacattggtgtggccatggc

tacttagattcgtggggccagggcatcctggtcaccg

tctcctcaggtgagcctggtgtctgatgtccagctag

gcgctggtgggccgcgggtgggcctgtctcaggctag

ggcaggggctgggatgtgtatttgtcaaggaggggca

acagggtgcagactgtgcccctggaaacttgaccact

ggggcaggggcgtcctggtcacgtctcctcaggtaag

acggccctgtgcccctctctcgcgggactggaaaagg

aattttccaagattccttggtctgtgtggggccctct

ggggcccccgggggtggctcccctcctgcccagatgg

ggcctcggcctgtggagcacgggctgggcacacagct

cgagtctagggccacagaggcccgggctcagggctct

gtgtggcccggcgactggcagggggctcgggtttttg

gacaccccctaatgggggccacagcactgtgaccatc

ttcacagctggggccgaggagtcgaggtcaccgtctc

ctcaggtgagtcctcgtcagccctctctcactctctg

gggggttttgctgcattttgtgggggaaagaggatgc

ctgggtctcaggtctaaaggtctagggccagcgccgg

ggcccaggaaggggccgaggggccaggctcggctcgg

ccaggagcagagcttccagacatctcgcctcctggcg

gctgcagtcaggcctttggccgggggggtctcagcac

caccaggcctcttggctcccgaggtccccggccccgg

ctgcctcaccaggcaccgtgcgcggtgggcccgggct

cttggtcggccaccctttcttaactgggatccgggct

tagttgtcgcaatgtgacaacgggctcgaaagctggg

gccaggggaccctagtctacgacgcctcgggtgggtg

tcccgcacccctccccactttcacggcactcggcgag

acctggggagtcaggtgttggggacactttggaggtc

aggaacgggagctggggagagggctctgtcagcgggg

tccagagatgggccgccctccaaggacgccctgcgcg

gggacaagggcttcttggcctggcctggccgcttcac

ttgggcgtcagggggggcttcccggggcaggcggtca

gtcgaggcgggttggaattctgagtctgggttcgggg

ttcggggttcggccttcatgaacagacagcccaggcg

ggccgttgtttggcccctgggggcctggttggaatgc

gaggtctcgggaagtcaggagggagcctggccagcag

agggttcccagccctgcggccgagggacctggagacg

ggcagggcattggccgtcgcagggccaggccacaccc

cccaGGTTTTTGTggggcgagcctggagattgcacCA

CTGTGATTACTATGCTATGGATCTCTGGGGCCGAGGC

GTTGAAGTCGTCGTGTGCTCAGgtaagaacggccctc

cagggcctttaatttctgctctcgtctgtgggctttt

ctgactctgatcctcgggaggcgtctgtgcccccccc

ggggatgaggccggcttgccaggaggggtcagggacc

aggagcctgtgggaagttctgacgggggctgcaggcg

ggaagggccccaccggggggcgagccccaggccgctg

ggcggcaggagacccgtgagagtgcgccttgaggagg

gtgtctgcggaaccacgaacgcccgccgggaagggct

tgctgcaatgcggtcttcagacgggaggcgtcttctg

ccctcaccgtctttcaagcccttgtgggtctgaaaga

gccatgtcggagagagaagggacaggcctgtcccgac

ctggccgagagcgggcagccccgggggagagcggggc

gatcggcctgggctctgtgaggccaggtccaagggag

gacgtgtggtcctcgtgacaggtgcacttgcgaaacc

ttagaagacggggtatgttggaagcggctcctgatgt

ttaagaaaagggagactgtaaagtgagcagagtcctc

aagtgtgttaaggttttaaaggtcaaagtgttttaaa

cctttgtgactgcagttagcaagcgtgcggggagtga

atggggtgccagggtggccgagaggcagtacgagggc

cgtgccgtcctctaattcagggcttagttttgcagaa

taaagtcggcctgttttctaaaagcattggtggtgct

gagctggtggaggaggccgcgggcagccctggccacc

tgcagcagggtggcaggaagcaggtcggccaagaggc

tatttaggaagccagaaaacacggtcgatgaatttat

agcttctggtttccaggaggtggttgggcatggcttt

gcgcagcgccacagaaccgaaagtgcccactgagaaa

aaacaactcctgcttaatttgcatttttctaaaagaa

gaaacagaggctgacggaaactggaaagttcctgttt

taactactcgaattgagttttcggtcttagcttatca

actgctcacttagattcattttcaaagtaaacgttta

agagccgaggcattcctatcctcttctaaggcgttat

tcctggaggctcattcaccgccagcacctccgctgcc

tgcaggcattgctgtcaccgtcaccgtgacggcgcgc

acgattttcagttggcccgcttcccctcgtgattagg

acagacgcgggcactctggcccagccgtcttggctca

gtatctgcaggcgtccgtctcgggacggagctcaggg

gaagagcgtgactccagttgaacgtgatagtcggtgc

gttgagaggagacccagtcgggtgtcgagtcagaagg

ggcccggggcccgaggccctgggcaggacggcccgtg

ccctgcatcacgggcccagcgtcctagaggcaggact

ctggtggagagtgtgagggtgcctggggcccctccgg

agctggggccgtgcggtgcaggttgggctctcggcgc

ggtgttggctgtttctgcgggatttggaggaattctt

ccagtgatgggagtcgccagtgaccgggcaccaggct

ggtaagagggaggccgccgtcgtggccagagcagctg

ggagggttcggtaaaaggctcgcccgtttcctttaat

gaggacttttcctggagggcatttagtctagtcggga

ccgttttcgactcgggaagagggatgcggaggagggc

atgtgcccaggagccgaaggcgccgcggggagaagcc

cagggctctcctgtccccacagaggcgacgccactgc

cgcagacagacagggcctttccctctgatgacggcaa

aggcgcctcggctcttgcggggtgctgggggggagtc

gccccgaagccgctcacccagaggcctgaggggtgag

actgaccgatgcctcttggccgggcctggggccggac

cgagggggactccgtggaggcagggcgatggtggctg

cgggagggaaccgaccctgggccgagcccggcttggc

gattcccgggcgagggccctcagccgaggcgagtggg

tccggcggaaccaccctttctggccagcgccacaggg

ctctcgggactgtccggggcgacgctgggctgcccgt

ggcaggccTGGGCTGACGTGGACTTCACCAGACAGAA

CAGGGCTTTCAGGGCTGAGCTGAGCCAGGTTTAGCGA

GGCCAAGTGGGGCTGAACGAGGCTGAACTGGGCTGAG

CTGGGTTGAGCTGGGCTGACCTGGGCTGAGGTGAGCT

GGGCTGGGCTGGGCTGGGCTGGGCTGGGCTGGGCTGG

ACTGGCTGAGCTGAGCTGGGTTGAGCTGAGCTGAGCT

GGCCTGGGTTGAGCTGGGCTGGGTTGAGCTGAGCTGG

GTTGAGCTGGGTTGAGCTGGGTTGATCTGAGCTGAGG

TGGGCTGAGCTGAGCTAGGCTGGGGTGAGCTGGGCTG

AGCTGGTTTGAGTTGGGTTGAGCTGAGGTGAGGTGGG

CTGTGGTGGCTGAGGTAGGCTGAGGTAGGCTAGGTTG

AGGTGGGGTGGGCTGAGCTGAGCTAGGCTGGGCTGAT

TTGGGCTGAGCTGAGCTGAGCTAGGCTGCGTTGAGCT

GGCTGGGCTGGATTGAGCTGGCTGAGCTGGCTGAGCT

GGGCTGAGGTGGCGTGGGTTGAGCTGAGCTGGACTGG

TTTGAGCTGGGTCGATCTGGGTTGAGCTGTCCTGGGT

TGAGCTGGGCTGGGTTGAGCTGAGCTGGGTTGAGCTG

GGCTCAGCAGAGCTGGGTTGGGCTGAGCTGGGTTGAG

CTGAGCTGGGGTGAGCTGGCCTGGGTTGAGCTGGGCT

GAGCTGAGCTGGGCTGAGCTGGCGTGTGCTGAGCTGG

GCTGGGTTGAGCTGGGCTGAGGTGGATTGAGCTGGGT

TGAGCTGAGCTGGGGTGGGCTGTGCTGACTGAGCTGG

GGTGAGCTAGGCTGGGGTGAGCTGGGCTGAGCTGATC

CGAGGTAGGCTGGGGTGGTATGGGCTGAGCTGAGCTG

AGCTAGGCTGGATTGATCTGGCTGAGCTGGGTTGAGC

TGAGCTGGGCTGAGCTGGTCTGAGCTGGGCTGGGTCG

AGCTGAGCTGGACTGGTTTGAGCTGGGTCGATCTGGG

CTGAGCTGGCCTGGGTTGAGCTGGGCTGGGTTGAGCT

GAGCTGGGCTGAGCTGGGCTGAGGTGAGGGCTGGGGT

GAGCTGGGCTGAACTAGCCTAGCTAGGTTGGGCTGAG

CTGGGCTGGTTTGGGCTGAGCTGAGCTGAGCTAGGCT

GCATTGAGCAGGGTGAGCTGGGCTGAGCAGGCCTGGG

GTGAGCTGGGCTAGGTGGAGCTGAGCTGGGTCGAGCT

GAGTTGGGCTGAGCTGGCCTGGGTTGAGGTAGGCTGA

GCTGAGCTGAGCTAGGCTGGGTTGAGCTGGCTGGGCT

GGTTTGCGCTGGGTCAAGCTGGGCCGAGCTGGCCTGG

GTTGAGCTGGGCTCGGTTGAGCTGGGCTGAGCTGAGC

CGACCTAGGCTGGGATGAGCTGGGCTGATTTGGGCTG

AGCTGAGCTGAGCTAGGCTGCATTGAGCAGGCTGAGC

TGGGCCTGGAGCCTGGCCTGGGGTGAGCTGGGCTGAG

CTGCGCTGAGGTAGGCTGGGTTGAGCTGGCTGGGGTG

GTTTGCGCTGGGTCAAGCTGGGCCGAGCTGGCCTGGG

ATGAGCTGGGCCGGTTTGGGCTGAGCTGAGCTGAGCT

AGGCTGCATTGAGCAGGCTGAGCTGGGCTGAGCTGGC

CTGGGGTGAGCTGGGCTGAGCTAAGCTGAGCTGGGCT

GGTTTGGGCTGAGCTGGCTGAGCTGGGTCCTGCTGAG

CTGGGCTGAGGTGACCAGGGGTGAGCTGGGCTGAGTT

AGGCTGGGCTCAGCTAGGCTGGGTTGATCTGGCAGGG

CTGGTTTGCGCTGGGTCAAGCTGCCGGGAGATGGCCT

GGGATGAGGTGGGCTGGTTTGGGCTGAGCTGAGCTGA

GCTGAGCTAGGGTGCATTGAGGAGGCTGAGCTGGGGT

GAGCTGGCCTGGGGTGAGGTGGGCTGGGTGGAGCTGA

GCTGGGCTGAACTGGGCTAAGCTGGCTGAGCTGGATC

GAGCTGAGCTGGGGTGAGGTGGCCTGGGGTTAGCTGG

GCTGAGCTGAGCTGAGCTAGGCTGGGTTGAGCTGGCT

GGGCTGGTTTGCGCTGGGTCAAGCTGGGCGGAGCTGG

CCTGGGTTGAGCTGGGCTGGGCTGAGCTGAGCTAGGC

TGGGTTGAGCTGGGCTGGGCTGAGCTGAGCTAGGCTG

CATTGAGCTGGCTGGGATGGATTGAGCTGGCTGAGCT

GGCTGAGCTGGCTGAGCTGGGCTGAGCTGGCCTGGGT

TGAGCTGGGCTGGGTTGAGCTGAGCTGGGCTGAGCTG

GGCTCAGCAGAGCTGGGTTGAGCTGAGCTGGGTTGAG

CTGGGGTGAGCTGGGCTGAGCAGAGCTGGGTTGAGCT

GAGCTGGGTTGAGCTGGGCTCGAGCAGAGCTGGGTTG

AGCTGAGCTGGGTTGAGCTGGGCTCAGCAGAGCTGGG

TTGAGCTGAGCTGGGTTGAGCTGGGCTGAGCTAGCTG

GGCTGAGCTAGGCTGGGCTGAGCTGAGCTGGGCTGAA

CTGGGCTGAGCTGGGCTGAACTGGGCTGAGCTGGGCT

GAGCTGGGCTGAGCAGAGCTGGGCTGAGCAGAGCTGG

GTTGGTCTGAGCTGGGTTGAGCTGGGCTGAGCTGGGC

TGAGCAGAGTTGGGTTGAGCTGAGCTGGGTTCAGCTG

GGCTGAGCTAGGCTGGGTTGAGCTGGGTTGAGTTGGG

CTGAGCTGGGCTGGGTTGAGCGGAGCTGGGCTGAACT

GGGCTGAGCTGGGCTGAGCGGAACTGGGTTGATCTGA

ATTGAGCTGGGCTGAGCCGGGCTGAGGCGGGCTGAGG

TGGGGTAGGTTGAGCTTGGGTGAGCTTGCCTCAGCTG

GTCTGAGCTAGGTTGGGTGGAGCTAGGCTGGATTGAG

CTGGGCTGAGCTGAGCTGATCTGGCCTCAGCTGGGGT

GAGGTAGGGTGAACTGGGCTGTGCTGGGCTGAGCTGA

GGTGAGCCAGTTTGAGCTGGGTTGAGGTGGGCTGAGC

TGGGGTGTGTTGATCTTTGCTGAACTGGGCTGAGCTG

GGCTGAGCTGGCCTAGCTGGATTGAACGGGGGTAAGC

TGGGCCAGGCTGGACTGGGCTGAGCTGAGCTAGGCTG

AGCTGAGTTGAATTGGGTTAAGCTGGGCTGAGATGGG

CTGAGCTGGGGTGAGCTGGGTTGAGCCAGGTCGGACT

GGGTTAGCGTGGGCCAGACTGGGCTGAGGTGGGCGGA

GCTCGattaacctggtcaggctgagtcgggtccagca

gacatgcgctggccaggctggcttgacctggacacgt

tcgatgagctgccttgggatggttcacctcagctgag

ccaggtggctccagctgggctgagctggtgaccctgg

gtgacctcggtgaccaggttgtcctgagtccgggcca

agccgaggctgcatcagactcgccagacccaaggcct

gggccccggctggcaagccaggggcggtgaaggctgg

gctggcaggactgtcccggaaggaggtgcacgtggag

ccgcccggaccccgaccggcaggacctggaaagacgc

ctctcactcccctttctcttctgtcccctctcgggtc

ctcagAGAGCGAGTGTGCCGGGAATCTCTACCCCCTC

GTCTCCTGCGTCAGCCCCCCGTCCGATGAGAGCCTGG

TGGCCCTGGGCTGCCTGGCCCGGGACTTCCTGCCCAG

CTCCGTCACCTTCTCCTGGAACTACAAGAACAGCAGC

AAGGTCAGCAGCCAGAACATCCAGGACTTCCCGTCCG

TCCTGAGAGGCGGCAAGTACTTGGCCTCCTCCCGGGT

GCTCCTACCCTCTGTGAGCATCCCCCAGGACCCAGAG

GCCTTCCTGGTGTGCGAGGTGCAGCACCCCAGTGGCA

CGAAGTCCGTGTCCATCTCTGGGCCAGgtgagctggg

ctccccctgtggctgtggcgggggcggggccgggtgc

cgccggcacagtgacgccccgttcctgcctgcagTCG

TAGAGGAGCAGCCCCCCGTCTTGAACATCTTCGTGCC

CAGCCGGGAGTCCTTCTCCAGTACTCCCCAGCGCACG

TCCAAGCTCATCTGCCAGGCCTCAGAGTTCAGCCCCA

AGGAGATGTCCATGGCCTGGTTGCGTGATGGGAAACG

GGTGGTGTGTGGCGTGAGCACAGGCCCCGTGGAGACC

CTACAGTCCAGTCCGGTGACCTACAGGCTCCACAGCA

TGGTGACCGTCACGGAGTCCGAGTGGCTCAGCCAGAG

CGTCTTCACCTGCCAGGTGGAGGACAAAGGGCTGAAG

TAGGAGAAGAACGGGTCCTCTGTGTGCACCTGCAgtg

agtgcagcccctcgggccgggcggcggggcggcggga

gccacacacacaccagctgctccctgagccttggctt

ccgggagtggccaaggcggggaggggctgtgcagggc

agctggagggcactgtcagctggggcccagcaccccc

tcaccccggcagggcccgggctccgaggggccccgca

gtcgcaggccctgctcttgggggaagccctacttggc

cccttcagggcgctgacgctccccccacccacccccg

cctagATGCCAACTCTGCCATCACCGTCTTCGGCATC

GCCCGCTCCTTCGCTGGCATCTTCCTCACCAAGTCGG

CCAAGCTTTCCTGCCTGGTCACGGGCCTGGTCACCAG

GGAGAGCCTCAACATCTCCTGGACCCGCCAGGACGGC

GAGGTTCTGAAGACCAGTATCGTCTTCTCTGAGATGT

ACGCCAACGGCACCTTCGGCGCCAGGGGCGAAGCCTC

CGTCTGCGTGGAGGACTGGGAGTCGGGCGACAGGTTC

ACGTGCACGGTGACCCACACGGACCTGCGCTGGCCGC

TGAAGCAGAGCGTCTGCAAGCCCAGAGgtaggccctg

ccctgcccctgcctccgcccggcctgtgccttggccg

ccggggcgggagccgagcctggccgaggagcgccctc

ggccccccgcggtcccgacccacacccctcctgctct

cctccccagGGATCGCCAGGCACATGGCGTCCGTGTA

GGTGCTGCCGCCGGCCCCGGAGGAGCTGAGCGTGCAG

GAGTGGGCCTCGGTCAGCTGCCTGGTGAAGGGCTTCT

CCCCGGCGGACGTGTTCGTGCAGTGGCTGCAGAAGGG

GGAGCCCGTGTCCGCCGACAAGTACGTGACCAGCGCG

CCGGTGCCCGAGCCCGAGCCCAAGGCCCCCGCCTCGT

ACTTCGTGCAGAGCGTCCTGACGGTGAGCGCCAAGGA

CTGGAGCGACGGGGAGACCTACACCTGCGTCGTGGGC

CACGAGGCCCTGCCCCACACGGTGACCGAGAGGACCG

TGGACAAGTCCACCGGTAAACCCACCCTGTACAACGT

CTCCCTGGTCGTGTCCGACACGGCCAGCACCTGCTAC

TGACCCCGTGGCTGCCCGCCGCGGCCGGGGCCAGAGC

CCCCGGGCGACCATCGCTCTGTGTGGGCCTGTGTGCA

ACCCGACCCTGTCGGGGTGAGCGGTCGCATTTCTGAA

AATTAGAaataaaAGATCTCGTGCCG

Seq ID No.1

TCTAgAAGACGCTGGAGAGAGGCCagACTTCCTCGGA

ACAGCTCAAAGAGCTCTGTCAAAGCCAGATCCCATCA

CACGTGGGCACCAATAGGCCATGCCAGCCTCCAAGGG

CCGAACTGGGTTCTCCACGGCGCACATGAAGCCTGCA

GCCTGGCTTATGCTCTTCCGTGGTGAAGAGGCAGGCC

CGGGAGTGGACGAGGGGCTAGCAGGGTGTGGTAGGCA

CGTTGCGGCCCCGAGCCCGGCAGGAACCAGAGACCCT

GGGGCTGAGAGTGAGCCTCCAAACAGGATGCCCCACC

CTTGAGGCCACCTTTCAATCCAGCTACACTCCACCTG

CCATTCTCCTCTGGGCACAGGGCCCAGCCCCTGGATC

TTGGCCTTGGCTCGACTTGCACCCACGCGCACACACA

CACTTCCTAACGTGCTGTCCGCTCACCCCTCCCCAGC

GTGGTCCATGGGCAGCACGGCAGTGGGCGTCCGGCGG

TAGTGAGTGCAGAGGTCCCTTCCCCTCCCCCAGGAGC

CCCAGGGGTGTGTGCAGATCTGGGGGCTCCTGTCCCT

TACACCTTCATGCCCCTCCCCTCATACCCACCCTCCA

GGCGGGAGGCAGCGAGACCTTTGCCCAGGGACTCAGC

CAACGGGCACACGGGAGGCCAGCCCTCAGCAGCTGGG

Seq ID No.4

GGCCAGACTTCCTCGGAACAGCTCAAAGAGCTCTGTC

AAAGCCAGATCCCATGACAGGTGGGCACCAATAGGCC

ATGCCAGCCTCCAAGGGCCGAACTGGGTTCTCCACGG

CGCACATGAAGCCTGCAGCCTGGCTTATCCTCTTCCG

TGGTGAAGAGGCAGGCCCGGGACTGGACGAGGGGCTA

GCAGGGTGTGGTAGGCACCTTGCGCCCCCCACCCCGG

CAGGAACCAGAGACCCTGGGGCTGAGAGTGAGGCTCC

AAACAGGATGCCCCACCCTTCAGGCCACCTTTCAATC

CAGCTACACTCCACCTGCCATTCTGCTCTGGGCACAG

GGCCCAGCCCCTGGATCTTGGCGTTGGCTCGACTTGC

ACCCACGCGCACACACACACTTCGTAACGTGCTGTCC

GCTCACCCCTCCCCAGCGTGGTCCATGGGCAGCACGG

CAGTGCGCGTCGGGCGGTAGTGAGTGCAGAGGTCCCT

TCCCCTGCCCCAGGAGCCCCAGGGGTGTGTGCAGATC

TGGGGGGTCCTGTCCCTTACACCTTCATGGGCCTCCC

CTCATACCCACCCTCCAGGCGGGAGGCAGCGAGAGCT

TTGCCCAGGGACTCAGCCAACGGGCACACGGGAGGCC

AGCCCTCAGCAGCTGGCTCCCAAAGAGGAGGTGGGAG

GTAGGTCCACAGCTGCCACAGAGAGAAACCCTGACGG

ACCCCACAGGGGGCACGCCAGCCGGAACCAGCTCCCT

CGTGGGTGAGCAATGGCCAGGGCCCCGCCGGCCACCA

CGGCTGGCCTTGCGCCAGCTGAGAACTCACGTCCAGT

GCAGGGAGACTCAAGACAGCCTGTGCACACAGCCTCG

GATCTGCTCCCATTTCAAGCAGAAAAAGGAAACCGTG

CAGGCAGCCCTCAGCATTTCAAGGATTGTAGCAGCGG

CCAACTATTCGTCGGCAGTGGCCGATTAGAATGACCG

TGGAGAAGGGCGGAAGGGTGTCTCGTGGGCTCTGCGG

CCAACAGGCCCTGGCTCCACCTGCCCGCTGCCAGCCC

GAGGGGCTTGGGCCGAGCCAGGAACCACAGTGCTCAC

GGGGACCACAGTGACTGAGGAAACTCGGGGCGAGAGC

AGCGCCAGGCCAGCCGGGGTCTCGCCCTGGAGGACTG

ACCATCAGATGCACAAGGGGGCGAGTGTGGAAGAGAC

GTGTCGCGCGGGCGATTTGGGAAGGCGAAGGGACCTT

TCCAGGTGGACAGGAGGTGGGACGCACTCCAGGCAAG

GGACTGGGTCCCCAAGGCCTGGGGAAGGGGTACTGGC

TTGGGGGTTTAGCCTGGCCAGGGAACGGGGAGCGGGG

CGGGGGGCTGAGCAGGGAGGACCTGACCTCGTGGGAG

CGAGGCAAGTCAGGCTTCAGGCAGCAGCCGCACATCC

CAGACCAGGAGGCTGAGGCAGGAGGGGCTTGCAGCGG

GGCGGGGGCCTGCCTGGCTCCGGGGGCTCCTGGGGGA

CGCTGGCTGTTGTTTCGGTGTCCCGCAGCACAGGGCC

AGCTCGCTGGGCCTATGCTTACCTTGATGTCTGGGGC

CGGGGCGTCAGGGTCGTCGTCTCCTCAGGGGAGAGTC

CCCTGAGGCTACGCTGGGG*GGGGACTATGGCAGCTC

CACCAGGGGCCTGGGGACCAGGGGCCTGGACCAGGCT

GCAGCCCGGAGGACGGGCAGGGCTCTGGCTCTCCAGC

ATCTGGCCCTCGGAAATGGCAGAACCCCTGGGGGGTG

AGCGAGCTGAGAGCGGGTCAGACAGACAGGGGCCGGC

CGGAAAGGAGAAGTTGGGGGCAGAGCCCGCCAGGGGC

CAGGCCCAAGGTTCTGTGTGCCAGGGCCTGGGTGGGC

ACATTGGTGTGGCCATGGCTACTTAGATTCGTGGGGG

CAGGGCATCCTGGTCACCGTCTCCTCAGGTGAGGCTG

GTGTCTGATGTCCAGCTAGGCGCTGGTGGGCCGCGGG

TGGGCCTGTCTCAGGCTAGGGCAGGGGCTGGGATGTG

TATTTGTCAAGGAGGGGCAACAGGGTGCAGACTGTGC

CCCTGGAAACTTGACCACTGGGGCAGGGGCGTCCTGG

TCACGTCTCCTCAGGTAAGACGGCCCTGTGCCCCTCT

CTCGCGGGACTGGAAAAGGAATTTTCCAAGATTCCTT

GGTCTGTGTGGGGCCCTCTGGGGCCCCCGGGGGTGGC

TCCCCTCCTGCCCAGATGGGGCCTCGGCCTGTGGAGC

ACGGGCTGGGCACACAGCTCGAGTCTAGGGCCACAGA

GGCCCGGGCTCAGGGCTCTGTGTGGCCCGGCGACTGG

CAGGGGGCTCGGGTTTTTGGACACCCCCTAATGGGGG

CCACAGCACTGTGACCATCTTCACAGCTGGGGCCGAG

GAGTCGAGGTCACCGTCTCCTCAGGTGAGTCCTCGTC

AGCCCTCTCTCACTCTCTGGGGGGTTTTGCTGCATTT

TGTGGGGGAAAGAGGATGCCTGGGTCTCAGGTCTAAA

GGTCTAGGGCCAGCGCCGGGGCCCAGGAAGGGGCCGA

GGGGCCACGCTCGGCTCGGCCAGGAGCAGAGCTTCCA

GACATCTCGCGTCCTGGCGGCTGCAGTCAGGCCTTTG

GCCGGGGGGGTCTCAGCACCACCAGGCGTCTTGGGTC

CCGAGGTCCCCGGCCCCGGCTGCCTCACCAGGCACCG

TGCGCGGTGGGCCCGGGCTCTTGGTCGGCCACCCTTT

CTTAACTGGGATCCGGGCTTAGTTGTCGCAATGTGAC

AACGGGCTCGAAAGCTGGGGCCAGGGGACCCTAGT*T

ACGACGCCTCGGGTGGGTGTCGCGCACCCCTCCCCAC

TTTCACGGCACTCGGCGAGACCTGGGGAGTCAGGTGT

TGGGGACACTTTGGAGGTCAGGAACGGGAGCTGGGGA

GAGGGCTCTGTCAGCGGGGTCCAGAGATGGGGCGCCC

TCCAAGGACGCCCTGCGCGGGGACAAGGGCTTCTTGG

CCTGGCCTGGCCGCTTCACTTGGGCGTCAGGGGGGGC

TTCCCGGGGCAGGCGGTCAGTCGAGGCGGGTTGGAAT

TCTGAGTCTGGGTTCGGGGTTCGGGGTTCGGCCTTCA

TGAACAGACAGCCCAGGCGGGCCGTTGTTTGGCCCCT

GGGGGCGTGGTTGGAATGCGAGGTGTCGGGAAGTCAG

GAGGGAGCCTGGCCAGCAGAGGGTTCGCAGCCCTGCG

GCCGAGGGACCTGGAGACGGGCAGGGCATTGGCCGTC

GCAGGGCCAGGCCACACCCCCCAGGTTTTTGTGGGGC

GAGCCTGGAGATTGCACCACTGTGATTACTATGCTAT

GGATCTCTGGGGCCCAGGCGTTGAAGTCGTCGTGTCC

TCAGGTAAGAACGGCCCTCCAGGGCCTTTAATTTCTG

CTCTCGTCTGTGGGCTTTTCTGACTCTGATCCTCGGG

AGGCGTCTGTGCCCCCCCCGGGGATGAGGCCGGCTTG

CCAGGAGGGGTCAGGGACCAGGAGCCTGTGGGAAGTT

CTGACGGGGGCTGCAGGCGGGAAGGGCCGCACCGGGG

GGCGAGCCCCAGGCCGCTGGGCGGCAGGAGACCCGTG

AGAGTGCGCCTTGAGGAGGGTGTCTGCGGAACCACGA

ACGCCCGCCGGGAAGGGCTTGCTGCAATGCGGTCTTC

AGACGGGAGGCGTCTTCTGCCCTCACCGTCTTTCAAG

CCCTTGTGGGTCTGAAAGAGCCATGTCGGAGAGAGAA

GGGAGAGGCCTGTCCCGACCTGGCCGAGAGCGGGCAG

CCCCGGGGGAGAGCGGGGCGATCGGCCTGGGCTCTGT

GAGGCCAGGTCCAAGGGAGGACGTGTGGTCCTCGTGA

CAGGTGCACTTGCGAAACCTTAGAAGACGGGGTATGT

TGGAAGCGGCTCCTGATGTTTAAGAAAAGGGAGACTG

TAAAGTGAGCAGAGTCCTCAAGTGTGTTAAGGTTTTA

AAGGTCAAAGTGTTTTAAACCTTTGTGACTGCAGTTA

GCAAGCGTGCGGGGAGTGAATGGGGTGGCAGGGTGGC

CGAGAGGCAGTACGAGGGCCGTGCCGTCCTCTAATTC

AGGGCTTAGTTTTGCAGAATAAAGTCGGCCTGTTTTC

TAAAAGCATTGGTGGTGCTGAGCTGGTGGAGGAGGCC

GCGGGCAGGCCTGGCCACCTGCAGCAGGTGGCAGGAA

GCAGGTCGGCCAAGAGGCTATTTTAGGAAGCCAGAAA

ACACGGTCGATGAATTTATAGCTTCTGGTTTCCAGGA

GGTGGTTGGGCATGGCTTTGCGCAGCGCCACAGAACC

GAAAGTGCCCACTGAGAAAAAACAACTCCTGCTTAAT

TTGCATTTTTCTAAAAGAAGAAACAGAGGCTGACGGA

AACTGGAAAGTTCCTGTTTTAACTACTCGAATTGAGT

TTTCGGTCTTAGCTTATCAACTGCTCACTTAGATTCA

TTTTCAAAGTAAACGTTTAAGAGCCGAGGCATTCCTA

TCCTCTTCTAAGGCGTTATTCCTGGAGGCTCATTCAC

CGCCAGCACCTCCGCTGCCTGCAGGCATTGCTGTCAC

CGTCACCGTGACGGCGCGCACGATTTTCAGTTGGCCC

GCTTCCCCTCGTGATTAGGACAGACGCGGGCACTCTG

GCCCAGCCGTCTTGGCTCAGTATCTGCAGGCGTCCGT

CTCGGGACGGAGCTCAGGGGAAGAGCGTGACTCCAGT

TGAACGTGATAGTCGGTGCGTTGAGAGGAGACCCAGT

CGGGTGTCGAGTCAGAAGGGGCCCGGGGCCCGAGGCC

CTGGGCAGGACGGCGCGTGCCCTGCATCACGGGCCCA

GCGTGCTAGAGGCAGGACTCTGGTGGAGAGTGTGAGG

GTGCCTGGGGCCCCTCCGGAGCTGGGGCCGTGCGGTG

CAGGTTGGGCTCTCGGCGCGGTGTTGGCTGTTTCTGC

GGGATTTGGAGGAATTCTTCCAGTGATGGGAGTCGCC

AGTGACCGGGCACCAGGCTGGTAAGAGGGAGGCCGCC

GTCGTGGCCAGAGCAGCTGGGAGGGTTCGGTAAAAGG

CTCGCCCGTTTCCTTTAATGAGGACTTTTCCTGGAGG

GCATTTAGTCTAGTCGGGACCGTTTTCGACTCGGGAA

GAGGGATGCGGAGGAGGGCATGTGCCCAGGAGCCGAA

GGCGCCGCGGGGAGAAGCCCAGGGCTCTCCTGTCCCC

ACAGAGGCGACGCCACTGCCGCAGACAGACAGGGCCT

TTCCCTCTGATGACGGCAAAGGCGCCTCGGCTCTTGC

GGGGTGCTGGGGGGGAGTCGCCCCGAAGCCGCTCACC

CAGAGGCCTGAGGGGTGAGACTGACCGATGCCTGTTG

GCCGGGCCTGGGGCCGGACCGAGGGGGACTCCGTGGA

GGCAGGGCGATGGTGGCTGCGGGAGGGAACCGACCCT

GGGCCGAGCCCGGCTTGGCGATTCCCGGGCGAGGGCC

CTCAGCCGAGGCGAGTGGGTCCGGCGGAACCACCCTT

TCTGGCCAGCGCCACAGGGCTCTCGGGACTGTCCGGG

GCGACGCTGGGCTGCCCGTGGCAGGCCTGGGCTGACC

TGGACTTCACCAGACAGAACAGGGCTTTCAGGGCTGA

GGTGAGCCAGGTTTAGCGAGGCCAAGTGGGGCTGAAC

CAGGCTCAACTGGCCTGAGCTGGGTTGAGCTGGGCTG

ACCTGGGCTGAGCTGAGCTGGGCTGGGCTGGGCTGGG

CTGGGCTGGGCTGGGCTGGACTGGCTGAGCTGAGCTG

GGTTGAGCTGAGCTGAGCTGGCCTGGGTTGAGCTGGG

CTGGGTTGAGGTGAGGTGGGTTGAGCTGGGTTGAGGT

GGGTTGATCTGAGCTGAGCTGGGCTGAGGTGAGCTAG

GCTGGGGTGAGCTGGGCTGAGCTGGTTTGAGTTGGGT

TGAGCTGAGCTGAGCTGGGCTGTGCTGGCTGAGCTAG

GCTGAGCTAGGCTAGGTTGAGGTGGGCTGGGCTGAGG

TGAGCTAGGCTGGGCTGATTTGGGCTGAGCTGAGCTG

AGCTAGGCTGCGTTGAGCTGGCTGGGCTGGATTGAGC

TGGCTGAGCTGGCTGAGCTGGGCTGAGCTGGCCTGGG

TTGAGCTGAGCTGGACTGGTTTGAGCTGGGTCGATCT

GGGTTGAGCTGTCCTGGGTTGAGCTGGGCTGGGTTGA

GCTGAGCTGGGTTGAGCTGGGCTCAGCAGAGCTGGGT

TGGGCTGAGCTGGGTTGAGCTGAGCTGGGCTGAGCTG

GCCTGGGTTGAGCTGGGCTGAGCTGAGCTGGGCTGAG

GTGGCCTGTGTTGAGCTGGGCTGGGTTGAGCTGGGCT

GAGCTGGATTGAGCTGGGTTGAGCTGAGCTGGGCTGG

GCTGTGCTGACTGAGCTGGGCTGAGCTAGGCTGGGGT

GAGCTGGGCTGAGCTGATCCGAGGTAGGCTGGGCTGG

TTTGGGCTGAGCTGAGCTGAGCTAGGCTGGATTGATC

TGGCTGAGCTGGGTTGAGCTGAGCTGGGCTGAGCTGG

TCTGAGCTGGCCTGGGTCGAGCTGAGCTGGACTGGTT

TGAGCTGGGTCGATCTGGGCTGAGCTGGCCTGGGTTG

AGCTGGGCTGGGTTGAGCTGAGCTGGGTTGAGGTGGG

CTGAGCTGAGGGCTGGGGTGAGCTGGGCTGAACTAGC

CTAGCTAGGTTGGGCTGAGCTGGGCTGGTTTGGGCTG

AGCTGAGCTGAGCTAGGCTGCATTGAGCAGGCTGAGC

TGGGCTGAGCAGGCCTGGGGTGAGCTGGGCTAGGTGG

AGCTGAGCTGGGTCGAGCTGAGTTGGGCTGAGCTGGC

CTGGGTTGAGGTAGGCTGAGCTGAGCTGAGCTAGGCT

GGGTTGAGCTGGCTGGGCTGGTTTGCGCTGGGTCAAG

CTGGGCCGAGCTGGCCTGGGTTGAGCTGGGCTCGGTT

GAGCTGGGCTGAGCTGAGCCGACCTAGGCTGGGATGA

GCTGGGCTGATTCGGGCTGAGCTGAGCTGAGCTAGGC

TGCATTGAGCAGGCTGAGCTGGGCCTGGAGGCTGGCC

TGGGGTGAGCTGGGCTGAGCTGCGCTGAGCTAGGCTG

GGTTGAGCTGGCTGGGCTGGTTTGCGCTGGGTCAAGC

TGGGCCGAGCTGGCCTGGGATGAGCTGGGCCGGTTTG

GGCTGAGCTGAGCTGAGCTAGGCTGCATTGAGCAGGC

TGAGCTGGGCTGAGCTGGCCTGGGGTGAGCTGGGCTG

AGCTAAGCTGAGCTGGGCTGGTTTGGGCTGAGCTGGC

TGAGCTGGGTCCTGCTGAGCTGGGCTGAGCTGACCAG

GGGTGAGCTGGGCTGAGTTAGGCTGGGCTCAGCTAGG

CTGGGTTGATCTGGCAGGGCTGGTTTGCGCTGGGTCA

AGCTCCCGGGAGATGGCCTGGGATGAGCTGGGCTGGT

TTGGGCTGAGCTGAGCTGAGCTGAGCTAGGCTGCATT

GAGCAGGCTGAGCTGGGCTGAGCTGGCCTGGGGTGAG

CTGGGCTGGGTGGAGCTGAGCTGGGCTGAACTGGGCT

AAGGTGGGTGAGCTGGATCGAGCTGAGCTGGGCTGAG

CTGGCGTGGGGTTAGCTGGGCTGAGCTGAGCTGAGCT

AGGGTGGGTTGAGCTGGCTGGGCTGGTTTGCGCTGGG

TCAAGCTGGGCCGAGCTGGCCTGGGTTGAGCTGGGGT

GGGCTGAGCTGAGCTAGGCTGGGTTGAGCTGGGGTGG

GCTGAGCTGAGCTAGGCTGCATTGAGCTGGCTGGGAT

GGATTGAGCTGGCTGAGCTGGCTGAGCTGGCTGAGCT

GGGCTGAGCTGGCCTGGGTTGAGCTGGGCTGGGTTGA

GCTGAGCTGGGCTGAGCTGGGCTCAGCAGAGCTGGGT

TGAGCTGAGCTGGGTTGAGCTGGGGTGAGCTGGGCTG

AGCAGAGCTGGGTTGAGCTGAGCTGGGTTGAGCTGGG

CTCGAGGAGAGCTGGGTTGAGCTGAGGTGGGTTGAGC

TGGGCTCAGCAGAGGTGGGTTGAGCTGAGCTGGGTTG

AGCTGGGGTGAGGTAGCTGGGGTCAGCTAGGGTGGGT

TGAGGTGAGCTGGGCTGAACTGGGCTGAGCTGGGCTG

AACTGGGCTGAGCTGGGCTGAGCTGGGCTGAGCAGAG

GTGGGGTGAGCAGAGCTGGGTTGGTCTGAGCTGGGTT

GAGCTGGGGTGAGCTGGGGTGAGCAGAGTTGGGTTGA

GCTGAGCTGGGTTCAGCTGGGCTGAGGTAGGCTGGGT

TGAGGTGGGTTGAGTTGGGCTGAGCTGGGCTGGGTTG

AGCGGAGCTGGGCTGAACTGGGTTGAGGTGGGCTGAG

CGGAACTGGGTTGATCTGAATTGAGCTGGGGTGAGCC

GGGCTGAGGCGGGCTGAGCTGGGCTAGGTTGAGCTTG

GGTGAGGTTGCCTCAGCTGGTCTGAGCTAGGTTGGGT

GGAGCTAGGCTGGATTGAGCTGGGCTGAGCTGAGCTG

ATCTGGCCTCAGCTGGGCTGAGGTAGGCTGAACTGGG

CTGTGCTGGGCTGAGCTGAGGTGAGCCAGTTTGAGCT

GGGTTGAGCTGGGCTGAGCTGGGCTGTGTTGATCTTT

CCTGAACTGGGCTGAGGTGGGCTGAGGTGGCCTAGCT

GGATTGAACGGGGGTAAGCTGGGCCAGGCTGGAGTGG

GGTGAGCTGAGCTAGGCTGAGCTGAGTTGAATTGGGT

TAAGCTGGGCTGAGATGGGGTGAGCTGGGCTGAGCTG

GGTTGAGCCAGGTCGGACTGGGTTACGCTGGGCCACA

CTGGGCTGAGCTGGGCGGAGCTCGATTAACGTGGTCA

GGCTGAGTGGGGTCCAGCAGACATGCGCTGGCCAGGC

TGGCTTGACCTGGACAGGTTGGATGAGCTGCCTTGGG

ATGGTTCACCTCAGCTGAGGCAGGTGGCTCCAGCTGG

GCTGAGCTGGTGACCCTGGGTGACCTCGGTGACCAGG

TTGTCCTGAGTCCGGGCCAAGGCGAGGCTGCATCAGA

CTCGCCAGACCCAAGGCGTGGGCCCCGGCTGGCAAGC

CAGGGGCGGTGAAGGCTGGGCTGGCAGGACTGTCCCG

GAAGGAGGTGCACGTGGAGCCGCCCGGACCCCGACCG

GCAGGACCTGGAAAGACGCCTCTCACTCCCCTTTCTC

TTCTGTCCCCTCTCGGGTCCTCAGAGAGCCAGTCTGC

CCCGAATCTGTACCGCCTGGTCTCCTGCGTCAGCCCC

CCGTCCGATGAGAGCCTGGTGGCCCTGGGCTGCCTGG

CCCGGGACTTCCTGCCCAGCTGCGTCACCTTCTCCTG

GAA



Porcine Kappa Light Chain

In another embodiment, novel genomic sequences encoding the kappa light chain locus of ungulate immunoglobulin are provided. The present invention provides the first reported genomic sequence of ungulate kappa light chain regions. In one embodiment, nucleic acid sequence is provided that encodes the porcine kappa light chain locus. In another embodiment, the nucleic acid sequence can contain at least one joining region, one constant region and/or one enhancer region of kappa light chain. In a further embodiment, the nucleotide sequence can include at least five joining regions, one constant region and one enhancer region, for example, as represented in Seq ID No. 30. In a further embodiment, an isolated nucleotide sequence is provided that contains at least one, at least two, at least three, at least four or five joining regions and 3′ flanking sequence to the joining region of porcine genomic kappa light chain, for example, as represented in Seq ID No 12. In another embodiment, an isolated nucleotide sequence of porcine genomic kappa light chain is provided that contains 5′ flanking sequence to the first joining region, for example, as represented in Seq ID No. 25. In a further embodiment, an isolated nucleotide sequence is provided that contains 3′ flanking sequence to the constant region and, optionally, the 5′ portion of the enhancer region, of porcine genomic kappa light chain, for example, as represented in Seq ID Nos. 15, 16 and/or 19.

In further embodiments, isolated nucleotide sequences as depicted in Seq ID Nos 30, 12, 25, 15, 16 or 19 are provided. Nucleic acid sequences at least 80, 85, 90, 95, 98 or 99% homologous to Seq ID Nos 30, 12, 25, 15, 16 or 19 are also provided. In addition, nucleotide sequences that contain at least 10, 15, 17, 20, 25 or 30 contiguous nucleotides of Seq ID Nos 30, 12, 25, 15, 16 or 19 are provided. In addition, nucleotide sequences that contain at least 10, 15, 17, 20, 25 or 30 contiguous nucleotides of Seq ID Nos 1, 4 or 29 are provided. In other embodiments, nucleotide sequences that contain at least 50, 100, 1,000, 2,500, 5,000, 7,000, 8,000, 8,500, 9,000, 10,000 or 15,000 contiguous nucleotides of Seq ID No. 30 are provided. Further provided are nucleotide sequences that hybridizes, optionally under stringent conditions, to Seq ID Nos 30, 12, 25, 15, 16 or 19, as well as, nucleotides homologous thereto.

In one embodiment, an isolated nucleotide sequence encoding kappa light chain is provided that includes at least five joining regions, one constant region and one enhancer region, for example, as represented in Seq ID No. 30. In Seq ID No. 30, the coding region of kappa light chain is represented, for example by residues 1-549 and 10026-10549, whereas the intronic sequence is represented, for example, by residues 550-10025, the Joining region of kappa light chain is represented, for example, by residues 5822-7207 (for example, J1:5822-5859, J2:6180-6218, J3:6486-6523, J4:6826-6863, J5:7170-7207), the Constant Region is represented by the following residues: 10026-10549 (C exon) and 10026-10354 (C coding), 10524-10529 (Poly(A) signal) and 11160-11264 (SINE element).

Seq ID No 30

GCGTCCGAAGTCAAAAATATCTGCAGCCTTCATGTAT

TCATAGAAACAAGGAATGTCTACATTTTGCAAAGTGG

GAGCAGAATGTTGGGTCATGTCTAAGGCATGTGCATT

TGCACATGGTAGGCAAAGGACTTTGCTTCTCCCAGCA

CATCTTTCTGCAGAGATCCATGGAAACAAGACTCAAC

TCGAAAGCAGCAAAGAAGCAGCAAGTTGTCAAGTGAT

GTCCTGTGACTCCGTCGTCGCAGGGTAATGAAGCCAT

GTTGCCCCTGGGGGATTAAGGGCAGGTGTCCATTGTG

GCACCCAGCCCGAAGACAAGCAATTTGATCAGGTTGT

GAGCAGTCCTGAATGTGGACTCTGGAATTTTCTCCTC

ACCTTGTGGCATATCAGCTTAAGTCAAGTACAAGTGA

CAAACAACATAATCCTAAGAAGAGAGGAATCAAGCTG

AAGTCAAAGGATCAGTGCCTTGGATTCTACTGTGAAT

GATGACCTGGAAAATATCGTGAACAACAGCTTCAGGG

TGATCATCAGAGACAAAAGTTCCAGAGCCAGgtaggg

aaaccctcaagccttgcaaagagcaaaatcatgccat

tgggttcttaacctgctgagtgatttactatatgtta

ctgtgggaggcaaagcgctcaaatagcctgggtaagt

atgtcaaataaaaagcaaaagtggtgtttcttgaaat

gttagacctgaggaaggaatattgataacttaccaat

aattttcagaatgatttatagatgtgcacttagtcag

tgtctctccaccccgcacctgacaagcagtttagaat

ttattctaagaatctaggtttgctgggggctacatgg

gaatcagcttcagtgaagagtttgttggaatgattca

ctaaattttctatttccagcataaatccaagaacctc

tcagactagtttattgacactgcttttcctccataat

ccatctcatctccgtccatcatggacactttgtagaa

tgacaggtcctggcagagactcacagatgcttctgaa

acatcctttgccttcaaagaatgaacagcacacatac

taaggatctcagtgatccacaaattagtttttgccac

aatggttcttatgataaaagtctttcattaacagcaa

attgttttataatagttgttctgctttataataattg

catgcttcactttcttttcttttctttttttttcttt

ttttgctttttagtgccgcaggtgcagcatatgaaat

ttcccaggctaggggtcaaatcagaactacacctact

ggcctacgccacagccacagcaactcaggatctaagc

catgtcggtgacctacactacagctcatggcaatgcc

agatccttaacccaatgagcgaggccagggatcgaac

ccatgtcctcatggatactagtcaggctcattatccg

ctgagccataacaggaactcccgagtttgctttttat

caaaattggtacagccttattgtttctgaaaaccaca

aaatgaatgtattcacataattttaaaaggttaaata

atttatgatatacaagacaatagaaagagaaaacgtc

attgcctctttcttccacgacaacacgcctccttaat

tgatttgaagaaataactactgagcatggtttagtgt

acttctttcagcaattagcctgtattcatagccatac

atattcaattaaaatgagatcatgatatcacacaata

cataccatacagcctatagggatttttacaatcatct

tccacatgactacataaaaacctacctaaaaaaaaaa

aaaaccctacttcatcctcctattggctgctttgtgc

tccattaaaaagctctatcataattaggttatgatga

ggatttccattttctacctttcaagcaacatttcaat

gcacagtcttatatacacatttgagcctacttttctt

tttctttctttttttggtttttttttttttttttttt

ttggtctttttgtcttttctaaggctgcatatggagg

ttcccaggctagctgtctaatcagaactatagctgct

ggcctacgccacatccacagcaatacaagatctgagc

catgtctgcaacttacaccacagctcacagcaacggt

ggatccttaaaccactgagcaaggccagggatcaaac

ccataacttcatggctcctagttggatttgttaacca

ctgagccatgatggcaactcctgagcctacttttcta

atcatttccaaccctaggacacttttttaagtttcat

ttttctccccccaccccctgttttctgaagtgtgttt

gcttccactgggtgacttcactcccaggatctcatct

gcaggatactgcagctaagtgtatgagctctgaattt

gaatcccaactctgccactcaaagggataggagtttc

cgatgtggcccaatgggatcagtggcatctctgcagt

gccaggacgcaggttccatccctggcccagcacagtg

ggttaagaatctggcattgctgcagctgaggcataga

tttcaattgtgcctcagatctgatccttggcccaagg

actgcatatgcctcagggcaaccaaaaaagagaaaag

gggggtgatagcattagtttctagatttgggggataa

ttaaataaagtgatccatgtacaatgtatggcatttt

gtaaatgctcaacaaatttcaactattatggagttcc

catcatggctcagtggaagggaatctgattagcatcc

atgaggacacaggtccaaccccgaccttgctcagtgg

gcattgctgtgagctgtggcatgggttacagacgaag

ctcggatctggcattgctgtggctgtggtgtaagcca

gcaactacagctctcattcagcccctagcctgggaac

ctccatatgcctaaaagacaaaaaataaaatttaaat

taaaaataaagaaatgttaactattatgattggtact

gcttgcattactgcaaagaaagtcactttctatactc

tttaatatcttagttgactgtgtgctcagtgaactat

tttggacacttaatttccactctcttctatctccaac

ttgacaactctctttcctctcttctggtgagatccac

tgctgactttgctctttaaggcaactagaaaagtgct

cagtgacaaaatcaaagaaagttaccttaatcttcag

aattacaatcttaagttctcttgtaaagcttactatt

tcagtggttagtattattccttggtcccttacaactt

atcagctctgatctattgctgattttcaactatttat

tgttggagttttttccttttttccctgttcattctgc

aaatgtttgctgagcatttgtcaagtgaagatactgg

actgggccttccaaatataagacaatgaaacatcggg

agttctcattatggtgcagcagaaacgaatccaacta

ggaaatgtgaggttgcaggttcgatccctgcccttgc

tcagtgggttaaggatccagcattaccgtgagctgtg

gtgtaggttgcagacgtggctcagatcctgcgttgct

gtggctgtggcataggctggcagctctagctctgatt

cgaccgctagcctgggaacctccatgcgccccgagtg

cagcccttaaaaagcaaaaaaaaaagaaagaaagaaa

aagacaatgaaacatcaaacagctaacaatccagtag

ggtagaaagaatctggcaacagataagagcgattaaa

tgttctaggtccagtgaccttgcctctgtgctctaca

cagtcgtgccacttgctgagggagaaggtctctcttg

agttgagtcctgaaagacattagttgttcacaaacta

atgccagtgagtgaaggtgtttccaagcagagggaga

gtttggtaaaaagctggaagtcacagaaagactctaa

agagtttaggatggtgggagcaacatacgctgagatg

gggctggaaggttaagagggaaacaactatagtaagt

gaagctggactcacagcaaagtgaggacctcagcatc

cttgatggggttaccatggaaacaccaaggcacacct

tgatttccaaaacagcaggcacctgattcagcccaat

gtgacatggtgggtacccctctagctctacctgttct

gtgacaactgacaaccaacgaagttaagtctggattt

tctactctgctgatccttgtttttgtttcacacgtca

tctatagcttcatgccaaaatagagttcaaggtaaga

cgcgggccttggtttgatatacatgtagtctatcttg

tttgagacaatatggtggcaaggaagaggttcaaaca

ggaaaatactctctaattatgattaactgagaaaagc

taaagagtcccataatgacactgaatgaagttcatca

tttgcaaaagccttcccccccccccaggagactataa

aaaagtgcaattttttaaatgaacttatttacaaaac

agaaatagactcacagacataggaaacgaacagatgg

ttaccaagggtgaaagggagtaggagggataaataag

gagtctggggttagcagatacaccccagtgtacacaa

aataaacaacagggacctactatatagcacagggaac

tatatgcagtagcttacaataacctataatggaaaag

aatgtgaaaaagaatatatgtatgcgtgtgtgtgtaa

ctgaatcactttgctgtaacctgaatctaacataaca

ttgtaaatcaactacagttttttttttttttaagtgc

agggttttggtgttttttttttttcatttttgttttt

gtttttgttttttgctttttagggccacacccagaca

tatgggggttcccaggctaggggtctaattagagcta

cagttgccggcttgcaccacagccacagcaacatcag

atccgagccgcacttgcgacttacaccacagctcatg

gcaataccagatccttaacccactgagcaaggcccag

ggatcgtacccgcaacctcatggttcctagtcagatt

catttctgctgcgctacaatgggaactccaagtgcag

ttttttgtaatgtgcttgtctttctttgtaattcata

ttcatcctacttcccaataaataaataaatacataaa

taataaacataccattgtaaatcaactacaatttttt

ttaaatgcagggtttttgttttttgttttttgttttg

tctttttgccttttctagggccgctcccatggcatat

ggaggttcccaggctaggggtcgaatcggagctgtag

ccaccggcctacgccagagccacagcaacgcgggatc

cgagccgcgtctgcaacctacaccacagctcacggca

acgccggatcgttaacccactgagcaagggcagggat

cgaacctgcaacctcatggttcctagtcagattcgtt

aactactgagccacaacggaaactcctaaagtgcagt

ttttaaatgtgcttgtctttctttgtaatttacactc

aacctacttcccaataaataaataaataaacaaataa

atcatagacatggttgaattctaaaggaagggaccat

caggccttagacagaaatacgtcatcttctagtattt

taaaacacactaaagaagacaaacatgctctgccaga

gaagcccagggcctccacagctgcttgcaaagggagt

taggcttcagtagctgacccaaggctctgttcctctt

cagggaaaagggtttttgttcagtgagacagcagaca

gctgtcactgtgGTGGACGTTCGGCCAAGGAACCAAG

CTGGAAGTCAAACgtaagtcaatccaaacgttccttc

cttggctgtctgtgtcttacggtctctgtggctctga

aatgattcatgtgctgactctctgaaaccagactgac

attctccagggcaaaactaaagcctgtcatcaaactg

gaaaactgagggcacattttctgggcagaactaagag

tcaggcactgggtgaggaaaaacttgttagaatgata

gtttcagaaacttactgggaagcaaagcccatgttct

gaacagagctctgctcaagggtcaggaggggaaccag

tttttgtacaggagggaagttgagacgaacccctgtg

TATATGGTTTCGGCGCGGGGACCAAGCTGGAGCTGAA

ACgtaagtggctttttccgactgattctttgctgttt

ctaattgttggttggctttttgtccatttttcagtgt

tttcatcgaattagttgtcagggaccaaacaaattgc

cttcccagattaggtaccagggaggggacattgctgc

atgggagaccagagggtggctaatttttaacgtttcc

aagccaaaataactggggaagggggcttgctgtcctg

tgagggtaggtttttatagaagtggaagttaagggga

aatcgctatgGTTCACTTTTGGCTCGGGGACCAAAGT

GGAGCCCAAAAttgagtacattttccatcaattattt

gtgagatttttgtcctgttgtgtcatttgtgcaagtt

tttgacattttggttgaatgagccattcccagggacc

caaaaggatgagaccgaaaagtagaaaagagccaact

tttaagctgagcagacagaccgaattgttgagtttgt

gaggagagtagggtttgtagggagaaaggggaacaga

tcgctggctttttctctgaattagcctttctcatggg

actggcttcagagggggtttttgatgagggaagtgtt

ctagagccttaactgtgGGTTGTGTTGGGTAGCGGCA

CCAAGCTGGAAATCAAACgtaagtgcacttttctact

cctttttctttcttatacgggtgtgaaattggggact

tttcatgtttggagtatgagttgaggtcagttctgaa

gagagtgggactcatccaaaaatctgaggagtaaggg

tcagaacagagttgtctcatggaagaacaaagaccta

gttagttgatgaggcagctaaatgagtcagttgactt

gggatccaaatggccagacttcgtctgtaaccaacaa

tctaatgagatgtagcagcaaaaagagatttccattg

aggggaaagtaaaattgttaatattgtgGATCACCTT

TGGTGAAGGGACATCCGTGGAGATTGAACgtaagtat

tttttctctactaccttctgaaatttgtctaaatgcc

agtgttgacttttagaggcttaagtgtcagttttgtg

aaaaatgggtaaacaagagcatttcatatttattatc

agtttcaaaagttaaactcagctccaaaaatgaattt

gtagacaaaaagattaatttaagccaaattgaatgat

tcaaaggaaaaaaaaattagtgtagatgaaaaaggaa

ttcttacagctccaaagagcaaaagcgaattaatttt

ctttgaactttgccaaatcttgtaaatgatttttgtt

ctttacaatttaaaaaggttagagaaatgtatttctt

agtctgttttctctcttctgtctgataaattattata

tgagataaaaatgaaaattaataggatgtgctaaaaa

atcagtaagaagttagaaaaatatatgtttatgttaa

agttgccacttaattgagaatcagaagcaatgttatt

tttaaagtctaaaatgagagataaactgtcaatactt

aaattctgcagagattctatatcttgacagatatctc

ctttttcaaaaatccaatttctatggtagactaaatt

tgaaatgatcttcctcataatggagggaaaagatgga

ctgaccccaaaagctcagatttaaagaaatctgttta

agtgaaagaaaataaaagaactgcattttttaaaggc

ccatgaatttgtagaaaaataggaaatattttaataa

gtgtattcttttattttcctgttattacttgatggtg

tttttataccgccaaggaggccgtggcaccgtcagtg

tgatctgtagaccccatggcggccttttttcgcgatt

gaatgaccttggcggtgggtccccagggctctggtgg

cagcgcaccagccgctaaaagccgctaaaaactgccg

ctaaaggccacagcaaccccgcgaccgcccgttcaac

tgtgctgacacagtgatacagataatgtcgctaacag

aggagaatagaaatatgacgggcacacgctaatgtgg

ggaaaagagggagaagcctgatttttattttttagag

attctagagataaaattcccagtattatatcctttta

ataaaaaatttctattaggagattataaagaatttaa

agctatttttttaagtggggtgtaattctttcagtag

tctcttgtcaaatggatttaagtaatagaggcttaat

ccaaatgagagaaatagacgcataaccctttcaaggc

aaaagctacaagagcaaaaattgaacacagcagccag

ccatctagccactcagattttgatcagttttactgag

tttgaagtaaatatcatgaaggtataattgctgataa

aaaaataagatacaggtgtgacacatctttaagtttc

agaaatttaatggcttcagtaggattatatttcacgt

atacaaagtatctaagcagataaaaatgccattaatg

gaaacttaatagaaatatatttttaaattccttcatt

ctgtgacagaaattttctaatctgggtcttttaatca

cctaccctttgaaagagtttagtaatttgctatttgc

catcgctgtttactccagctaatttcaaaagtgatac

ttgagaaagattatttttggtttgcaaccacctggca

ggactattttagggccattttaaaactcttttcaaac

taagtattttaaactgttctaaaccatttagggcctt

ttaaaaatcttttcatgaatttcaaacttcgttaaaa

gttattaaggtgtctggcaagaacttccttatcaaat

atgctaatagtttaatctgttaatgcaggatataaaa

ttaaagtgatcaaggcttgacccaaacaggagtatct

tcatagcatatttcccctcctttttttctagaattca

tatgattttgctgccaaggctattttatataatctct

ggaaaaaaaatagtaatgaaggttaaaagagaagaaa

atatcagaacattaagaattcggtattttactaactg

cttggttaacatgaaggtttttattttattaaggttt

ctatctttataaaaatctgttcccttttctgctgatt

tctccaagcaaaagattcttgatttgttttttaactc

ttactctcccacccaagggcctgaatgcccacaaagg

ggacttccaggaggccatctggcagctgctcaccgtc

agaagtgaagccagccagttcctcctgggcaggtggc

caaaattacagttgacccctcctggtctggctgaacc

ttgccccatatggtgacagccatctggccagggccca

ggtctccctctgaagcctttgggaggagagggagagt

ggctggcccgatcacagatgcggaaggggctgactcc

tcaaccggggtgcagactctgcagggtgggtctgggc

ccaacacacccaaagcacgcccaggaaggaaaggcag

cttggtatcactgcccagagctaggagaggcaccggg

aaaatgatctgtccaagacccgttcttgcttctaaac

tccgagggggtcagatgaagtggttttgtttcttggc

ctgaagcatcgtgttccctgcaagaagcggggaacac

agaggaaggagagaaaagatgaactgaacaaagcatg

caaggcaaaaaaggccttaggatggctgcaggaagtt

agttcttctgcattggctccttactggctcgtcgatc

gcccacaaacaacgcacccagtggagaacttccctgt

tacttaaacaccattctctgtgcttgcttcctcagGG

GGTGATGCCAAGCCATCGGTCTTCATCTTCCCGCCAT

CGAAGGAGCAGTTAGCGACCCCAACTGTCTCTGTGGT

GTGCTTGATCAATAACTTCTTCCCCAGAGAAATCAGT

GTCAAGTGGAAAGTGGATGGGGTGGTCCAAAGCAGTG

GTCATCCGGATAGTGTCACAGAGCAGGACAGCAAGGA

CAGCACGTAGAGGGTCAGCAGCAGGGTCTCGCTGCCC

ACGTCACAGTACCTAAGTCATAATTTATATTCCTGTG

AGGTCAGCCACAAGACCCTGGCGTCCCCTCTGGTCAC

AAGCTTCAACAGGAACGAGTGTGAGGCTtagAGGCCG

ACAGGCCCCTGGCCTGCCCCCAGGGCCAGCCCGCCTC

CGCACCTCAAGCCTCAGGCCCTTGCCCCAGAGGATCG

TTGGCAATCCCCCAGCCCCTCTTGCCTCCTCATCCCC

TCGCCCTCTTTGGCTTTAAGCGTGTTAATAGTGGGGG

GTGGGGGAATGAATAaataaaGTGAACGTTTGGACCT

GTGAtttctctctcctgtctgattttaaggttgttaa

atgttgttttccccattatagttaatcttttaaggaa

ctacatactgagttgctaaaaactacaccatcactta

taaaattcacgccttctcagttctcccctcccctcct

gtcctccgtaagacaggcctccgtgaaacccataagc

acttctctttacaccctctcctgggccggggtaggag

actttttgatgtcccctcttcagcaagcctcagaacc

attttgagggggacagttcttacagtcacat*tcctg

tgatctaatgactttagttaccgaaaagccagtctct

caaaaagaagggaacggctagaaaccaagtcatagaa

atatatatgtataaaatatatatatatccatatatgt

aaaataacaaaataatgataacagcataggtcaacag

gcaacagggaatgttgaagtccattctggcacttcaa

tttaagggaataggatgccttcattacattttaaata

caatacacatggagagcttcctatctgccaaagacca

tcctgaatgccttccacactcactacaaggttaaaag

cattcattacaatgttgatcgaggagttcccgttgtg

gctcagcaggttaagaacgtgactggtatccaggagg

atgcgggtttggtccccagcctcgctcagtggattaa

ggatccagtgttgctgcaagatcacgggctcagatcc

cgtgttctatggctatggtgtaggctggtagctgcat

gcagccctaatttgacccctagcctgggaactgccat

atgccacatgtgaggcccttaaaacctaaaagaaaaa

aaaagaaaagaaatatcttacacccaatttatagata

agagagaagctaaggtggcaggcccaggatcaaagcc

ctacctgcctatcttgacacctgatacaaattctgtc

ttctagggtttccaacactgcatagaacagagggtca

aacatgctaccctcccagggactcctcccttcaaatg

acataaattttgttgcccatctctgggggcaaaactc

aacaatcaatggcatctctagtaccaagcaaggctct

tctcatgaagcaaaactctgaagccagatccatcatg

acccaaggaagtaaagacaggtgttactggttgaact

gtatccttcaattcaatatgctcaatttccaactccc

agtccccgtaaatacaaccccctttgggaagagagtc

cttgcagatgtagccacgttaaaaagagattatacag

aaaggctagtgaggatgcagtgaaacgggatctttca

tacattgctggtggaaatgtaaaatgctgcaggcact

ctagaaaataatttgccagttttttgaaaagctaaac

aaaatagtttagttgcattctgggttatttatccccc

agaaattaaaaattatgtccgcacaaaaacgtgtaca

taatcattcataacagccttgtac

Seq ID No.12

caaggaaccaagctggaactcaaacgtaagtcaatcc

aaacgttccttccttggctgtctgtgtcttacggtct

ctgtggctctgaaatgattcatgtgctgactctctga

aaccagactgacattctccagggcaaaactaaagcct

gtcatcaaactggaaaactgagggcacattttctggg

cagaactaagagtcaggcactgggtgaggaaaaactt

gttagaatgatagtttcagaaacttactgggaagcaa

agcccatgttctgaacagagctctgctcaagggtcag

gaggggaaccagtttttgtacaggagggaagttgaga

cgaacccctgtgtatatggtttcggcgcggggaccaa

gctggagctcaaacgtaagtggctttttccgactgat

tctttgctgtttctaattgttggttggctttttgtcc

atttttcagtgttttcatcgaattagttgtcagggac

caaacaaattgccttcccagattaggtaccagggagg

ggacattgctgcatgggagaccagagggtggctaatt

tttaacgtttccaagccaaaataactggggaaggggg

cttgctgtcctgtgagggtaggtttttatagaagtgg

aagttaaggggaaatcgctatggttcacttttggctc

ggggaccaaagtggagcccaaaattgagtacattttc

catcaattatttgtgagatttttgtcctgttgtgtca

tttgtgcaagtttttgacattttggttgaatgagcca

ttcccagggacccaaaaggatgagaccgaaaagtaga

aaagagccaacttttaagctgagcagacagaccgaat

tgttgagtttgtgaggagagtagggtttgtagggaga

aaggggaacagatcgctggctttttctctgaattagc

ctttctcatgggactggcttcagagggggtttttgat

gagggaagtgttctagagccttaactgtgggttgtgt

tcggtagcgggaccaagctggaaatcaaacgtaagtg

cacttttctactcctttttctttcttatacgggtgtg

aaattggggacttttcatgtttggagtatgagttgag

gtcagttctgaagagagtgggactcatccaaaaatct

gaggagtaagggtcagaacagagttgtctcatggaag

aacaaagacctagttagttgatgaggcagctaaatga

gtcagttgacttgggatccaaatggccagacttcgtc

tgtaaccaacaatctaatgagatgtagcagcaaaaag

agatttccattgaggggaaagtaaaattgttaatatt

gtggatcacctttggtgaagggacatccgtggagatt

gaacgtaagtattttttctctactaccttctgaaatt

tgtctaaatgccagtgttgacttttagaggcttaagt

gtcagttttgtgaaaaatgggtaaacaagagcatttc

atatttattatcagtttcaaaagttaaactcagctcc

aaaaatgaatttgtagacaaaaagattaatttaagcc

aaattgaatgattcaaaggaaaaaaaaattagtgtag

atgaaaaaggaattcttacagctccaaagagcaaaag

cgaattaattttctttgaactttgccaaatcttgtaa

atgatttttgttctttacaatttaaaaaggttagaga

aatgtatttcttagtctgttttctctcttctgtctga

taaattattatatgagataaaaatgaaaattaatagg

atgtgctaaaaaatcagtaagaagttagaaaaatata

tgtttatgttaaagttgccacttaattgagaatcaga

agcaatgttatttttaaagtctaaaatgagagataaa

ctgtcaatacttaaattctgcagagattctatatctt

gacagatatctcctttttcaaaaatccaatttctatg

gtagactaaatttgaaatgatcttcctcataatggag

ggaaaagatggactgaccccaaaagctcagattt*aa

gaaaacctgtttaag*gaaagaaaataaaagaactgc

attttttaaaggcccatgaatttgtagaaaaatagga

aatattttaataagtgtattcttttattttcctgtta

ttacttgatggtgtttttataccgccaaggaggccgt

ggcaccgtcagtgtgatctgtagaccccatggcggcc

ttttttcgcgattgaatgaccttggcggtgggtcccc

agggctctggtggcagcgcaccagccgctaaaagccg

ctaaaaactgccgctaaaggccacagcaaccccgcga

ccgcccgttcaactgtgctgacacagtgatacagata

atgtcgctaacagaggagaatagaaatatgacgggca

cacgctaatgtggggaaaagagggagaagcctgattt

ttattttttagagattctagagataaaattcccagta

ttatatccttttaataaaaaatttctattaggagatt

ataaagaatttaaagctatttttttaagtggggtgta

attctttcagtagtctcttgtcaaatggatttaagta

atagaggcttaatccaaatgagagaaatagacgcata

accctttcaaggcaaaagctacaagagcaaaaattga

acacagcagccagccatctagccactcagattttgat

cagttttactgagtttgaagtaaatatcatgaaggta

taattgctgataaaaaaataagatacaggtgtgacac

atctttaagtttcagaaatttaatggcttcagtagga

ttatatttcacgtatacaaagtatctaagcagataaa

aatgccattaatggaaacttaatagaaatatattttt

aaattccttcattctgtgacagaaattttctaatctg

ggtcttttaatcacctaccctttgaaagagtttagta

atttgctatttgccatcgctgtttactccagctaatt

tcaaaagtgatacttgagaaagattatttttggtttg

caaccacctggcaggactattttagggccattttaaa

actcttttcaaactaagtattttaaactgttctaaac

catttagggccttttaaaaatcttttcatgaatttca

aacttcgttaaaagttattaaggtgtctggcaagaac

ttccttatcaaatatgctaatagtttaatctgttaat

gcaggatataaaattaaagtgatcaaggcttgaccca

aacaggagtatcttcatagcatatttcccctcctttt

tttctagaattcatatgattttgctgccaaggctatt

ttatataatctctggaaaaaaaatagtaatgaaggtt

aaaagagaagaaaatatcagaacattaagaattcggt

attttactaactgcttggttaacatgaaggtttttat

tttattaaggtttctatctttataaaaatctgttccc

ttttctgctgatttctccaagcaaaagattcttgatt

tgttttttaactcttactctcccacccaagggcctga

atgcccacaaaggggacttccaggaggccatctggca

gctgctcaccgtcagaagtgaagccagccagttcctc

ctgggcaggtggccaaaattacagttgacccctcctg

gtctggctgaaccttgccccatatggtgacagccatc

tggccagggcccaggtctccctctgaagcctttggga

ggagagggagagtggctggcccgatcacagatgcgga

aggggctgactcctcaaccggggtgcagactctgcag

ggtgggtctgggcccaacacacccaaagcacgcccag

gaaggaaaggcagcttggtatcactgcccagagctag

gagaggcaccgggaaaatgatctgtccaagacccgtt

cttgcttctaaactccgagggggtcagatgaagtggt

tttgtttcttggcctgaagcatcgtgttccctgcaag

aagcggggaacacagaggaaggagagaaaagatgaac

tgaacaaagcatgcaaggcaaaaaaggccttaggatg

gctgcaggaagttagttcttctgcattggctccttac

tggctcgtcgatcgcccacaaacaacgcacccagtgg

agaacttccctgttacttaaacaccattctctgtgct

tgcttcctcaggggctgatgccaagccatccgtcttc

atcttcccgccatcgaaggagcagttagcgaccccaa

ctgtctctgtggtgtgcttgatca

Seq ID No.15

gatgccaagccatccgtcttcatcttcccgccatcga

aggagcagttagcgaccccaactgtctctgtggtgtg

cttgatcaataacttcttccccagagaaatcagtgtc

aagtggaaagtggatggggtggtccaaagcagtggtc

atccggatagtgtcacagagcaggacagcaaggacag

cacctacagcctcagcagcaccctctcgctgcccacg

tcacagtacctaagtcataatttatattcctgtgagg

tcacccacaagaccctggcctcccctctggtcacAAG

CTTCAACAGGAACGAGTGTGAGGCTTAGAGGCCCACA

GGGGCCTGGCGTGCCCCGAGCCCCAGCCCCGCTCCCC

ACCTCAAGCCTCAGGCCCTTGCCCCAGAGGATCCTTG

GCAATCCCCCAGCCCCTCTTCCGTCGTCATGCGGTCC

CCCTGTTTGGCTTTAACCGTGTTAATACTGGGGGGTG

GGGGAATGAATAAATAAAGTGAACCTTTGCACCTGTG

ATTTCTCTCTCCTGTCTGATTTTAAGGTTGTTAAATG

TTGTTTTCCCCATTATAGTTAATCTTTTAAGGAACTA

CATACTGAGTTGCTAAAAACTACACCATCACTTATAA

AATTCAcgCCTTCTCAGTTCTCCCCTCCCCTCCTGTC

CTCCGTAAGACAGGCCTCCGTGAAACCCATAAGCACT

TCTCTTTACACCCTCTCCTGGGCCGGGGTAGGAGACT

TTTTGATGTCCCCTcTTCAGCAAGCCTCAGAACCATT

TTGAGGGGGACAGTTCTTACAGTCACAT*TCCtGtGA

TCTAATGACTTTAGTTaCCGAAAAGCCAGTCTCTCAA

AAAGAAGGGAACGGCTAGAAACCAAGTCATAGAAATA

TATATGTATAAAATATATATATATCCATATATGTAAA

ATAACAAAATAATGATAAGAGCATAGGTCAACAGGCA

ACAGGGAATGTTGAAGTCGATTCTGGCAGTTCAATTT

AAGGGAATAGGATGCCTTCATTACATTTTAAATAGAA

TACACATGGAGAGCTTCGTATCTGCCAAAGACCATCC

TGAATGCCTTCCACACTCACTACAAGGTTAAAAGCAT

TCATTACAATGTTGATCGAGGAGTTCCCGTTGTGGCT

CAGCAGGTTTAAGAAGGTGACTGGTATGCAGGAGGAT

GCGGGTTGGTCCCGAGCCTCGCTCAGTGGATTAAGGA

TCCAGTGTTGCTGCAAGATCACGGGCTCAGATCCCGT

GTTCTATGGCTATGGTGTAGGCTGGTAGCTGCATGCA

GCCCTAATTTGACCCCTAGCCTGGGAACTGCCATAtG

CCACATGTGAGGCCCTTAAAACGTAAAAGAAAAAaAA

AGAAAAGAAATATCTTACACGCAATTTATAGATAAGA

GAGAAGCTAAGGTGGCAGGCCCAGGATGAAAGCCCTA

CGTGCCTATCTTGACACCTGAtACAAATTCTGTCTTC

TAGGGtTTCCAACACTGCATAGAACAGAGGGTCAAAC

ATGCTACCCTCCCAGGGACTCCTCCCTTCAAATGACA

TAAATTTTGTTGGCCATCTCTGGGGGCAAAACTGAAC

AATCAATGGCATGTCTAGTACCAAGCAAGGCTCTTCT

CATGAAGCAAAAGTGTGAAGCCAGATCCATCATGACC

CAAGGAAGTAAAGACAGGTGTTACTGGTTGAACTGTA

TCCTTGAATTGAATATGCTGAATTTCGAACTGCCAGT

CCCCGTAAATACAACCCCCTTTGGGAAGAGAGTCCTT

GCAGATGTAGCCACGTTAAAAAGAGATTATACAGAAA

GGCTAGTGAGGATGCAGTGAAACGGGATCTTTCATAC

ATTGCTGGTGGAAATGTAAAATGCTGCAGGCACTCTA

GAAAATAATTTGCCAGTTTTTTGAAAAGCTAAACAAA

ATAGTTTAGTTGCATTCTGGGTTATTTATCCCCCAGA

AATTAAAAATTATGTCCGCACAAAAACGTGTACATAA

TCATTCATAACAGCCTTGTACGAAAAGCTT

Seq ID No.16

GGATCCTTAACCCACTAATCGAGGATCAAACACGCAT

CCTCATGGACAATATGTTGGGTTCTTAGCCTGCTGAG

ACACAACAGGAACTCCCCTGGCACCACTTTAGAGGCC

AGAGAAACAGCACAGATAAAATTCCCTGCCCTCATGA

AGCTTATAGTGTAGCTGGGGAGATATGATAGGCAAGA

TAAACACATACAAATACATGATCTTAGGTAATAATAT

ATAGTAAGGAGAAAATTACAGGGGAGAAAGAGGACAG

GAATTGCTAGGGTAGGATTATAAGTTCAGATAGTTCA

TGAGGAACACTGTTGCTGAGAAGATAACATTTAGGTA

AAGACCGAAGTAGTAAGGAAATGGACCGTGTGCCTAA

GTGGGTAAGACCATTCTAGGCAGCAGGAACAGCGATG

AAAGCACTGAGGTGGGTGTTCACTGCACAGAGTTGTT

CACTGCACAGAGTTGTGTGGGGAGGGGTAGGTCTTGC

AGGCTCTTATGGTCACAGGAAGAATTGTTTTACTCCC

ACCGAGATGAAGGTTGGTGGATTTTGAGCAGAAGAAT

AATTCTGCCTGGTTTATATATAACAGGATTTCCCTGG

GTGCTCTGATGAGAATAATCTGTCAGGGGTGGGATAG

GGAGAGATATGGCAATAGGAGCGTTGGCTAGGAGCCC

ACGACAATAATTCCAAGTGAGAGGTGGTGCTGCATTG

AAAGCAGGACTAACAAGACCTGCTGACAGTGTGGATG

TAGAAAAAGATAGAGGAGACGAAGGTGCATCTAGGGT

TTTCTGCCTGAGGAATTAGAAAGATAAAGCTAAAGCT

TATAGAAGATGCAGCGCTCTGGGGAGAAAGACCAGCA

GCTCAGTTTTGATCCATCTGGAATTAATTTTGGCATA

AAGTATGAGGTATGTGGGTTAACATTATTTGTTTTTT

TTTTTTCCATGTAGCTATCCAACTGTCCCAGCATCAT

TTATTTTAAAAGACTTTCCTTTCCCCTATTGGATTGT

TTTGGCACCTTCACTGAAGATCAACTGAGCATAAAAT

TGGGTCTATTTCTAAGCTCTTGATTCCATTCCATGAC

CTATTTGTTCATCTTTACCCCAGTAGACACTGCCTTG

ATGATTAAAGCCCCTGTTACCATGTCTGTTTTGGACA

TGGTAAATCTGAGATGCCTATTAGCCAACCAAGCAAG

CACGGCCCTTAGAGAGCTAGATATGAGAGCCTGGAAT

TCAGACGAGAAAGGTCAGTCCTAGAGACATACATGTA

GTGCCATCACCATGCGGATGGTGTTAAAAGCCATCAG

ACTGCAACAGAGTGTGAGAGGGTACCAAGCTAGAGAG

CATGGATAGAGAAACCCAAGCACTGAGCTGGGAGGTG

CTCCTACATTAAGAGATTAGTGAGATGAAGGACTGAG

AAGATTGATCAGAGAAGAAGGAaAATCAGGAAAATGG

TGCTGTCcTGAAAATCCAAGGGAAGAGATGTTCCAAA

GAGGAGAaAACTGATGAGTTGTCAGCTAGCGTCAATT

GGGATGAAAATGGACCATTGGACAGAGGGATGTAGTG

GGTCATGGGTGAATAGATAAGAGCAGCTTCTATAGAA

TGGCAGGGGCAAAATTCTCATCTGATCGGCATGGGTT

CTAAAGAAAACGGGAAGAAAAAATTGAGTGCATGACC

AGTCCCTTCAAGTAGAGAGGTgGAAAAGGGAAGGAGG

AAAATGAGGCCACGACAACATGAGAGAAATGACAGCA

TTTTTAAAAATTTTTTATTTTATTTtATTTATTTATT

TTTGCTTTTTAGGGCTGCCCCTGCAAcatatggaggt

tcccaggttaggggtctaatcagagctatagctgcca

gcctacaccacagccatagcaatgccagatctacatg

acctacaccacagctcacagcaacgccggatccttaa

cccactgagtgaggccagagatcaaacccatatcctt

atggatactagtcaggttcattaccactgagccaaaa

tgggaaATCCTGAGTAATGACAGCATTTTTTAATGTG

CCAGGAAGCAAAACTTGCCACCCCGAAATGTCTCTCA

GGCATGTGGATTATTTTGAGCTGAAAACGATTAAGGC

CCAAAAAAGACAAGAAGAAATGTGGACCTTCCGGCAA

CAGCCTAAAAAATTTAGATTGAGGGCCTGTTCCCAGA

ATAGAGCTATTGCCAGACTTGTCTACAGAGGCTAAGG

GCTAGGTGTGGTGGGGAAACCCTCAGAGATCAGAGGG

ACGTTTATGTACCAAGCATTGACATTTCCATCTCCAT

GCGAATGGCCTTCTTCCCCTCTGTAGCCCCAAACCAC

CACCCCCAAAATCTTCTTCTGTCTTTAGCTGAAGATG

GTGTTGAAGGTGATAGTTTCAGCCACTTTGGCGAGTT

CCTCAGTTGTTCTGGGTCTTTCCTCCGGATCCACATT

ATTCGACTGTGTTTGATTTTCTCCTGTTTATCTGTCT

CATTGGCACCCATTTCATTCTTAGACCAGCCCAAAGA

ACCTAGAAGAGTGAAGGAAAATTTCTTCCACCCTGAC

AAATGCTAAATGAGAATCACCgCAGTAGAGGAAAATG

ATCTGGTgCTGCGGGAGATAGAAGAGAAAATcGCTGG

AGAGATGTCACTGAGTAGGTGAGATGGGAAAGGGGGG

GCACAGGTGGAGGTGTTGCCCTCAGCTAGGAAGACAG

ACAGTTcacagaagagaagcgggtgtccgtGGACATC

TTGGGTCATGGATGAGGAAACCGAGGGTAAGAAAGAG

TGCAAAAGAAAGGTAAGGATTGCAGAGAGGTCGATCC

ATGAGTAAAATCACAGTAACCAACGCCAAACCAGCAT

GTTTTCTCCTAGTCTGGCACGTGGCAGGTACTGTGTA

GGTTTTCAATATTATTGGTTTGTAACAGTACCTATTA

GGCCTCCATCcCCTCCTCTAATACTAACAAAAGTGTG

AGACTGGTCAGTGAAAAATGGTCTTCTTTCTCTATGC

AATCTTTCTCAAGAAGATACATAACTTTTTATTTTAT

CATaGGCTTGAAGAGCAAATGAGAAACAgCCTCCAAC

CTATGACACCGTAACAAAGTGTTTATGATCAGTGAAG

GGCAAGAAACAAAACATACACaGTAAAGACCCTCCAT

AATATTGtGGGCTGGCCCAaCACAGGCCAGGTTGTAA

AAGCTTTTTATTCTTTGATAGAGGAATGGATAGTAAT

GTTTCAACCTGGACAGAGAT*CATGTTCACTGAATCC

TTCCAAAAATTCATGGGTAGTTTGAAtTATAAGGAAA

ATAAGACTTAGGATAAATACTTTgTCCA*GATCCCAG

AGTTAATgCCAAAATCAGTTTTCAGACTCCAGGCAGC

CTGATCAAGAGCCTAAACTTTAAAGACACAGTCCCTT

AATAACTACTATTCACAGTTGCACTTTCAgGGCGCAA

AGACTCATTGAATCCTACAATAGAATGAGTTTAGATA

TCAAATCTCTCAGTAATAGATGAGGAGACTAAATAGC

GGGCATGACCTGGTCACTTAAAGACAGAATTGAGATT

CAAGGCTAGTGTTCTTTCTACCTGTTTTGTTTCTACA

AGATGTAGCAATGCGCTAATTACAGACCTCTCAGGGA

AGGAATTCACAACCCTCAGCAAAAACCAAAGACAAAT

CTAAGACAACTAAGAGTGTTGGTTTAATTTGGAAAAA

TAACTCACTAACCAAACGCCCGTCTTAGCACGCCAAT

GTCTTCCACCATCACAGTGCTCAGGCCTCAACCATGC

CGCAATGACCCGAGCCCCAGACTGGTTATTACCAAGT

TTTCATGATGACTGGCGTGAGAAGATCAAAAAGGAAT

GACATCTTACAGGGGACTACGCCGAGGACCAAGATAG

CAACTGTCATAGCAACCGTCACAGTGCTTTGGTGA

Seq ID No.19

ggatcaaacacgcatcctcatggacaatatgttgggt

tcttagcctgctgagacacaacaggaactcccctggc

accactttagaggccagagaaacagcacagataaaat

tccctgccctcatgaagcttatagtctagctggggag

atatcataggcaagataaacacatacaaatacatcat

cttaggtaataatatatactaaggagaaaattacagg

ggagaaagaggacaggaattgctagggtaggattata

agttcagatagttcatcaggaacactgttgctgagaa

gataacatttaggtaaagaccgaagtagtaaggaaat

ggaccgtgtgcctaagtgggtaagaccattctaggca

gcaggaacagcgatgaaagcactgaggtgggtgttca

ctgcacagagttgttcactgcacagagttgtgtgggg

aggggtaggtcttgcaggctcttatggtcacaggaag

aattgttttactcccaccgagatgaaggttggtggat

tttgagcagaagaataattctgcctggtttatatata

acaggatttccctgggtgctctgatgagaataatctg

tcaggggtgggatagggagagatatggcaataggagc

cttggctaggagcccacgacaataattccaagtgaga

ggtggtgctgcattgaaagcaggactaacaagacctg

ctgacagtgtggatgtagaaaaagatagaggagacga

aggtgcatctagggttttctgcctgaggaattagaaa

gataaagctaaagcttatagaagatgcagcgctctgg

ggagaaagaccagcagctcagttttgatccatctgga

attaattttggcataaagtatgaggtatgtgggttaa

cattatttgttttttttttttccatgtagctatccaa

ctgtcccagcatcatttattttaaaagactttccttt

cccctattggattgttttggcaccttcactgaagatc

aactgagcataaaattgggtctatttctaagctcttg

attccattccatgacctatttgttcatctttacccca

gtagacactgccttgatgattaaagcccctgttacca

tgtctgttttggacatggtaaatctgagatgcctatt

agccaaccaagcaagcacggcccttagagagctagat

atgagagcctggaattcagacgagaaaggtcagtcct

agagacatacatgtagtgccatcaccatgcggatggt

gttaaaagccatcagactgcaacagactgtgagaggg

taccaagctagagagcatggatagagaaacccaagca

ctgagctgggaggtgctcctacattaagagattagtg

agatgaaggactgagaagattgatcagagaagaagga

aaatcaggaaaatggtgctgtcctgaaaatccaaggg

aagagatgttccaaagaggagaaaactgatcagttgt

cagctagcgtcaattgggatgaaaatggaccattgga

cagagggatgtagtgggtcatgggtgaatagataaga

gcagcttctatagaatggcaggggcaaaattctcatc

tgatcggcatgggttctaaagaaaacgggaagaaaaa

attgagtgcatgaccagtcccttcaagtagagaggtg

gaaaagggaaggaggaaaatgaggccacgacaacatg

agagaaatgacagcatttttaaaaattttttatttta

ttttatttatttatttttgctttttagggctgcccct

gcaacatatggaggttcccaggttaggggtctaatca

gagctatagctgccagcctacaccacagccatagcaa

tgccagatctacatgacctacaccacagctcacagca

acgccggatccttaacccactgagtgaggccagagat

caaacccatatccttatggatactagtcaggttcatt

accactgagccaaaatgggaaatcctgagtaatgaca

gcattttttaatgtgccaggaagcaaaacttgccacc

ccgaaatgtctctcaggcatgtggattattttgagct

gaaaacgattaaggcccaaaaaacacaagaagaaatg

tggaccttcccccaacagcctaaaaaatttagattga

gggcctgttcccagaatagagctattgccagacttgt

ctacagaggctaagggctaggtgtggtggggaaaccc

tcagagatcagagggacgtttatgtaccaagcattga

catttccatctccatgcgaatggccttcttcccctct

gtagccccaaaccaccacccccaaaatcttcttctgt

ctttagctgaagatggtgttgaaggtgatagtttcag

ccactttggcgagttcctcagttgttctgggtctttc

ctccTgatccacattattcgactgtgtttgattttct

cctgtttatctgtctcattggcacccatttcattctt

agaccagcccaaagaacctagaagagtgaaggaaaat

ttcttccaccctgacaaatgctaaatgagaatcaccg

cagtagaggaaaatgatctggtgctgcgggagataga

agagaaaatcgctggagagatgtcactgagtaggtga

gatgggaaaggggtgacacaggtggaggtgttgccct

cagctaggaagacagacagttcacagaagagaagcgg

gtgtccgtggacatcttgcctcatggatgaggaaacc

gaggctaagaaagactgcaaaagaaaggtaaggattg

cagagaggtcgatccatgactaaaatcacagtaacca

accccaaaccaccatgttttctcctagtctggcacgt

ggcaggtactgtgtaggttttcaatattattggtttg

taacagtacctattaggcctccatcccctcctctaat

actaacaaaagtgtgagactggtcagtgaaaaatggt

cttctttctctatgaatctttctcaagaagatacata

actttttattttatcataggcttgaagagcaaatgag

aaacagcctccaacctatgacaccgtaacaaaatgtt

tatgatcagtgaagggcaagaaacaaaacatacacag

taaagaccctccataatattgtgggtggcccaacaca

ggccaggttgtaaaagctttttattctttgatagagg

aatggatagtaatgtttcaacctggacagagatcatg

ttcactgaatccttccaaaaattcatgggtagtttga

attataaggaaaataagacttaggataaatactttgt

ccaagatcccagagttaatgccaaaatcagttttcag

actccaggcagcctgatcaagagcctaaactttaaag

acacagtcccttaataactactattcacagttgcact

ttcagggcgcaaagactcattgaatcctacaatagaa

tgagtttagatatcaaatctctcagtaatagatgagg

agactaaatagcgggcatgacctggtcacttaaagac

agaattgagattcaaggctagtgttctttctacctgt

tttgtttctacaagatgtagcaatgcgctaattacag

acctctcagggaaggaattcacaaccctcagcaaaaa

ccaaagacaaatctaagacaactaagagtgttggttt

aatttggaaaaataactcactaaccaaacgcccctct

tagcaccccaatgtcttccaccatcacagtgctcagg

cctcaaccatgccccaatcacc

Seq ID No.25

GCACATGGTAGGCAAAGGACTTTGCTTCTCCCAGCAC

ATCTTTCTGCAGAGATCCATGGAAACAAGACTCAACT

CCAAAGCAGCAAAGAAGCAGCAAGTTCTCAAGTGATC

TCCTCTGACTCCCTCCTCCCAGGCTAATGAAGCCATG

TTGCCCCTGGGGGATTAAGGGCAGGTGTCCATTGTGG

CACCCAGCCCGAAGACAAGCAATTTGATCAGGTTCTG

AGCACTCCTGAATGTGGACTCTGGAATTTTCTCCTGA

GCTTGTGGCATATCAGGTTAAGTGAAGTACAAGTGAC

AAACAACATAATCGTAAGAAGAGAGGAATCAAGCTGA

AGTCAAAGGATCACTGCCTTGGATTCTACTGTGAATG

ATGACCTGGAAAATATCCTGAACAACAGCTTGAGGGT

GATCATCAGAGACAAAAGTTCCAGAGCCAGGTAGGGA

AACCGTCAAGCCTTGCAAAGAGCAAAATGATGCCATT

GGGTTCTTAACCTGCTGAGTGATTTAGTATATGTTAC

TGTGGGAGGCAAAGCGCTCAAATAGGGTGGGTAAGTA

TGTCAAATAAAAAGCAAAAGTGGTGTTTCTTGAAATG

TTAGAGCTGAGGAAGGAATATTGATAACTTACCAATA

ATTTTCAGAATGATTTATAGATGTGCACTTAGTGAGT

GTCTCTCCACCCCGCACCTGAGAAGCAGTTTAGAATT

TATTCTAAGAATCTAGGTTTGCTGGGGGCTACATGGG

AATCAGCTTCAGTGAAGAGTTTGTTGGAATGATTCAC

TAAATTTTCTATTTCCAGCATAAATCCAAGAACCTCT

CAGACTAGTTTATTGACACTGCTTTTCCTCCATAATC

CATCTCATCTCCGTCCATCATGGACACTTTGTAGAAT

GACAGGTCGTGGCAgAGACTCaCAGATGCTTCTGAAA

CATCCTTTGCCTTCAAAGAATGAACAGCACACATACT

AAGGATCTCAGTGATCCACAAATTAGTTTTTGCCACA

ATGGTTCTTATGATAAAAGTCTTTCATTAACAGCAAA

TTGTTTTATAATAGTTGTTCTGCTTTATAATAATTGC

ATGCTTCACTTTCTTTTCTTTTCTTTTTTTTTCTTTT

TTTGCTTTTTAGTGCCGCAGGTgcagcatatgaaatt

tcccaggctaggggtcaaatcagaactacacctactg

gcctacgccacagccacagcaactcaggatctaagcc

atgtcggtgacctacactacagctcatggcaatgcca

gatccttaacccaatgagcgaggccagggatcgaacc

catgtcctcatggatactagtcaggctcattatccgc

tgagccataacaggaactcccGAGTTTGCTTTTTATC

AAAATTGGTACAGCCTTATTGTTTCTGAAAACCACAA

AATGAATGTATTCACATAATTTTAAAAGGTTAAATAA

TTTATGATATACAAGACAATAGAAAGAGAAAACGTCA

TTGCCTCTTTCTTCCACGACAACACGCCTCCTTAATT

GATTTGAAGAAATAACTACTGAGCATGGTTTAGTGTA

CTTCTTTCAGCAATTAGCCTGTATTCATAGCCATACA

TATTCAATTAAAATGAGATCATGATATCACACAATAC

ATACCATACAGCCTATAGGGATTTTTACAATCATCTT

CCACATGACTACATAAAAACCTACCTAAAAAAAAAAA

AAACCCTACTTCATCGTCCTATTGGCTGCTTTGTGCT

CCATTAAAAAGCTCTATCATAATTAGGTTATGATGAG

GATTTCCATTTTCTACCTTTCAAGCAACATTTCAATG

CACAGTCTTATATACACATTTGAGCCTACTTTTCTTT

TTCTTTCTTTTTTTGGTTTTTTTTTTTTTTTTTTTTT

TGGTCTTTTTGTCTTTTCTAAGgctgcatatggaggt

tcccaggctagctgtctaatcagaactatagctgctg

gcctacgccacatccacagcaatacaagatctgagcc

atgtctgcaacttacaccacagctcacagcaacggtg

gatccttaaaccactgagcaaggccagggatcaaacc

catAACTTCATGGCTCCTAGTTGGATTTGTTAACCAC

TGAGCCATGATGGCAACTCCTGAGCCTACTTTTCTAA

TCATTTCCAACCCTAGGACACTTTTTTAAGTTTCATT

TTTCTCCCCCCACCCCCTGTTTTCTGAAGtGTGTTTG

CTTCCACTGGGTGACTTCACtCCCAGGATCTCATCTG

CAGGATAGTGCAGCTAAGTGTATGAGCTCTGAATTTG

AATGCGAACTCTGCGACTCAAAGGGATAGGAGTTTCC

GATGTGGCGGAATGGGATCAGTGGCATGTCTGCAGTG

CCAGGACGCaggttccatccctggcccagcacagtgg

gttaagaatctggCATTGCTGCAGCTGAGGCATAGAT

TTCAATTGTGCCTCAgATCTGATCCTTGGCCCAAGGA

CTGCATATGCGTGAGGGCAACCAAAAAAGAGAAAAGG

GGGGTGATAGCATTAGTTTCTAGATTTGGGGGATAAT

TAAATAAAGTGATCCATGTACAATGTATGGCATTTTG

TAAATGCTCAACAAATTTCAACTATTATggagttccc

atcatggctcagtggaagggaatctgattagcatcca

tgaggacacaggtCCAACCCCGACCTTGCTCAGTGGG

CATTGCTGTGAGCTGTGGCATGGGTTACAGACGAAGC

TCGGATCTGGCATTGCTGTGGCTGTGGTGTAAGCCAg

CAActacagctctcattcagcccctagcctgggaacc

tccatatgccTAAAAGACAAAAAATAAAATTTAAATT

AAAAATAAAGAAATGTTAACTATTATGATTGgTACTG

CTTGCATTACTGCAAAGAAAGTCACTTTCTATACTGT

TTAATATCTTAGTTGACTGTGTGCTGAGTGAACTATT

TTGGACACTTAATTTCCACTCTCTTCTATCTCCAACT

TGACAACTCTCTTTCCTCTCTTCTGGTGAGATCCACT

GCTGACTTTGCTCTTTAAGGCAAGTAGAAAAGTGCTC

AGTGAGAAAATCAAAGAAAGTTAGCTTAATCTTCAGA

ATTACAATCTTAAGTTCTCTTGTAAAGCTTACTATTT

CAGTGGTTAGTATTATTCCTTGGTCCCTTACAACTTA

TCAGCTCTGATCTATTGCTGATTTTCAACTATTTATT

GTTGGAGTTTTTTCCTTTTTTCCCTGTTCATTCTGCA

AATGTTTGCTGAGCATTTGTCAAGTGAAGATACTGGA

CTGGGCCTTCCAAATATAAGACAATGAAACATGGGGA

GTTCTCATTATGGTGCAGCAGAaacgaatccaactag

gaaatgtgaggttgcaggttcgatccctgcccttgct

cagtgggttaaggatccagcattaccgtgagctgtgg

tgtaggttgcagacgtggctcagatcctgcgttgctg

tggctgtggcataggctggcagctctagctctgattc

gaccgctagcctgggaacctccatGCGCCCGGAGTGC

AGCCCTTAAAAAGCAAAAAAAAAAGAAAGAAAGAAAA

AGACAATGAAACATCAAACAGCTAACAATCGAGTAGG

GTAGAAAGAATGTGGCAACAGATAAGAGCGATTAAAT

GTTCTAGGTCCAGTGACCTTGCCTCTGTGCTCTACAC

AGTCGTGCCACTTGCTGAGGGAGAAGGTCTCTCTTGA

GTTGAGTCCTGAAAGACATTAGTTGTTCACAAACTAA

TGCCAGTGAGTGAAGGTGTTTCCAAGCAGAGGGAGAG

TTTGGTAAAAAGCTGGAAGTCACAGAAAGAGTCTAAA

GAGTTTAGGATGGTGGGAGCAACATACGCTGAGATGG

GGCTGGAAGGTTAAGAGGGAAACAACTATAGTAAGTG

AAGGTGGACTCACAGCAAAGTGAGGACCTCAGCATCC

TTGATGGGGTTAGCATGGAAACACCAAGGCACACCTT

GATTTCCAAAACAGCAGGCACCTGATTCAGCGGAATG

TGACATGGTGGGTACCCCTCTAGCTCTACCTGTTCTG

TGACAACTGACAACCAACGAAGTTAAGTCTGGATTTT

CTACTCTGCTGATCCTTGTTTTTGTTTCACACGTCAT

CTATAGCTTCATGCCAAAATAGAGTTCAAGGTAAGAC

GCGGGCCTTGGTTTGATATACATGTAGTCTATCTTGT

TTGAGACAATATGGTGGCAAGGAAGAGGTTCAAACAG

GAAAATACTCTCTAATTATGATTAACTGAGAAAAGCT

AAAGAGTCCCATAATGACACTGAATGAAGTTCATCAT

TTGCAAAAGCCTTCCCCCCCCCCCAGGAGACTATAAA

AAAGTGCAATTTTTTAAATGAACTTATTTACAAAACA

GAAATAGAGTCACAGACATAGGAAACGAACAGATGGT

TACCAAGGGTGAAAGGGAGTAGGAGGGATAAATAAGG

AGTCTGGGGTTAGCAGATACACCCCAGTGTACACAAA

ATAAACAACAGGGACCTACTATATAGCACAGGGAACT

ATATGCAGTAGCTTACAATAACCTATAATGGAAAAGA

ATGTGAAAAAGAATATATGTATGCGTGTGTGTGTAAC

TGAATCACTTTGGTGTAACCTGAATCTAACATAACAT

TGTAAATCAACTACAGTTTTTTTTTTTTTTAAGTGCA

GGGTTTTGGTGTTTTTTTTTTTTCATTTTTGTTTTTG

TTTTTGTTTTTTGCTTTTTAGGGCCACACCCAGACAT

ATGGGGGTTCCCAGGctAGGGGTcTAaTTAGAGcTAC

AGtTGCCGGCTTGCAccacagccacagcaacatcaga

tccgagccgcacttgcgacttacaccacagctcatgg

caataccagatccttaacccactgagcaaggcccagg

gatcgtacccgcaacctcatggttcctagtcagattc

attTCTGCTGCGCTACAATGGGAACTCCAAGTGCAGT

TTTTTGTAATGTGCTtGTCTTTCTTTGTAATTCATAT

TCATCCTACTTCCCAATAAATAAATAAATACATAAAT

AATAAACATACCATTGTAAATCAACTACAATTTTTTT

TAAATGCAGGGTTTTTGTTTTTTGTTTTTTGTTTTGT

CTTTTTGCCTTTTGTAgggccgctcccatggcatatg

gaggttcccaggctaggggtcgaatcggagctgtagc

caccggcctacgccagagccacagcaacgcgggatcc

gagccgcgtctgcaacctacaccacagctcacggcaa

cgccggatcgttaacccactgagcaagggcagggatc

gaacctgcaacctcatggttcctagtcagattcgtta

actactgagccacaacggaaacTCCTAAAGTGCAGTT

TTTAAATGTGCTTGTCTTTCTTTGTAATTTACACTCA

ACCTACTTCCCAATAAATAAATAAATAAACAAATAAA

TCATAGACATGGTTGAATTCTAAAGGAAGGGACCATG

AGGGCTTAGACAGAAATACGTCATGTTCTAGTATTTT

AAAACACACTAAAGAAGACAAACATGCTCTGCCAGAG

AAGGCCAGGGCCTCCACAGCTGCTTGCAAAGGGAGTT

AGGCTTCAGTAGGTGACCCAAGGCTGTGTTGCTCTTC

AGGGAAAAGGGTTTTTGTTCAGTGAGACAGCAGAGAG

CTGTCACTGTGgtggacgttcggccaaggaaccaagc

tggaactcaaacGTAAGTCAATCCAAACGTTCCTTCC

TTGGCTGTCTGTGTCTTACGGTCTCTGTGCTCTGCTC

AAGGGTCAGGAGGGGAACCAGTTTTTGTACAGGAGGG

AAGTCCAGGGGAAAACTAAAGGCTGTCATCAAACcGG

AAAAGTGAGGGCACATTTTCTGGGCAGAACTAAGAGT

CAGGCACTGGGTGAGGAAAAACTTGTTAGAATGATAG

TTTCAGAAACTTACTGGGAAGCAAAGCCCATGTTCTG

AACAGAGCTCTGCTCAAGGGTCAGGAGGGGAACCAGT

TTTTGTACAGGAGGGAAGTTGAGACGAACCCCTGTGT

Atatggtttcggcgcggggaccaagctggagctcaaa

cGTAAGTGGCTTTTTCCGACTGATTCTTTGCTGTTTC

TAATTGTTGGTTGGCTTTTTGTCCATTTTTCAGTGTT

TTCATCGAATTAGTTGTCAGGGACCAAACAAATTGCC

TTCCCAGATTAGGTAGGAGGGAGGGGACATTGCTGCA

TGGGAGACCAGAGGGTGGCTAATTTTTAACGTTTCCA

AGCCAAAATAACTGGGGAAGGGGGGTTGCTGTCCTGT

GAGGGTAGGTTTTTATAGAAGTGGAAGTTAAGGGGAA

ATCGCTATGGTtcacttttggctcggggaccaaagtg

gagcccaaaattgaGTACATTTTCCATCAATTATTTG

TGAGATTTTTGTCCTGTTGTGTCATTTGTGCAAGTTT

TTGACATTTTGGTTGAATGAGCCATTCCCAGGGACCC

AAAAGGATGAGACCGAAAAGTAGAAAAGAGGCAACTT

TTAAGCTGAGCAGACAGACCGAATTGTTGAGTTTGTG

AGGAGAGTAGGGTTTGTAGGGAGAAAGGGGAACAGAT

CGCTGGCTTTTTCTCTGAATTAGCCTTTCTCATGGGA

CTGGCTTCAGAGGGGGTTTTTGATGAGGGAAGTGTTC

TAGAGGCTTAAGTGTGGgttgtgttcggtagcgggac

caagctggaaatcaaaCGTAAGTGCACTTTTCTACTC

C



Porcine Lambda Light Chain

In another embodiment, novel genomic sequences encoding the lambda light chain locus of ungulate immunoglobulin are provided. The present invention provides the first reported genomic sequence of ungulate lambda light chain regions. In one embodiment, the porcine lambda light chain nucleotides include a concatamer of J to C units. In a specific embodiment, an isolated porcine lambda nucleotide sequence is provided, such as that depicted in Seq ID No. 28.

In one embodiment, nucleotide sequence is provided that includes 5′ flanking sequence to the first lambda J/C region of the porcine lambda light chain genomic sequence, for example, as represented by Seq ID No 32. Still further, nucleotide sequence is provided that includes 3′ flanking sequence to the J/C cluster region of the porcine lambda light chain genomic sequence, for example, approximately 200 base pairs downstream of lambda J/C, such as that represented by Seq ID No 33. Alternatively, nucleotide sequence is provided that includes 3′ flanking sequence to the J/C cluster region of the porcine lambda light chain genomic sequence, for example, approximately 11.8 kb downstream of the J/C cluster, near the enhancer (such as that represented by Seq ID No. 34), approximately 12 Kb downstream of lambda, including the enhancer region (such as that represented by Seq ID No. 35), approximately 17.6 Kb downstream of lambda (such as that represented by Seq ID No. 36, approximately 19.1 Kb downstream of lambda (such as that represented by Seq ID No. 37), approximately 21.3 Kb downstream of lambda (such as that represented by Seq ID No.38), and/or approximately 27 Kb downstream of lambda (such as that represented by Seq ID No.39).

In still further embodiments, isolated nucleotide sequences as depicted in Seq ID Nos 28, 31, 32, 33, 34, 35, 36, 37, 38, or 39 are provided. Nucleic acid sequences at least 80, 85, 90, 95, 98 or 99% homologous to Seq ID Nos 28, 31, 32, 33, 34, 35, 36, 37, 38, or 39 are also provided. In addition, nucleotide sequences that contain at least 10, 15, 17, 20, 25, 30, 40, 50, 75, 100, 150, 200, 250, 500 or 1,000 contiguous nucleotides of Seq ID Nos 28, 31, 32, 33, 34, 35, 36, 37, 38, or 39are provided. Further provided are nucleotide sequences that hybridizes, optionally under stringent conditions, to Seq ID Nos 28, 31, 32, 33, 34, 35, 36, 37, 38, or 39, as well as, nucleotides homologous thereto.

Seq ID No.28

CCTTCCTCCTGCACCTGTCAACTCCCAATAAACCGTC

CTCCTTGTCATTCAGAAATCATGCTCTCCGCTCACTT

GTGTCTACCCATTTTCGGGCTTGCATGGGGTCATCCT

CGAAGGTGGAGAGAGTCCCCCTTGGCCTTGGGGAAGT

CGAGGGGGGCGGGGGGAGGCCTGAGGCATGTGCCAGC

GAGGGGGGTCACCTCCACGCCCCTGAGGACCTTCTAG

AACCAGGGGCGTGGGGCCACGGCCTGAGTGGAAGGGT

GTCGACTTTTCCCCCGGGCGCCCAGGCTCCCTCCTCC

GTGTGGACCTTGTCCACCTCTGACTGGCCCAGCCACT

CATGCATTGTTTCCCCGAAACCCCAGGACGATAGCTC

AGCACGCGACAGTGTCCCCCTCTGAGGGCCTCTGTCC

ATTTCAGGAGGACCCGCATGTACAGGGTGACCACTCT

GGTCAGGCCCACTCACCACGTCCTAGAGCCCCACCCC

CAGCCCCATCCTTAGGGGCACAGCCAGcTCCGACCGC

CCCGGGGACACCACCCTCTGCCCCTTcCCCAGGCGCT

CCCTGTCACACGCACCACAGGGCCCTCCGTCCCGAGA

CCCTGCTCCCTCATCCCTCGGTCGCCTCAGGTAGCCT

TCCACCGGCGTGTGTCCCGAGGTCCCAGATGCAGGAA

GGCCCCTGGGACAACGCCAGATGTCTGCTCTcCCCGA

CCCCTCAGAAGGGAGCCCACGCGTGGCCCCACCAGCA

CTGCCTAACgTCCAAGTGTCCATAGGCCTCGGGACCT

CCAAGTCCAGGTTCTGCCTCTGGGATTCGGCCATGGG

TCTGCCTGGGAAATGATGGACTTGGAGGAGCTCAGGA

TGGGATGCGGGACGTTGTCTCTAGGCGCTcCCTCAGG

ATCCCACAGCTGCCCTGTGAGACACACACACACACAC

ACACACACACACACACACACACACAGACACAAACACG

CATGCACGCACGCCGGCACAGACGGTATTGCAGAGAT

GGCCACGGTAGCTGTGCCTCGAGGCCGAGTGGAGTGT

CTAGAACTCTCGGGGGTCGGCTGTGCAGACGACACTG

CTCCATCCCCCCCGTGCCCTGAAGGGCTCCTCAGTCT

CCCATCAGGATCTCTCCAAGGTGCTGAGCTGGAGAGG

AAGGGGCCTGGGACAGGCGGGGACACTCAGACCTCGC

TGCTGCCCCTCCTGTGCCTGGGCTTGGACGGCTCCCC

CCTTCCCACGGGTGAAGGTGCAGGTGGGGAGAGGGCA

CCCCGGTCAGCCTCCCAGAGGCAGAGCAGGGCCCGTG

GCAGGGGCAGCCTGTGAGGCTCGAGCCAGATGGAGGT

GGCCTGGGGTGGGGGGTGGAGGGGGCGGGAGGTTTAT

GTTTGAGGCTGTATCACTGTGTAATATTTTCGGCGGT

GGGACCCATCTGACCGTCCTCGGTGAGTCTCCCCTTT

TCTCTCCTCCTTGGGGATCCGAGTGAAATCTGGGTCG

ATCTTCTCTCCGTTCTCCTCGGACTGGGGGTGAGGTC

TGAAGCTCGGTGGGGTCCGAAGAGGAGGCCCCTAGGC

GAGGCTGCTCAGCCCCTCCAGCGCGAGcgGCCGTGTT

GACACAGGGTCCAGCTAAGGGGAGACATGGAGGCTGC

TAGTCCAGGGCCAGGCTCTGAGACCCAAGGGCGCTGC

CCAAGGAACCCTTGCCCCAGGGACCCTGGGAGCAAAG

GTGCTCACTCAGAGCCTGCAGCGGTGGGGTCTGAGGA

CAAGGAGGGACTGAGGACTGGGCGTGGGGAGTTCAGG

CGGGGACACCAGGTCCAGGGAGGTGACAAAGGCGCTG

GGAGGGGGCGGACGGTGCCGGGGAGTCCTCCTGGGCC

CTGTGGGCTCGGGGTCCTTGTGAGGACCCTGAGGGAC

TGAGGGGCCCCTGGGCCTAGGGACTTGCAgTgAGGGA

GGCAGGGAGTGTCCCTTGAGAACGTGGCCTCCGCGGG

GTGGGTCCGCCTCGTGCTGGCAGCC*GGGAGGACACC

CCAGAGCAAGCGGCCCAGGTGGGCGGGGAGGGTCTCG

TCACAGGGGCAGCTGACAGATAGAGGCCCCCGCGAGG

CAGATGCTTGATCCTGGCAgTTATACTGGGTTC**GC

ACAACTTTGCCTGAACAAGGGGCCCTCCGAACAGACA

CAGACGCAACCCAGTCGAGCcaggCTCAGCACAgAAA

ATGCACTGACACGCAAAACCCTCATCTggggGCCTGG

CGGGcAtCCCGCCCCAGGAGCCAAGGCCCGTGCCCCC

TGGCAGCGCTGGACACGGTCCTCTGTGGGCGGTGGGG

TCgGGGCTGTGGTGACGGTGGCATCGGGGAGCCTGTG

CCCCCTCGCTGAAAGGGGGGAGAGGCTCAAGAGGGGA

CAGAAATGTCCTCCCCTAGGAAGAGCTCGGACGGGGG

CGGGGGGGTGGTGTCCGACAGACAGATGCCCGGGACC

GACAGACCTGCCGAGGGAAGAGGGCACCTCGGTCGGG

TTAGGCTCCAGGCAGCACGAGGGAGCGAGGCTGGGAG

GGTGAGGACATGGGAGCGTGAGGAGGAGCTGGAGACT

TCAGGAGGCCCCCAGGTCCGGGCTTCGGGCTCTGAGA

TGCTCGGAGGGAAGGTGAGTGAGGCCAGCTGTGGCTG

ACCTGACCTCAgGGgGACAAGGCTCAGCCTGGGACTC

TGTGTCCCCATCGCCTGcACAGGGGATTCCCCTGATG

GACACTGAGCCAACGAGCTCCCGTCTCTGCCCGACCC

CCAGGTCAGCCGAAgGCCaCTCCCAGGGTCAACCTCT

TCCGGCCCTCCTCTGAGGAGCTCGGCACCAACAAGGC

CACCCTGGTGTGTCTAATAAGTGACTTCTACCCGGGC

GCCGTGACGGTGACGTGGAAGGCAGGGGGCACCACCG

TCACGCAGGGCGTGGAGACCACCAAGCCCTCGAAACA

GAGCAACAACAAGTACGCGGCCAGGAGCTACCTGGCC

CTGTCCGCCAGTGACTGGAAATCTTCCAGCGGCTTCA

CCTGCCAGGTCACCCACGAGGGGACCATTGTGGAGAA

GACAGTGACGCCCTCCGAGTGCGGCTAGGTCCCTGGG

CCCCCACCGTCAGGGGGCTGGAGCCACAGGACCCCCG

CGAGGGTcTCCCCGCGACCGTGGTCCAGCCCAGCCGT

TCCTCCTGCACCTGTCAACTCCCAATAAACCGTCCTC

CTTGTCATTCAGAAATCATGCTCTCCGCTCACTTGTG

TCTACCCATTTTCGGGCTTGCATGGGGTCATCCTCGA

AGGTGGAGAGAGTCCCCCTTGGCGTTGGGgAAATCGA

GGGGGGCGGGGGGAGGGCTGAGGCATGTGCCAGCGAG

GGGGGTCAGCTGCACGCCCCTGAGGACCTTCTAGAAC

CAGGGGCGTGGGGCCAGCGCCAGAGTGGAAGGCTGTC

CACTTTTCCCCCGGGCCCCCAGGCTCCCTCCTCCGTG

TGGACCTTGTCCACCTCTGACTGGCCCAGCCACTCAT

GCATTGTTTCCCCGAAACCCCAGGAGGATAGCTGAGC

ACGCGACAGTGTCGCGCTGTGAGGGCCTGTGTCCATT

TCAGGACGACCCGCATGTACAGCGTGACCACTCTGGT

GACGCCCACTCACCACGTCCTAGAGCCCCACGCCCAG

CCCGATCCTTAGGGGCACAGCCAGCTCCGACGGCCCG

GGGGACACCACCCTCTGCCGGTTGCCCAGGCCGTCCC

TGTCAGACGCACCACAGGGCCCTCCGTCGGGAGACGC

TGCTCCGTGATCGCTCGGTCCCCTCAGGTAGCCTTCC

ACCCGCGTGTGTCCCGAGGTCCCAGATGCAGCAAGGC

CGCTGGGACAACGCCAGATGTCTGCTGTCCGCGACGG

TCAGAAGCCAGCCCACGCCTGGCCCACCACCACTGGC

TAACGTCCAAGTGTCCATAGGCTCGGGAcCTCcAaGT

CCAGGTTCTGCGTCTGGGATTGCGCCATGGGTCTGCG

TGGAATGATGCACTTGGAGgAgGTCAGcATGGGATGc

GGAACTTGTCTAGcGCTCCTCAGATCCAcAGcTGCCT

GtGAgAcacacacacacacacacacacaccAAAcaCG

cATGCACGCACGCGGGCACACACGGTATTACAGAGAT

GGCGACGGTAGCTGTGCCTCGAGGCCGAGTGGAGTGT

CTAGAACTCTCGGGGGTCCCCTCTGCAGACGACAGTG

CTCCATCCCCCCCGTGCCCTGAAGGGCTCCTCACTCT

CCCATCAGGATCTCTCCAAGCTGCTGACCTGGAGAGG

AAGGGGCCTGGGACAGGCGGGGACACTCAGAGGTGCG

TGGTGGCGCTGGTCTGCCTGGGCTTGGAGGGCTCCGG

CCTTGCGACGGGTGAAGGTGCAGGTGGGGAGAGGGCA

CCCCCCTCACGCTCCCAGACCCAGAGCAGCCCCCGTG

GGAGGGGCAGCCTGTGAGCCTCCAGCCAGATGCAGGT

GGCCTGGGGTGGGGGGTGGAGGGGGCGGGAGGTTTAT

GTTTGAGGCTGTATTCATCTGTGTAATATttTGGGGG

GTGGGACCCATGTGAGGGTCCTCGGTGAGTGTCGCCT

tttctttcctccttggggatccgagtgaaATcTGGGT

GGATCTTCTCTCGGTTCTCGTCCGACTGGGGCTGAGG

TCTGAACCTCGGTgGGGTCCGAAGAGGAGGCGCGTAG

GCC*GGCTCcTCAGCCCCTCCAGCCCGACCCGCCGTG

TTGACACAGGGTCCAGCTAAGGGCAGAGAT***GGCT

GCTAGTCGAGGGCCAGGCTcTGAGAGCCAAGGGCGGT

GCCCAAGGAAGCGTTGCCGCAGGGACCCTGGGAGCAA

AGGTCCTCACTCAGAGCCTGCAGCCCTGGgGTCTGAG

GACAAGGAGGGAGTGAGGACTGGGCGTGGGGAGTTCA

GGCgGGGACACGGGGTCCAGGGAGGTGAGAAAGGCGC

TGGGAGGGGGCGGAGGGTGCGGGAGACTCCTCCTGGG

GCGTGTGGGCTCGTGGTCCTTGTGAGGACCCTGAGGG

*CTGAGGGGCGCCTGGGCGTAGGGACTTGGAGTGAGG

GAGGCAGGGAGTGTCCCTTGAGAACGTGGCCTCCGCG

GGCTGGGTCCCCCTCGTGCTCCCAGGAGGGAGGACAC

GCGAGAGCAAGCGCCCCAGGTGGGCGGGGAGGGTGTG

CTCACAGGGGCAGCTGACAGATAGAC*GgccCCCGCC

AGACAGATGCTTGATCCTGGTCag***TACTGGGTTC

GCcACTTCCCTGAACAGGGGCCCTCCGAACAGACACA

GACGCAGACCaggCTCAGCACAgAAAATGCACTGACA

CCCAAAACCCTGATCTGggGGGCTGGCCGGCATCCCG

CCCCAGGACGCAAGGCCCCTGCCCCCTGGCAGCCCTG

GACACGGTCCTCTGTGGGGGGTGGGGTCgGGGCTGTG

GTGACGGTGGCATCGGGGAGCCTGTGCCCCCTCCCTG

AAAGGGCGGAGAGGCTCAAGAGGGGACAGAAATGTCG

TCCCCTAGGAAGACGTCGGAGGGGGGCGGGGGGGTGG

TCTCCGACAGACAGATGGGCGGGACCGACAGACCTGC

CGAGGGAAGAGGGCACCTCGGTCGGGTTAGGCTCCAG

GCAGCACGAGGGAGCGAGGCTGGGAGGGTGAGGACAT

GGGAGCCTGAGGAGGAGCTGGAGAGTTCAGCAGGCCC

CCAGCTCCGGGCTTCGGGCTCTGAGATGCTCGGACGC

AAGGTGAGTGACCCCACCTGTGGCTGACCTGACCTGA

CCtCAGGGGGACAAGGCTCAGCCTGGGACTCTgTGTC

CCCATCGCCTGCACAGGGGATTCCCCTGATGGACACT

GAGCCAACGACCTGCCGTCTCTCCGCGACCCCCAGGT

CAGCCCAAGGCCACTCCCACGGTCAACCTCTTCCCGC

CCTCGTGTGAGGAGCTGGGCACCAACAAGGCCACCCT

GGTGTGTGTA

Seq ID No.32

GCCACGCCCACTCCATCATGCGGGGAGGGGATGGGCA

GAGGCTCCAGAAAGAAGCTCCCTGGGGTGCAGGTTAA

CAGCTTTCCCAGACACAGCCAGTACTAGAGTGAGGTG

AATAAGACATCCTCGTTGCTTGTGAAATTTAGGAAGT

GCCCCCAACATCAGTCATTAAGATAAATAATATTGAA

TGCACTTTTTTTTTTTTTATTTTTTTTTTTTGCTTTT

TAGGGCCTAATCTGCAGCatatggaagttcccaggct

acaagtcgaaccagagctgcagctgccagcctacatc

acagccacagcaacaccagatccgagccacatctgtg

actaacactgcagttcacagcaacgccagatccttaa

cccattgagtgaggccagggatcaaacccacatcctc

atggatactagtctggttcgtaaaccactgagccaCA

AGGGGAACTCCTGAATGCAATATTTTTGAAAATTGAA

ATTAAATCTGTCACTCTTTCACTTAAGAGTCCCCTTA

GATTGGGGAAAATTTAAATATCTGTCATCTTAGTGCA

TCTTTGCTCATATGATGTGAATAAAATCCCAAAATCC

ATATGAATGAAGCATCAAAATGTACATGAAGTCAGGC

TGACCCTGCACTGCGGTCACTTGCCTCATGTACCCCC

CAGCTCAAAGGAAGATGCAGAAAGGAGTCCAGCCCCT

ACACCGCCACCTGCCCCCACCACTGGAGCCCCTCAGG

TCTCCCACCTCCTTTTCTGAGCTTCAGTCTTCCTGTG

GCATTGCCTACCTCTACAGCTGCCCCCTACTAGGCCC

TCCCCCTGGGGCTGAGCTCCAGGCACTGGACTGGGAA

AGTTAGAGGTTAAAGCATGGAAAATTCCCAAAGCCAC

CAGTTCCAGGCTGCCCCCCACCCCACCGCCACGTCCA

AAAAGGGGCATCTTCCCAGATCTCTGGCTGGTATTGG

TAGGACCCAGGACATAGTCTTTATACCAATTCTGCTG

TGTGTCTTAGGAAAGAaactctccctctctgtgcttc

agtttcctcatcaataaaAGGAGCAGGCCAGGTTGGA

GGGTCTGTGACGTCTGCTGAAGCAGCAGGATTCTCTC

TCCTTTTGCTGGAGGAGAACTGATCCTTCACCCCCAG

GATCAACAGAGAAGCCAAGGTCTTCAGCCTTCCTGGG

GACCCCTCAGAGGGAACTCAGGGCCACAGAGCCAGAC

CCTGATGCCAGAACCTTTGTCATATGCCCAGAGGGAG

ACTTCATCCCGCTCCTGGTCAGACCCTCCAGGCCCCA

ACAGTGAGATGCTGAAGATATTAAGAGAAGGGCAAGT

CAGcTTAAGTTTGGGGGTAGACGGGAACAGGGAGTGA

GGAGATCTGGCCTGAGAGATAGGAGCCCTGGTGGCCA

CAGGAGGACTCTTTGGGTCCTGTCGGATGGACACAGG

GCGGCCCGGGGGCATGTTGGAGCCCGGCTGGTTCTTA

CCAGAGGCAGGGGGCACCCTCTGACACGGGAGCAGGG

CATGTTCCATACATGACACACCCCTCTGCTCCAGGGC

AGGTGGGTGGCGGCACAGAGGAGCCAGGGACTCTGAG

CAAGGGGTCCACCAGTGGGGCAGTTGGATCCAGACTT

CTCTGGGCCAGCGAGAGTGTAGCCCTCAGCCGTTCTC

TGTCCAGGAGGGGGGTGGGGCAGGCGTGGGCGGCGAG

AGCTCATCCCTCAAGGGTTCCCAGGGTGCTGGGAGAC

CCAGATTTCCGACCGCAGCCACCACAAGAGGATGTGG

TCTGCTGTGGCAGCTGCCAAGACCTTGCAGCAGGTGC

AGGGTGGGGGGGTGGGGGCACCTGGGGGCAGCTGGGG

TCACTGAGTTCAGGGAAAACCCCTTTTTTCCCCTAAA

CCTGGGGCCATCCCTAGGGGAAACCACAACTTCTGAG

CCCTGGGGAGTGGCTGGTGGGAGGGAAGAGCTTCATC

CTGGACCCTGGGGGGGAACCCAGCTCCAAAGGTGCAA

GGGGCCGAGGTGCAAGGCTAGAGTGGGCCAAGCACCG

GAATGGCCAGGGAGTGGGGGAGGTGGAGCTGGACTGG

ATCAGGGCCTCCTTGGGACTCCCTACACCCTGTGTGA

CATGTTAGGGTACCCACACCCCATCACCAGTCAGGGC

CTGGCCCATCTCCAGGGCCAGGGATGTGCATGTAAGT

GTGTGTGAGTGTGTGTGTGTGGTGTAGTACACCCCTT

GGCATCCGGTTCCGAGGCCTTGGGTTCCTCCAAAGTT

GCTCTCTGAATTAGGTCAAACTGTGAGGTCCTGATCG

CGATCATCAACTTCGTTCTCCCCACCTCCCATCATTA

TCAAGAGCTGGGGAGGGTCTGGGATTTCTTCCCACCC

ACAAGCCAAAAGATAAGCCTGCTGGTGATGGCAGAAG

ACACAGGATCCTGGGTCAGAGACAAAGGCGAGTGTGT

CACAGCGAGAGAGGCAGCCGGACTATCAGCTGTCACA

GAGAGGCGTTAGTCCGCTGAACTCAGGCCCCAGTGAC

TCCTGTTCCACTGGGCACTGGCCCCCCTCCACAGCGC

CCCCAGGCCCCAGGGAGAGGCGTCACAGGTTAGAGAT

GGCCCTGCTGAACAGGGAACAAGAACAGGTGTGCGGC

ATCCAGCGCCCCAGGGGTGGGACAGGTGGGCTGGATT

TGGTGTGAAGCCCTTGAGCCCTGgAACCCAAcCACAG

CAgGGCAGTTGGTAGATGCCATTTGGGGAGAGGCCCC

AGGAGTAAGGGCCATGGGCCCTTGAGGGGGCCAGGAG

CTGAGGACAGGGAGAGAGAGGGCGCAGGGAGAGGACA

GGGCCATGAGGGGTGCAGTGAGATGGCCACTGCCAGC

AGGGGCAGCTGCCAACCCGTCCAGGGAACTTATTCAG

GAGTCAGGTGGAGGTGCCATTGACCCTGAGGGCAGAT

GAAGCCCAGGGCAGGCTAGGTGGGGTGTGAAGACCGG

AGGGGACAGAGCTCTGTCCCTGGGCAGCACTGGCCTC

TCATTCTGCAGGGCTTGACGGGATCCCAAGGCGTGCT

GCCCCTGATGGTAGTGGCAGTACCGCCCAGAGCAGGA

CCCCAGCATGGAAACCCCAACGGGACGCAGCCTGCGG

AGCCCACAAAACGAGTAAGGAGCCGAAGCAGTGATGG

CACGGGGAGTGTGGACTTCCGTTTGATGGGGCCCAGG

CATGAAGGACAGAATGGGACAGCGGCCATGAGCAGAA

AATCAGCCGGAGGGGATGGGCCTAGGCAGACGCTGGC

TTTATTTGAAGTGTTGGCATTTTGTCTGGTGTGTATT

GTTGGTATTGATTTTATTTTAGTATGTCAGTGACATA

CTGACATATTATGTAACGACATATTATTATGTGTTTT

AAGAAGCACTCCAAGGGAACAGGCTGTCTGTAATGTG

TCCAGAGAAGAGAGCAAGAGCTTGGCTCAGTCTCCCC

CAAGGAGGTCAGTTGGTCAACAGGGGTCCTAAATGTT

TCCTGGAGCCAGGCGTGAATCAAGGGGgTCATATCTA

CACGTGGGGGAGAGCCATGGACCATTTTCGGAGCAAT

AAGATGGCAGGGAGGATACCAAGCTGGTcTTACAGAT

CCAGGGCTTTGACCTGTGACGCGGGCGCTCCTGCAGG

CAAAGGGAGAAGCCAGCAGGAAGCTTTCAGAACTGGG

GAGAACAGGGTGCAGACCTCCAGGGTCTTGTAGAACG

CACCCTTTATCCTGGGGTCCAGGAGGGGTCACTGAGG

GATTTAAGTGGGGGAGCATCAGAACCAGGTTTGTGTT

TTGGAAAAATGGCTCCAAAGCAGAGACCAGTGTGAGG

CCAGATTAGATGATGAAGAAGAGGCAGTGGAAAGTCG

ATGGGTGGCCAGGTAGCAAGAGGGCCTATGGAGTTGG

CAAGTGAATTTAAAGTGGTGGCACCAGAGGGCAGATG

GGGAGGAGCAGGCACTGTCATGGACTGTCTATAGAAA

TCTAAAATGTATACGCTTTTTAGCAATATGCAGTGAG

TCATAAAAGAACACATATATATTTAAATTGTGTAATT

GGACTTCTAAGGATTCATGCCAAGGGGGGAAAATAAT

CAAAGATGTAAGCAAAGGTTTACAAACAAGAACTCAT

CATTAATGTTGGTTGTTGTTATTTCAACGATATTATT

ATTATTACTATTATTATTATTATTTATTttgtctttt

tgcatttctagggccactcccacggcatagagaggtt

cccaggctaggggtcaaatcggagctacagctgccgg

cctacgccagagccacagcaacgcaggatctgagcca

cagcaatgcaggatctacaccacagctcatggtaacg

ctggatccttaacccaatgagtgaggccagggatcga

acctgtaacttcatggttcctagtcggattcattaac

cactgagccacgacaggaactccAACATTATTAATGA

TGGGAGAAAACTGGAAGTAACCTAAATATCCAGCAGA

AAGGGTGTGGCCAAATACAGCATGGAGTAGCCATCAT

AAGGAATCTTACACAAGCCTCCAAAATTGTGTTTCTG

AAATTGGGTTTAAAGTACGTTTGCATTTTAAAAAGCC

TGCCAGAAAATACAGAAAAATGTCTGTGATATGTCTC

TGGCTGATAGGATTTTGCTTAGTTTTAATTTTGGCTT

TATAATTTTCTATAGTTATGAAAATGTTCACAAGAAG

ATATATTTCATTTTAGCTTCTAAAATAATTATAACAC

AGAAGTAATTTGTGGTTTAAAAAAATATTCAACACAG

AAGTATATAAAGTAAAAATTGaggagttcccatcgtg

gctcagtgattaacaaacccaactagtatccatgagg

atatggatttgatccctggccttgctcagtgggttga

ggatccagtgttgctgtgagctgtggtgtaggttgca

gacacagcactctggcgttgctgtgactctggcgtag

gccggcagctacagctccatttggacccttagcctgg

gaacctccatatgcctgagatacggcccTAAAAAGTC

AAAAGCCAAAAAAATAGTAAAAATTGAGTGTTTCTAC

TTACCACCCCTGCCCACATCTTATGCTAAAACCCGTT

CTCCAGAGACAAACATCGTCAGGTGGGTCTATATATT

TCCAGCCCTCCTCCTGTGTGTGTATGTCCGTAAAACA

GACACACACACACACACACGCACACACACACACACGT

ATGTAATTAGCATTGGTATTAGTTTTTCAAAAGGGAG

GTCATGCTCTACCTTTTAGGCGGCAAATAGATTATTT

AAACAAATCTGTTGACATTTTCTATATCAACCCATAA

GATCTCCCATGTTCTTGGAAAGGCTTTGTAAGACATC

AACATCTGGGTAAACCAGCATGGTTTTTAGGGGGTTG

TGTGGATTTTTTTCATATTTTTTAGGGGACACCTGCA

gcatatggaggttcccaggctaggggttgaatcagag

ctgtagctgccggcctacaccacagccacagcaacgc

cagatccttaacccactgagaaaggccagggattgaa

cctgcatcctcatggATGCTGGTCAGATTTATTTGTG

CTGAGCCAGAACAGGAACTCCCTGAACCAGAATGCTT

TTAACCATTCCACTTTGCATGGACATTTAGATTGTTT

CCATTTAAAAATACAAATTACAaggagttcccgtcgt

ggctcagtggtaacgaattggactaggaaccatgagg

tttcgggttcgatccctggccttgctcggtgggttaa

ggatccagcattgatgtgagatatggtgtaggtcgca

gacgtggctcggatcccacgttgctgtggctctggcg

taggccggcaacaacagctccgattcgacccctagcc

TGggaacctccatgtgccacaggagcagccctaGAAA

AGGCAAAAAGACAAAAAAATAAAAAATTAAAATGAAA

AAATAAAATAAAAATACAAATTAGAAGAGACGGCTAG

AAGGAAATCCCCAAGTGTGTGCAAATGCCATATATGT

ATAAAATGTACTAGTGTCTCCTCGCGGGAAAGTTGCG

TAAAAGTGGGTTGGCTGGACAGAGAGGACAGGCTTTG

ACATTCTCATAGGTAGTAGCAATGGGGTTCTCAAAAT

GCTGTTCCAGTTTACACTCAGCATAGCAAATGACAGT

GCGTCTTCCTCTCCACCCTTGCCAATAATGTGAGAGG

TGGATCTTTTTCTATTTTGTGTATCTGAGAAGCAAAA

AATGAGAAGAggagttcctgtcgtggtgcagtggaga

caaatctgactaggaaccatgaaatttcgggttcaat

ccctggcctcactcagtaggtaaaggatccagggttg

cagtgagctgtggggtaggtcgcagacacagtgcaaa

tttggccctgttgtggctgtggtgtaggccggcagct

atagctccaattggacccctagcctgggaacctcctt

atgccgtgggtgaggccctAAAAAAAAGAGTGCAAAA

AAAAAAAATAAGAACAAAAATGATCATCGTTTAATTC

TTTATTTGATCATTGGTGAAACTTATTTTCCTTTTAT

ATTTTTATTGACTGATTTTATTTCTCCTATGAATTTA

CCGGTCATAGTTTTGCCTGGGTGTTTTTACTCCGGTT

TTAGTTTTGGTTGGTTGTATTTTCTTAGAGAGCTATA

GAAACTCTTCATCTATTTGGAATAGTAATTCCTCATT

AAGTATTTGTGCTGCAAAAAATTTTCCCTGATCTGTT

TTATGCTTTTGTTTGTGGGGTCTTTCACGAGAAAGCC

TTTTTAGTTTTTACAGCTCAGCTTGGTTGTTTTTCTT

GATTGTGTCTGTAATCTGCGGCCAACATAGGAAACAC

ATTTTTACTTTAGTGTTTTTTTCCTATTTTCTTCAAG

TACGTCCATTGTTTTGGTGTCTGATTTTACTTTGCGT

GGGGTTTGTTTTTGTGTGGCAGGAATATAAACTTATG

TATTTTCCAAATGGAGAGCCAATGGTTGTATATTTGT

TGAATTCAAATGCAACTTTATCAAACACCAAATCATC

GATTTATCACAACTCTTCTCTGGTTTATTGATCTAAT

GATCAATTCCTGTTCCACGCTGTTTTAATTATTTTAG

CTTTGTGGATTTTGGTGCCTGGTAGAGAACAAAGCCT

CCATTATTTTCATTCAAAATAGTCCCGTCTATTATCT

GCCATTGTTGTAGTATTAGACTTTAAAATCAATTTAC

TGATTTTCAAAAGTTATTCCTTTGGTGATGTGGAATA

CTTTATACTTCATAAGGTACATGGATTCATTTGTGGG

GAATTGATGTCTTTGCTATTGTGGCCATTTGTCAAGT

TGTGTAATATTTTACCCATGCCAACTTTGCATATTGT

ATGTGAGTTTATTCCCAGGGTTTTTAATAGGATGTTT

ATTGAAGTTGTCAGTGTTTCCACAATTTCATCGCCTC

AGTGCTTACTGTTTGCATAAAAGGAAACCTACTCACT

TTTGCCTATTGCTCTTGTATTCAATCATTTTAGTTAA

CTCTTGTGTTAATTTTGAGAGTTTTTCAGCTGACTGT

CTGGGGTTTTCTTTAATAGACTAGCCCTTTGTCTGTA

AAGAATAATTTTATCGAATTTTTCTTAACACTGAGAC

TCTCCCCACCCCCACCCCCGCTCATGTCGTTTCATTG

GGTCAAATCTGTAGAATACAATAAAAGTAAGAGTGGG

AACCTTAGCCTTTAAGTCGATTTTGCCTTTAAATGTG

AATGTTGCTATGTTTCGGGACATTCTCTTTATCAAGT

TGCGGATGTTTCCTTAGATTATTAACTTAATAAAAGA

CTGGATGTTTGCTTTCTTCAAATCAGAATTGTGTTGA

ATTTATATTGCTATTCTGTTTAATTTTGTTTCAAAAA

ATTTACATGCACACCTTAAAGATAACCATGACCAAAT

AGTCCTCCTGCTGAGAGAAAATGTTGGCGCCAATGCC

ACAGGTTACCTCCCGACTGAGATAAACTACAATGGGA

GATAAAATCAGATTTGGCAAAGCCTGTGGATTCTTGC

CATAACTCTCAGAGCATGACTTGGGTGTTTTTTCCTT

TTCTAAGTATTTTAATGGTATTTTTGTGTTACAATAG

GAAATCTAGGACACAGAGAGTGATTCAATGAGGGGAA

CGCATTCTGGGATGACTCTAGGCCTCTGGTTTGGGGA

GAGCTCTATTGAAGTAAAGACAATGAGAGGAAGCAAG

TTTGCAGGGAACTGTGAGGAATTTAGATGGGGAATGT

TGGGTTTGAGGTTTCTATAGGGCAGGCAAGCAGAGAT

GCACTCAGGAGGAAGAAGGAGCATAAATCTAGAGGGA

AAAAGAGAGGTCAGGACTGGAAATAGAGATGCGAGAC

ACCAGGGTGGCAGTCAGAGAGCACAGTGTGGGTGAGA

AGACAGTGGAAGAACACAAGGGACAGAGAGGGATCTC

CAACTTCACTGGGATGAGGGCCTTGTTGGCCTTGACC

TGAGAGATTTCCAGGAGTTGAGGGTGGGAAGGAGAGG

GCTCCTGCACATGTCCTGACATGAAAGGGTGCCCAGC

ATATGGGTGCTTGGAAGACATTGTTGGACAGATGGAT

GGATGATGGATGATGGATGAATGGATGGATGGAAGAT

GATGGATAAATGGATGATGGATGGATGGACAGAAGGA

CAAAGAGATGGACAGAAAGAGAGTGATCTGAGAGAGC

AGAGAAGGCTTCATGAAAGGACAGGAACTGAACTGTC

TCAGTGGGTGGAGACAATGGTGTAGGGGGTTTCCACA

TGGAGGCACCAGGGGTCAGGAATAATCTAGTGTGCAC

AGGCCGAGGAAGGAAGCTGTCTGCAGGAAATTGTGGG

GAAGAACCTGAGAGTCCTTAAATGAGGTCAGGAGTGG

TCAGGAGGGTGTGATCAGGTAAGGACTCATGTCCATC

ATCACATGGTCACCTAAGGGCATGTAGCTGTCAGCAT

CTCCATCAGGACAGTCTCAGAATGGGGGCGGGGTCAC

ACACTGGGTGACTCAAGGCGTGGGTCATGGCTGCCTC

GGAGGTGGGCCTGGGGATGGGGACACCTCGAGACCAT

GGGCCGGCCCAGGGCTGGACTGGcctctggtgggcta

gctacccgtccaagcaacacaggacacagccctacct

gctgcaaccctgtgcccgaaacgcccatctggttcct

gctccagcccggccccagggaacaggactcaggtgct

agcccaatggggttttgttcgagcctcagtcagcgtg

gTATTTGTCCGGCAGCGAGACTCAGTTCACCGCCTTA

ttaagtggttctcatgaatttcctagcagtcctgcac

tctgctatgccgggaaagtcacttttgtcgctggggg

ctgtttccccgtgcccttggagaatcaaggattgccc

aactttctctgtgggggaggtggctggtcttggggtg

accagcaggaagggccccaaaagcaggagcagctgcc

tccagAATACAACTGTCGGGTAGAGCTCAAACAGGAG

GCCTGGACTGGGGTTTAACCACCAGGGCGGCACGAAG

GAGGGAGGCTGGGAGGGTGAGGACATGGGAGCGTGAG

GAGGAGCTGGAGACTTCAGGAGGCGCCGAGCTCCGGG

GTTGGGGCTGTGAGATGCTGGGACGCAAGGTGAGTGA

CGCGACCTGTGGCTGACGTGACCTCAGGGGGACAAGG

GTCAGCCTGAGACTGTGTGTCCCCATCGCCTGGACAG

gggattcccctgatggacactgagccaacgacctccc

gtctctccccgacccccaggtcagcccaaggccgccc

ccacggtcaacctcttcccgccctcctctgaggagct

cggcaccaacaaggccaccctggtgtgtctaataagt

gacttctacccgAAGGGcGAATTCCAGCACACTGGCG

GCCGTTACTAGTGGATCGGAGCTGGGTACCAAGCTTG

ATGCATAGCTTGAGTATCTA

Seq ID No.33

agatctttaaaccaccgagcaaggccagggatcgaac

ccgcatcctcatgaatccagttgggttcgttaaccgc

tgaaccacaatgggaactcctGTCTTTCACATTTAAT

TCACAACCTCTCCAGGATTGTGGGGGTGGGTGGGGAA

TCCTAGGTACCCACTGGGAAAGTAATCCAAGGGGAGA

GGCTCACGGACTcTAGGGATCGGCGGAGGAGGGAAGG

TATCTCCCAGGAAACTGGCCAGGACACATTGGTCCTC

CGCGCTCCCCTTCCTCCCACTCCTCCTCCAGACAGGA

GTGTGCCCACCCCCTGCCACCTLTCTGGCCAGAACTG

TCCATGGCAGGTGACCTTCACATGAGCCCTTCCTCCC

TGCCTGCCCTAGTGGGAGCCTCGATACGTCCCCCTGG

ACCCCGTTGTCCTTTCTTTCCAGTGTGGCCGTGAGCA

TAACTGATGCCATCATGGGCTGCTGAGCCACCCGGGA

CTGTGTTGTGCAGTGAGTCACTTCTCTGTCATCAGGG

CTTTGTAATTGATAGATAGTGTTTCATCATCATTAGG

ACCGGGTGGCCTGTATGCTCTGTTAGTCTCCAAACAG

TGATGAAAACCTTCGTTGGCATAGTCCCAGCTTCCTG

TTGCCCATCCATAAATCTTGACTTAGGGATGGAGATC

CTGTCTCCAAGCAACCACCCGTCCCGTAGGCTAACTA

TAAAACTGTCCCAATGGCCCTTGTGTGGTGCAGAGTT

CATGCTTCCAGATCATTTCTCTGCTAGATCCATATCT

CACCTTGTAAGTCATCCTATAATAAACTGATCCATTG

ATTATTTGCTTCTGTTTTTTCCATCTCAAAACAGCTT

CTCAGTTCAGTTCGAATTTTTTATTCCCTCCATCCAC

CCATACTTTCCTCAGCCTGGGGAACGCTTGCGCCCAG

TCCCATGCCCTTCCTCGCTCTCTGCCCAGCTCAGCAG

CTGCCCACCGTCACCCTTCCTGTCACTCCCTAGGACT

GGACCATCCACTGGGGCCAGGACACTCCAGCAGCCTT

GGCTTCATGGGCTCTGAAATCCATGGCCCATCTCTAT

TCCTGACTGGATGGCAGGTTCAGAGATGTGAAAGGTC

TAGGAGGAAGCCAGGAAGGAAACTGTTGCATGAAAGG

CCGGCCTGATGGTTCAGTACTTAAATAATATGAGCTC

TGAGCTCCCCAGGAACCAAAGCATGGAGGGAGTATGT

GGCTGAGAATCTCTCTGAGATTCAGCAAAGCCTTTGC

TAGAGGGAAAATAGTGGCTCAACCTTGAGGGCCAGCA

TCTTGCACCACAGTTAAAAGTGGGTATTTGTTTTACC

TGAGGCCTCAGCATTATGGGAACCGGGCTCTGACACA

AACACAGGTGCAGCGCGGCAGCCTCAGAACACAGGAA

CGACCACAAGCTGGGACAGCTGCCCCTGAACGGGGAG

TGCACCATGCTTCTGTCTCGGGTACCACGAGGTCACC

ATCCCTGGGGGAGGTAGTTCCATAGCAGTAGTCCCCT

GATTTCGCGCCTCGGGCGTGTAGCCAGGCAAGCTCGT

GCCTCTGGACCCAGGGTGGACCCTTGCTCCCCACTAC

CGTGCACATGCCAGACAGTCAAGACCACTCCCACCTC

TGTCTGAGGGGCGCTTGGGTGTCCCAGGGCGCCCGAG

CTGTCCTCTACTGATGGTTCTTCCACGTGGGTACAAA

AGAGGCGAGGGACACTTTCTCAGGTTTTGCGGCTCAG

AAAGGTACCTTCCTAGGGTTTGTCCACTGGGAGTCAC

CTCCGTTGCATCTCAATGTGAGTGGGGAAAACTGGGT

CCCATGGGGGGATTAGTGCCACTGTGAGGCCCCTGAA

GTCTGGGGCCTCTAGACACTATGATGATGAGGGATGT

GGTGAAAAACGCCACCCCAGCCCTTCTTGCCGGGACC

CTGGGCTGTGGCTCCCCCATTGCACTTGGGGTCAGAG

GGGTGGATGGTGGCTATGGTGAGGCATGTTTCGCATG

AGCTGGGGGCACCCTGGGTGACTTTCTCCTGTGAATC

CTGAATTAGCAGCTATAACAAATTGCCCAAACTCTTA

GGCTTAAAACAACAGACATTTATTGCTCTGGGTCCCA

GGGTCAGAAGTCCAAAATGAGTCCTATAGGCTAAATT

TGAGGTGTCTCTGGGTTGAGCTCCTCCTGGAAGCCTT

TTCCAGCCTCTAGAGTCGCAAGTCCTTGGCTCTGGGC

CCCTCCCTCAAGCTTCAAAGCCACAGAAGCTTCTAAT

CTGTCTCCCTTCCCCTCTGACGTCTGCTCGCATCCTC

ATACCCTGTCCCCTCACTCTGACCCTCCTGCCTCCCT

CTTTCCCTTATAAAGACCCTGCATGGGGCCACGGAGA

TAATCGAGGGTAATCGCCCCTCTTCGAGCCCTTAACT

CCATCCCATCTGCAAAATCCCTGTCACCCCATAATGG

ACCTACTGATGGTCTGGGGGTTAGGACGTGGACAAGT

TGGGGCCTTATTCATGTGATCACAACTCCAGTTCCCA

GACCCGCAGACCCCCGGGCATTAGGGAAAGTTCTCCC

AGTTCCTCTCCGTCTGTGTCCTGCCCAGTCTCCAGGA

TGGGCCACTCCCGAGGGCCCTTCAGCTCAGGCTCCCC

CTCCTTTCTCCCTGGCCTCTTGTGGCCCCATCTCCTC

CTCCGCTCACAGGGAGAGAACTTTGATTTCAGCTTTG

GCTCTGGGGCTTTGCTTCCTTCTGGCCATTGGCTGAA

GGGCGGGTTTCTCCAGGTCTTACCTGTCAGTCATCAA

ACCGCCCTTGGAGGAAGACCCTAATATGATGCTTACC

CTACAGATGGAGACTCGAGGCCCAGAGATCCTGAGTG

ACCTGCTCAGATTCACAGCAGGGACTGAACCCGAGTC

ACCTAGCGAACTCCAGGGCTCAGCGCTTTTTTTTTTT

TTTTTCTTTTTgccttttcgagggccgctcccgcaac

atatggagatttccaggctaggggtctaattggagca

gtcgacactggcctaagccaaagccacagcaacaagg

gcaagccgcttctgcagcctataccacagctcacggc

aatgccggatccttaacccactgagcaaagccaggga

ttgaacctgcaacctcatgtttcctagtcaaatttgt

taaccactgacccatgacgggaactcccAGGGCTCAG

CTCTTGACTCCAGGTTCGCAGCTGCCCTCAAAGCAAT

GCAACCCTGGCTGGCCCCGCCTCATGCATCCGGCCTC

CTCCCCAAAGAGCTCTGAGCCCACCTGGGCCTAGGTC

CTCCTCCCTGGGACTCATGGCCTAAGGGTACAGAGTT

ACTGGGGCTGATGAAGGGACCAATGGGGACAGGGGCC

TCAAATCAAAGTGGCTGTCTCTCTCATGTCCCTTCCT

CTCCTCAGGGTCCAAAATCAGGGTCAGGGCCCCAGGG

CAGGGGCTGAGAGGGCGTCTTTCTGAAGGCCCTGTCT

CAGTGCAGGTTATGGGGGTCTGGGGGAGGGTCAATGC

AGGGCTCACCCTTCAGTGCCCCAAAGCCTAGAGAGTG

AGTGCCTGCCAGTGGCTTCCCAGGCCCAATCCCTTGA

CTGCCTGGGAATGCTCAAATGCAGGAACTGTCACAAC

ACCTTCAGTCAGGGGCTGCTCTGGGAGGAAAAACACT

CAGAATTGGGGGTTCAGGGAAGGCCCAGTGCCAAGCA

TAGCAGGAGCTCAGGTGGCTGCAGATGGTGTGAACCC

CAGGAGCAGGATGGGCGGCACTCCCCCCAGACCCTCC

AGAGCCCCAGGTTGGGTGCCGTCTTCACTGGCGACAC

CCGTGGGTGCACTTCTGCGCTTTCCCACGTAAAACCT

TTAGGGCTCCCACTTTCTCCCAAATGTGAGACATCAC

CAGGGCTCCCAGGGAGTGTCCAGAAGGGGATGTGGCT

GAGAGGTCGTGACATCTGGGAGGCTCAGGCCCCACAA

TGGACAGACGCCCTGCCAGGATGGTGCTGCAGGGCTG

TTAGCTAGGCGGGGTGGAGATGGGGTACTTTGCCTCT

CAGAGGCCCCGGCCCCACCATGAAACGTCAGTGACAC

GCCATTTCCCTGAGTTCAGATACCTGTATCCTACTCC

AGTCAGCTTCGCCACGAACCCCTGGGAGCGGAGGATG

ATGCTGGGGCTGGAGCCACGACCAGCGCACGAGTGAT

CCAGGTCTGCCAATCAGCAGTCATTTCCCAAGTGTTC

CAGCCCTGCCAGGTCCCACTACAGCAGTAATGGAGGC

CCCAGACACCAGTCGAGCAGTTAGAGGGCTGGACTAG

CACCAGCTTTCAAGCCTCAGCATCTCAAGGTGAATGG

CCAGTGCCCGTCCCCGTGGCCATCACAGGATCGGAGA

TATGACCCTAGGGGAAGAAATATCCTGGGAGTAAGGA

AGTGCCCATACTCAAGGATGGCCCCTCTGTGACGTAA

CGTGTCCCTGAGGATTGTACTTGCAGGCGTTAAAACA

GTAGAACGGCTGCCTGTGAACCCCCGCCAAGGGACTG

CTTGGGGAGGCCGCCTAAACCAGAACACAGGCACTCC

AGCAGGACGTGTGAACTCTGACCACCCTCAGCAAGTG

GCACCCCGCGCAGCTTCCAAGGCAC

Seq ID No.34

AACAAGATGCTACCCCACCAACAAAATTCACCGGAGA

AGACAAGGACAGGGGGTTCCTGGGGTCCTGACAGGGT

CACCAAAGAGGGTTCTGGGGCAGCAGCAACTCCAGCC

GCCTCAGAACAGAGCCTGGAAGCTGTACCCTCAGAGC

AGAGGCGGAGAGAGAAAGGGGCTCTTGGTGGGTCAGC

AGGAGCAGAGGCTCAGAGGTGGGGGTTGCAGCCCCCC

CTTCAACAGGCCAACACAGTGAAGCAGCTGACCCCTC

CACGTTGGAGACCCCAGACTCCTGTCTCCCACGCCAC

CTTGGTTTTTAAGGTAATTTTTATTTTATATCAGAGT

ATGGTTGACTTACAATGTTGTGTTGGTTTCAGGTGTA

CAGCAGAGTGATTCACTTCTACATAGACTCATATCTA

TTCTTTCTCAGATTCTTTTCCCATATAGGTTATTACA

GAATATTGAGTAGATCCCTGCTGATTACCCATTTTTA

TAATTGTATATGTTAATCCCAAACTCCTAATTTATCC

CTCCCCAGACTATGATTCTTTATATCTCTATCTGTTT

CCTAATCTGTCTCCTCTAAGTCACCCTAGGAGAGCAG

AGGGGTGACGTCTGTCCTGTCGTGGGCCAGCCACCTC

TCTCCACCCAGGAATCCCTTGCATTTGGTGGCAAGGG

CGGGGGCCCGCCCTAAAGAGAAAGGAGAACGGGATGT

GGACAGGACACCGGGCAGAGAGGGACAAGCAGAGGAT

GCCAGGGTAGGGAGGTCTGCAGGGTGGATGGTGGTCT

GTCCGCAGGGAGGATGAGGCAGGAAGGGTGTGGATGT

ACTCGGTGAGGCTGGCGCATGGCGTGGAGTGTCCTGA

GCCCTGGGAGGCCTCAGCCCTGGATCAGATGTGTGAT

TCCAAAGGGCCACTGCATCCAGAGACCGTTGAGTGGC

CCATTGTCCTGAACCATTTATAGAACAGAGGACAAGC

GGTACCTGACTAAGCTGGTCACAGATTGCATGAGGCT

GATGCGAGGGTTGTCACGCCATCTCACAGGCAGGGAA

AGTGATGCATATAGTGCAGAGCGAGGCAGAGGCCCTC

CCAGTGCGCCGTGCCAGCCTGTGGCCGCCGTGCAGTG

GCTGGACACTGAGGCCACACTGGGGCACCCTGTGGAG

ATC

Seq ID No.35

AGATCTGGCCAGGCCAGAGAAGCCCATGTGGTGACCT

CCCTCCATCACTCCACGCCCTGACCTGCCAGGGAGCA

GAAAGTAGGCCCAGGGTGGACCCGGTGGCCACCTGCC

ACCCCATGGCTGGGAGAAGGGAGGGCCTGGGCAAAGG

GCCTGGGAAGCCTGTGGTGGGACCCCAGACCCCAGGG

TGGACAGGGAGGGTCCCACACCCACAGCCATTTGCTT

CCCTCTGTGGGTTCAGTGTCCTCATCTCATCTGTGGG

GAGGGGGCTGATAATGAATCTCCCCCATTGGGGTGGG

CTTGGGGATTAAAGGGCCAGTGTGTGTGATATGCCTG

GACCATAGTGACCCTCACCCTCCCCAGCCATTGCTGT

CACCTTCCGGGCTCTTGCCCAGGCCTGCCTGACATGC

TGTGTGACCCTGGGCAAGATGATCCCCCTTTCTGGGC

CCCAGCCTTCCTCTCTGCTCCGGAAGTGCTTCCTGGG

GAAACCTGTGGGCTGGATCCTATAGGAAACGTGTCCA

ATTGCTGGATGCACAGAGGGGGAGGGAGGCCCTGGGC

CTGGAGGGGCAGGGAGGCTCGAGGTGGGAGGAGGGTA

GGGGCGAGTCCAGGGCAAGGAGGTGGGTGGGTAGGGT

G

Seq ID No.36:

GATCTGTGTTCCATCTCAGAGCTATCTTAGCAGAGAG

GTGCAGGGGCCTCCAGGGCCACCAAAGTCCAGGCTCA

GCCAGAGGCAATGGGGTATCGATGAGCTACAGGACAC

AGGCGTCAGCCCAGTGTCAGGGAGAATCACCTTGTTT

GTTTTCTGAGTTCCTCTTAAAATAGAGTTAATTGGTC

TTGGCCTTACGGTTTACAATAACAACTGCACCCTGTA

AACAACGTGAAGAGTACAGAACAACAAATGGGGGAAA

ACATATTTCACCTGAAAGAGCCACCGCTCATATTTTG

ATGGATTTCCTTCTAGTTTAATCCTGTTTTAATTGTA

AACTGTTAAAACAAACATAAATAAAGAAAATGCATCT

GTAAAGTTTAAAAGTCATATCTATGGTGATGGTTGCA

AAACACTGTGAATGTTCACTTTGAAATCGTGAACTCT

ACGTGATATGCATGTCCCGTTAATTAACCTCACAGGC

TCAGAATGTGGTTCATTATTTCTTTAATTTTCCTTTA

ATTTTATGTCCTCTGTGTGTGCCCTTAAACCAACTAC

TTTTCAGCTCTGCCTGTTTTTGACCTTCACATAGATG

ACATTTGTGAGTGTTTTCTTTCTCAACACTGGGTCTG

ATACCCACCCACGCTGTCTGCTGTCACTGCGGACGTG

GAGGGCCACCACCCAGCTATGGCCCCAGCCAGGCCAA

CACTGGATGAATCTGCCCCCAGAGCAGGGCCACCAAC

ACTGGAGGTGCAGAGAGGGTTTCTTCAGGGCCATCAT

TATCCAAGGCATTGTTTCTACTGTAAGCTTTCAAAAT

GCTTCCCCTGATTATTAAAAGAAATAATAAGATGGGG

GGAAAGTACAAGAAGGGAAGTTTCCAGCCCAGCCTGA

AGATCGTGCTGGTTGTATCTGGAGCCTGTCTTCCTGA

CAGGCCTCTATTCCCAGAGTTA

Seq ID No.37:

GGATCCTAGGGAAGGGAGGGCGGGGGCCTGGAGAAAG

GGGGCCTAAAGGACATTCTCACCTATCCCACTGGACC

cctgctgtgctctgagggagggagcagagagggggtc

tgaggccttttcccagCTCCTCTGAGTCCCTCCTCCG

AGCACCTGGACGGAAGCCCCTCCTCAGGGAGTCCTCA

GACCCCTCCGCTCCAGCCAGGTTGGCCTGTGTGGAGT

CCCCAGTAAGAATAGAATGCTCAGGGCTTCGAGCTGA

GCCCTGGCTACTTGGGGGGGTGCTGGGGATTGGGGGT

GCTGGGCGGGGAGCTGGGGTGTCACTAGATGCCAGTA

GGCTGTGGGCTCGGGTCTGGGGGGTCTGCACATGTGC

AGCTGTGGGAAGGCCCTATTGGTGGTACCCTCAGACA

CATATGGGCCCTCAATTTGTGAGACCAGAGACGCCAG

TCTGGCCTTCCCAGAACAGGTGGCGGTGGTGGGGGAG

ATGTAGGGGGGCCTTCAGCCCAGGACCCCCAACGGCA

GGGCGTGAGGCCCCCATCGCCTTGTGCTGGGCCCAGA

GCCTCAGCTATCAGGCCTATCAGAGATGGTGGCTGGC

CAGCTCAGGTTCCCCAGGAGCCAGAGGGAGGGCAGGG

GTTACTAGGAAATGCGGAAAGGGTCTTTGAGGCTGGG

CCCCACCCTCTCAGCTTTCACAGGAGAAACAGAGGCC

CACAGGGGGCAAAGGACTTGCCAGACTCACAATGAGC

CGAGCAGGTGGACTCAAGGCCCAGTGTTCGGCCCCAC

AACAGCACTCACGTGCCCTTGATCGTGAGGGGCCCCC

TCTCAGCCAGGCATTGAGAGCTGTGACCTGCATCTAA

GATTCAGCATCAGCCATTGTGAGCTGAAGAGCCCTCA

GGGTGTGCAGTCAAGGCCACAGGGCCAGACCTCCAAC

GGCCAGACATCCCAGCCAGATTCCTTTCTGGTCAATG

GGCGCCAGTCTGGCTTGGCTCCTGCAGGCCCAGTGGC

GCCTTCTTCCCCTGGGCCTGTGGAGTCCAGCCTTTCA

GTTTCCCACCCACATCCTCAGCCACAATCCAGGCTCA

GAGGCAATGTCGGTGGGGAGGCCCTGTGTGACCCGTC

TGTGGGTGATCCTCAGTCCTACCCTTAGCAGACAGCG

CATGAGGGGCCCTCTTGAACCTGAGGGATACTCCATG

TCGGAGGGGAGAAGCTGGCCTTCCCCACCCCCAGTTC

CAGGCGTTGGGGAGCAGAGAAAGACCGCAGACCTGGG

TCCCTTCTAACAGGCCAGGCCCGAGCCCAGCTCTCCA

CCAGCCCCAGGGGCCTCGGGTCCACGCCTGGGGACTG

GAGGGTGGGCCTGTCAGGCGCTGACCCAGAGGCAGGA

CAGCCAAGTTCAGGATCCCAGCCAGGTGGTCCCCGTG

CACCATGCAGGGGTGTGACCCACACAGGGGTGTTGCC

ACCCTCACCTGACTGTGCTCATGGGCCACATGGAGGT

ATCCTGGGTTCATTACTGGTCAACATACCCGTGTCCC

TGCAGTGCCCCCTGTGGcgcacgcgtgcacgcgcaca

cgcacacactcatacaGAGGCTCCAGCCAACAGTGCC

CTGTAGTAGGCACTGCTGTCACTTCTCTAAAAGGTCG

CAATCATACTTGTAAAGACCCAAGATTGTTCAGAAAT

CCCAGATGGAGAAGTCTGGAAAGATCtTTTTCTCCTT

TCACGGGCTGGGGAAATGTGACCTGGCCAAGGTCACA

CAGCAAGTGGTGGAACCCTGGCCCCTGATTCCAGCTC

ATTCCAGTTCCCAAGGCCCTGCCAGAGCCGAGAGGCT

GGGCGGTCTGGGGCAGAGGAGCTGGGGTCCTGCCCCC

TACACAGAGCACACAGCCCCGCAAGAGAGAAGAGACA

GCTTGGGGAGAGGAATCTCCAGACCAGAGATCCCAGT

ATGGGTCTCCTGTATGCTGACGGGATGGGATGTCAAG

AGGGGAGGGGGGTGGGCTTTAGGGAAAGACACAAAAA

TCGCTGAGAACACTGACAGGTGCGACACACCCACGGC

TAATGCTAAGCTGTGGCCCATTACTCAgatct

Seq ID No.38

GATCTTCTCCTAAGACCAAGGAAAACTGGTCATAGCA

GGTGCACTTGTCCCCTGTGGCCATTGTCCCTCCTTCC

CCAGAAGAAACAAGCACTTTCCACTCCACAAGTAGCT

CCTGATCAGCTTGGAAGCCCGGTGCTGCTCTGGGCCC

TGGGGACACGGCAGGGGCATCAGAGACCAAATCCTGG

AACAAAGTTCCAGTGGGTGAGGCAGGCGGGACAAGCA

ACACGTTATACCATAATATGAGGCAAAATATAATGTG

AGTTCTTTATGAAAGGAAGGGGTTGCAGGTGCAACTG

TTGGCTTAGGTGGATGGTCACCCCTGAATGGAGGAGG

GGGTTCCCAGGGCATGTGCCTGGGGAGAAGGGCTCCT

GGCAGGAGGGACAGCAAGTGCAAGGGCCCTGTGATCA

AATGTGGCTGGGAAGTTGCAGGAACAGCTAGAAGGCC

AGCAAGGTTGGAACCAAGGAAGGGGTCAGGGGAGGGG

CAGGGCCGTCAGGGCCTTGCCGAGCAGCCTGAGCATC

TGGAGATTTGTCCAAAGTTTCAAATGTACCTGGGCAA

CCTCATGCGCATATACCATTCCTAACTTCTGCACTTA

ACATCTCTAGGACTGGGACCCAGCCAGTGAAGCGGGG

GGACCCAGAGAGCTCGGGTGTGAACACCGAGGTGCTG

GTGGGTCTGCGTGTGTGGACATAGGGCAGTCCCGGTC

CTTCCTTCACTAACACGGCCCGGGAAGCCCTGTGCCT

CGCTGGTGCGCGGGTCGGCGCTTCCGGAGGGTAGAGG

CCCACCTGGAGCCCGGGCAGAGTGCATGCAAGTCGGG

TTCACGGCAACCTGAGCTGGCTGTGCAGGGCAGTGGG

ACTCACAGCCAGGGGTACAGGGCAGACCGGTCCTGCC

TCTGCGGCCCTCCCTGGCCTGTGGCCCCTGGACGTGA

TCCCCAACAGTTAGCATGGCCCGCCGGTGCTGAGAAC

CTGGACGAGGTCCGCAGGCGTCACTGGGCGGTCACTG

AGCCCGCCCCAGGCCCCGTGTGCCCCTTCCTGGGGTG

ACCGTGGAGTCCTGGATGACCCTGGACCCTAGACTTC

CCAGGGTGTGTCGCGGAGGTTCCTCAGCCAGGATGTC

TGCGTCTCCTCCTTCCATAGAGGGGACGGCGCGGCCT

TGTGGCCAAGGAGGGGACGGTGGGTCCCGGAGCTGGG

GCGGAGAACACAGGGAGCCCCTCCCAGACGCCGCTCT

GGGCAGAACCTGGGAAGGGATGTGGCCATCGGGGGAT

CCCTCCAGGGGATCTCCTCAGATGGGGGCTGGTCGAG

TAGCTTCTGAGTCCTCCAAGGAACCGGGTCCTTCTAG

TCATGACTCTGCGCAGATGAAGAAGGAGAGCACTTCT

CTCCATCAGGAGGATCTGAGCTTCTCTTAATTAGAAT

CAGCTCCTTGGCTTCTACCCCTTAAAAAAAGGTACAG

AAACTTTGCACCTTGATCCAGTATCAGGGGAATTTAT

CAATCAATGTGGGAGAAATTGGCATCTTTACCACACT

GAATCTTTCAATCCATGAATATCCTCTCTCTCTTCCA

TGCATAGGTTTTAATAATTCTCAATGGAGTTTAATGT

AAGTTTTCCTCATAGACAATTGCCTTTGGACATCTCT

TTAGACTCATCTCTAGTAAACTGATATTCTTAATGCA

ATTATAAAATGTATCCTGCTTAATGTTATTTTCTATT

CATTTGCTGTTATATAGAGATACAATGAGTTTCCACA

TTTGAAACTGGATCTGGTAAATTGGCTACCCTTTTTT

TATAGATTCTATTAATTTTTATACATTCTGTGGGACT

TGCTACATACTTAATCATGTCACCTGTGAAGAATGAC

AATTTGGTTGCTACCCTCCCAATTCTTATATGTCTCA

TTTCTTTCCCTCTGCTGGTACTCTGGCAGCAGCAGGG

AAGATAATGGGCCTCGTTATCTTGTCACAAAAGGATG

TTTTTAAAGATTTCGTTATAAAACATAACGCTTTCTG

GTTTTCTTTAAAGATTCTCTCACCAGCTTAAGAAAAT

TTTCTTATACTCTGTATGATAAATGGGTTTTTGACAA

TCATTTGTTGCATTTTACCTAGTGTTTTCTCTGCATC

TTTATATGCTTTTTCTCCTTTAATCCTGAAAATTGTT

TCGATTTTTCTAACATTGAACCAATCTTACATTCCTG

GAATGGATGGACCAGACTAGTCCACATGTTTATTCTG

CCCAATGGCTAGATTTTGTGTTCaatattttgttcag

aatgtttgcatctatattcttGAGTGAGACAGAGCTG

CCCTTGTTAGGTTTCACAACCGAGGTTGTGTTAGCTT

CATAAAATGAGACGTTTATTCTCTAAAAGAATTGTTT

CGCTTCTCTGGATGAATTTGTGTAAGGTTAGAATTGC

TTACCAGTGAagatctCGGGgCCAGTTCTTCTTTAGG

GGAAGATTTTCAACAATTAAGCTCAATGCCTTTAGAA

GAACTGAGAGTTTCTATTATTTCTTGAGTTAAATATA

TGTATTTAATTAGACTTTCTAGGAATAGTCTCATTTC

ATCTCAAATAATTGACATATGCTATTAAAGCAGATTC

TCATGAACCATTGTAGGTATTCCAGGTCTAGAAAAAT

GTTCCCCTTTGCATCCGTAATGTGTTTAATTTTCACC

TTCTTTCTTTTGTTCTTGAGAAATTCACCAAATCATT

TTCAATTTCAGTCATATCCCAAAGCAACCAACTCTCT

ACCTTCTTGTTTTATCATCCCTGCTGGATTTTTGTTA

TCTACTTCTTCAGTATTTGTTCTTCCCTTTCTTCTAT

TCCTCATTCCATTTTTCCCTTGTTTTCTAACTTTCTG

AGATATATGCTTAGTTCCTTCATTTGAAGCCTTTTTA

TTTTCTTTTTTTTTTTTTGGTCTTTTTGTCTTTtGTT

GTTGTTGTTGTGCTATTtCTTGGGCCGCTCCCGCGGC

ATATGGAGGTTCGCAGGGTAGGAGTCGAATCGGAGCT

GTAGCCACCGGCCTACGGCAGAGGCACAGCAATGCGG

GATCCGAGCCGCGTCTGCAACCTACACCACAGCTCAT

GGCAACGCCGGATCGTTAACGCACTGAGCAAGGGCAG

GAACCGAAGCCGCAACCTCATGGTTCCTAGTCGGATT

CGTAACCACTGTGCCACAACAGGAACTCCGCCTTTTT

ATTTTCTATAAAAATTTCTATGTACATTTTAAGGTTA

TAGGTTTCCTTCTATGTACCCCATTGGCTGTATCCTC

AGGGTTCTGTGGAGTGATTTCATTATTGTTCAAGTTC

AATATGTCTTCTGATTTTCCAATTTGAATACCTCTCT

AAATCAGTAGGTGAATATTTCTTTTTCTTTTTCTTTT

CTTTTCTTCTTTTTTTTTTTCTTTCAGCCAGGTCCAT

GGCATGCAGAAATTCCCAGGCCAGGAATCAAACTCTC

ACCATGGCAGTGACAATGTCGGATCCTTTACCCACTA

GGCCACCAGGGAACTGTGGGAGCATATGTTTTTATTT

CCCGAGATCTGAGGATGGCTAGTATGTCTTCATTATT

GATTTCTAGTTTGCCACTGATTTCTAGTATTTTGCTC

ATAGAGTGTATGCTCAATGGTTTTGGTCATTTGAAAT

GTATTTAGTCCTGCTTTATGACCCAGTATGTGGTCAG

TTTTGTCAATGTTCCTTTTCTGCTTGAAGAGAACCTA

CATGCTGTAACTCTGGGTGCATGTTCTGTATATAAGT

CTATAGGCTGAGCCGGGGGAGCCTTCTAATCTGCCGT

TATCTTCTTCGAGTTATTCTAGGTACTATTTCTTAGC

CATAAACCTTTAAATTCTGATATCAATATAATGACCC

CAGCCCGCTTAGGGTCGGCACTTCATGTTATCTTTTT

CCATCCATTTAATCCCTCCCCACTGTTTTGGCCACAC

CCGTGGGATATGGGAGTTCCTGGGCCAAGGATCaGAT

CTGAGCGGCAGCTGCGACCTATGGCACAGCAgcagca

atgatggatctttaacccactgcaccacactggggat

tgaacccaagcctcagcagcaacccaagctactgcag

agacaacaccagatccttaacctgctgtgccatagcg

ggaaTTTCCATCCATTTACTTTCAAGCCAGCTGAATA

ACCTAGCCCACCATGCCTGGACATGGGTGCTCTGCTT

CAAATGATTTTGTTCAGTCAGCATCCATCTCTGAAAT

GTGTGCCAAGCATTTATATGCATGCAAGAGTCATGTT

GGCACTTCTATCATTTCCAACAGTTCAGTAGCCTTTG

TATCATGACATTTCTTGGCCTTTTCTCTACAATATTT

GAGGCTGAGCAGACTGGCCGTGCCCCTGTCCATGCTT

CCAGAGCCTGTGTGCAGACTTCTGCTCTAGACAGAGA

CAGCTAACCATCCTGCAGTGCCCAGAAAACGGAACTC

AAAGACCGTGAAGTAAGGAAGGATTTATTGGCTCACG

TAATCTGGAATCCAGGCATGGGGTATTCAGGGCCACC

TGAACCAGAGGCGCTGGCCCTGTTCTCTAAGCTTCTT

CCTGCCCTGCCCTCGTTCTGGAAGTGACCCTGAAGGA

CAGCAATGAAGGGCAGGTCCCCCAGGGACAGATGACT

GAGAGGTGCATTTCAAGTGCAACTTGGCCTAGATTGA

GAGGCAGCAAGAAATATGGACCTACAGTGAGTCACAG

GATTTACCAGTGGTTTGGCTGGGTTGTCAGTGTTACA

GGCTAAACATTTGGGTCCCTCCAAAATTAACATGTTG

CCACTCTAACCACCAAAATCatggtatttgggggtgg

ggcccttggaggtaattaggtttagaaAGAATGAAGA

GGGGGCCCTTGTGATGGGACTAGTGCCTTTATAGAGA

GAGAAGAGAGAGGG

Seq ID No.39

CACCTCATCCCCAACCACCTGGATGGTGGCAAGTGGC

AGGCTGAGAGGCTGCATATGAGCTCATCAAGAGGGTC

CCCACCCCACAGAGGCTGACCCAGCTGCCACTGCCAC

GTAGTGGCTGATGGGCCAAGAGCAGGAGCCCCAGGGG

CAGGTCCATTCCCTGGGGCGGCCAGGGAACCACCTGG

TGGTAGGACAATTCCATTGCACCTCATCCATCAGGAA

AAGGTTTGCCTTCCCTGGCAGTAATGCATCTTCCCAT

AACATGGTCCCTGGCCTCTTGGAATGGCTTGGCCACC

GTCATGGCCTCACCCACAAAGCCTTGTGTCTCAGCAA

GGAACTTATTCCACAGCAAAGGACTTGCAGCCTGGAA

TGAACTGGTCTGACTACATACCCGATTGGCCAGAAGT

AGGTGGTCTATTGCAAAGTGGAGTGGGTTACCCAAGA

CTCAGTTGTGCCCAAGTTGAGAGATAGCATCCTAAAA

TATGGGCTTATGTCTCACTGGCTGAGGTTTATTCTTT

GAATCAAAGACAATTATATGGTGTGGTCCCCCCAGAG

ATAGAATACATGAGTCTGGGAATCAAGGGATAGAAGT

AAGAAGAGATTTTGTCACCATTAATCCCAATAACTCG

CCCAAAGAATATTTGCTTTCTGTCCTGGCAGCTCTGC

TGCTTTGGCAATAACTTCCTAGAATATAATGTCTCCA

CCAGGGGACTCCACAACGGTTCCATTGATTTGAAGCC

AATGGGCAGAGGAGGGGCTGCCTTACTGGTCGGACTG

GTCAGCCCTGATTACTAAGGAGAAATCAGGCAACTTG

AACAAAACTAAGGCAGGGGGGACTTTGTCTAGAACCC

AAAGCACTAAGCATCTTAGTACTTTTTAGTTCTCAGA

GCCTCCAAGAACAAAGATTTAGCCCCTCAGCACCAGC

AGGTAAAGAAGAGGTAAATCCAGCTGAGGACAAGAGA

AATATTGAATGGATAGAGGAAGAAAGAAATTATAGAT

ATCAACTATGGCCTCATGAGTAGAGTCTCCAGATTAA

GCGGAATAAAAATACAGATGATTaGATCTGAACATCA

GGCCAAACAAGGAAGAACAGTTTAAGTGCGACCTAGG

CAATATTTGGGACATACTTATACTAAAATTTTTTCGC

TATTTGAGCATCCTGTATTTTATCTGGGAACTTTATT

GATCGCTAGGGAAAAAGGAACTGTGGTAACTTAGTGT

ATTTTTACTTTGCTCATTATTGTGTATATACCTACTT

GTATTTATCAATCATATTTACTCTGTTCTCAGTATTA

CTTTATATAGCAGTTGGTGGTGATGGTTAGCAACATA

TTCAGTGGAACTGTGACTGAATTTGAGGAGAAATTAA

CAGAGTTGGCTGTGGCTACAATAACCCTTCGGGACAT

GTGTCCCCTCATTTTGGGGAGATGGTTagatctGTGG

GTAAATGTTAGGGCATCTGAGCCAGAAAGCAAGATTT

TGCCAGCTGGTGCAATGTCAGATTTTACCAGCAGAGG

GTGCCAGAGGAATGCGGCAAAACCCGAGTGCCAGAAA

GCACCTCCCTGTTTTCCAGCTTTTCTTCCTTTTTATT

TATTTTATTTACGGCCCAGGAGTCCGTAATAGCGCTG

AGGATGGCCCAGGCTCTTCTCAGCAGCCCTGACTGAC

TAGTTCAGCAATGCGCTCAGGCCCCATCTGGCCACCG

GGCAGCCTCTTCTGTGGTAGCTCCAGCCTCAGCCAGT

GCAAAAGGCTACCCTACACTGGCGCCACTTCTACAAT

CAGCACTGGCCACACCCTCCACGCCATCCGGCACGGA

GCCAGGTGATCTGCCGGGCAGATTGCAGTTCGTGCTG

CCTGAGTCCAGGTGATTACACTGGGTGCATCTTTTCT

TTCTGGACGAtTCattccattttttt



Bovine Lambda Light Chain

In a further embodiment, nucleic acid sequences are provided that encode bovine lambda light chain locus, which can include at least one joining region-constant region pair and/or at least one variable region, for example, as represented by Seq ID No. 31. In Seq ID No 31, bovine lambda C can be found at residues 993-1333, a J to C pair can be found at the complement of residues 33848-35628 where C is the complement of 33848-34328 and J is the complement of 35599-35628, V regions can be found at (or in the complement of) residues 10676-10728, 11092-11446, 15088-15381. 25239-25528, 29784-30228, and 51718-52357. Seq ID No. 31 can be found in Genbank ACCESSION No. ACI 17274. Further provided are vectors and/or targetting constructs that contain all or part of Seq ID No. 31, for example at least 100, 250, 500, 1000, 2000, 5000, 10000, 20000, 500000, 75000 or 100000 contiguouos nucleotides of Seq ID No. 31, as well as ceels and animals that contain a disrupted bovine lambda gene.

Seq ID No 31

1

tgggttctat gccacccagc ttggtctctg atggtcactt gaggccccca tctcatggca

61

aagagggaac tggattgcag atgagggacc gtgggcagac atcagaggga cacagaaccc

121

tcaaggctgg ggaccagagt cagagggcca ggaagggctg gggaccttgg gtctagggat

181

ccgggtcagg gactcggcaa aggtggaggg ctccccaagg cctccatggg gcggacctgc

241

agatcctggg ccggccaggg acccagggaa agtgcaaggg gaagacgggg gaggagaagg

301

tgctgaactc agaactgggg aaagagatag gaggtcagga tgcaggggac acggactcct

361

gagtctgcag gacacactcc tcagaagcag gagtccctga agaagcagag agacaggtac

421

cagggcagga aacctccaga cccaagaaga ctcagagagg aacctgagct cagatctgcg

481

gatgggggga ccgaggacag gcagacaggc tccccctcga ccagcacaga ggctccaagg

541

gacacagact tggagaccaa cggacgcctt cgggcaaagg ctcgaacaca catgtcagct

601

caaaatatac ctggactgac tcacaggagg ccagggaggc cacatcatcc actcagggga

661

cagactgcca gccccaggca gaccccatca accgtcagac gggcaggcaa ggagagtgag

721

ggtcagatgt ctgtgtggga aaccaagaac cagggagtct caggacagcg ctggcagggg

781

tccaggctca ggctttccca ggaagatggg gaggtgcctg agaaaacccc acccaccttc

841

cctggcacag gccctctggc tcacagtggt gcctggactc ggggtcctgc tgggctctca

901

aaggatcctg tgtccccctg tgacacagac tcaggggctc ccatgacggg caccagacct

961

ctgattgtgg tcttcttccc ctcgcccact ttgcaggtca gcccaagtcc acaccctcgg

1021

tcaccctgtt cccgccctcc aaggaggagc tcagcaccaa caaggccacc ctggtgtgtc

1081

tcatcagcga cttctacccg ggtagcgtga ccgtggtcta gaaggcagac ggcagcacca

1141

tcacccgcaa cgtggagacc acccgggcct ccaaacagag caacagcaag tacgcggcca

1201

gcagctacct gagcctgatg ggcagcgact ggaaatcgaa aggcagttac agctgcgagg

1261

tcacgcacga ggggagcacc gtgacgaaga cagtgaagcc tcagagtgtt cttagggccc

1321

tgggccccca ccccggaaag ttctaccctc ccaccctggt tccccctagc ccttcctcct

1381

gcacacaatc agctcttaat aaaatgtcct cattgtcatt cagaaatgaa tgctctctgc

1441

tcatttttgt tgatacattt ggtgccctga gctcagttat cttcaaagga aacaaatcct

1501

cttagccttt gggaatcagg agagagggtg gaagcttggg ggtttgggga gggatgattt

1561

cactgtcatc cagaatcccc cagagaacat tctggaacag gggatggggc cactgcagga

1621

gtggaagtct gtccaccctc cccatcagcc gccatgcttc ctcctctgtg tggaccgtgt

1681

ccagctctga tggtcacggc aacacactct ggttgccacg ggcccagggc agtatctcgg

1741

ctccctccac tgggtgctca gcaatcacat ctggaagctg ctcctgctca agcggccctc

1801

tgtccactta gatgatgacc cccctgaagt catgcgtgtt ttggctgaaa ccccaccctg

1861

gtgattccca gtcgtcacag ccaagactcc ccccgactcg acctttccaa gggcactacc

1921

ctctgcccct cccccagggc tccccctcac agtcttcagg ggaccggcaa gcccccaacc

1981

ctggtcactc atctcacagt tcccccaggt cgccctcctc ccacttgcat ggcaggaggg

2041

tcccagctga cttcgaggtc tctgaccagc ccagctctgc tctgcgaccc cttaaaactc

2101

agcccaccac ggagcccagc accatctcag gtccaagtgg ccgttttggt tgatgggttc

2161

cgtgagctca agcccagaat caggttaggg aggtcgtggc gtggtcatct ctgaccttgg

2221

gtggtttctt aggagctcag aatgggagct gatacacgga taggctgtgc taggcactcc

2281

cacgggacca cacgtgagca ccgttagaca cacacacaca cacacacaca cacacacaca

2341

cacacacgag tcactacaaa cacggccatg ttggttggac gcatctctag gaccagaggc

2401

gcttccagaa tccgccatgg cctcactctg cggagaccac agctccatcc cctccgggct

2461

gaaaaccgtc tcctcaccct cccaccgggg tgacccccaa agctgctcac gaggagcccc

2521

cacctcctcc aggagaagtt ccctgggacc cggtgtgaca cccagccgtc cctcctgccc

2581

ctcccccgcc tggagatggc cggcgcccca tttcccaggg gtgaactcac aggacgggag

2641

gggtcgctcc cctcacccgc ccggagggtc aaccagcccc tttgaccagg aggggggcgg

2701

acctggggct ccgagtgcag ctgcaggcgg gcccccgggg gtggcggggc tggcggcagg

2761

gtttatgctg gaggctgtgt cactgtgcgt gtttgctcgg tggagggacc cagctggcca

2821

tccggggtga gtctcccctt tccagctttc cggagtcagg agtgacaaat gggtagattc

2881

ttgtgttttt cttacccatc tggggctgag gtctccgtca ccctaggcct gtaaccctcc

2941

cccttttagc ctgttccctc tgggcttctt cacgtttcct tgagggacag tttcactgtc

3001

acccagcaaa gcccagagaa tatccagatg gggcaggcaa tatgggacgg caagctagtc

3061

caccctctta ccttgggctc cccgcggcct ccggataatg tctgagctgc ctccctggat

3121

gcttcacctt ctgagactgt gaggcaagaa accccctccc caaaagggag gagacccgac

3181

cccagtgcag atgaacgtgc tgtgagggga ccctgggagt aagtggggtc tggcggggac

3241

cgtgatcatt gcagactgat gccccaggca gggtgagagg tcatggccgc cgacaccagc

3301

agctgcaggg agcacaggcc gggggcaagt catgcagaca ggacaggacg tgtgaccctg

3361

aagagtcaga gtgacacgcg gggggggggc ccggagctcc cgagattagg gcttgggtcc

3421

taacgggatc caggagggtc cacgggccca ccccagccct ctccctgcac ccaatcaact

3481

tgcaataaaa cgtcctctat tgtcttacaa aaaccctgct ctctgctcat gtttttcctt

3541

gccccgcatt taatcgtcaa cctctccagg attctggaac tggggtgggg nnnnnnnnnn

3601

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

3661

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn agcttatgtg gtgggcaggg gggtagtaag

3721

atcaaaagtg cttaaattaa taaagccggc atgatatacg agtttggata aaaaatagat

3781

ggaaaagtaa gaaaggacag gaggggggtg aggcggaaga aagggggaag aaggaaaaaa

3841

aaataagaga gaggaacaaa gaaagggagg ggggccggtg atgggggtgg gatagaatat

3901

aataattgga gtaaagagta gcgggtggct gttaattccg ggggggaata gagaaaaaaa

3961

aaaaaaaatg tgcgggtggg cggtaagtat ggagatttta taaatattat gtgtggaata

4021

atgagcgggg gtggacgggc aaggcgagag taaaaagggg cgagagaaaa aaattaggat

4081

ggaatatatg gggtaaattt taaatagagg gtgatatatg ttagattgag caagatataa

4141

atatagatgg tgggggaaaa gagacaaggg tgagcgccaa aacgccctcc cgtatcattt

4201

gccttccttc ctttaccacc tcgttcaaac tctttttcga gaaccctgaa gcggtcaggc

4261

ccggggctgg gggtgggata cccggggagg ggctgcgcct cctcctttgc agagggggtc

4321

gaggagtggg agctgaggca ggagactggc aggctggaga gatggctgtt gacttcctgc

4381

ctgtttgaac tcacagtcac agtgccagac ccactgaatt gggctaaata ccatattttt

4441

ctggggagag agtgtagagc gagcgactga ggcgagctca tgtcatctac agggccgcca

4501

gctgcaggga ctttgtgtgt gtcgtgctcg ttgctcagtt gtgtccgact ctttatgact

4561

tcatggactg taacctgcca ggctcctctg tccgtggaat tctccaggca agaatactgg

4621

agtgggtagc cattctcatc tccgggggat cttcctgacc caagaatcaa acctgagtct

4681

cccgcattgc aggcagcttc tttcttgtct gagccaccag ggaagcccct taagtggagg

4741

atctaaatag agtgtttagg agtataagag aaaggaagga cgtctataca agatccttcg

4801

gttcctgtaa ctacgactcg agttaacaag ccctgtgtga gtgagttgcc agtaattatt

4861

gctaacctgt ttctttcact cactgagcca ggtatcctgt gagacggcat acttacctcc

4921

tcttctgcat tcctcgggat ggagctgtgc ggtggcctct aggactacca catcgaccag

4981

gtcagaccca gggacagagg attgctgaga tgcactgaga agtttgtcag cctaggtctt

5041

cacccacaca gactgtgctg tcgtctacca cgtaattctt cctgtccaaa gaactggtta

5101

aacgctcctg aagcgtattc tggtctgctt caaaaagtgc ctctttcctt tataagttcc

5161

gccaatcctg gactttgtcc caggccagtc tactttattt gtgggaaagg tttttttggt

5221

cttttttgtt ttaaactctg cagaaattgc ttacactttt ggtgtgcaat ggctcactct

5281

tacggttcta gctgtattca aaggggttgc ttttctttgt ttttaaagct ttttgaacgt

5341

ggaccatttt taaagtcttt attaaacgtc taacatcgtt tctggtttat tttctggtgg

5401

tctggccatg aggcctacgg gtcttagctc ccctaccagg gtccaaccca catcccttgc

5461

actggacggc aaggtcttaa cctttgaacc accagagagc ttctgaaagg ggctgctttt

5521

ctccaatcct ctttgctccc tgcctgctgg tagggattca gcacccctgc aatagccctg

5581

tctgttctta ggggctcagt agcctttctg cctgggtgtg gagctggggt tgtaagagag

5641

cttcatggat ttggacacga cctacgactc agaggtaaga ctccatctta gcgctgtaat

5701

gacctctttc caacaaccac ccccaccacc ctggaccact gatcaggaga gatgattctc

5761

tctcttatca tcaacgtggt cagtcccaaa cttgcacccg gcctgtcata gatgtagcag

5821

gtaagcaata aatatttgtt gaatgttaag tgaattgaaa taacataagt gaaaaagaaa

5881

acacttaaaa acatgtgttt ttataattac acagtaaaca tataatcatt gtagaaaaaa

5941

atcgaaagag tggcgggggc caagtgaaaa ccaccatccc tggtatgtcc acccgcccgg

6001

gtagccccag gtaagaggtg cggacacgga tggccctgta gacacagaga cacacgctca

6061

tatgctgggt cttgtcttgt gacctcttgg ggatgatgtt attttcacga tgccattcaa

6121

accttctacc acaccatttt tagagggtcg ttcatcgtaa atcagttcac tgctttgttt

6181

tctgatrttg aaagtgtcac attcttcgag aaatgagaag gaacaggcgc gcataaggaa

6241

gaaagtaaac acgtggcctt gcttccaggg ggcactcagc gtgttggtgt gcacgctggc

6301

agtcttttct ctgtgacagt catggccttt tcccaaaggt gggctcagat aagaccgcct

6361

cccatcccct gtccctgtcc ccgtccccta cggtggaacc cacccacggc acgtctccga

6421

ggccctttgg ggctgtggac gttaggctgt gtggacatgc tgctggtggg gacccagggc

6481

tgggcagcac gttgtccctg ggtcccgggc cagigaggag ctcccaagga gcagggctgc

6541

tgggccaaag ggcagtgcgt cccgaggcca tggacaaggg gatacatttc ctgctgaagg

6601

gctggactgc gtctccctgg ggccccttgg agtcatgggc agtggggagg cctctgctca

6661

ccccgttgcc cacccatggc tcagtctgca gccaggagcg cctggggctg ggacgccgag

6721

gccggagccc ctccctgctg tgctgacggg ctcggtgacc ctgccgcccc ctccctgggg

6781

ccctgctgac cgcgggggcc accccggcca gttctgagat tcccctgggg tccagccctc

6841

caggatccca ggacccagga tggcaaggat gttgaggagg cagctagggg gcagcatcag

6901

gcccagaccg gggctgggca ggggctgggc gcaggcgggt gggggggtct gcacnccccc

6961

acctgcnagc tgcncnnncn tttgntnncg tcctccctgn tcctggtctg tcccgcccgg

7021

ggggcccccc ctggtcttgt ttgftccccc tccccgtccc ftcccccctt tttccgtcct

7081

cctcccttct tttattcgcc ccttgtggtc gttttttttc cgtccctctt ttgttttttt

7141

gtctttttct ttttccccct cttctccctt gctctctttt tcattcgtcg gtttttctgc

7201

tcccttccct ctcccccccg ctttttttcc ctgtctgctt tttgtgttct ccctctctac

7261

cccccctgca gcctattttt tttatatatc catttccccc tagtatttgg cccccgctta

7321

cttctcccta atttttattt tcctttcttt aactaaaatc accgtgtggt tataagtttt

7381

aacctttttt gcaccgccca caatgcaatc ttcacgcacg ccccccccgt cagcctcctt

7441

aaataccttt gcctactgcc cccctccttg tataataacg cgtcacgtgg tcaaccatta

7501

tcacctctcc accaccttac cacattttcc ttcnnnnnnn nnnnnnnnnn nnnnnnnnnn

7561

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

7621

nnnnnnnnnn nnntgaaaaa agaaaaggct gggcaggttt taatatgggg gggttggagt

7681

ggaatgaaaa tgcattggag tggttgcaac aaatggaaag gtctcaggag cgctcctccc

7741

ccatcaggag ctggaaagaa gtggaagcaa agcaaggaat tcgtgtgatg gccagaggtc

7801

aggggcaggg agctgcaaag actgccggct gtttgtgact gnccgtctcc gggtgcattt

7861

gttagcaggg aggcattaca ctcatgtctt ggtttgctaa ctaattctta ctattgttta

7921

gttgcaaggt catgtctgac tctttgcaac ccagggactg cagcccgcca ggctcctctg

7981

tccatgggat ttcgcaggca agaatactgg aggtggtagc cattttcttc accatgggat

8041

cttcccgagc cagaaatgga acccgagtcg cctcctgtgc atggggtctg ctgcctaaca

8101

ggcagatatt tgacgtctga gccaacaggg aggacagacg gtaattatac caaccattga

8161

aagaggaatt acacactaat ctttatcaaa atctttcaaa cagtagagga gaaaggatac

8221

tctctagttt attccataaa gttggaatta cgcttatcaa taaagacatt acaagaaaag

8281

aaagtgaagc cccaaatgcc ttataaatat acaagaaaaa atcttttaag atattagcca

8341

acttaatcaa caaaaaatgt atcaaaagtc caagtaacat tcaccccagg aatgcaagtg

8401

tggttcagcc taagacaatc agtcatgagt ataccacgga aacaaattaa agagaaaaga

8461

cattaaatct cacaaatggt gcagaaaaag atttggcaat atcgaacatc ttttcatgac

8521

caaaggaaaa aaaagaaaca aaacaccaga aaattctgtg tagaaagaat atatctcaac

8581

ccaatgaagg gcatttatga aaaacccaca gcatacatca cactccatga gaaagactga

8641

aagctttccc cactgccatt gaactctgtc ctggaaattc tagtcacagc gacagaacaa

8701

gagaaagaaa taacggccgt ctaaactggt aggaagaaat caaagcgtct ctattctctg

8761

ggcgcataat acaatataga caaatttcta aagtccacaa aaattcctag agctcataat

8821

gaatccagaa atgcgtcagg gctcaagatt cagatgcaaa aatcgtctgg gttttgatgc

8881

accaacaaac aattccatta acaataatac caaggaatta atttaactta gaagagaaaa

8941

gacctgttta cagagagtta taaaacattt ggtgatgaaa ttaaataaga gtaaatcata

9001

tagaaacacc gttcgtgttt tggagaccta atgtcataaa cgtggcaaca cagagacgcc

9061

tcacggggaa ccctgagcct ccttctccaa acaggcctgc tcatcatttc acaggtaacc

9121

tgagacccta aagcttgact ctgaggcact ttgagggcat gaagagagca gtagctcctc

9181

ccatgggacc gacagtcaag gcccagggaa tgaccacctg gacagatgac ttcccggcct

9241

catcagcagt cggtgcagag tggccaccag ggggcagcag agagtcgctc aacactgcac

9301

ctggagatga ggcaacctgg gcatcaggtg cccatgcagg ggctggatac ccacacctca

9361

cacctgagga caggggccgg ctttctgtgg tgtcgccctc tcaggatgca cagactccac

9421

cctcttcgct tgcattgaca gcctctgtcc ttcctggagg acaagctcca ccttccccat

9481

ctctccccag ggggctgggg ccaacagtgt tctctcttgt ccactccagg aacacagagc

9541

caagagattt atttgtctta attagaaaaa ctatttgtat tcctgcattt ccccagtaac

9601

tgaaggcaac tttaaaaaat gtatttcctg gacttccctg gtgggccagt ggctagactc

9661

tgagctccca gtgcatgggg cctgggttca atccctgctc aggaaactac atcccacagg

9721

ctgcaaataa gatcctgcat gccacccgat gcaggcaaag aaacaagtgt tcggtatgca

9781

tgtatttcac gtgaggtgtt tctataattt acagccagta ttctgtctta cacttagtca

9841

ttcctttgag cacatgatcg gtcgatggcc cagaccacac acaggaatac tgaggcccag

9901

cacccaccgg ctgcccagaa cctcatggcc aagggtggac acttacagga cctcagggga

9961

cctttaagaa cgccccgtgc tcttggcagc ggagcagtgt taagcatggc tctgtccctc

10021

gggagctgtg tctgggctgc gtgcatcacc tgtggtgtgg gcctggtgag ggtcaccgtc

10081

caggggccct cgagggtcag aagaaccttc ccttaaaagt tctagaggtg gagctagaac

10141

cagacccaca tgtgaactgc acccaaaaac agtgaaggat gagacacttc aaagtcctgg

10201

gtgaaattaa gggccttccc ctgaaccagg atggagcaga ggaaggactt ggcttccagg

10261

aaaccctgac gtctccaccg tgactctggc cggggtcatg gcagggccca ggatcctttg

10321

gtgcaaagga ctcagggttc ctggaaaata cagtctccac ctctgagccc tcagtgagaa

10381

gggcttctct cccaggagtg gggcaaggac ccagattggg gtggagctgt ccccccagac

10441

cctgagacca gcaggtgcag gagcagcccc gggctgaggg gagtgtgagg gacgttcccc

10501

ccgctctcaa ccgctgtagc cctgggctga gcctctccga ccacggctgc aggcagcccc

10561

caccccaccc cccgaccctg gctcggactg atttgtatcc ccagcagcaa ggggataaga

10621

caggcctggg aggagccctg cccagcctgg gtttggcgag cagactcagg gcgcctccac

10681

catggcctgg accccctcct cctcggcctc ctggctcact gcacaggtga gccccagggt

10741

ccacccaccc cagcccagaa ctcggggaca ggcctggccc tgactctgag ctcagtggga

10801

tctgcccgtg agggcaggag gctcctgggg ctgctgcagg gtgggcagct ggaggggctg

10861

aaatccccct ctgtgctcac tgctaggtca gccctgaggg ctgtgcctgc cagggaaagg

10921

ggggtctcct ttactcagag actccatcca ccaggcacat gagccggggg tgctgagact

10981

gacggggagg gtgtccctgg gggccagaga atctttggca cttaatctgc atcaggcagg

11041

gggcttctgt tcctaggttc ttcacgtcca gctacctctc ctttcctctc ctgcaggcgc

11101

tgtgtcctcc tacgagctga ctcagtcacc cccggcatcg atgtccccag gacagacggc

11161

caggatcacg tgttgggggc ccagcgttgg aggtganaat gttgagtggc accagcagaa

11221

gccaggccag gcctgtgcgc tggtctccta tggtgacgat aaccgaccca cgggggtccc

11281

tgaccagttc tctggcgcca actcagggaa catggccacc ctgcccatca gcggggcccg

11341

ggccaaggat gaggccgact attactgtca gctgtgggac agcagcagta acaatcctca

11401

cagtgacaca ggcagacggg aagggagatg caaaccccct gcctggcccg cgcggcccag

11461

cctcctcgga gcagctgcag gtcccgctga ggcccggtgc cctctgtgct cagggcctct

11521

gttcatcttg ctgagcagcg gcaagtgggc attggttcca agtcctgggg gcatatcagc

11581

acccttgagc cagagggtta ggggttaggg ttagggttag gctgtcctga gtcctaggac

11641

agccgtgtcc cctgtccatg ctcagcttct ctcaggactg gtgggaagat tccagaacca

11701

ggcaggaaac cgtcagtcgc ttgtggccgc tgagtcaggc agccattctg gtcagcctac

11761

cggatcgtcc agcactgaga cccggggcct ccctggaggg caggaggtgg gactgcagcc

11821

cggcccccac accgtcaccc caaaccctcg gagaaccgcg ctccccagga cgcctgcccc

11881

tttgcaacct gacatccgaa cattttcatc agaacttctg caaaatattc acaccgctcc

11941

tttatgcaca ttcctcagaa gctaaaagtt atcatggctt gctaaccact ctccttaaat

12001

attcttctct aacgtccatc ttccctgctc cttagacgcg ttttcattcc acatgtctta

12061

ctgcctttgg tctgctcgtg tattttcttt tttttttttt ttttattgga atatatttgc

12121

gttacaatgt tgaatttgaa ttggtttctg ttgtacaaca atgtgaatta gttatacatg

12181

tcctgaggag gggcggctgc gtgggtgcag gagggccgag aggagctact ccacgttcaa

12241

ggtcaggagg ggcggccgtg aggagatacc cctcgtccaa ggtaagagaa acccaagtaa

12301

gacggtaggt gttgcgagag ggcatcagag ggcagacaca ctgaaaccat aatcacagaa

12361

actagccaat gtgatcacac ggaccacagc ctggtctaac tcagtgaaac taagccatgc

12421

ccatggggcc aaccaagatg ggcgggtcat gtgcccatgg ggccaaccaa gatgggcggg

12481

tcatggtgaa gaggtctgat ggaatgtggt ccactggaga agggaaaggc aaaccacttc

12541

agtattcttg ccttgagagc cccatgaaca gtatgaaaag gcaaaatgat aggatactga

12601

aagaggaact ccccaggtca gtaggtgccc aatatgctac tggagatcag tggagaaata

12661

actccagaaa gaatgaaggg atggagccaa agcaaaaaca atacccagtt gtggatgtga

12721

ctggtgatag aagcaagggc caatgatgta aagagcaata ttgcatagga acctggaatg

12781

ttaagtccaa gannnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

12841

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnagaatttt

12901

gagcattact ttactagcgt gtgagacgag tgcaattgtg cggtagtttg agcattcttt

12961

ggcattgcct ttctttggga ttggaatgaa aactgacctg ttccaggcct gtggccactg

13021

ctgagttttc caaatttgct ggcgtattga gtgcatcact ttaacagcat catcttttag

13081

gatttgaaat agctcaactg gaattctatc actttagcta attccattca ttagctttgt

13141

ttgtagtgat gcttcctaag gcccccctgg ctttatcttc ctggatgtct ggctctggtg

13201

agtgatcaca ccgctgtgat tatctgggtc atgaaggtct ttttgtatag ttcttcttag

13261

gaacagatat tatgatctcc atccttgcat ctcgttatat ctagagaagc actgactccc

13321

ttcatggtga cgtcagatcc tcatgactaa caaatggcct tttgtaagat gagtgcctca

13381

tggtattgag ctcccccgtc accaagacct tatgactgac ctcccccact gccccaggtg

13441

cctctcgaag cgtctgagat gccgcctccc aggctgcact cctcattttg cccccaataa

13501

aacttaactt gcagctctcc agctgtgcat ctgtgtttag ttgacagtac aaatataatg

13561

gaaaatttaa attaaatata atctatgggg agaaatccaa acatcttatg agggagagag

13621

agggagagaa aggaaagaag aagaagcagg aggaggagga gagtagagaa acagggggag

13681

ggcggcaggg agacagaggg gaggacaccg aggggaaagg gaggaaggcg agtgcagtga

13741

gagagaggcc agagttcatc agagtctgga ctcgcagccc aatcccacgg gtgtgtcccg

13801

aagcagggga gagcctgagc caggcggaga cagagctgtg tctccagtcc tcgtggccgt

13861

gacctggagc tgtgtggtca gcccccctga ccccagcctg gccctgctgg tggtcggagg

13921

cagtgatcct ggacacagtg tctgagcgtc tgtctgaaat ccctgtggag gcgccactca

13981

ggacggacct cgcctggccc cacctggatc tgcaggtcca ggcccgagtg gggcttcctg

14041

cctggaactg agcagctgga ggggcgtctg caccccagca gtggagcggc cccaggggcg

14101

ctcagagctg ccggggggac acagagcttg tctgagaccc agggctcgtc tccgaggggt

14161

cccctaaggt gtcttctggc cagggtcaga gccgggatga gcacaggtct gagtcagact

14221

ttcagagctg gtggctgcat ccctggggac agagggctgg gtcctaacct gggggtcaga

14281

gggcaggacg ggagcccagc tgacccctgg ggactggcct cctctgtggt ctcccctggg

14341

cagtcacagc ttccccggac gtggactctg aggaggacag ctggggcctg gctgtcagga

14401

gggggttcga gaggccacac tcagaggagg agaccctggc ctgcttgggt tgtgactgag

14461

tttttggggt cctctaggag actctggccc tgcaggccct gcaaggtcat ctctagtgga

14521

gcaggactcc acaagattga tgaactgaat cctctaggag aggtgtggtt gtgagggggc

14581

agcattctag aaccaacagc gtgtgcaggt agctggcacc gggtctagtg gcggcgggca

14641

gggcactcag ggccgactag gggtctgggg gattcaatgg tgcccacagc actgggtctt

14701

ccatcagaat cccagacttc acaaggcagt ttcggggatt aggtcaggac gtgagggcca

14761

cagagaggtg gtgatggcct agacaagtcc ttcacagaga gagctccagg ggccatgata

14821

agatggatgg gtctgtattg tcagtttccc cacatcaaca ccgtggtccc gccagcccat

14881

aatgctctgt ggatgcccct gtgcagagcc tacctggagg cccgggaggc ggggccgcct

14941

gggggctcag ctccggggta accgggccag gcctgtccct gctgtgtcca cagtcctccc

15001

ggggttggag gagagtgtga gcaggacagg agggtttgtg tctcacttcc ctggctgtct

15061

gtgtcactgg gaacattgta actgccactg gcccacgaca gacagtaata gtcggcttca

15121

tcctcggcac ggaccccact gatggtcaag atggctgttt tgccggagct ggagccagag

15181

aactggtcag ggatccctga gcgccgctta ctgtctttat aaatgaccag cttaggggcc

15241

tggcccggct tctgctggta ccactgagta tattgttcat ccagcagctc ccccgagcag

15301

gtgatcttgg ccgtctgtcc caaggccact gacactgaag tcaactgtgt cagttcatag

15361

gagaccacgg agcctggaag agaggaggga gaggggatga gaaggaagga ctccttcccc

15421

aagtgagaag ggcgcctccc ctgaggttgt gtctgggctg agctctgggt ttgaggcagg

15481

ctcagtcctg agtgctgggg gaccagggcc ggggtgcagt gctggggggc cgcacctgtg

15541

cagagagtga ggaggggcag caggagaggg gtccaggcca tggtggacgt gccccgagct

15601

ctgcctctga gcccccagca gtgctgggct ctctgagacc ctttattccc tctcagagct

15661

ttgcaggggc cagtgagggt ttgggtttat gcaaattcac cccccggggg cccctcactc

15721

agaggcgggg tcaccacacc atcagccctg tctgtcccca gcttcctcct cggcttctca

15781

cgtctgcaca tcagacttgt cctcagggac tgaggtcact gtcaccttcc ctgtgtctga

15841

ccacatgacc actgtcccaa gcccccctgc ctgtggtcct gggctcccca gtggggcggt

15901

cagcttggca gcgtcctggc cgtggactgc ggcatggtgt cctggggttc actgtgtatg

15961

tgaccctcag aggtggtcac tagttctgag gggatggcct gtccagtcct gacttcctgc

16021

caagcgctgc tccctggaca cctgtggacg cacagggctg gttcccctga agccccgctt

16081

gggcagccca gcctctgacc tgctgctcct ggccgcgctc tgctgccccc tgctggctac

16141

cccatgtgct gcctctagca gagctgtgat ttctcagcat aactgattac tgtctccagt

16201

actttcatgt ccctgtgacg ggctgagtta gcatttctca cactagagaa ccacagtcct

16261

cctgtgtaaa gtgatcacac tcctctctgt gggacttttg taaaagattc tgcagccagg

16321

agtcatgggt ggtcttagct gagaaatgct ggatcagaga gacctgataa ccgatgtgaa

16381

gaggggaacc tggaagatct tcagttcagt tcatttcagt cattcagttg tgtccgactg

16441

tttgggatcc catggactgc cacacgccag tcctccctgt ccatcaccaa cttctgaagc

16501

ttgttcaaac tcatgtccat caagttggag atgcctttca accatctcat cctctgtcat

16561

ccccttctcc tcccgccttc aatcttccct agcattaggg tcttttccgt gagtcagttc

16621

ttcgcatcag gtggccaagt tttggagttt cagtttcagc atcagtcctt tcaatgaata

16681

gtaaggactg atttccttta ggatggactg gtttgatatc cttgcagttc aagggactct

16741

caagagtctt ctccaacact gcagttaaaa gccatcaatt cttcggtgct cagctttctt

16801

tttggtacaa ctctcacatt catacatgac taccgaaaat acattagtcg tgtagaacca

16861

gtttggggct tcccacgtgg ctctagtggt aaagaatatg cctgccaact cagaagatgt

16921

aagagatgcg gttcaatctc tgggtcggga agatcccctg gagaagggca tgacaaccca

16981

ctccagtatt tttgcctgga gaatcccatg gacagagaag cctggtggac tgcagtccat

17041

ggagtctcac agagtcagac acgactgaag caacttagct acttggaaaa gagcatgcac

17101

gaagctgtct aaaaaacagg tcaagaagtc ttgtgttttg aaggtttact gagaaagttg

17161

atgcactgct ccaacacttc ctctcagttg aaaagatcag aagcgttaga tcaaatggtg

17221

gtcaatacct tggatgcgct ccaacaggtt atatctgcag atggaaatga aggcagttta

17281

tggggtaact ggaggacaag atgagatcat acacttggaa cactgtctgg catcaaaggc

17341

gtgtacagta aacattagct gttattagca aaataaattc agcttgaatc acccaaatca

17401

gatggcattc ttaaagccac tgagtggtaa aatcaggggt gtgcagccaa aacgtccatt

17461

ttgactcatt atgatttcca tgtcacaaga ctagaaagtc actttctcct cagcagaaga

17521

gaaggtagaa cattttaacc tttttttgga gtgtcaaggg aattttgttt acactgtaaa

17581

gtcagtgaaa atattgaagc ttttcatttg tggaaaatat taaatatgta aaattgaaat

17641

tttaaaattt attcctgggt agttttgttt ttccagtagt catgcatgga tgtgagagtt

17701

ggactataaa gaaagctgag cgctgaagaa ttaatgctrt tgaactgtgg cactggagaa

17761

gactcttgag agtcccttgg tctgcaagga gatcaaacca gtccatccta aaggaaatca

17821

gtcctgaata ttcactggaa ggactgatgc tgaagctgaa actccaatac tttggccacc

17881

tgatgtgaag aactgactca tatgaaaaga ctcagatgct gggaaagatt gaaggtggga

17941

ggagaagggg acgacagagg atgagatggc tgaatggcat caccgactcg atggacatga

18001

gtctgaataa gctctgggag ttgttgatgg acagggaggc cctggagtgc tgcagtccat

18061

gggattgcaa agagttggac atgactgagt gactgaactg aactgagttt ggtaacagat

18121

atgagaatta tataatttaa atctaaactc ttggtatttc tttctttggc ggttccaaaa

18181

gagctgtccc ttctgttaac tatataaatc ctttttgaga attactaaat tgataatgtt

18241

cacaagttat ccaatttctc attactctta gttgtcagta taagaaatcc catttgattt

18301

atcatgttat agtatctgca actctaatag ttcagttctg acaaattttt attttattta

18361

aaaatattgg catacagtaa aatttcaaac aatatacaat tctccctttc agtttaaaaa

18421

acaaaacaaa acaaaagtaa tattagttaa aaaaatccgg gaagaatcca agcatttaaa

18481

attgcatcac atttctatgc tagacaagct gatataaagt tataattaat aaaggattgg

18541

actattaaac tctttacata tgaggtaaca tggctctcta gcaaaacatt taaaaatatg

18601

ttgtgggtaa attattgttg tccttaaaga aataaaaaga cataagcgta agcaattggn

18661

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

18721

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnna aaatggataa ggggggagga

18781

catgggtagg ggagcgcgat ggaggaagta aggtggtcga gggagttggg gggggaataa

18841

gtgggtaaaa gggaagcggg cggaaggagg gggaagcagg agagaggggt gggcgtcaga

18901

tcggggggag gggtatgagg gagagggaat ggtagacggg gggtgggaag cataaaggaa

18961

aagatagggg ggggaaaagt tagaagaaga atgaggggat aggcggaaag ggaagagaaa

19021

tgggagaaga acagaaaaat agggggaggg ggggcgtaaa gagggggggg gagggcaggt

19081

gtggagatga cagatacggg gaatgccccg gtataaaaga gtatatggcg tggggcgaga

19141

aggctgtcat cctgtgggag gggggacgcg gagaaccctt cgggctatag ggaggattcg

19201

gggggatcgt tcgggaaggc agtcagcaca gcacccacca agggtgcagg gatggatctg

19261

gggtcccaaa gaagaggccc aatcccgcgt cttggcagca aggagccctg gagactggga

19321

agtgtccagg acactgaccc aggggttcga ggaacccaga agtgtgtctg tgaagatgtg

19381

ttttgtgggg ggacaggtcc agagctttga gcagaaaagc ggccatggcc tgtggagggc

19441

caaccacgct gatctttttt aaaaggtttt tgttttgatg tggaccattt ttaaagtctt

19501

cattgaattt gctacaatat tgtttctggt ttatgctctg gtttcttcgg ctgcaaggtt

19561

tgtgtgatcg tatctcctca accaggactg aacccacagc ccctgcactg gaaggcgaag

19621

tcttaaccca gatcgccagg aacgtccctc ccctcactga tctaatccaa gaccctcatt

19681

aaggaaaaac cgagattcaa agctccccca ggaggactcg gtggggagga gagagccaag

19741

cactcagcac tcagtccagc acggcgccct ccctgtccag ggcgagggct cggccgaagg

19801

accaccggag accctgtcgg attcaccagt aggattgtga ggaatttcaa cttacttttt

19861

aaatctgtct ctcaaggctg ttacaagcgg actttaccag taacttaaaa gttgaaaggg

19921

acttcccagg cggcacttgc ggtgaagaac ccgccggctg gttttaggag acataagaga

19981

tgtgggttag atccctggtt caggaggatt cccctggaga aggaaatggc aacccactcc

20041

agtattcttg cctggaaagc ctcacggaca gaggaggctg gcgggctaca gtccacgggg

20101

tcgcacacga ctgaatcgac ttagcttcaa gttgagacag gaagaggcag tgactggtgg

20161

caaaacaccg cacccatgct cccaggggac ctgcagcgct ctggttcatg agctgtgcta

20221

acaaaaatca acccaacgag aggcccagac agagggaagc tgagttcatc aaacacgggc

20281

atgatgtgga ggagataatc caggaaggga cctgccaagc ccatgacaga ccggtgtcct

20341

gtctgagggc cgtcctggca gagcagtgca gggccctccg agaccgcccg agctccagac

20401

ccggctgggg gctacagggt ggggctgagc tgcaaggact ctgctgtgag ccccacgtca

20461

gggaggatca ccttgtttgt tttctgagtt tctcttaaaa tagcctttat gggtcctggt

20521

ctttggtttt aaaataacaa ctgttctccg taaacaacgt gaaaaaaaac aaacaggagg

20581

aaaacaacgc agcccgggca tttcacccgg aagagccgcc tctaacactt tgacgggttg

20641

ccttctattt taaccctgtt ttcattgtaa actgtaaaaa ccacatcata aataaattaa

20701

aggtctctgt gaagtttaaa aagtaagcat ggcggtggcg atggctgtgc cacaccgtga

20761

acgctcgttt caaaacggta aattctaggg accccctggt ggtccagtgg gtgagatttt

20821

gcttccattg caggagccgt gggtttgatc cctggttggg gaactaagat cccacatgct

20881

gtatggagtg gccaaaaaga attttttgta aatggtgagt tttaggtgac gtgaatttcc

20941

cattgatgca cttcacaggc tcagatgcag ccaggccctc aggaagcccg agtccaccgg

21001

tcctttactt ttccttagag ttttatggct tctgtttctg cccttaaacc caccatgttt

21061

caacctcatc tgattttgga ctttataata aagttaggct gtgtttcagg aaactttgct

21121

cagtattctg taataatcta aatggaaaga atttgaaaaa agagcagaca cttgtacatg

21181

cataactgaa tcactttggt gtacacctga aactcgagtg cagccgctca gtcgtgtccg

21241

accctgcgac cccacggact gcagcacgcg ggcttccctg cccatcacca actcccggag

21301

ttcactcaaa cacatgtccg tcgactcggt gatgccgtcc aaccgtctca tcctctgtcg

21361

tccccttctc ctcccgcctt caatcttttc cagcatcagg gtcttttcaa atgagtcagt

21421

tcttcacacc aggtggccag agtattggag tttcagcttc agcatcagcc cttccaacga

21481

ccccccatac ctgaagctaa cacagtgcta atccactgtg ctgcaacatg aaagaaaaac

21541

acatttttta agtttaggct gtgtgtgtct tccttctctc aacactgcgt ctgaccccac

21601

ccacactgcc cagcactgca ttccccgtgg acaggaggcc ccctgcccca cagctgcgtg

21661

ccggccggtc actgccgagc agacctgccc gcccagagtg gggcccctgg cactggggac

21721

aaggcagggg cctctccagg gccggtcact gtccactgtt cctactggtt ttgttttcaa

21781

aagtggaggc agcgtaatat ttccctgatt ataaaaagaa gtacacaggt tctccacaaa

21841

taaaacaggg gaaaagtata aagaatggaa gttcccagca cagcctggag atcacgccgg

21901

gtgcacctgg ggtgtccttc caggctggac ctcacatttc acgcagacat cagaaggctg

21961

cgagatctac ccagaaggct gggtagatgg gggataggtc agtgacaaac agtagacaga

22021

gagatataca gacagatgat ggatagacag acgctaagac accgagcgag gggacagacg

22081

gatggaagac accatccttt gtcactgacc acacacccac atgggtgtgg tgagccggct

22141

gtcatacttg tgaacctgct gctctcacaa caccagctgg gtccctccag ccccagcgtc

22201

ccacacagca gactcccggc tccatcccca ggcaggaatc ccaccaccaa ctggggtgga

22261

ccctccccgc aggaaggtcg tgctgtctaa ggccttgaga gcaagttaca gacctacttc

22321

tgggaagaca gcgcacaacc gcctaccccg cagagcccag gaggacccct gagtcctagg

22381

gaagggacca cgcggcctgg acggggagcg gccccaggac gctgccccca acctgtccca

22441

cctcactcct gctctgctct gaggcggggc gcagagaggg gccctgaggc ctcttcccag

22501

ttcttgggag cacccactgg gcctgaacca ggccagaagc cccctcctca aggtgtcccc

22561

agaccactcc cctccacctc cggttgctct gtctcctggc agcagggagc cccagtgaga

22621

agagacagct ccaggctgtg atcttggccc ctggctgctc tggcagtgtg gggggtgggg

22681

gtcgctggga ggccatgagt gctgggggtc ggggctgtga aagcacctcg aggtcagtgg

22741

gctgttggtc gggctctgcg aggtccgcac gggtagagct gtgccaggac acaggaggcc

22801

tggtcagtgg tcccaagagt cagggccaaa ggaaggggtt cgggcccctc tggttcctca

22861

gcttctgagg ccggggaccc cagtctggcc ttggtagggg ggcgattgga gggtacaacg

22921

atccaaaaga aaacacacat ctacgaggga agagtcctga ggaggagaga gctacacaga

22981

gggtctgcac actgcggaca ctgcttggag tctgagagct cgagtgcggg gcacagtgag

23041

cgaagggagg acggaacctc caaggacacc ggacgccgat ggccagagac acacgcacgt

23101

cccatgaggg ccggctgctc agacgcaggg gagctcctca ttaaggcctc tcgctgaata

23161

gtgaggagaa ctggccccgt gtgtggggaa acttagccca gaagaaacgc tgccctggcc

23221

ccaaggatca nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

23281

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn tgccctttgc

23341

ctccagggag ggaggaagcg tggatcttgg gtttgccttg ggtttaaagg atccacccac

23401

tcccttttta gccactccct gtgctggcaa tttcttaaga ctggaggtcg caaagagttg

23461

gacacactga gcgagtgaac tgcactgagc ctaagaaaag tctttgaatt cctccaaaca

23521

aaacacactt gtcttgggta ctttccttgg ttttgttaca aatgtctggt ccctctgttc

23581

tcctggccag ctcctgggtg tcattttgac ctgacgaagt caaagggagc ctggaccctc

23641

aaaatctgta ggacccagca cccctccatt acacctctgt tcccccgcga acgggcacgt

23701

gtttcgccgt ctggcgtaat gtgtaagcga cggtgtgata ctcgggagtc ttactctgtt

23761

tctttttctt ctggggtgac accaccatcc gcacgactct gtctgaatgt gaacatttgg

23821

gtgatttgat gtggcccaga ctcccccaac gaatgtacct tcaggttggt tttcttcttt

23881

tatattttgc ttttgtgaat agacacagga tcccatcagt tgtatgtagt gagaaagtaa

23941

aaacccactc agccttagct ggatggagat ctagtagtaa gatagcacgt tagccggaaa

24001

tggaaatttc agccagaatc tgaaaagcgt gtcctggaag gagaagaggg actcaggccc

24061

gagcacactg ctccacgctg gagcctcagg ctctgacagc tgtacctgcc ggggtcttca

24121

tgggacaggc catgcaggcc acgatcccgt tgagaagttt cttgcctttc catcacattg

24181

gcaattgcac gctttgctct tgcttctaca tggagtttta cttttatccc agacagtttg

24241

gtttcttctc tgattttcgc caattgtaca gatcgttaca gtatttctta accacataga

24301

attcggcagg gggggtgggg ggacagggta gggtggggtg agagtgaggg gagggggctg

24361

caccgagcag catctggggt cgtagctccc tgacggggat agacctcgtg cccctgcagt

24421

gacagcacag agtcctcctc tctgaactgc cagggacgct cctgcaattg acttaatgaa

24481

aggcatctaa ttaggaattt tggggtgaca ttttacattt aagtgtgtga gcagtgatta

24541

tagttcatat cattttatag tttcgtgatt ttactagctt aaagggtttt tggggtttct

24601

ttttgtttta aaagctaaaa tctgtttttt aattccatgg aatacaaaaa aaaaaagtct

24661

gtagaatatt ttaaagagtg aaggctttgt tcggaatgtg agcgctttgc tccactgaac

24721

cgaacggtaa taacatttgt agaagagacg cagagtgaaa ggtacctctt tttattgagt

24781

gacatgacag cacccatcgc gtgagttatt ggctggagtt tagagacagg ccatgttggg

24841

ctaaactcct tattgctgtt ctcagccttt gagtaataat cagaagcttt ctctgaagag

24901

agtggggtca gctgtcagac tcctaggtgt ctacctgcag cagggctggg attaaatgca

24961

gcagccagta gatacgggat ggggcaagag gtcaccttgt ccctttgttg ctgctgggag

25021

agaggcttgt cctggtgcca gtggggccaa agctgtgact ttgtgaccac aggatgtctc

25081

tgaccctgcc ttgggttccc tgagggtgga gggacagcag ggtctccccg gttccttggc

25141

cggagaagga ccccccaccc cttgctctct gacatccccc caggacttgc cccggagtag

25201

gttcttcagg atgggcatcc gggccccacc ctgactcctg gagctggccg gctagagctt

25261

gctgcagaat gaggccttgg ccattgcggc cctgaaggag ctgcccgtca agctcttccc

25321

gaggctgttt acggcggcct ttgccaggag gcacacccat gccgtgaagg cgatggtgca

25381

ggcctggccc ttcccctacc tcccgatggg ggccctgatg aaggactacc agcctcatct

25441

ggagaccttc caggctgtac ttgatggcct ggacctcctg cttgctgagg aggtccgccg

25501

taggtaaggt cgacctggca gactggtggg gcctggggtg tgagcaagat gcagccaggc

25561

caggaagatg aggggtcacc tgggaacagg cgttgggtgt acaggactgg ttgaggctca

25621

gaggggacaa aaggcacgtg ggcctccccc ccagtgtccc ttaaagtggg aaccaagggg

25681

gccccggaag ccggaggagc tgtggtgtgt ggagtgcaga gccctcgcgg ggtcctgatg

25741

cccgtcggac tctgcacagc tcagcgtgtg ccccgcggcc cggtaggcgg tggaagctgc

25801

aggtgctgga cttgcgccgg aacgcccacc agggacttct ggaccttgtg gtccggcatc

25861

aaggccagcg tgtgctcact gctggagccc gagtcagccc agcccatgca gaagaggagc

25921

agggtagagg gttccagggg tgggggctga agcctgtgcc gggccctttg gaggtgctgg

25981

tcgacctgtg cctcaaggag gacacgctgg acgagaccct ctgctacctg ctgaagaagg

26041

ccaagcagag gaggagcctg ctgcacctgc gctgccagaa gctgaggatc ttcgccatgc

26101

ccatgcagag catcaggagg atcctgaggc tggtgcagct ggactccatc caggacctgg

26161

aggtgaactg cacctggaag ctggctgggc cggatgggca acctgcgcgg ctgctgctgt

26221

cgtgcatgcg cctgttgccg cgcaccgccc ccgaccggga ggagcactgc gttggccagc

26281

tcaccgccca gttcctgagc ctgccccacc tgcaggagct ctacctggac tccatctcct

26341

tcctcaaggg cccgctgcac caggtgctca ggtgaggcgt ggcgccagct ccaaagacca

26401

gagcaggcct ctcttgtttc gtgcccgctg gggacattgc cagggtgccc ggccactcgg

26461

aagtcctcac gatgccaccg ctctgaccct gggcatcttg tcaggtcact tccctggtta

26521

gggtcagagg cgtggcctag gttaaatgct gtcaaagggg actcctttct gggagtccgc

26581

atagtggggg cttggtgtga tgcccttggg aattctttcc gagagagtga tgtcttagct

26641

gagataatga cagataacta agcgagaagg acggtccatc aggtgtgagg tttgaagtcc

26701

aaagctctgt ctctccctcc cacctgcccc ttctgtcctg agctgtttta ggctccaggt

26761

gagctgtggg aagtgggtga ttctggagat gacaagaagg gatcaggagg ggaaaattgt

26821

ggctcctaag cagtccagag aagagaaaaa gtcaaataag cattattgtt aaagtggctc

26881

cagtctcttt aagtccaaat tataattata attttcctct aagacttctg aatacatagg

26941

aaatcctcag taacaggtta ttgctctgcc ttgaacacag tgataaaagc tgggaggatg

27001

cagcctaatc tgtctgtgtg aatgagttgt attgattccc tttttggcag ctgcaaactc

27061

caagcattag gaataaatat gttcactgag aaccccgaag aaagaaagaa agaaaaaaaa

27121

aaagaattgt aggtgttgat ggacggtttg tggcccctga atatctgggg gatgttcacc

27181

cagggatcac gtgtaactgc tgggaccccc agccccatgt ccactgcatc cagcctgctg

27241

ttgaattccg cggatcnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

27301

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnncaat

27361

tcgagctcgg taccccaaag gtccgtctag tcaaggctat ggtttttcca gtggtcatgt

27421

atggatgtga gagttggact gtgaagaaag ctgagtgcca aagaattatt cttttgtact

27481

gggtgttgga gaagactctt gagagtccct tgaactgcaa ggagatccaa ccagtccgtt

27541

ctaaaggaga tcagtcctga atgttcattg gaaggactga tgctgaagct gaaactccaa

27601

tactttggcc acctgacgtg aagagttgac tcattggaaa agaccatgat gctgagagga

27661

attgggggca ggaggagaag gggacgacag aggatgagat ggctggatgg catcaccaac

27721

tcgatgngac atgagtttgg ttaaactcca ggagttggtg atggacttgg aggcctggtg

27781

tgctgggatt catggggtcg cagagtcgga catgactgag cgactgaact gaactgaact

27841

gagctgaaga gctcacctgt accagagctc ctcaggtcct cctgcaggcc tggctgtaat

27901

ggcccccagg tcaccgtcct gcctccttca tcccatcctt tcacgacagg ctgggagtgg

27961

ggtgaggtga gttgtcttgt atctagaatt tctgcatgcg accctcagag tgcaatttag

28021

ctccagagaa ctgagctcca agagttcatt ttttcctttt cttctttatg atactaccct

28081

cttctgagca gagacctcat gtcagggaga aggggactct gccttcctca gccttttgtt

28141

cctccaagac ccacacgggg agggtcgcct gcttcactga gccggaaggt tcaattgctc

28201

atgtcctcca gaaacacccc cccccccaga gacccccaga aataagtgga acagcacctt

28261

gtttcccaga caagtgggac acacgttatg aaccacctca gtgattaaaa tagtaacctc

28321

tgtgtatgtg tatttactgg agaaggaaac ggcaacctac tccactattc ctgcctagaa

28381

aattccatgg gagagaagcc aggcaggcta cagtccacgg ggtcacagag actgaacata

28441

cacaagcaca tggaagtgta ttttgcagta tttttaaatt tgttcagttc aacatggagt

28501

acaagaattc aaatcgtgaa gtcaattgac caagaaacca gaagaaatca ctgtgttgtg

28561

atctctgtgg aggtaacatg ggtacctgtg ctctgaccct cacagcctct ggctctctct

28621

ctacatgtac atacacatat atttccatgt atgtatgtat tcggaagatt tcacatacgt

28681

ctcaccagtc cacagccccc gcgttccctg atgcccagaa catctgtgat agctgtgagt

28741

attgtcacca gataagatct tccaggttcc tgcactcaca ttggttatca ggtctctctg

28801

atccagcatt tctcagctaa gattccttgt gactcctggc tgcagaatct tctgcaaaag

28861

tcccacagag aggagtgtga tcactgtaca caggagggcc gtggttctct agtgtgagaa

28921

aagctaactc agcccgtcac agggacgtga atgtacctga gacagtaatc agttatgctg

28981

agaaatcaca gctctgctag aggcagcaca tggggtagcc agcagggggc agcagagcac

29041

ggccaggagc cgcaggtcag aggctgggct gcccaagcgg ggcttcaggg gaaccagccc

29101

tgcgggtcca caggtgtcca gggagcagcg cttggcagga agtcaggacc ggacaggcca

29161

tcccctcagg actagtgacc acctctgagg gtcacatcca cagtgaaccc cagagcacca

29221

tgcctcagtc cacggccagg acgctgccag gctgaccgcc ccactgggga gtccagggga

29281

gaccacaggc cggggggctt gggacagtga tcatgtggtc agacacagag aaggtgacag

29341

tgacctcagt ccctgaggac aagtctgatg tgcagacgtg agaagccgag gaggaagctg

29401

gggacagaca gggctgatgg tgtggtgacc ccgcctctca gtgaggggcc cccgggggtg

29461

aatttgcata aacccaagcc ctcactgccc ccacaaagct ctgagaggga ataaaggggc

29521

tcggagagcc cagcactgct gcgggctcag aggcagagct cggggcgcgt ccaccatggc

29581

ctgggcccct ctcgtactgc ccctcctcac tctctgcgca ggtgcggccc cccagcctcg

29641

gtccccaagt gaccaggcct caggctggcc tgtcagctca gcacaggggc tgctgcaggg

29701

aatcggggcc gctgggagga gacgctcttc ccacactccc cttcctctcc tctcttctag

29761

gtcacctggc ttcttctcag ctgactcagc cgcctgcggt gtccgtgtcc ttgggacaga

29821

cggccagcat cacctgccag ggagacgact tagaaagcta ttatgctcac tggtaccagc

29881

agaagccaag ccaggccccc tgtgctggtc atttatgagt ctagtgagag accctcaggg

29941

atccctgacc ggttctctgg ctccagctca gggaacacgg ccaccctgac catcagcggg

30001

gcccagactg aggacgaggc cgactattac tgtcagtcat atgacagcag cggtgatcct

30061

cacagtgaca cagacagacg gggaagtgag acacaaacct tccagtcctg ctcacgctct

30121

cctccagccc cgggaggact gtgggcacag cagggacagg cctggcccgg ttcccccgga

30181

gctgagcccc caggcggccc cgcctcccgg ccctccaggc aggctctgca caggggcgtt

30241

agcagtggac gatgggctgg caggccctgc tgtgtcgggg tctgggctgt ggagtgacct

30301

ggagaacgga ggcctggatg aggactaaca gagggacaga gactcagtgc taatggcccc

30361

tgggtgtcca tgtgatgctg gctggaccct cagcagccaa aatctcctgg attgacccca

30421

gaacttccca gatccagatc cacgtggctt tagaaaggct taggaggtga acaagtgggg

30481

tgagggctac catggtgacc tggaccagaa ctcctgagac ccatggcacc ccactccagt

30541

actcttccct ggaaaatccc atggacggag gagcctggaa ggcttcagcc catggggtcg

30601

ctaagagtca gacacgactg agcgacgtca ctttcccttt tcactttcat gcattggaga

30661

aggaaatggc aacccagtcc agtgttcctg cctggaaaat cccagggaca ggggagcctg

30721

gtgggctgcc atccatgggg ccacacagag tcagacacga ctgaagcaac ttagcagcag

30781

cagcagcagc ccaataaaac tcagcttaag taatggcatc taaatggacc ctattgccaa

30841

ataaggtcca ctcgcgtgca ctctgtttag gacttcagtt cctgattgtg gagggttccc

30901

acaagacgtg tgtgtatatt ggtgttgccg gaaaacagtg tcaatgtgag catcccagac

30961

tcatcaccct cctactccca ctattccatt gtctctgcag gtattaagca taaaggttaa

31021

gggtcttatt agatggaaga ggagtgaata ctcgtctgtg cttaacacat accaagtacc

31081

atcaaggtcc ttcctattta ttaacgtgtg ttttaatcag aaatatgcta tgtagaagca

31141

tccggacgat agcccatgtt acagacgggg aagctgaggc atgaagttct cagcaccttg

31201

tttcacgtca gacctgaaac ggggcagagc cggcagcaaa caaggttcct cttcccaagc

31261

gcccgctctt cacccgcttc ctatggcttc tcactgtgct tcctaaacta agctctcccc

31321

aaccctgtgg agacaggatt agagacttta ggagaaaaga ccaggaacat cccacacccg

31381

acccgagtga gccactaaga caaggctttg taaggacaga accagcaggt gtcctcagcg

31441

agccagggag agacctcgca ccaaaaacaa tattgtagca tcctgaccct ggacttctga

31501

cctccagaaa tgtgaaaaag aaacgtgtgg ggtttaatca actcaccggt gttatttggt

31561

tatgactgcc tgagttaaga aggagttggg aacacttgag tgtaggtgtt tatggaacat

31621

aagtcttgtt tctctgaaat aaattcccaa gggtataatt cctaggttgt agggtaactg

31681

ccacaaatct aggcagctta ttaaaaaaca aagatatcac tttgccagca aaggttcata

31741

tagtcaaatt atggttttta tagtagtcat gtatggatgt aaaagttgga tcataaagaa

31801

ggctgagcac cagagaattg atcccttcaa atcgtggtgc tggagaagac tcttgagagt

31861

cccttggaca gcaaggagat ccaaccagtc aatcctaaag gaaatgaact gtgaatattc

31921

actggaagga ctgatgctga agctgaagat ccaatacttt ggccacctga tgcgaagagt

31981

tgactcattg gaaaagaccc tgatgctgga aagcttgagg gcaggaggag aagagggcgg

32041

cagaggatga gacggttgga tggcatcact gactcaatgg acatgagttt gagccaactc

32101

tgggagacag tgaaggatag ggaaggctgg cgtggtacag tgcatgcggt cacaaagagt

32161

ctgacacatc ttagtgactc aacaacgaca gcaacacagg catcacacgc ttagtgtgat

32221

aagcggcaga actgttttcc aggggtccgn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

32281

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

32341

nnnnnnnnng tacgattcga gctcggaccc tgacattgtg agtcacgtca tgagcagctg

32401

ttttccggtc ttcagggatt gtggacgatt tctgtttggg tttgctcatg ataatttagt

32461

tacagcttag gttctttctt tccaggccac gagcgacatg ttttcaggtg agatgacgtg

32521

gtgggggatg ggcggccaag cccccactgg ggggggaggg attctgttgt gggcaggagt

32581

tggcagcatc cctgaactga tgacctgcga tccaggtgac aagaaccggg ggatattatt

32641

cctctgcctt ctcatgtcat gtcctcggtt cttcatgatg aaaacatatg acaatacagg

32701

ggagttagat ttgggcgggc acaactctgg gtgggggacc cggtggcatt gtgcccagca

32761

gggccatcaa gatgagggcg acctgggtgg tccccttctc ccctggggtc ttagttttcc

32821

cctcatggaa atgggatcag gcagcagcca tggaacaccg cgaccgtggc ttctctcacc

32881

tcctcgtctg tgattttggg tcgggatacc aggcatgaag acctggggcg gggggacatc

32941

actcctctgc agcagggagg ccgcagagtc ctccgtccat gaggacttcg tccctgggct

33001

gaccctgcgg actgctggag gctgaagctg gaggcacagg cgggctgcga ggccagggtc

33061

ctgaggacga cagagccagt ggggctgcag ctctgagcag atggcccctc gccccgggcc

33121

ctgagcttgt gtgtccagct gcaggttcgc tcaggtgagc cactacgtta tgggggaggc

33181

gccctgggca gggatcgggg gtgctgactc ctccgagatt ccgaccttct gggagcactc

33241

tggccacact ctaagcctgg caagagctgg gttcatcagt ctaactctcc tcctgaagtc

33301

caatggactc tctccatgcg gcagtcactg gatggcctct ttatccccga tggtgtcctt

33361

ttccgctgac ctggctctcc tgaccacctc ccagcccccc accatacagg aagatggcac

33421

ctggtccctg cagagctaag tccacccctg gcctggcttc agatgcctac agtcctcctg

33481

cgggaggccc cgctccccac taggccccaa gcctgccgtg tgagtctcag tctcacctgg

33541

aaccctcctc atttctcccc agtcctcagc tcccaacccc agaggtatcc cctgcccctt

33601

tcaaggccct tgtcccttcc tggggggatg gggtgtatgg gagggcaagc ctgatccccc

33661

gagcctgtgc cgctgacaat gtccgtctct ggatcatcgc tcccctggct ctcagagctc

33721

cctggtccct ggggatgggt tgcggtgatg acaagtggat ggactctcag gtcacacctg

33781

tcccttccct aaggaactga cccttaaccc cgacactcgg ccagacccag aaagcacttc

33841

agacatgtcg gctgataaat gagaaggtct ttattcagga gaaacaggaa cagggaggga

33901

ggagaggccc ctggtgtgag gcgacctggg taggggctca ggggtccatg gagaggtggg

33961

ggagggggtg tgggccagag ggcccccgag ggtgggggtc cagggcccta agaacacgct

34021

gaggtcttca ctgtcttcgt cacggtgctc ccctcgtgcg tgacctcgca gctgtaactg

34081

cctttcgatt tccagtcgct gcccgtcagg ctcagtagct gctggccgcg tatttgctgt

34141

tgctctgttt ggaggcccgg gtggtctcca cgttgcgggt gatggtgctg ccgtctgcct

34201

tccaggccac ggtcacgcta cccgggtaga agtcgctgat gagacacacc agggtggcct

34261

tgttggcgct gagctcctcg gtggggggcg ggaacagggt gaccgagggt gcggacttgg

34321

gctgacccgt gtggacagag gagagggtgt aagacgccgg ggaggttctg accttgtccc

34381

cacggtagcc ctgtttgcct tctctgtgcc ctccgaccct tgccctcagc ccctgggcgg

34441

cagacagccc ctcagaagcc attgcaatcc actctccaag tgaccagcca aacgtggcct

34501

cagagtcccc ggctgcgacc agggctgctc tcctccgtcc tcctggcccc gggagtctgt

34561

gtctgctctt ggcactgacc ccttgagccc tcagcccctg ccagacccct ccgtgacctt

34621

ccgctcatgc agcccaggtg cctcctccgt gaacccgggt ccccccgccc acctgccagg

34681

acggtcctga tgggagatgt ggggacaagc gtgctagggt catgtgcgga gccgggcccg

34741

ggcctccctc tcctcgccca gcccagcctc agctctcctg gccaaagccc ggggctcctc

34801

tgaggtcctg cctgtctacc gtccgccctg cctgagtgca gggcccctcg cctcacctgc

34861

cttcagggga cggtgccccc acacagcacc tccaaagacc ccgattctgt gggagtcaga

34921

gccctgttca tatctcctaa gtccaatgct cgcttcgagg ccagcggagg ccgaccctcg

34981

gacaggtgtg acccctgggt cccaggggat caggtctccc agactgacga gtttctgccc

35041

catgggaccc gctcctttct gaccgctgtc ctgagatcct ctggtcagct tgccccgtct

35101

cagctgtgtc cacccggccc ctcagcccag agcgggcgag acccctctct ctctgccctc

35161

cagggccttc cctcaggctg ccctctgtgt tcctggggcc tggtcatagc ccccgccgag

35221

cccccaagct cctgtctggc ctcccggctg gggcatggag ctcacagcac agagcccggg

35281

gcttggagat gcccctagtc agcaccagcc tctggcccgc accccagcgt ctgccctgca

35341

agaggggaac aagtccctgc attcctggac caaacaccag ccccggcgcc ccgactggcc

35401

ccattggacg gtcggccact ggatgctcct gctggttacc ccaagaccaa cccgcctccc

35461

ctcccggccc cacggagaaa ggtggggatc ggcccttaag gccgggggga cagagaggaa

35521

gctgccccca gagcaagaga agtgactttc ccgagagagc agagggtgag agaggctggg

35581

gtagggtgag agccacttac ccaggacggt gacccaggtc ccgccgccta agacaaaata

35641

cagagactaa gtctcggacc aaaacccgcc gggacagcgc ctggggcctg tcccccgggg

35701

gggctgggcc gagcgggaac ctgctgggcg tgacgggcgc agggctgcag ccggtggggc

35761

tgtgtcctcc gctgaggggt gttgtggagc cagccttcca gaggccaggg gaccttgtgt

35821

cctggaggtg ccctgtgccc agccccctgg ccgaggcagc agccacacac gcccttgggg

35881

tcacccagtg ccccctcact cggaggctgt cctggccacc actgacgcct tagcgctgag

35941

ggagacgtgg agcgccgcgt ctgtgcgggg cggcagagga gtaccggcct ggcttggacc

36001

tgcccagccg ctcctggcct cactgtaagg cctctgggtg ttccttcccc acagtcctca

36061

cagtccagcc aggcagcttc cttcctgggg ctgtggacac cgggctattc ctcaggcccc

36121

aagtggggaa ccctgccctt tttctccacc cacggagatg cagttcagtt tgttctcttc

36181

aatgaacatt ctctgctgtc agatcactgt ctttctgtac atctgtttgt ccatccatcg

36241

atccaacatc catccatcca tccatcaccc agccatccat ctgtcatcca acatccatcc

36301

ttccatccat tgtccatcca tctgtccatc ttgcatctgt ctgtccaaca gtggccatca

36361

agcacccgtc tgccaagccc tgtgtcacac gctgggactt ggtgggggga gccctcgccc

36421

tcccaccctc ccatctctcc tgaaacttct ggggtcaagt ctaacaaggt cccatcccgt

36481

ctagtctgag gtccccccgc agcctcctct tccactctct ctgcttctga cccacactgt

36541

gcactcggac gaccacccag ggcccttgca tccctgtttc cttcctgacc tctttttttt

36601

ggctctggat ttatacacat tctgcctcct ggaggcgtct cagcttgagt gtcccacaga

36661

cgcctcagac tcagcatctt ccatcgaaac tgctcccagg tccttgcaga cctggtcccc

36721

cacattgttc tcaattcggt agatttctcc acaagccaga ggcctggact catcccataa

36781

tgcctgcccc tcattgagtc agcctctgtg tcctaccata accaaacatc cccttaaaaa

36841

tctcagaaga acaaaaaaag cacccagatg gcactgtcag agtttatgat gacaagaatc

36901

ctcagttcag ttcagtcact cagtcgtgtc cgactctttg cgaccccatg aatcgcagca

36961

cgccaggcct ccctgtccat caccaactcc cggagttcac tcagactcac gtccattgag

37021

tcagtgatgc catccagcca tctcatcctc tctcgtcccc ttctcctcct gcccccaatc

37081

cctcccagca tcagagtttt ttccaatgag tcaactcttc gcgtgaggtg accaaagtac

37141

tggagtttca gcttcagcat cattccttcc aaagaaatcc cagggctgat ctccttcaga

37201

atggactggt tggatctcct tacagtccaa gggactctca agagtcttct ccaacaccac

37261

agttcaaaag cctcaattct ttggcgctca gccttcttca cagtccaact ctcacatcca

37321

tacatgacca caggaaaaac cataaccttg actagatgga cctttgttgg caaagtaatg

37381

tctctgcttt ttaatatgcn atctaggttg ctcataactt tccttccaag aagtaagtgt

37441

cttttaattt catggctgca atcaacatct gcagtgattt tggagcccca aaaaataaag

37501

tctgccactg tttccactgt ttccccatct atttcccatg aagtgatggg accagatgcc

37561

atgatctttg ttttctgaat gttgagcttt aagccaactt ttcactctcc actttcactt

37621

tcatcaagag gctttttagt tcctcttcac tttctgccat aagggtggtg tcatctgcat

37681

atctgaggtt attgatattt ctcctggcaa tcttgattcc agtttgtgtt tcttccagtc

37741

cagtgtttct catgatgtac tctgcatata agttaaataa gcagggtgat aatatacagc

37801

cttgacgtac tccttttcct alttggaacc agtctgttgt tccatgtcca gttctaactg

37861

ttgcttcctg acctgcatac agatttctca agaggcaggt caggtggtct ggtattccca

37921

tctctttcag aattttccac agttgattgt gatccacaca gtcaaaggct ttggcatagt

37981

caataaagca gaaatagatg tttttctgaa actctcttgc tttttccatg atccagcaga

38041

tgttggcaat ttgatctctg gttcctctgc cttttctaaa accagcttga acatcaggaa

38101

gttcacggtt catgtattgc tgaagcctgg cttggagaat tttgagcatt cctttgctag

38161

cgtgtgagat gagtgcaatt gtgcggcagt ttgagcattc tttggcattg cctttctttg

38221

ggattggaat gaaaactgac ctgttccagg cctgtggcca ctgttgagtt ttcccaattt

38281

gctggcatat tgagtgcagc actttcacag catcatcttt caggatttga aatcgctcca

38341

ctggaattcc atcacctcca ctagctttgt ttgtagtgat gctctctaag gcccacttga

38401

cttcacattc caggatgtct ggctctagat gagtgatcac accatcgtga ttatctgggt

38461

cgtgaagatc ttttttgtac agttcttctg tgtattcttg ccacctcttc ttaatatctt

38521

ctgcttctgt taggcccata ccgtttctgt cctcgcctat cgagccctcg cctccctacg

38581

tagagactct aagcaggaag gtgacccgtg ctgcactggg tccagcatgc ttttaattca

38641

gcagtggaac ttctgggtca tgattgtgtt taagggatgc gcatacgatt tttgaagcaa

38701

aatttaacag gacagcagtg taaagtcagt acttatttct gattaaagaa agcaaatatc

38761

cagcctgtta ctaagttaat taactaaaga aacatcttca acttaataaa cagtatctcc

38821

tgaaacttac agcatgcttc acatttaaag gcaaaaccat tttagaggcc agggttccca

38881

cgcttacgtt tattatttaa tatatgctac agattcaagc ccatgacaca aaatgggggg

38941

aagagtgtga gtgttaggaa aaatgagata aaattggttt ttgcaggtga tgggctagtt

39001

tactttaaaa aaaaaaacaa aacaagctca agatgaactg aaggactatt agaactggta

39061

caagagttaa cctgtgatcg aatacaagca ggctgggcaa aactcagcag gttttcttct

39121

atacaggcag taatgattga gaatacgaaa cggcggaagc gcttacaacc tcgataacag

39181

ttctattaaa agccctagga atgaacttaa cacggnnnnn nnnnnnnnnn nnnnnnnnnn

39241

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

39301

nnnnnnnnnn nnnnngctcc ccccaccctc ccctcctccc cccccaccac cagtgcccca

39361

ggtctcgtgc ccagagagct gaagatgcca gcaggcccgc tgcctgcctc gctcgcgtgg

39421

cccgggctcg ctgccggtct gcctgcccag cacacagatg cagccccagc tctcgctgcc

39481

acccgcctcc cccaggcagg actctcccac aacaccaagg gcgtctctgg gttcaggatg

39541

gccctcgttg aggtgtaaag tgcttcccgg ggctgagacg aatgggccgg agatccaaac

39601

gaggccaagg ccgccacggc gcctggcgca gggcacccat ggtgcagagc ggcccagctc

39661

cctccctccc tccctccctc cctgcttctt tatgctcccg gctatgtcta tttttactct

39721

gcaatttaga aatgataccg aaggacaaac accgttcccc ctgtgtgtct gctctaaacc

39781

ctttatctac ttatctatta gcgtgtccaa gttttgctgc taagtgaatg aaggaacact

39841

acccacaagc agcaacgtcc ccacgaccct cgcctgttca actgggaatg taaatgtgct

39901

ttcaaaggac ctaagtttct atgttcaaaa ccgttgtgtg tttcttttgg gagtgaacct

39961

aggccactcg ttgttctgcc tttcaaagca ttcttaacaa ctctccagaa cccagggctt

40021

ggcttacgtt tccagaaatt ccaaagacag acacttggaa acctgatgaa gaaggcctgt

40081

gagcacagca ggggccgggg tacctgaggt aggtgggggg ctcggtgctg atggacacgg

40141

ccttgtactt ctcatcgttg ccgtccagga tctcctccac ctcggaggct ttcagcaggg

40201

tcacgctggt ggccagggtc gtgtatccat gatctgcaac cagagacggg gctgcggtca

40261

gcccgcgggc gggcagcagg caggagcagc caggagacgc agcacaccga ggtcctcaca

40321

tgcaggaggt gggggaagcg gctgtggacc tcacgactgc ccgatgtggg cctcttccaa

40381

agggccggcc tggaccctgg ctttctccag aggccctgct gggccgtccg cacaggctcc

40441

agccacaggg cctcttggga caggagggct ccagagtgag ccggccggcg ggaagaggtc

40501

tgacaccgct gcagtccaca acacgaagcg aggtggagat gggatgaggg atgagaaaca

40561

cttttctttt aaaacaagag cccagagagt tggaaagagc tgctgcacac gcaacatgaa

40621

ctcctggccc cggtgccagc ggcgctggga gcccgagttc tcggcaatcc gaccacagct

40681

tgcctaggga gccgggtgga gacggagggt taggggaagg cggctcccca gggagcgcga

40741

ggcccggggt cgccaaggct cgccaggggc aagcgcagct aggggcgcag ggttagtgac

40801

cggcactgca cccggcgcag gagggccagg gaggggctga aaggtcacag cagtgtgtgg

40861

acaagaggct ccggctcctg cgttaaaaga acgcggtgga cagaccacga cagcgccacg

40921

gacacactca taccggacgg actgcggagt gcacgcgcgc gcacacacac acacacacca

40981

cacacacaca cacacggccc gggacacact cataccggac ggactgcgga gtgcacgcgc

41041

acacacacac ccaccacaca cacacccacc acacacacac ccaccacaca cacacacaca

41101

cacacacacc cccacacaca cccacacaca cccacacaca cccacacaca cacacccaca

41161

cacacacaca cacacacaca cacacacacg gcccggtggc cccaggcgca cacagcacgg

41221

agcaaacatg cacagagcac agagcgagcg ctagcggacc ggctgccaga ccaggcgcca

41281

cgcgatggat tgggggcggg gacggggagg ggcgggagca aacggnnnnn nnnnnnnnnn

41341

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

41401

nnnnnnnnnn nnnnnnnnnn nnnnngtatt aaagaagccg ggagcgagaa tatgacggca

41461

agaggatgta ggtgggggcg gggcaagagt aaagagagcg gacggtagag gggatgcgat

41521

tgtgatgcgg aagcgagacg aggagtgatg ccgtattaga ttgatagcaa gaggaacagt

41581

aggagggggg ggggagagga gggggaggtg gggggtggtg ggtgggaagg gaactttaaa

41641

aaaaagaggg gagagttgga ggggggaata aacgggcggt aaaaaagaac aatttgaaat

41701

taccagggtg gggcggccag gggggtgatt cattcttgga gggggcaaca tatggggggt

41761

ggctgtcgcg gattaggaga aaataaatat caggggtgat taagtgtttg gcgttgggga

41821

ataatgaagt aagaatcaaa tatgaatcgc gttggcatcg ttagccatcg ggggaaacat

41881

ttcccatgca aggaacaagg atgtgagaat gcgtccgtct gaaccaccgt cccggggtcc

41941

cagtaggact cgccgagctg atagttgccg gagcaacagt taagggagca gaagctgcta

42001

caaaaccacc acctgccaaa gtagggtctc caattacgga gtgcgcctcc tgggtgtcgg

42061

tccaaacctt tggaaaggac ctggaaataa gtgctaccca ccagatatta atataaaccc

42121

acctggccag gagaggcagg cgctgctggc acaggaagtg tccccagact cagtcatcaa

42181

ggtaaataat attttgggac ctccctggaa atccagtggt taggactctg cggttcaatc

42241

cctggtcggg gaactaagat cccacaagtc acaagacatg gccaaattta aaaaagaaaa

42301

aaagagagag aaatatttag tgcaataggt tttagaattg aaattaagct cctgcccacc

42361

cccacccccc aatctggatg aataaagcat tgaaatagta agtgaagtca ggctctgaca

42421

tgcactgatg tgactcacct taagcaaccc ccaccctagg actggtcggg gttccaggag

42481

tttcaggggt gccaggaaga tggagtccag cccctgccct ctccccccac cacgtcctcc

42541

actggagccg cctaccccac ctcccacccc tccgcaccct gctacccccc acccctgccc

42601

ccaggtctcc cctgtcctgt gtctgagctc cacactttct gggcagtgtc tccctctaca

42661

gctggtttct gctgcccgct accgggcccg tcccctctgt tcagttcagt tcagtcgctc

42721

agtcatgtct gactctttgt gaccccatgg actgcagcac accaggcctc cctggccatc

42781

accaaccccc agaacttact caaactcatg tccatcgagc cagtgatgcc atccaaccat

42841

ctcatcctct gtcgacccct tctcctggcc tcaatctttc ccagcatcag ggtcttttcc

42901

aatgagtcag ttctttgcat caggtagcca aagtattgga gtttcagctt cagcatcatt

42961

tcttccaatg aatattcagg actcatttcc tttgggatga actggttgga tctccttgca

43021

gtccaaggga ctctcaagag tcttctccaa caccacagtt caaaagcatc aattcttcag

43081

tgctcagctc tctttatagt ccaactctca catccatacg tgaccactgg aaaaaccata

43141

gcctcgacta gatggaactt tgtgggcaaa gtaatgtctc tgcttttgaa tatgctgtct

43201

aggttggtca taacttttct tccaaggagc aagcgtcttt taatttcatg gctgcagtca

43261

ccatctgcag tgatttttgg agcccaagaa aataaagtct gtcactgttt ccactgtttc

43321

cccgtctatt taacggaggg aaatttccca gagcccccag gttccaggct gggccccacc

43381

ccactcccat gtcccagaga gcctggtcct cccaggctcc cggctggcgc tggtaagtcc

43441

caggatatag tctttacatc aagttgctgt gtgtcttagg aaagaaactc tccctctctg

43501

tgcctctgtt ccctcatccg cagaagtgac tgccaggtcg gggagtctgt gacgtctcca

43561

gaagccggag gattttctcc ccatttgctg aaagagagct cggggtgggg gaagcttctg

43621

cacccctagg atcaccagag gagccagggt cttcagggtt cccggggacc cctcagtggg

43681

ggctcaggaa ccacagagcc agaccctgat tccaaaaacc tggtcacacc tccagatgac

43741

cctttgtccc ttggctccgc ctcaaatgct ccaagcccca acagtgaagc gcttaagaga

43801

aggatccacc aggcttgagt ttggggagga gggaagtggg gagctggggg agggcctggg

43861

cctgggagac aggaatccac catggcttca ggcagggtct ctggggcctg cggggtggag

43921

agcgggcagg agcagacaga ggtgactgga cacgacacac ccctccactc caagggaggt

43981

gggcaggggc ggggcacaga ggaacaagag accctgagaa ggggtccacc gagcagactg

44041

ctggacccag acatctctga gccagctgga atccagctct aagccatgct cagcccaggc

44101

agggtatagg gcaggactga gtggagtggc cagagctgca gctgcatggg ctgggaaggc

44161

cctgcccgtc ccctgagggt cccccagggt ctagccagac tccaatttcc gaccgcagca

44221

cacacaggag gaagtggtcg gggtggagtt ggcccagagg tctgggcagg tgcagggtgg

44281

gggaaggggg gcagctggag tcacccgctg aattcaggga cagtcccttt ttctccctga

44341

aacctggggc tgtcccgggg gccaccgcag cctccaggca gcggggggac ccagccccca

44401

atatgtgaga agagcaggtc ccaggctgga gagagcgaag caccatggtg gggagaagtt

44461

agactggatc ggggccccta ggggctcccc cggacctgca cggcagccgt cagggcaccc

44521

gcaccccatt gctgttcagt gctggccagt gtccaaggcc agggatgtgt gtgtgtgtgt

44581

gtgcgtgcgt gcgtgcgtgt gtgtgtgcgt gtgtgcgcgt gcgtgcgtgt gtgtgtgtgt

44641

gcgtgcgtgt gcgtgcgtag acgtgtgcgt gcgtgcgtgc gtgcgtgcgt gtgtgtgcgc

44701

acgcgcgcag cccagcctca gcactggacc aggcagcctg ggattcctcc aaaactgcct

44761

tgtgagtttg gtcaaaccgt gaggctctga tcaccgccat ccattcgccc cctcctgccc

44821

ccctcatcac cgtggttgtt gtcattatcg agagctgtgg agggtctggg aggtcatccc

44881

acctgccagc taaaccgtga ggctgccgca atcgcactga tgcgggcaga cccgagacgc

44941

tgtgccggag acgaaggcca gcttgtcacc ccgccagagc ggcagtcggg ccacaagcat

45001

catccaagca gtggttctct gagcccgacg gggtgatgca aaggagccag gagacacctg

45061

cgcgtccaag ctgggggacc ccaggtctgt tatgccggac agtaaacacg ttcagctccg

45121

gagggagagg gttcccctac cttccagggt ttctcattcc acaaacatcc aaagacaatc

45181

cataccgaag gcgatccgtg cctttgctcc tgagacgtgc ggaagcacag agatccacag

45241

acactgtctc ccaggatcct atgtatgtaa aggaaccgaa gtcccaggct gtgtgtctgg

45301

taccacatcc cacggaacag gctggactga ttttcaccaa atgtagcaga aacgttaagg

45361

agtatcagct tcaaaatatg agggccagac atgtctgaga agtcccttcc agaaaagtcc

45421

ctttggggtc cttccccaga gttgctgaaa cagagaaccg gaagggctgc agagctgaac

45481

ttaaacaact ggatcgcaaa ggtccgtctc atcagagcga tggtttttcc agtggtcatg

45541

tatggatgag agagttggac cataaagaaa gctgagcgcc gaagaatcga tgcttttgaa

45601

ctctggtgtt ggagaagact cttgagagtc ccttggactg caaggagatc caaccagtca

45661

atcctaaagg aaatcaatcc tgaatattca tgggaaggac tgatgctgaa gctgaaactc

45721

caatactttg gccacttgat gcaaagaact gactcactgg aaaaaccctg atgctgggaa

45781

aggttgaagg caggaggaga aggggtcgac agaggatgag atggttgggt ggcatcaccc

45841

acccatggac tcaatggaca tgggtttgag taaactctgg gagttggtga tggacagaga

45901

atcctggcat gctgcggtcc atggggtcat agagagtcag acacaactga gcgactgaca

45961

gaactgaagc aactggcaag ccggagggta ggtgccggct gcgatgagcg ggaacgtgca

46021

acctgccacg tggagctctt cctacaccca gagtcctgac ggcactggga ccctagccct

46081

ccacggcctc tccagggcca-cgagacaccc tcacagagca gagaagcgga acagagctgg

46141

tgtgcagaac caggccccgg gggtggggcg gggctggtgg gcaggcttta gtgagaagcc

46201

cttgagccct ggaaccagag cagagcagaa cagttggcag aggcccccct gggagaggcc

46261

ccccgcccag agtaccggcc ctgggccctg ggggagaggg cggtgctggg ggcagggaca

46321

gaaggcccag gcagaggatg ggccccgtgg gacggggcgc accaaaacag cccctgccag

46381

caaggggaag ctggggcact ttcgaccccc tccaaggagg agcccacacc agcgcatctg

46441

cccaaggtgc ccttggccct gggggcacat gaggcccagg ccaggccagg gggcccatga

46501

ggcccccagg ggtcagtgca gtgtccccag gcagccctgg cctctcatcc tgctgggcct

46561

ggcctcttat cccgtgggcg cccacggcct gctgcccccg acagcggcgc ctcagagcac

46621

agccccccgc atggaagccc cgtcaggaaa gagcccttgg agcctgcagg acaggtaagg

46681

gccgagggag tcatggtgca gggaagtggg gcttcccttc gatgggaccc aggggtgaat

46741

gaccgcaggg gcggggaacg agaagggaaa ccagctggag agaaggagcc tgggcagacg

46801

tggctgcacg cacagcgctg accctgggcc cagtgtgcct ttgtgttggg ttttattttt

46861

aattttgtat tgagatgcta tttatctcgt ggagcttttg ccgccctgag attttgtacc

46921

cgtggctggt gtccctcttg cctcaccccg gcctctgtag cagggcagac acggcgcaac

46981

ggggcagggc gtgcccagga ggcactgtca ttttgggggc agcggcccca caaggcaggt

47041

ctgccttcct cccctcttac aggcagcgac agaggtccag agaggtgagg caagctgccc

47101

aatgtcacac agcacacggg cgcagtccca ggactgtaga aatcccggga ctagacaggc

47161

accagagtgt cctgtgtttt taaaaaaacg gcccaagaga agaggcaagt ctgcaaggcg

47221

tcccgggaag gcagcagggg cttggctcgg tctcccccaa ggaggccagc tcctcagcga

47281

ggttcctaag tgtctaacgg agccaagcct gaaccaaggg ggtcacgtgc agctatggga

47341

cactgacctg ggatggggga gctccaggca aagggagtag ggaggccaag gaggagagag

47401

gggtgcacag gcctgcaggg agcttccaga gctggggaaa acggggttca gaccacgggg

47461

tcatgtccac ccctccttta tcctgggatc cggggcaggt attgagggat ttatgtgcgg

47521

ggctgtcagg gtccagttcg tgctgtggaa aaattgtttc agatcagaga ccagcgtgag

47581

gtcaggttag aggatggaga agaagctgtg aaaaggtgat ggagagcggg gggacggtcc

47641

tcggtgatca ggcaccgaga tcgcccatgg aatccgcagg cgaatttaca gtgacgtcgt

47701

cagagggctg tcggggagga acaggcactg tcatgaactg gctacaaaaa tctaaaatgt

47761

gcaccctttt cggcaatatg cagcaagtca taaaagaaaa cgcatttctt taaaattgcg

47821

taattccgct tttaggaatt catctggggg cgggggaaca atcaaaaaga tgtgaccaaa

47881

ggtttacaag ccaggaagtc aactcgttaa tgatgggaga aaaccggaaa taacctgaat

47941

atccaacaga aagggtgtga tgaagcgcag catggcacat ccaccgcaag gaatcctaac

48001

acaaacttcc aaaacaatat ttctgacgtt gggtttttaa agcatgcgtg cactttcaaa

48061

agcttgtcag aaaacataga aatatgccaa taatgtgtct ctagccaaat tttttaattt

48121

ttgctttata attttataaa gttataattg tatgaaatat aatgataaaa ttataaacta

48181

taaaaaagtt atgaaaatgt tcacaagaag atatacatgt aattttatct tctacaatac

48241

tttttaatac cagaataacg tgcttttaaa aaagattgag cacagaagcg tataaagtaa

48301

aaattgagag tttctgctca ccaaccacac gtcttacctt aaaacccatt ctccagcgag

48361

agacagtgtc atgtgggtct gtacacttct ggcctttctc ctaggcatgt atgtccctga

48421

aaactcacac acacggctaa tggtgctggg attttagttt tcaaaacgga ctcatactct

48481

gcctatgagc ctgcaactat ttattcagtc tgttgagatt ttctatatca gcccacatgg

48541

atcccgcatg ttctctgaat ggctctgtat gaattcaaag tttggaagaa gcagcgtgtc

48601

tttaatcatt cgcctattaa tggacgtttg gggtgtttcc actacaaaan nnnnnnnnnn

48661

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

48721

nnnnnnnnnn nnnnnnnnnn nnnnnnnnng atacaattcg agctcggtac cctggcttga

48781

actatatgaa cagagaacga tgagaacagt ttctcaaact tggaacagtt aacattttgg

48841

gctaaatgat tcttttttgt gtggagttgg cctatgaata gaggatatta gcagcatcat

48901

ttaaccttta ctcactacat acctgtagca actacatcct ctccatttgt gtcaatcaaa

48961

actgtctccg gacatggaca agtgtgcccc tgggatgggt ggaatgacct tttgttaaga

49021

accactgggt cagagattca tagatttttg tcttgttgac tttttaaaaa tacatcttgg

49081

tttttatttt attggtttct gctcttatct ttatgattac cttcctttta cttggggctt

49141

ccctgataga ttttcccttc tggctcagct ggtaaagaat ctgcctgcaa tgcaggagac

49201

ctgggttcag tccctgggtt gggaggatcc cctggagagg agaagggcta cccaccccag

49261

tattctggcc tggaggattc catggagtgt atagtccatg gggtcgcaga gtcggacatg

49321

actgagtgac tttcacacac acatatgtcc ctggtagctc agctagtaaa gaatcccacc

49381

cgcaatgcag gagaccccgg tccaattcct gggtccggaa gattcccttt tgtttactcc

49441

ataagatctt atctggggac aaaactaaca gctatgccag accttctgga catcagggaa

49501

cgtgaggggt gtggactgga cagatgtgtg tgttctccca aacacaaaca tacatctgta

49561

tacatgtaca tggagagagg gggagggagg ctgtgagtct ccaggggacc gtgcaaccat

49621

gtgacattca tggaggcgtt tgcgggtgat cactacacag tttcttcttc tggtttcttg

49681

gtcaattgac ttcacaattc caattcctat acttcatttt agactgaggg aattttacac

49741

tattgtaaga catatgtata catgagttat gttcagcgcc atgagggctc attttgtgtg

49801

tccactttgc ctggaaacaa agttggactg atttacttct aggggtgcct gggggtgttt

49861

ctggaggaca ggagcatttg aacccaaggg ctcggtgaag catgagcctc tctgcaggtg

49921

gacccaggag gaacgcaagg ccgaggaagg cagactctcc tcctccctaa cccgaggtct

49981

ctgctcagaa aagggacaat ataatgacta gaagaaaaga aagaacatca gctgtgggag

50041

gtttgttctc tggagcagat tcacacgttg aggctcatgt gcaggaattc taggtgaaac

50101

agagcagtca cccatgtgtg ttggaaaatt ttaaattaca tttgcagtta cgactttgtt

50161

taagccagac agggtagcac agcaaagtca ccatgtggtc acctgtgttt tgtaaaggag

50221

agagaacttg ctggcacatt caggaaaggc cgtgtctcag ctttggaggc acactgagag

50281

gccacaagca gatggtgagg accagggtct cgggcagagg gatcaattca ctgctcttca

50341

cttttgccac atctgtgtgc tgtccatcct ggccagagta gttcagtctt cagatgctgg

50401

agttcccatt ggtagaaatc caatctgggt catttttaaa cctctcttgg ttctacttaa

50461

tggttttaaa atctctttgg ctcaagaaaa aaaataaaca taattttaaa gggtggtttg

50521

gggccttgac tataaagtac attatctggg ccatttcaga gcatggttga attaatacat

50581

ttcgtgctta ctatagctcc tattttcttg attctttaca ggtaattttt gttaggaatc

50641

gggtactgtg aatattttct tgttgaatac gggatctttg tattttttcc taattttttt

50701

ttttttttca tttttggttt taccttcagg aaagtcacta ggactcagga aagtcctttg

50761

tccgcctgtt atttcagtct cttacctggg gccagggcag cgtttcctct gggctaagtt

50821

tccccacaac cggggccagt tctcctcact cttcaccctg aggccttaat gaggagctcc

50881

cctgcgtctg agcagccggc cctcctgtga cgtgcgtgtg tctctggcca tcggcgtccg

50941

gtgtccttgg aggttccgtc ctcccttcgc tcactgtgcc ccgcactcga gctctcaggc

51001

tccaagcagt gtccgcagtg tgcagaccct ctgtgtagct ctctcctcct caggactctt

51061

ccctctagat gtgtgttttc ttttggctcc ttggacctcc gctctgaacg caggcctggt

51121

gctgagtgtg atctctggag ggaagcctgg gaggctggac gggtccgccc tgcggtgtgg

51181

tgacaggtgt gggctcgggg cggggcctgc acgtcgtcct gacccgagcc gggactgggc

51241

tccgggcctc aggcatcact gactgaatct ccctcacaga ggggtcaggg cctgggcggg

51301

ggaaccgtct ctgcaatgac agcccctccc agggagggca cagcggggag ctgccgaggc

51361

tccagcccta gtgggaggtc ggggagccca ggggagcggc ctgacggccc cacaccggcc

51421

cagggctggt tcgttctgtt tctcgagctc aacagaagct ccgaggagct gggcagttct

51481

ctgaattcgt cccggagttt tggctgctga gtgtcctgtc agcaccgtat ggacatccag

51541

agtccattag cagtggtctc tgtccctctg tctgtccttc atcaggctct ttgtccaggt

51601

caccacacgg ccaacaccag gacagtctgg tcccgccagc ccatcgtccc tgcggacgcc

51661

cctgtgcagc ctgccgaagg gccgggaggc cgggggaacc gggccaggcc tgtccctgct

51721

gtgtccacag tcctcccggg gctggaggag agcgtgagca ggacgggagg gtttgtgtct

51781

cacttccccg tctgtctgtg tcactgtgag gattatcact gctgtcagct gactgacagt

51841

aatagtcggc ctcgtcctcg gtctgggccc cgctgatggt cagcgtggct gttttgcctg

51901

agctggagcc agagaaccgg tcagagatcc ctgagggccg ctcactatct ttataaatga

51961

ccctcacagg gccctggccc ggcttctgct ggtaccactg agtatattgt tcatccagca

52021

ggtcccccga gcaggtgatc ttggccgtct gtcccaaggc cactgacact gaagtcggct

52081

gggtcagttc ataggagacc acggagccgg aagagaggag ggagagggga tgagaaagaa

52141

ggaccccttc cccgggcatc ccaccctgag gcggtgcctg gagtgcactc tgggttcggg

52201

gcaggcccca gcccagggtc ctgtgtggcc ggagcctgcg ggcagggccg gggggccgca

52261

cctgtgcaga gagtgaggag gggcagcagg agaggggtcc aggccatggt ggatgcgccc

52321

cgagctctgc ctctgagccc gcagcagcac tgggctctct gagacccttt attccctctc

52381

agagctttgc aggggccagt gagggtttgg gtttatgcaa attcaccccc gggggcccct

52441

cactgagagg cggggtcacc acaccatcag ccctgtctgt ccccagcttc ctcctcggct

52501

tctcacgtct gcacatcaga cttgtcctca gggactgagg tcactgtcac cttccccgtc

52561

tctgaccaca tgaccactgt cccaagcccc ccggcctgtg gtctcccctg gactccccag

52621

tggggcggtc agcctggcag catcctggcc gtggactgag gcatggtgct ctggggttca

52681

ctgtggatgt gaccctcaga ggtggtcact agtcctgagg ggatggcctg tccagtcctg

52741

acttcctgcc aagcgctgct ccttggacag ctgtggaccc gcagggctgc ttcccctgaa

52801

gctccccttg ggcagcccag cctctgacct gctgctcctg gccacgctct gctgccccct

52861

gctggtggag gacgatcagg gcagcggctc ccctcccgca ggtcacccca aggcccctgt

52921

cagcagagag ggtgtggacc tgggagtcca gccctgcctg gcccagcact agaggccgcc

52981

tgcaccggga agttgctgtg ctgtgaccct gtctcagggc ggagatgacc gcgccgtccc

53041

tttggtttgt tagtggagtg gagggtccgg gatgactcta gccgtaaact gccaggctcc

53101

gtagcaacct gtgcgatgcc cccggggacc cagggctcct tgtgctggtg taccaaggtt

53161

ggcactagtc ccaccccagg agggcacttc gctgatggtg ttcctggcag ttgagtgcat

53221

ttgagaactt acatcatttt catcatcaca tcttcatcac cagtatcatc accaccatca

53281

ccattccatc atctcttctc tctttttctt ttatgtcatc tcacaatctc acacccctca

53341

agagtttgca ttggtagcat atttacttta gcacagtgtg cctcttttta ggaaactggg

53401

ggtctcctgc tgatacccct gggaacccat ccagaaattg tactgatggc tgaacccctg

53461

cgtttggatt cttgccgagg agaccctagg gcctcaaagt tctctgaatc actcccatag

53521

ttaacaacac tcattgggcc tttttatact ttaatttgga aaaatatcct tgaagttagt

53581

acctacctcc acattttaca gcaggtaaag ctgcttcgca tttgagagca agtccccaga

53641

tcaataaaga gaatgggatg aacccaggat ggggcccagg ggtcctggat tcagactcca

53701

gccgtttagg acagaacttg actaggtacg aagtgagcgg ggtggggggg caatctgggg

53761

ggaactgtgg cacccccagg gctcggggcc atccccacca catcctggct ttcatcagta

53821

gccccctcag cctgcgtgtg gaggaggcca gggaagctat ggtccaggtc atgctggaga

53881

atatgtgggg ctggggtgct gctgggtcct aggggtctgg ccaggtcctg ctgcctctgc

53941

tgggcagtga taattggtcc tcatcctcct gagaagtcac gagtgacagg tgtctcatgg

54001

ccaagctatt ggaggaggca gtgagcactc ccacccctgc agacatctct ggaggcatca

54061

gtggtcctgt aggtggtcct ggggcttggg ccgggggacc tgagattcag ccattgactc

54121

tcagaggggc cagctgtggg tgcagcggca gggctgggcg gtggaggata cctcaccaga

54181

gccaaaataa gagatcaccc aacggataga aattgactca caccctttgg tctggcacat

54241

tctgtcttga aatttcttgt ggacaggaca cagtccctgg ataaagggat ttctatcttg

54301

cgtgtgcaat agagctgtcg acacgcttgg ctgggacatg taatcctttg aacatggtat

54361

taaattctgt tcactaacat ctgaaaggat ttttgcatca ataaacctaa ggtatattgc

54421

cctgtcattt ccttgtcttg tagtgtctct gagtaggctg gaaggggtaa ccagcttcac

54481

aaatcgagtt aggaaattcc cttattcttc cactgtctaa tagactttca taagattagt

54541

gttaattcct ctttaaatcg ctgctataat catcactgtg gccaccggta ctgaattttt

54601

tgttaggatg atttttaaac aagcatttta atgatttttc cttttatttt cggctgtgct

54661

gggtctcgtt gctgtgtgcc ggcgttctct cgctgtggcc agtgggggcg ctgctctcgc

54721

gttgcgaagc tcgggcttct gactgcagtg gcttctctcg ttgcagagcg cgggctccag

54781

ggcgctcagg ctcgcgtggc tgcggcacgt gggctcagta gtcctggggc acaggtgcag

54841

cagcctctca ggacgttttg ttcccagatg gtgggtcggt cgaaccggtg tcccctgcgt

54901

tgcaaggtgg attcttcacc gctggaccac cagcgacgtt ccctggaggt ttttaattat

54961

ggatttaagc tctcattaga tgtctcctca catttcctat ttctttttga gtcagtttga

55021

tactttgttt gtgtctgtaa gtttgtccat tttatccaag tcatctaatg tgttgataga

55081

caattattgg ttagtcatct aattgttggt ttacaatttt gagagcattg tcctgcaatt

55141

ccttctatct gcaagattgg taataatatc tcccaagagg agtcacaaac tgaaatgaga

55201

ttanatacag gctttttttt taaaagaatg aacttatgtt gttgcctttc tcatagatct

55261

tacttcttag catgactgta cttactgact ggggcgtttt catgtctgtg tggagagcta

55321

ccattagtac ttcttatcgc ccaaagacat cgggctcctg ggcacagtga aaacactcct

55381

ttctgtggct attttgcaaa atatggccta gcctagcgtc ataagggatc acagctgaca

55441

actgctggaa cagagggaca tgcgaagcaa cgtgagggct ggaacctgga gggtcctctc

55501

tggggacagt ttaaccagct ataatggaca ttccagcatc tgggacatgg agctgtgaac

55561

tggaccaatg actgtcattt ttggaagaga aatcccagga gagaagggtc caggggaatc

55621

tgaggccgca tgcagtgcct caggacaggg gacaccttct ccagcagagc aggggggccc

55681

gcccaggccg cctgcagtga ttccaccagg aggagatgca tccctgcaga cctctgacag

55741

cacggccctc tcctgagaca cagggtcaca cccggggccc tggaaccctt tgagacccta

55801

aacctttcct ttcctgacca ccctgacagc agtctagctc agaacagaca tcttcatttt

55861

cagcaggaaa atccttttcc tcgtttgagg gagcgactgg caccggagga gctgagtctt

55921

ttaaacacag gctgcctgaa cctcagggat gacctgcagc tgctcagagg aggctggagt

55981

gtgatagctc actctaatgt tactaaaagg aacatattgg acaccccctc tctgaaaaat

56041

ttccctcctg cctctcatct cttagtccac tttatcgccg ttttactgct tttctattta

56101

ctactcttaa cgccaaccta tcttatttcc cctcccagtt taacacggtt ttccctccac

56161

ccgctctctt taatctcaga agattctgcc tattcctcta ttatcacacg cccctacttt

56221

ttattttttt tcttacccgc cttttattcc ctcccctcct cactctctat ttaattacat

56281

cttaactaca ccgcctgcgc tatcttcgaa tgtatccaaa tatttttccc ttatataaca

56341

ctccaggccg agcggctaac ttattataat ttctttatag cgcctaccta atttcccttt

56401

atttctaatt atctatatat acccatgcaa tttcgnnnnn nnnnnnnnnn nnnnnnnnnn

56461

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

56521

nnnnnnnnnn nnnnntgggt gtacgttata gagtaaacgc gcatgaagaa gtgggtcaat

56581

ctatggctgt gagaggcaga aaataatatt atcatatata atttatgtta taacacactg

56641

aggtggtggg ctcgtagaat agtgcggacg gggagaaagg tgggaaggag aagacacaag

56701

agagagatgt tcgcctcgcg ggatggatgg gcggagggat agaagaataa aaagaggaga

56761

ggtatagagg ggggcggggg gcataacgtg tggtggggta aatagtaggc ggtaattatg

56821

aaaaaaagaa agacgggggg ggcggtaaca tagaatacgc aaaaaagtca tatactgaac

56881

ggggattagg gagaagaggt ggggggcgtg gggtgcgggg gaaagaggtg tgtgtataat

56941

tggtatggag tgttatttga atatatatta atgtaatagg gagtgtaatt agtgaaattg

57001

tgggagtatt atattggggt gtgggggaca tggcaaagtg atgatcggga taaaaaaagt

57061

aaagcaagag gggaggggaa aataaggggg gggagaaggt cgaagaaaat aagaggaaga

57121

agaaagaacg ggggtggcgg gcgggggggg cgccgctctt gtatctggct tttttgttgt

57181

gtcggtggtt gttcgcgtct tgttgggtcc ggggcgggtg tgcggaaaaa aaaaaaggcg

57241

ggaggcccgg ggcccggtca cgcggcaccc ccgcgggtcc ctggcttctc cttcggcagc

57301

tccgggggtc ggtgagcctg cgccctccgg gccgccggcc cgagctgtgt gcgccctgga

57361

gaatcggagc cgctgtggca gcacgcggag ggcgcgcgca agggccacgg gacggacctt

57421

caaaggccgc ggcggagcgc ggcaagccga accgagggcg gtctggcgat cggccgagcc

57481

ctgctccccc ctcccgcgtg gccccagggt cgcgggtgga ctggggcggg tacaaagcac

57541

tcacccccgt cccgccccca gaaagcctcc caggactctc acagagcacc cgccaggagg

57601

catccggttc ccccctcggc tcagttcagt tgctcagtcg tgtccaactc tttgcgaccc

57661

catggactgc agcaccccaa gcttccctgt ccatcaccaa ctcccggagt ttactcaaac

57721

tcatctattg agtcagtgat gccatccaac cgtctcatcc tctgttgtcc ccttctcctc

57781

ccactttcaa tctttcccag catcagggtc ttttcttatg agccagttct tcacatcagg

57841

tggtcagagt attggagttt cagcttcagc atcagtcctt ccaatgaaca ctcaggactg

57901

atttccttta ggatggactg gctggatgca gcgccagaca ccgaccgcgt ttaccccgtg

57961

tgtcctttcc aatggctgtc ccctgcgggc ctaggggcat tggtgcgggt ttgaatcctg

58021

tggccttgaa ttttacgcct tagttccagg tccagggcag ggccatccgg attcaggatg

58081

cttcccagcc cttcaggaat ggcaggtttt catggtcctt tctgagtgag ttctgagtgg

58141

tcatattggt gcccttggca gggagggctc ctgactttcc tatcttcaca tcactgtccc

58201

caacccccaa gagaggcctc ttggcccagg gactgcaggg aggatgaagt caggagcaga

58261

agcatggggt agggggctca ggtgggcaga ggaggcccct ctgtgaggag gaacggcaag

58321

cgaggaggga acaggggcac cggcagtgcc tggcaagctg ggtgatgtca cgactacgtc

58381

ccgaccacac agtcctctca gccagcccga gaagcagggc cctcccctga cccccatctg

58441

ggcctgggct tcagttttct cctccctgca atggggtgac tgtttgcctc caggagaggg

58501

gagcatgtaa aggtggccac tctcttctgg cagacatgcc aggcctgggc cagcctccac

58561

ccctttgctc ctgcagcccc tgctgacctg ctcctgtttg ccacaccggc ccctcctggg

58621

ctgatcaggg cccccctcct gcaggaagcc ctctgggaca agcccagctt gctgtaactg

58681

tggctttcca ctgtgacctg caacgtggga ggctgttact taaaactccc atgactggtg

58741

gattgccggt ccccagaaca aggccacgca tccctggagg ccctcgagac catttaaggt

58801

agttaaacat ttttacttta tgcattttca tgtgtatcag aaagaaaaaa aatgtatcat

58861

cagttcatca aatccatgat ttcttgacca atattgctaa gatgaggctg aaataggcat

58921

ttccattttt aaaaaactga atcactctga agaaacagat ggcaggcttc cctggtggtc

58981

cggtggttaa cagtccatgc ttccagtgct gggggcatgg gttcgatccc tgaaaatttt

59041

aaaaaggaag aaaaagatgg ctcccccgtc cctgggattc tccaggcaag aacactggag

59101

tgggttgcca tttccttctc cagtgcatga aagggaaaag ggaaagtgaa gtcgctcagt

59161

cgtgtgcgac tcttagcaac cccatggact gcagcctacc agactcctcc gtccatggga

59221

ttttccaggc aagagtactg gagtggggtg ccattgcctt ctccaggcaa acggcctgct

59281

actgctactg ctgctaaatc gcttcagtcg tgtccaactc tgtgcgaccc catagacggc

59341

agcccaccag gctcccccgt ccctgggatt ctccaggcaa gaacactgga gtggggtgcc

59401

attgccttca gcctgctgct gctgctgcta agtcgcttca gtcgtgtccg actctgtgtg

59461

accgcataga cggcagccca ccaggctccc ccgtccctgg gattctccag gcaagaacac

59521

tggagtgggt tgccatttcc ttctccaatg catgaaagtg aaaagttaaa gtgaaattgc

59581

tcagtcgtgt ccgactctta gtgacccaat ggactgcagc ctaccagggt cctccatcca

59641

tgggattttc caggcaagag tactggagtg gggtgccatt cggcctaggg agtgagaaat

59701

cacggctgtc ttccctcttc tcgccctcta ggggtctctg tggagcctcc ctggagaggc

59761

cgcggcggct ccggggactg gagggggagg gggggttgag tcagccggtg gccctcccct

59821

cgctgcccgt ctcctccctt tttaggcaca agctgggcgc cctttttagg cgcagcctca

59881

ccctgcgggc cactgcccgt gtttcggctc cccggagata aaacagattg cctgcacccc

59941

gggtcatcac aaggattgta tgaccgtttc ccagtgtgct caccaccctc cctctgattc

60001

tcagagacgc gccctcgcct caggaggctg ctcatcccag gccaaggggc ggcgtggggt

60061

ccccagcgcc ccgcacagac actgccttct gaccacctcc tcccaacagc ttacctgcca

60121

agaaggcctc ctgacccctc atcctgcccg gtggtttgga gaaagcctca tctggcccct

60181

ccttctcggg gcctcagttt ccccctctgt gaactggcgg attctgccaa gctgacgtcc

60241

tggccagccg cctccccgtg gccagtgtcc cccgggacac agctgaatgt ccctgctcgg

60301

gatgcacctt cccaagttgg cctgtcagga ggcgggggcg agcagggaaa cccgactcct

60361

ctcagacggc ccatcgcatt ggggacgctg aggcccggag cagcggcacc ctcctggcca

60421

gggtcattct cccgccccgc cccgtccctc cgggcctccg agaccgcagc ccggcccgcc

60481

ccgggaagga ccggatccgc gggccgggcc accccccttc cctggccgcg ggcgcggggc

60541

gagtgcagaa caaaagcggg gggcggggcc ggggcggggg cggggcggag gatataaggg

60601

gcggcggccg gcggcacccc agcaggccct gcacccccgg gggggatggc tcgggccgcc

60661

ggcctccgcg gggcggcctc gcgcgccttt ttgtttttgg tgagggtgat gggggcggtc

60721

gcggggtact attttttcat ttataattgg gtattagcta gcgagtggaa ccacaccctt

60781

attccactat agccaatttt tgcgggggca tcttacatta cagactcgcc cgcctcttat

60841

ttcggtacag catatcagat cgtctctrta ctcagacact agtgattatt gtctatagta

60901

cacaaaaaga acggttgtgt cggcgtaatg gttgcatttt ccctcctcgt ttctcctgac

60961

cacctcaatt acaccaacac tctactattt aaatcacgta ttgtacgcca ccctccgccc

61021

gcgaactaaa agaatgtgca gatattctga agataaaatc gttcattgtt acgccccgcg

61081

cgcttcgcgt atattactct tagaacttct tattcgcccg agcagttatt caccccccgc

61141

aactagatgt cgccttaata tttgttctaa ccgttrtgga ttctaacgat aggcgggaaa

61201

ggtagacatt cgaccgctac gacaactaaa atcgacgagc acaggctatt tatatcgcga

61261

ccacacgcgc gcggtataca naccgtaaaa ttatctaaca tcgagagtaa gggcacagag

61321

cgaaatacaa gcggcgtggt gggaggtgtg tctgtagtga attcgcacct cgcgccgccg

61381

cctctgtgcg tcgnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

61441

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnngatataa

61501

tattaataaa cagcggatag atgtgtgtaa gggaggaggt gcataagaga ttaaagagag

61561

gcgggcggag agaaatagag tagaggagga tgagagaaaa aagaaagcaa gcgtaggtac

61621

aacggcgggt gggtagtatg ataaagtgag tgtatatatt tgagtaaagg aagggtagat

61681

ggagtataaa gaagtaagga gaggagaggg cggcggagag agagagtgca aagaaaataa

61741

gtgggcaaag gcggggtggg tgagaagcag tagaagagaa gatagagaag ggggaaaaag

61801

aggaaaatga ggattagaac aagtaggaca ggatagatgt gaaaaatgag atcaggtcaa

61861

ggtggagaaa aagtagaaac tggggcgtga ttgtaaaaaa gggaggccgc gatggggcag

61921

caccataagc gaagagatga attaatgaaa gcaaggcagg gagaatcaaa tgagttgggt

61981

ggaggaagga ggctgtgact tccttcgctg ccggaaagag aactagaata gcctcgggct

62041

gtggggggag gtaaagataa agtgacttct gggccctggg ggaggcccag gagtttctac

62101

cgagctgagc tgggtgcctc tcccaaatgc ccaaccccct gagagtcgac gggagagcac

62161

agcctggcca aacctgggca gggcacacgt gtccttcacc ccacagtggt cacgagccca

62221

gcgtggtccc tgcgtctggc gggaaacaca gaccctcaca ccccacacaa gggtccggcc

62281

gctttcaaat aacagcagcc gtgccctctg ggccggtgac ccggacacag agagatgaag

62341

tccgcatctc tcagagtgcg ctgtcctccg cccggtcagg cccgggtccc ctgcttctct

62401

gaggtcacca ggagggattg catgtgggtc tcagggacac aggttcagtg atgtgacaga

62461

gggtagtggg tcccagcagg gccggtcttt ggacccgttt ttctgaaaag ccagttggcg

62521

acctggggtc acagcaaagc tgatcctgtt tggccaggag tctcccagtg acggcctccc

62581

ccagaacatc gggcccagtg ggggctccag ggggtagact tgcctcccag ctcacgcccg

62641

tgtcttgaca agtccatgat ttggtaaaat taatttgtgt tggatggagt tgatttagtg

62701

gtgtgtgagt ttctgtggcg cagcaaagtc aatcagttac gcatacacat gtatccagct

62761

cttcctacga ttctgttccc atataggtca ttatggggtg tcaggtagag cttcctgtgc

62821

tacgcagtac ggccttattc agttcagctc agtcgtgtcc gactccttgt gaccccatgg

62881

actgcagcac gccaggctcc cctgtccatc accaactcct ggagcttatt caaactcatg

62941

tccatcgagc cggtgatgcc atccaaccat ctcatcctct gtcgttccct ctcctcctgc

63001

cttcagtctt tcccagcacc ccctagagaa gggaatggca aaccacttcg gtattcttgc

63061

cctgagaacc ccatgaacag tacggaaagt ccttattagt tttctatttt atatatagca

63121

gtgcacacgt gtcagcccca atctcgcaat ttatcacccc cctccgccgc cgattggtag

63181

tcatgtttgt tttctacatc tgcgactcta tttctgtttt gtaaacaagt tcatttacac

63241

cactttttta gattctgcac atacgtggca agcccacagc aaacatgctc aatggtgaaa

63301

gactgaaagc atttcctcta agatcaaaaa caagacgagg atgtccactc actccgtttt

63361

tactcaacac agccctgaac gtcctagcca tggcaatcag agaagagaaa gaaattaagg

63421

aatccaaatt ggaaaagaag aagtaaaact cactctttgc aaatgacatg acacttatac

63481

ccagaaaatc ctagagatgc taccagataa ctattagagc tcatcagtga atttgttgca

63541

ggatacaaaa ttaatacaca gaaatctcct gcattcctat agactgacaa caaaagatct

63601

gagagagaaa ttaaggaaac catcccacgg catgaaaaag agtaaaatac ctaggaataa

63661

agctacctaa agaggcaaaa gacctgtact cagaaaacta taaaatactg acaaaggaaa

63721

tcagacgaca cagagagaga gagataccac gctcttggat gagaagaatc gatagtgtga

63781

caatgactat actacccaga gaaacataca gattcagtac aacccctatc aaattcccaa

63841

tggcattttt cacagaatca gaattagaac aaaaagtttt acaagtttca gggaaacaag

63901

aaagatccta aagagccaga gcaatcttga gaaagaaaaa tggagctgga agagtcaggc

63961

tccctgagtt ctgactgtgt atacaaagct ggcatgattt ttaacagcag gggtgtaaat

64021

gaacttgttc acaaaacaga tggtggggtg ggcttccctg gtggctcagc tggtaaagaa

64081

tcctcctgca acgcaggaga cctgggttcg atccctaggc tgggaagatc ccctggagaa

64141

gggaaaggct acccactcca gtattctggc ctggaaaatt ccaaggacca tatagtccat

64201

gggtttgcaa agagtcggac acgactgagc gacttccaat cctggaaacg tcccattgtg

64261

gacggtgaac tggggttgtc caagctcagg gtaaccgttt gctgagtgac tgacactcct

64321

tctcatgggt taaaatgtgg ggcccaaggc caggaccaga ccccgcagtc agccaggcag

64381

accctgtgca gccccagcga gtgtgtggcc gccgtggagt tcctggcccc catgggcctc

64441

gactggagcc cctggagtga gcccattccc tcccagcccg tgagaggctg ggtgcagccc

64501

taaccatttc ccacccagtg acagatccgc ctgtgtggaa acctgctctt gtccccaggg

64561

aacctggcag gactcaggga gaatgtctca gggcggccac agatcagggg ctgggggggc

64621

agggctgggt ccagcagagg ccctgtgccc actccccgga aagagcagct gatggtcagc

64681

atgacccacc agggcaccga cgcgtgcttg cacacaggcc gccccctcat ggtgacactc

64741

ttttcctgtg gccacatctc gccccctcag gtccctcctg ctccccagct cctggcctgg

64801

gaacctcttc cccgccccgg ggacgtcagg gctggtgtcc actgagcatc ccatgcccgg

64861

gactgtgctg atcaccagca cctgcacccc ctctcgggtc tcaccaggat gggcaactcc

64921

tgcccatcca gcacccagcc tcctgggtac acatcggggg aggagggaga agcctgggcc

64981

agacccccag tgggctccct aaggaggaca gaaaggctgc cgtgggccag ccgagagcag

65041

ctctctgaga gacgtgggac cccagaccac ctgtgagcca cccgcagtgt ctctgctcac

65101

acgggccacc agcccagcac tagtgtggac gagggtgagt gggtgaggcc caggtgcacc

65161

agggcaagtg ggtgaggccc gagtggacag ggtgagtggg tgaggcccag gtagaccagg

65221

gcccatgtgg gtgaggcccg ggtggaccag agtgagcggg tgaggcccag gtggacaggg

65281

cgagcgggtg aggcccaggt ggacagggcg agcgggtgag gcccgggtgg acagggcgag

65341

cgggtgaggc ccgggtggac agggcgagcg ggtgaggccc gggtggacag ggcgagtggg

65401

tgaggcccgg gtggaccagg gcgagtgggt gaggcccggg tggacagggc gagtgggtga

65461

ggcccgggtg gaccagggcg agtgggtgag gcccaggtgg acagggtgag tgggtgaggc

65521

ccaggtagac cagggcccag agcaaagccc cggctcagca gtgatrtcct gagcgcccac

65581

tgcttgcagg gacctcagcg atggtaaggc agccctgttg ggggctcccg actggggaca

65641

gcatgcagag agcgagtggt cccctggaga aacagccagg gcatggccgg gcgccctgcc

65701

aggctgcccc aggggccaca gctgagcccc gaggcggcca ggggccggga cagccctgat

65761

tctgggttgg gggctggggg ccagagtgcc ctctgtgcag ctgggccggt gacagtggcg

65821

cctcgctccc tgggggcccg ggagggacgg tcaggtggaa aatggacgtt tgcgggtctc

65881

tggggttgac agttgtcgcc attggcactg ggctgttggg gcccagcagc ctcaggccag

65941

cacccccggg gctccccacg ggccccgcac cctcacccca cgcagctggc ctggcgaaac

66001

caagaggccc tgacgcccga aatagccagg aaaccccgac cgaccgccca gccctggcag

66061

caggtgcctc cctctccccg gggtgggggg aggggttgct ccagttctgg aagcttccac

66121

cagcccagct ggagaaaggc ccacatccca gcacccaggc cgcccaggcc cctgtgtcca

66181

ggcctggccg cctgagacca cgtccgtcag aagcggcatc tcttatccca cgatcctgtg

66241

tctgggatcc tggaggtcat ggcccctctc ggggccccag gagcccatct aagtgccagg

66301

ctcagagctg aggctgccgc gggacacaga ggagctgggg ctggcctagg gcaccgcggt

66361

cacacttccc ctgccgcccc tcacttggga ctctttgcgg ggagggactg agccaagtat

66421

ggggatgggg agaaaaatgg ggaccctcac gatcactgcc ctgggagccc tggtgcgtct

66481

ggagtaacaa tgcggtgact cgaagcacag ctgttcccca cgaggcctca cagggtcctt

66541

ctccagggga cgggacctca gatggccagt cactcatcca ttccccacga ggcctcacag

66601

ggtccttctc caggggacgg gacctcagat ggccagtcac tcatccattc cccatgaggt

66661

ctcacagggt ccttctccag gggacgggac ctcagatggc cagtcactca tccattcccc

66721

acgaggcctc acagggtcct tctccagggg acgggacccc agatgggcca gtcactcatc

66781

catccgtctg tgcacccatc cgtccaacca tcacccttcc ctccatccat ctgaaagctt

66841

ccctgaggcc tccccgggga cccagcctgc atgcggccct cagctgctca tcccaggcca

66901

gtcaggcccg gcacagtcaa ggccaaagtc agacctggaa ggtgcctgct tcaccacggg

66961

aggagggggg ctgtggacac agggcgcccc atgccctgcc cagcctgccc cccgtgctcg

67021

gccgagatgc tgagggcaac gggggggcag gaggtgggac agacaggcca gcgtgggggg

67081

ccagctgccg cctggctgcg ggtgagcaga ctgcccccct caccccaggt acaggtctcc

67141

ctgatgtccc ctgccctccc tgcctccctg tccggctcca atcagagagg tcccggcatt

67201

ccagggctcc gtggtcctca tgggaataaa aggtggggaa caagtacccg gcacgctctc

67261

ctgagcccac ccccaaacac acacaaaaaa atccctccac cggtgggact tcaccagctc

67321

gttctcaggg gagctgccag ggggtccccc agccccagga agccaggggc caggcctgca

67381

agtccacagc cataacacca tgtcagctga cacagagaga cagtgtctgg tggacaggtg

67441

cccccacctg cgagcctgga gagtgtggcc ctcgcctgcc ccagccgcgg tcagtcggct

67501

cagcaaccgc tgtccactcc cagcgccctg gcctcccctg tgggcccagg tcaagtcctg

67561

ggggtgaagc taagtcaggg agcctcatcc atgcccagcc cggagcccac agcgccatca

67621

agaaatgctt cttccctcca tcaggaaaca ttagtgggaa agacaagagc tggggggttc

67681

tggggtcctg ggggatcaga tgaaggggtc tgggagcagc agcagcctca ggcaccccaa

67741

aacaaggccc aggagctgga ctcccagggc tgaggggcag agggaaggaa ggcctcctgg

67801

ggggttggca tgagcaaagg cacccaggtg ggggctgagc acccctcggc tggcacacac

67861

aggcccccac tgcagtacct tccccctcgg agaccctggg ctcccgtctc ccgcctggcc

67921

tgccatcctg ctcaccaccc agaaatccct gagtgcggtg ccatgtgact gggccctgcc

67981

ctggggagga aggagattca gacagacagg atgccagggc agagaggggc gagcagagga

68041

tgctgggagg gggcccgggg aggcctgggg ggcagggggg caggagttct ccagggtgga

68101

cggcgctgtg ctatgctcgg tgagcacaga ggccccgggt gtcccaggcc tgggaaccca

68161

gcagaggggc agggacgggg ctcaaaggac ccaaaggccg agccctgacc agacctgtgg

68221

gtccagaagg cagctgcgcc ctgaggccac tgagtggccc cgtgtcccga accaccgctg

68281

aaacatggga cacacgttcc caggcggagc cactcctgcc ttccgggagg ctcccagcgg

68341

gctcatcgct ccatcccaca gggagggaaa ccgaggccca gatgacgaac atcccggcga

68401

gcaggtcaaa gccagcccct ggggtcccct ctcccggcct ggggcctccc ctctgcaggg

68461

tgggaaaccg aggccacaca ggggctccat ggggctgccc tctgccaggc cctggacacc

68521

ccgcgggtga cccccgcctc tatcatccca gccctgccag gccctggaca ccccgtggat

68581

gacccccgcc tctatcatcc cagccctggg ggacagatgg gaggcccaag cgtggacccc

68641

ctggccaccc cctaccccac agccgggagg agccgggagc tggtggccaa gggcctagag

68701

gagccagann nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

68761

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnca atatagaggg

68821

ggtgggataa agggtaatat gatgtttagg tagttagagt taaattagaa gggtttggat

68881

aaagattaat aaaattacaa gcgtacatat cgtgtgagtg tgggtgataa tatttgtgta

68941

tgtggggaat agaagtgagt gtgagtagta ttcaagatgt aagtgtgcga atacaggtct

69001

gagcgatttg aatggaagtg aaaaaaagcg tgtgtgtgga ggaggcggga gaggaagata

69061

gtgtggggga agaaaagaag gctagtgggt aaagaaatat cagtaggcgg ttgacgaaag

69121

aagaactagg aagaattaat ataaaaataa agggaggatt aaaaaataaa gagggaggag

69181

gtaacggaaa tagttagtta agaaaagaat ggagagtgga ggtaagataa ataagggagt

69241

aatgggagtg aggaggaata aataaaaaaa tggtgaggga aaatagagta gaatgagaac

69301

aagaatgaaa aagggagtga agggggtgaa aaaaagtgaa gttgaaaaaa gaggaaaaaa

69361

aaggagaaga taaaaaaata aaataaaaaa aggaaaaaaa agaaaaaaag aaagaagggt

69421

taaaggacga aaagaaggga agagaaaaaa aatagtttaa gtgggggagg gtaaaaaaga

69481

attaataaag taaatatggt tgtggtcgaa aaaaaaaaaa aaattgttgt gttgatgaga

69541

agaaaagaaa aaagaagaaa gggaaaagca aaaagaaagg agagaaaaag acaaccccac

69601

cgcccgggcg catggagggt gaggatggcg cacgcccgcg gatggcacag catcacagca

69661

atcctaaaac gttttcagac cggtgcatct tcaccgcgcg cgcgccccgc ccggccctcc

69721

tcccgccctg accgcggacc cccacccgca ccggggagcc tacccccacc ccggggacgc

69781

tccgccacgc taaggtcagg actgccgtga agacgcgccg gggtgaaaac gttttatctt

69841

catgacataa gcgagtggtt ttgaaacagg tttacaaacc ctcgtgaaga cgcaccctta

69901

gcgttaggtt ttgttttttt accatgtgac gatgcaacta ttttcttcct ctcttccaca

69961

gtggctagtc gcctccagag cgaggggtat ctcttgtaca gagaccctcg gaacatccgg

70021

aggtagtttc ccacctaggg gtaaagcgag aaggctcatt acgagggccg gggctcctcg

70081

gggaagggca gggccctggc gcagaggctc tgccacctca gtgacacgca gaccacgcgc

70141

ggcctgcagg cgccgggctc tgaaagcagg caaagcccga tctgctgaca tcaggggttc

70201

cgcagcagcg aaggtctggc ccgcacctgg cccactggca gggggtaagc tctgcctccc

70261

gacgacagca ccaagttcag gaagggccac gcagacactg gtgagacacg gcccccccgg

70321

agctgcccga gaagctctga ctttgcacta aagatctctg gcgcggtcca aaaatgtaag

70381

gcctctcttc cttttatctt aagactttga tatttttacg atgtaataaa taccaagaag

70441

ggcttttaat ttcagacaga tgtaggataa tttcccccgt agcccttgct gctttgttta

70501

gtaacgaaac tcaaaccaga aataccaaag gaattttcca aagagtttca aaagcgctta

70561

tcagcaatca ctagactgct gcatacatca tcactgcccc aaacaatagc ctgcctgtgc

70621

cagttactca aagtactact tacttgacga aaacaaatct agtcctaacg tttttacaaa

70681

gaaactccac tcttccgcca acttttcaga aacaaccact cgatcacgtg gcaggggacc

70741

gtggctggac tgggtgctgg ctccttctgt gaccaggcaa cactgccccc ttctcggcct

70801

ccctacgcct cttgacaaat gttcatcagc tgtaaagttc accccacgag ggacccactt

70861

ctgctatttc ccacgtacct accccattat aggagttttc tttgtgacag tttctgcatt

70921

tttcatggat ttagaggttt acataatcag ggctgctgaa cagcatgaga gacgtggcca

70981

caaggtccct cctgcacctt gccgcagggg cagggcgagt tatctggctt gagcgtggtt

71041

accatcaggg ggtaaacaca gtttccagga cgtttttgac aagacactga cccggatgcc

71101

cccactacca ccgtgcaggt cctgcaggcc tcccagcctc ccaggccctt cccgaggtcc

71161

cttcggaact taggggactc ggtctgcccc cctgggtttt ccctgcacca gcttttgccc

71221

cctctggacc caggtttccc aaatggaaaa cgaaggtgtg ggtatggaag ctccctgggc

71281

tcctctcagc tgtgcctctg catggtgatg acggctgccc atcggggggg gcaggactgg

71341

ggcagctgcg gacaccctcc caaggctgct acccccgagt ggtgtggggc gctgtgggca

71401

cgctctgctc agcgcacctc ctggaaacca gcgcctgccg tctgcccggg gcaaccggcc

71461

cgggagccaa gcaccactgc cgtcagagga gctgctggct gtgagtggac gccagtctag

71521

ctctgaaccc tgcccaggcc tcctgaggtc tgaacattgt aaaatcaggc cccggacggc

71581

aactgcctct ccctcctgcc gtctggtctc cataaactgc atctcaggac aaatcttctc

71641

actcaccagg gctgaaacag aagactgcag ctatctttct caaatctaag gtgtgctaca

71701

gggcaagtcg cagaaactgt ctggcctaag catctcatca gatgcctgag acaagagctg

71761

tggacgccaa gctggagcca gagctcctcg cgttctgccc acctggcacc gcgttccacc

71821

cagtaaacgc aggcttgatt ttcaaaagta ccaccgactc agagccaatg ctaaaccgac

71881

cacttttcct gcccattaga ttgggtgaag gtttctttaa tcaatctgcc agtcaccaca

71941

tgccgcctct gtgcccacag gctggcgaag acctttctga gctacggcat gtggcaggca

72001

gcggcacctc tcttcagtac ggccagctgt caaggggagc gtttctgtga tgatgtgaaa

72061

atacattgca tccggccccg tgtttcatga acacgggtga ggaaaggaaa cacacaaagt

72121

tctgatgcga ctgacagcac gggtctcata actcaataca agtcagacaa accacaggga

72181

gtcacaggga atcccaatag cctcatctag tgtgaccatc atgaggctta atttattcag

72241

tgtattcaat cataaagagg gggaaaaatt gtaaaaaaaa aaaaaaagaa agagtgaaat

72301

gtgtaatact gaaaactgtt gctaggagaa gcaagcattg gcgtttgtaa ctgctttgac

72361

tccccaagac ccacactcgc ctcgctacaa aagggaggca ctgctgctca gtacttgcac

72421

acccgaactg cggatttgta atttaaaaat gtgtgtgtgg acacagcaca agccagagac

72481

tgccaaaggt tgagggacac tggaagaact taatatactt ggtgcatgct gccagtgaca

72541

gtcagtcacc agctgattca atagagtgcc gaaaggtcac cttttaggta aggatgaagg

72601

ggttctgggc tcgtttactt gcactaactc agagttagtc cgagatatcc gaagtgccag

72661

gtgcctccca tttgctgatg gatctagctc agggacggct gggccctagc catccaaaaa

72721

tcaagcattg ttctcccaac ctgtcttctc gctgataatg gaaggtcaga acgcccaccc

72781

gcccacctca aagtcaaaga acaccaagcg ggtgagtccc cactaagctc ggtgtttcca

72841

atcagcggtt tcaggattcc agctggggca atgagggagg gagcgtgcga gggatccaac

72901

acctcgcccc gtgcgcagca agggataacc caacaccccg tttctgtacg tccggctgga

72961

gttgtggaac tcagcgcgga cccggggcca ccgcgacccc cgggaccctg gccgcgcggc

73021

gcatccccgc tgccgggaca cgggtaagcg tccccaaact gccggacgcg gggcggggcc

73081

ttctccgcca cgccccgata ggccacgccc aaggacaagg atggtcgtgc ccagacggcc

73141

ggggcgggnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

73201

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnncg gagggggggg

73261

ggcggggcgg gggctgccgc cgcgcgtata ggacggtggt cgcccggcct ggggtccggc

73321

cgggaatgac cccgcctctc cccgcatccc gcagccgccc cgccgcgccc tctgccgcgc

73381

acccgcctgc gcacccgccg ccctcggccg cggccccggc ccccgccccg tcgggccagc

73441

ccggcctgat ggcgcagatg gcgaccaccg ccgccggagt ggccgtgggc tcggctgtgg

73501

gccacgtcgt gggcagcgct ctgaccggag ccttcagtgg ggggagctca gagcccgccc

73561

agcctgcggc ccagcaggtg agcaagggct caggggaaac tgaggcccga cacagagccg

73621

cagcaagaag gatcctactg gtcactcggc tgttggcctg gggtcatcac aggcgggctc

73681

tcccaaccca tcccctgagg ccaaggtccc tagaaccccg tgggcagaca ccaaccagcc

73741

ctttaaatat ggggaaacca aggtgcttag gggtcagaga tagccctagg tcgcccaacc

73801

ctagtagaag ggagggctgt tggagttcct gagtgcccgc tctcccaccc cccgggaggc

73861

cccttcctga gcccaagggt gactggtagt cagtgacttt gggcctgccg acctgtaccc

73921

cactgggcac cccaccagtc ctgagccaca tttgggctta gtgacggggt cagggatcat

73981

gaggatcaat gtggctgagc caggaaggtg ttagaacctg tcggcctgga gttcatacca

74041

gcactgccct gggcttttct agacccatgt cccgcctcct gccccacctg cccctgttcc

74101

cgcaccccac cagcagcggc aggggcttcg agagggctgt gggctcaccc tatttcaggg

74161

atggagccgc taagacctgg ggcacactgc ccgctaggga cccctgaggc accagggccg

74221

ggggctctgc ggaggggcag ccgccacccc cagctttgga gtcctctccc gggtgcccag

74281

cccgagctga tccggctgcc tcccacgctg tgccccaggg cccggagcgc gccgccccgc

74341

agcccctgca gatggggccc tgtgcctatg agatcaggca gttcctggac tgctccacca

74401

cccagagcga cctgaccctg tgtgagggct tcagcgaggc cctgaagcag tgcaagtaca

74461

accacggtga gcggctgctg cccgactggc gccagggtgg gaagggcggt ccacggctcc

74521

cactccttcg gggtgctccc gctattccca ggtgctcctg cacttcccat gtgctcccga

74581

ttctccctgg tgctccctct cctcctggct gctcctttgc ctcccaggtg ctcccacttc

74641

tccctggtgc tcctgctcct cccggcggct cctgtacctt cggcctgacc tcctccctct

74701

acaggtctga gctccctgcc ctaagagacc agagcagatt gggtggccag ccctgcaccc

74761

acctgcaccc ccctcccacc gacagccgga ccatgacgtc agattgtacc caccgagctg

74821

ggacccagag tgaggagggg gtccctcacc ccacagatga cctgagatga aaacgtgcaa

74881

ttaaaagcct ttattttagc cgaacctgct gtgtctcctc ttgttggact gtctgcgggg

74941

ggcggggggg agggagatgg aagtcccact gcggggtggg gtgccacccc ttcagctgct

75001

gccccctgtg gggagggtga ccttgtcatc ctgcgtaatc cgacgggcag cgcagaccgg

75061

atggtgaggc actaactgct gacctcaagc ctcaagggcg tccgactccg gccagctgga

75121

gaccctggag gagcgtgccg cctccttctc gtctctgggg gcccctcggt ggcctcacgc

75181

tctgtcggtc accttgcccc tcttgctgat gcaatttccc cgtaattgca gattcagcag

75241

gaggaatgct tcgggccttt gcacctgacc gcatgagcag aggtcacggc cagccccctt

75301

ggatctcagt ccagctcggc cgcttggccg tgacgttcca ggtcacaggg cctgccggca

75361

cagaggagca ggcccttcag tgccgtcgag cactcggagc tgctgcctcc gctgagttca

75421

ctcagtgtct acgcacagag cgcccactgt gtaccaggcc ctattccacg ttccccagtc

75481

accgagcccc cagggctggt ggggacctgc cctcgggtac actgtgtccc gtcacgtggc

75541

tttacgtgtg tctctgaggg aggctggcat tgcggtccac ctctcagcac aaacatctgt

75601

cccctgggaa gggggtccca tttctgggtg cgagcagccc cctggggtcc gtgtctcctc

75661

cttacctggc tcaaggcccc ggctcctggg tcctggacag cagggagccc acccctcggg

75721

gctgtggagg gggaccttgc ttctggaggc cacgccgagg gcccaggcgc cgcctccggc

75781

cgtcgccctg agggagcagg cccgacgcca gcgcggctcc tctgtgaggc ccgggaaacc

75841

ctgcctgagg gtgcgggtgg gcaggtgccc ctgcccccag gctctcctgt gtgagtgaca

75901

ctcaccagcc agctctggat gccacccatc cgggttctcc aggaggcact catagcgggt

75961

ggggtcccct ccctcccccc tctgtggagg gagggagtct gatcactggg aggctggtgg

76021

tccgtacccg cccccccgac tctggacgtg tttactaccc ccgcctgggc tcaggacagg

76081

gcattggatg ggaaggacag ggctgggtcc tggccaggct gggggctctg cagggcatgg

76141

gtgcccctgt ctcttcttat attccaacgt cactgcaggg gggcgcaaat cttggacccc

76201

acttactgat gatctgcatc aggacatagg tcccccctcc tgcagcgggg ggctggccac

76261

ggagggcgct ggggaaggcc cctcctccag cccctcggcg aggctcacca ggtgcccatc

76321

ctcagccagc agggcgacgc tcgctgggag ggcggagagg gaggcagggc agggctggta

76381

cgacccccgc tggggcgggg gggccctcag ccggtcctcc agcacccttg ctgccccccc

76441

tcaccgtcag ggggcacctg gccgctctgc ctcaggtggg cggtgagggt cccaaggcca

76501

caccaggtgt tcaccagctc ccagcagctg gctgtgggag aggggcagag gtgggcgcat

76561

ggcacccgcc ttccccccag accaggatgc tctgccttcc tcccgcccat ctccccagac

76621

atctgaagga ctcttgcctc caccatgcag ccccgcctcc accagaagct caggttcccc

76681

gccccccctc cccgaagctg caggacccct gaccagcgaa gagatgggac agttggaaca

76741

cacgctcccc cagcagcggc acagcagctg tgtggcccag aagagcccgc ctgtttccct

76801

caagcaactc cccatggatg tcatcccatg gacaccccct tccccacacc gcctcctcgt

76861

tctccccctc caaggcagag ggaacgcacc cccacctgtc tgctaggaca ggggacccca

76921

cttacctccg aacatcacct tgataaacat ggccgtggtg gggacagatc cctccgaccc

76981

ccaacttccg acctggggaa ggagctgggg tggagctcga ctgcagggtg gggccctgtg

77041

ggaggtgtac gggtggagag ggtgatgggt gggtgggctc aagcggagct ccttgctcag

77101

tccaggcggt ccctgcagct agtccaggat cctcagcctt ctccccctca ctggatcagg

77161

gaagactgag gttccctccc ctgccccccc acccagcttc caagctggtc tctgtggcag

77221

tgggagctgc caagaggtct gagcggccag tatccgggta acggggtttg tggagggtcc

77281

gggcattccc ggtgcagggc tctagtgggg gctggagcct cgggcccaga gctgtccaga

77341

gaccagtgcc ctcccaccgc cgccgcccgc aaggagagac agagctccca ggcggggagt

77401

cggaggttcc tggaggggga gcatcctcaa ctctgcaggc ccccttccca ggcgcactcc

77461

cggcctcccc gtcttctgtc ccctgctctt gttgaagtat gattggcata cagttcacag

77521

ccactcttcg gagtgttctc cacactaagg atacagaaca tgtccctcgt ccccccaaac

77581

tcccagccag gctgtcacga agagggaggc ggccgacggg gcagggcctt gcactcctgc

77641

gtgtggggtc cacaggggtc gtccccgtgt cggtggcccc ttcctctcac gccaggaggg

77701

tccccttgcc tggaggtgcc gtggatccgc tcgctgcctg ctctttgggt tgtttcccgc

77761

atggggtgat gatgaagagg ccagtacaga cactcgccag caggtctctg ggtgaacagg

77821

catttatttc tctttcctga gggcagatcc tgggagtggg gtgccggacc gtccggggag

77881

agtatgcttc tgtttctaag aagctgccgt gttctccagt gtgctgcacc atgtcacggc

77941

ccctctgtgc gtctggactc aggagacctc cttctcagcg gccctccccc ccaggtggtc

78001

aggccatctg tgcccttctg ggggcagagc tcagcgccgg aggcgggagg aggcccagat

78061

cccagcgcag cccaccagcg ttgctctgct tccctcggca ttcatagctg gagaaagggc

78121

aaggagcacc ggctgaagcc ccacctggag gacgcacttc gatggcagca ggtgctcaga

78181

ggtggccccg ggcagcattc cccagacgca caggccagtg ctttcttccc aggacaccac

78241

tgtgtctggg gacccgagtc ctgcagcacg gtcgggagcg gctgtgccca gattccggcc

78301

tgcacccttg gctccagcca ccacccctgt ttgtcaaggg gtttttgtct ttcgagccgc

78361

cgaggaggga gtcttttgtc tgcagtgtca cagaagtgcc ataaagaggg gcccacagtg

78421

ggagctttat aacattggtg cggagggctg taacaggtca gggaggcact tgagggagcc

78481

ttctagggcg atggagatgt tctaaaattt ggtctgggta caggctacag agatgtgtgg

78541

gtgtgtgtgt gtgtgtgtgt aaaaccctcg agccacacgt gtgaggtctg tgcatgtgac

78601

cgtacacagg agacctcggt ggaaagcagc cacctgctct gactgcacct gtggatttcc

78661

agctcctgcc ctcaggcggc cctgcggggc ccactggctg acggggagac ggcaccgccc

78721

tcccccgctg tcagggtggg ggggctgacg atttgcatgt cgtgtcaggg tccagcggcc

78781

tcccttgcgt ggaggtcccg aagcacctgg agcgccgccc gcagaacagc ggactcctgc

78841

ctgcctccct gcctctggcc atggcctgcc cgcctctggc cctctttctg ctcggggccc

78901

tcctggcagg tgagccctcc caaggcctgg ctcacctagg ggtgtgtaag acagcacggg

78961

gctctagaag taaatcgcgg ggaagtaaat cgtagtgggc aggggggatg gtttccgaag

79021

gggccctgag ggggacagga gacctggcct cagtttcccc actggtgagt gaccagatag

79081

ccagggtacc tttggactct gactctgggg ggctctcaga gactggtctc ctactcagtt

79141

tttcagaggg gaagctggtg tggccttgtc actgccctgc agggcctcag ggacaagcta

79201

tccctgagga ggtctccagc agtcagtggc cggaggctga gccgatggat atagtaacag

79261

cccaggcggc ctcttggggg tggtcagcct gtagccaggt tttggacgag ccgaagtgac

79321

ctaagtgatg ggggtctgca gagcaaggga tgagggtggg cagcaggagg acccagagcc

79381

caccagccca ccctctgaat tctggaccct tagctgcatg tggctccttg ggaagacggg

79441

gcttaagggt tgcccgctct gtggcccaca cagtgctgat tccacagcac tggctgtgag

79501

cttttgggag cagattctcc cggggagtct gacccaggct ttgtggggca ggggctggag

79561

ggaaggggcc caggccagac ctgagtgtgt gtctctcagc ctcccagcca gccctgacca

79621

agccagaagc actgctggtc ttcccaggac aagtggccca actgtcctgc acgatcagcc

79681

cccattacgc catcgtcggg gacctcggcg tgtcctggta tcagcagcga gcaggcagcg

79741

ccccccgcct gctcctctac taccgctcag aggagcacca acaccgggcc cccggcattc

79801

cggaccgctt ctctgcagct gcggatgcag cccacaacac ctgcatcctg accatcagcc

79861

ccgtgcagcc cgaagatgac gccgattatt actgctttgt gggtgactta ttctaggggt

79921

gtgggatgag tgtcttccgt ctgcctgcca cttctactcc tgaccttggg accctctctc

79981

tgagcctcag ttttcctcct ctgtgaaatg ggttaataac actcaccatg tcaacaataa

80041

ctgctctgag ggttatgaga tccctgtggc tcggggtgtg ggggtaggga tggtcctggg

80101

gattactgca gaagaggaag cacctgagac ccttggcgtg gggcccagcc tccccaccag

80161

cccccagggg cccagactgg tggctcttgc cttcctgtga cgggaggagc tggagtgaga

80221

gaaaaaggaa ccagcctttg ctggtcccgg ctctgcatgg ctggttgggt tccaacactc

80281

aacgagggga ctggaccggg tcttcgggag cccctgccta ctcctgggtg gggcaagggg

80341

gcaggtgtga gtgtgtgtgt ggggtgcaga cactcagagg cacctgaagg caggtgggca

80401

gagggcaggg gaggcatggg cagcagccct cctggggtag agaggcaggc ttgccaccag

80461

aagcagaact tagccctggg aggggggtgg gggggttgaa gaacacagct ctcttctctc

80521

ccggttcctc taagaggcgc cacatgaaca gggggactac ccatcagatg nnnnnnnnnn

80581

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

80641

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn agagggtggg tgggtggaat ttaatatagt

80701

ggtgcgcgtg gagcgtgggc ggcgcattta aggcggtcat ctaaaatagt ggataggggg

80761

tggtgtgaca ataacgggtg gtggatgtgg tttacggggg gtgcaatagt tctgagtttg

80821

ttagtgtctt cttgatgggg ttgcggcgtg tggacctacg ccttgagtat gtgggggggg

80881

aaaagcagtg agggtagtag ggatgggaaa tattggtgga ggttctttgt tggtgtattt

80941

tttggtatta tgttgggtgg tggagtggtg ggttgggtgt aatttcgctt gcgttatgtg

81001

ttttttttct ttttcgtgtc gtgggttggg ttggttggtg ctttgtggtg gtggtgggtt

81061

gtggtataaa aaaaaatgtg tggttgtgct cagcttagcc ctataacggt cggctttgtt

81121

tcttgtttgt tctgtgggcg tgagcggatg gctcgggcct ccgtgctccg cggcgcggcc

81181

tcgcgcgccc tcctgctccc gctgctgctg ctgctgctgc tcccgccgcc gccgctgctg

81241

ctggcccggg ccccgcggcc gccggtgagt gcccgccgtc ctccagcccc cccgccccgc

81301

cccgccctcc acgccgaggg gcgccggctc gcagagctgg atccaagggg gtgcccggga

81361

gtggcccggc gcggcccgtt accccgaaac gctgtctggg tgccccgggg gtgtggtgga

81421

tagtgagctt cccgtccctg gaagtatgca agtgaagccg gcgccgggat cgctcgggct

81481

ggctggtgag cgggcgggac tcggtcgggc gctagacgca cgccgccagc cccccagctc

81541

ccagacctgc ccactccgcg cccgcccggc cgcgatcccg ggtgtgtgtg tgtgttgcag

81601

gggagggaca gcgggagtgg ctacagggct cccgactcac cgcagggaca aagacccgcg

81661

ggtccccagc tggcgtcagc cgccaggtgt gtggcctcgg tgagcacacc tccaggcggg

81721

agggttgagg gaagcgctgt ggggagggca tgcggggtct gagcctggaa gagacggatg

81781

ctaccgcctg ggacctgtga gtggcgggat tgggaggcta tggaatcagg aggcagccta

81841

agcgtgagag ctccggtgtg gcctggcggg ggtggtaggg gggggacgcc cctgtgtgtg

81901

ccagcctgcg tgtgccctaa aggctgcgcc ctcccccact gctggggctt cgggggacca

81961

gtcacagcct aggctactgc aggcgcacag ctccccggga gcccggccca cgcgggtgtg

82021

ccgctgagcc tccagcctgt cggggcaggg gtggggggca gggatggggt cgttagcggg

82081

gttgggggca gacgcccagg cagactctct gggcacagct ccggtgacaa gggaggtctg

82141

gcaagcctgg gccccttctg tccagccacg ccagctctgc cctggccagt cttgccccct

82201

ggcagtgctg gggatggaag ggggagcggg tacctcagtc tgggggccct gcctcctccc

82261

cagccccgcc cggcccccta ggcctagggg cagagtctag gggtcaccct ggggagctgc

82321

tgaatccgcg ggtttaggaa ccggagggac ctgggctttt gaaccacgtg gccctaggtg

82381

agccctccgg cgcctcggta gccctcaccc ccagccttgt ccaggtgggc gggtgggagg

82441

cgacagtgcc cactgctggg ctgaacagcg tctgcaggga ggccaggaga gctgggcaca

82501

cggacacgtt ccatcacctg gagctgccac tgtgccactt gtgcggggtc aggcggggtc

82561

tgagccgggc tgtcatctgt cacgccacag atatgcaggg ggcactcggg gtcgcctcgg

82621

acatgcttat ccctggacgg ctgttggcag ggccgggaag gctctgtaaa tatttatcca

82681

tcccagctca cagctttcag ggttgatgaa agccccgccg cccgcccact gtgggggacc

82741

ccgccttccc ttctggagcc agcggggtga gggggtgggg gagatggacc tgcctgccca

82801

ggagcaggcg gtgtgactct ggcaggtcac ttgacctctc tgagcctcag ggagggcccg

82861

ggatggtgtg cggatgctct ctgccttcct cccagcctga ccagtgtcct cccctcgggg

82921

tcgcctcctg cccaccgcag agggggtggc tatggggacc tgggccgatg gcaggcaggc

82981

cggagagggc atgcccggct cagccgtgcc cagcacttcc cagtccaggg gcccccgcca

83041

ctcccagccg ctggctgcct cccattttcc cgattgcagg ttggccccga ggctgaccgg

83101

agcctctggc tcagctggga gactgaattc cccaagcaat tcctcaagga tgtgtgaggc

83161

tgtggtgtgg tgcctatccg ggagaggtgg ggtgagcgga ctgggcacct ccgcccaggg

83221

caggcccagg gagacgctgg ctgacgagca ggcaggcctg caaggaggac gagcagccat

83281

ctcaggaatg tgggttttgg agacaagcca cagctggggg ggtggggggg ccatgggtgg

83341

ggaggcctga tccccaggtc taggtccagc tctgggctcc ctcgccgtgt gaccctgggc

83401

caagacctgg acctctctgg gccccgtctc ttcccctggg aggtggggcg atgcctgctc

83461

cccaatcccc cagggctgtg gatgaggcag acgaggtgtg tgctcatccc cacctcactg

83521

ccttccagca gccccgggcg gggggggtgg tggggactgg cgcacccagg tgaggatcag

83581

gccttggagc tagggagggc cccccagccc caggccagaa aggacacggg gagacagaat

83641

gcaggagggc ggcagagcag gggccagcgg tggggaaact gaggccaaga gcctgtggac

83701

gatgtgctcc aggaaaggac ctcgctgcct ggggcctgga tcctagagcc tccaggagcg

83761

gtgaccatga cgtgggcagg gaaccggagg ccccggcttg caggtggacc cggcgcgagt

83821

cactcttcct ctctggccct gagagcttcc ttccagctgc cgctcctgtg ttctaatgtc

83881

aagtctggag gcctgggggg caggtggggg ctgactgcca ggtgggggag ggcaggaatt

83941

tggcagagca gcgtcccaga gtgggagaag ccagcccatg gaggggactc tctccatgcc

84001

tgctgcccca aagggcgtta tagagagagg tcggttaccc cttcgccatg gccccgttcc

84061

cattgaacag atgggaaagt ggaggctgag agaaggctgt gacttgccca gggtctccgt

84121

ggcatggaac tgggcctgct gagtctcagg ccggggatct cgctgctgca ctgagcacgc

84181

caggatgcag gggtctgggc ctggacctag cgcctcgtgg gggcaagaga ggaaggcacg

84241

ctgggcctgc ctgtcaccct ccaccccacc gtggcttgtt gctcaggcct tcctgggggc

84301

agaggagagg ggagatttca ctcgctggca ggctaggccc tgggctctct ggggctccgg

84361

gggaacaatg cagccctggt ctttctgagg agggtccttg gacctccacc agggttgagg

84421

aaaggatttc tgttcctcct ggaggtcacg gagccgacat ggggaggagc aggggcaggc

84481

ccggggccca catcctcagt gtgagacctg gacgtgtgtc ctcccacctg acgctggggg

84541

tggggggtgg gggccggggg ggatccagtg aaccctgccc ccaaattgtc tggaagacag

84601

cgggtacttg gtcatttccc cttcctcctc ttcgtttgcc ctggtgggga cagtccctcc

84661

cctggggaag ggggacccca gcctgaagaa cagagcagag ctggggtcag gggtgtgctg

84721

ggagcgcaga gagcctcctg ctctgcctgc tggtcattcc tggtggctct ggagtcggca

84781

gctggtgggg agcggctggg gtgctcgtct gagctctggg gtgcccaggg cctgggagag

84841

ttgccagagg ctgaggccga gggtggggcc ctggcggccc ggctcctgcc ccaaatatgg

84901

ctcgggaagg ccacagcggc actgagcaga caggccgggc cagacgggcg ctgaggctcc

84961

cggcctctcc cccagctccg ctgtgaccct cacctgcggc ccggggtgcc agggcccccg

85021

cttggttctg ccgtgtcttt gcaggctgat cccacgggct ctccctgcct ctctgagctt

85081

ccgccttttc caggcagggg aaccgcgacc tccaggctgg gacgcgggga gggtgtatgc

85141

gccaggtcag aatcacccct ccaccgggag agcgtggtcc aggggccctg gcagggtggg

85201

gaccgagcat ctgggaactg ccagccaccc ccacccatgc agaggggaca tacagaccac

85261

acggaggctg tgcctccgct gcagcaactg gagaacaccc agccgcggcc aaacataaat

85321

aactaaataa taaaagtttt aaagatcgtt acttaaaaaa acaagtgtgc cccagtgatc

85381

ggaccccagt tcccggtgcc ctgagtggtg ccggccctgt gctgagcatg gcctggttgg

85441

ttcaccccca gatccacact aaagggtggg atcaccccta ctagtcaggt gagcagatgc

85501

agggggggag ggcggcagcc cctccatgct ggtgggtggc cgtggtgggt gtcctgggca

85561

ggagccagct cacggagctg gagaggacag acctgggggg ttgggggcgc ccaggaagaa

85621

acgcaggggg agaggtgtct gccgggggtg ggggtccctt cgaggctgtg cgtgaagagg

85681

gcaggcgggc ctgcagcccc acctacccgt ccccggccca aacggcggga gtaagtgacc

85741

ctgggcacct ggggccctcc aggagggggc gggaggcctt gggatcagca tctggacgcc

85801

agtcagcccg cgccagagcg ccatgctccc cgacggcctc cgctggagtg aggctgcgct

85861

gacacccaca ccgctgaccc gggcctctct cccgctcagg atgccccccg ccgccacccc

85921

gtgagcagag ggccacagcc ctggcccgac gcccctcccg acagtgacgc ccccgccctg

85981

gccacccagg aggccctccc gcttgctggc cgccccagac ctccccgctg cggcgtgcct

86041

gacctgcccg atgggccgag tgcccgcaac cgacagaagc ggttcgtgct gtcgggcggg

86101

cgctgggaga agacggacct cacctacagg tagggccagt ggccacgagc tggcctttga

86161

tctccacctg ctgtctgaga cacgctggag ctggggggag ggcagatccc tatggccaac

86221

aggctggagt gtcccccaac tcccgtgccc actgctcaac accccaaacc cacacttaga

86281

tgcactccca tgccctccct tgggagcacg gtctccacac ccacctggcc accccacaca

86341

cccgtggggc acggccgtta gtcacccacg caacctctgc gggcaccgtg ctgcgggcca

86401

ggccctggga ctctcagtga gggaggcaga cacggcccct cctccggggg agcgaggtgc

86461

tccccacgcc cggttcagct ctagcaccgc actcgggacc ctcacaggga gggacccact

86521

ggggcaggcc aggtgacggc tcgggtgacc tcggcccctg gcgctgagac tacacttcct

86581

gcagtgggcg gcgaagatgg gtgtggtgtc ccacgtcgtt gcagcgggga ctcctggggc

86641

ctcggaagtg tcctgggcgg ggagcctggg gagcaggaag ggcaggtctt ggggtccaag

86701

gcctccccac ggtcaggtct gggagggggc ctcggggctc ttgggtcctt tccgcccagt

86761

gcagaccctc gcggccacct aagggcacac agaccacaca aagctgtgcc catgcagtgt

86821

ggggagtggt gcgcaccctc agagcacact gggcccacat cacgcacgcc tgccccctca

86881

ctgtgcatcc ggggaaactc ctggccccga cagccagcgg ggctgacgct accccgtgag

86941

ccagacccag gcccccctca ccgcccctgt cctccccagg atcctccggt tcccatggca

87001

gctgctgcgg gaacaggtgc ggcagacggt ggcggaggcc ctccaggtgt ggagcgatgt

87061

cacaccgctc accttcaccg aggtgcacga gggccgcgcc gacatcgtga tcgacttcac

87121

caggtgagcg ggggcctgag ggcaccccca ccctgggaag gaaacccatc tgccggcagc

87181

cactgactct gcccctaccc accccccgac aggtactggc acggggacaa tctgcccttt

87241

gatggacctg ggggcatcct ggcccacgcc ttcttcccca agacccaccg agaaggggat

87301

gtccacttcg actatgatga gacctggacc atcggggaca accagggtag gggctggggc

87361

cccactttcc ggaggggccc tgtcgaggcc ccggagccgg gcccgggctc tgcgtccgct

87421

ggggagctcg cgcattgccg ggctgtctcc ctcttccagg cacggatctc ctgcaggtgg

87481

cggcacacga gtttggccac gtgctcgggc tgcagcacac gacagctgcg aaggccctga

87541

tgtccccctt ctacaccttc cgctacccac tgagcctcag cccagacgac cgcaggggca

87601

tccagcagct gtacggccgg cctcagctag ctcccacgtc caggcctccg gacctgggcc

87661

ctggcaccgg ggcggacacc aacgagatcg cgccgctgga ggtgaggccc tgctccccct

87721

gcccacggct gcctctgcag ctccaacatg ggctcctcct aacccttcgc tctcacccca

87781

gccggacgcc ccaccggatg cctgccaggt ctcctttgac gcagccgcca ccatccgtgg

87841

cgagctcttc ttcttcaagg caggctttgt gtggcggctg cgcgggggcc ggctgcagcc

87901

tggctaccct gcgctggcct ctcgccactg gcaggggctg cccagccctg tggatgcagc

87961

cttcgaggac gcccagggcc acatctggtt cttccaaggt gagtgggagc cgggtcacac

88021

tcaggagact gcagggagcc aggaacgtca tggccaaggg tagggacaga cagacgtgat

88081

gagcagatgg acagacggag ggggtcccgg agttttgggg cccaggaaga gcgtgactca

88141

ctcctctggg cacagctggg aggcttcctg gaggaggcgg ttctcgaagc gggagtagga

88201

taaaaggtat tgcaccccat gaagcacgtg tgatccttgc ccctagagac aaggctctgg

88261

ggctcagagg tggtgaagtg acccacatga gggcacagct tggagaatgt cgggagggat

88321

gtgagctcag tgtgccagag atgggagcct ggagcatgcc aaggggcagg gcctgctgcc

88381

tgagagctgg cactggggtg ggcagccaag tgcagggatg gagcgggcgc ccaggtggcc

88441

tctttgctgc tcagaacgac ctttcccatg tatacctccc agcgccgctg gcattgccca

88501

gtgtccttct tgggggcagg agtaccaagc aggcattatt actggccttt tgtgttttat

88561

ggacaacgaa actgaggctg ggaaggtccg aggtggtgtt ggtggcggaa ggtggccgct

88621

gggcagccct gttgcagcac acacccccca cccaccgttt ctccaacagg agctcagtac

88681

tgggtgtatg acggtgagaa gccggtcctg ggccccgcgc ccctctccga gctgggcctg

88741

caggggtccc cgatccatgc cgccctggtg tggggctccg agaagaacaa gatctacttc

88801

ttccgaagtg gggactactg gcgcttccag cccagcgccc gccgcgtgga cagccctgtg

88861

ccgcgccggg tcaccgactg gcgaggggtg ccctcggaga tcgacgcggc cttccaggat

88921

gctgaaggtg tgcagggggc aggccctctg cccagccccc tcccattccg cccctcctcc

88981

tgccaaggac tgtgctaact ccctgtgctc catctttgtg gctgtgggca ccaggcacgg

89041

catggagact gaggcccgtg cccaggtccc ttggatgtgg ctagtgaaat cagtccgagg

89101

ctccagcctc tgtcaggctg ggtggcagct cagaccagac cctgagggca ggcagaaggg

89161

ctcgcccaag ggtagaaaga ccctggggct tccttggtgg ctcagacagt aaagcgtctg

89221

cctgcaatgc gggagacctg gattcgatcc ctgggtcagg gagatcccct ggagaaggaa

89281

atggcaatgc cctccggtac tgttgcctgg aaaattccat ggacagagca gcctggaagc

89341

tccatggggt cgcgaagagt cagacacaat ggagcgactt cactgtctta agggccacct

89401

gaggtcctca ggtttcaagg aacccagcag tggccaaggc ctgtgcccat ccctctgtcc

89461

acttaccagg ccctgaccct cctgtctcct caggcttcgc ctacttcctg cgtggccgcc

89521

tctactggaa gtttgacccc gtgaaggtga aagccctgga gggcttcccc cggctcgtgg

89581

gccccgactt cttcagctgt actgaggctg ccaacacttt ccgctgatca ccgcctggct

89641

gtcctcaggc cctgacacct ccacacagga gaccgtggcc gtgcctgtgg ctgtaggtac

89701

caggcagggc acggagtcgc ggctgctatg ggggcaaggc agggcgctgc caccaggact

89761

gcagggaggg ccacgcgggt cgtggccact gccagcgact gtctgagact gggcaggggg

89821

gctctggcat ggaggctgag ggtggtcttg ggctggctcc acgcagcctg tgcaggtcac

89881

atggaaccca gctgcccatg gtctccatcc acacccctca gggtcgggcc tcagcagggc

89941

tgggggagct ggagccctca ccgtcctcgc tgtggggtcc catagggggc tggcacgtgg

90001

gtgtcagggt cctgcgcctc ctgcctccca caggggttgg ctctgcgtag gtgctgcctt

90061

ccagtttggt ggttctggag acctattccc caagatcctg gccaaaaggc caggtcagct

90121

ggtgggggtg cttcctgcca gagaccctgc accctggggg ccccagcata cctcagtcct

90181

atcacgggtc agatcctcca aagccatgta aatgtgtaca gtgtgtataa agctgttttg

90241

tttttcattt tttaaccgac tgtcattaaa cacggtcgtt ttctacctgc ctgctggggt

90301

gtctctgtga gtgcaaggcc agtatagggt ggaactggac cagggagttg ggaggcttgg

90361

ctggggaccc gctcagtccc ctggtcctca gggctgggtg ttggttcagg gctccccctg

90421

ctccatctca tcctgcttga atgcctacag tggcttcaca gtctgctccc catctcccca

90481

gcggcctctc agaccgtcgt ccaccaagtg ctgctcacgt tttccgatcc agccactgtc

90541

aggacacaga accgaactca aggttactgt ggctgactcc tcactctctg gggtctactt

90601

gcctgccacc ctcagagagc caaggatccg cctgtgatgc aggagtgagt gaagtcgctc

90661

agccgagtcc gactctttgc aaccccatag gactgtagcc taccaggctc ctctgtctat

90721

gggatttttc aggcaagagt gctggagtgg gttgccattt ccttctccag gggatcttcc

90781

caaccctggt ctcccgcata gcaggcagac tctttactgt ctgagccacc aggcaatgca

90841

ggagacctag gttcagtctc tgggtgggga agatcccctg gagaagggaa tgacaacctg

90901

cttcagtatt cttgattggg gaatcccatg gacaaaggag cctggaggcc tacagcccat

90961

agggtgcaaa gagacacgac tgagcaagtc acacacacag agccctacgt ggatgctcat

91021

agcggcacct catagctgcc atgtatcagg tgttggcatg ggcagccatc agcagggggc

91081

catttctgac ccactgcctt gttccaccgg atacacgggt gccttcctgt gtgtcgggcc

91141

cactcggctg tcagcgccca agggcagggc tgtcgggagg cacagggcac agagttaagg

91201

aggggatggg gacgttagct cctccccagc tctcagcgga tgcagcaggc aaaacaaacg

91261

ctaggaatcc tgccaaaccc ggtagtctct gcccatgctc gccccatccc cagagccaca

91321

agaacgggag ctggggggtg gcccggagct gggatactgg tccctgggcc cgcccatgtg

91381

ctcggccgca cagcgtcctc cgggcgggga aactgaggca cgggcgcctc cggcttcctc

91441

cccgccttcc gggcctcgcc tcgttcctcc tcaccagggc agtattccag ccccggctgt

91501

gagacggaga agggcgccgt tcgagtcagg gccgcggctg ttatttctgc cggtgagcgg

91561

ccttccctgg tacctccact tgagaggcgg ccgggaaggc cgagaaacgg gccgaggctc

91621

ctttaagggg cccgtggggg cgcgcccggc ccttttgtcc gggtggcggc ggcggcgacg

91681

cgcgcgtcag cgtcaacgcc cgcgcctgcg cactgagggc ggcctgcttg tcgtctgcgg

91741

cggcggcggc ggcggcggcg gaggaggcga accccatctg gcttggcaag agactgagnn

91801

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

91861

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnct gcaggtgccg gcggtgacgc

91921

ggacgtacac cgcggcctgc gtcctcacca ccgccgccgt ggtaaccgcc cccgggggtt

91981

gccaaggtta cgattggacc ctccccgccc cgaccctgct cccctagggt gggtgggtcg

92041

gggggcagtt tctaagatct cctggttccg cagcagctgg aactcctcag tcccttccag

92101

ctctacttca acccgcacct cgtgttccgg aagttccagg tgaggccgcc ccgccccttg

92161

cacttgctgg cccaacccct cccgcccagc gctggcctga ccgcccccca ccccgcccac

92221

cccacgcagg tttggaggct catcaccaac ttcctcttct tcgggcccct gggattcagc

92281

ttcttcttca acatgctctt cgtgtatcct gcgccgtggt ggaagcggga ggagggcggg

92341

gcgggggacc gggcgggagg cagcgggccc cgggaagctg agaccctcca aggggcacgc

92401

ttcctatacc aaagccgcag gttccgctac tgccgcatgc tggaggaggg ctccttccgc

92461

ggccgcacgg ccgacttcgt cttcatgttt ctcttcgggg gcgtcctgat gactgtatcc

92521

ttcccgggct cggggaccta tgggtccggg cctctgctgg ccctgaggcc ctgcttgagc

92581

gcatgccaca gagggagagt tgcgaccccg agctgagggt gtttttgagc gtacatcacg

92641

tgctcagctg caggtgcccc tgtcgaactc cagggctaca cccaaaatac cacagggcag

92701

ggtgcccagg ggctgagtcc tgaatgcagg tagccaggag gatctagggc tgggcccggg

92761

ggctggggtg aagtggagag gcagggccga tcagggggcc cctggaggcc accgtttggt

92821

cttagagtgg gaagcgaaac caacctgctt gagggtttca ggggtttagg aagtcagagg

92881

ggccctgggc agggcacaag accttgactc tggcccagct actggggctc ctgggtagcc

92941

tcttcttcct gggccaggcc ctcacggcca tgctggtgta cgtgtggagc cgccgcagcc

93001

ctggggtgag ggtcaacttc tttggcctcc tcaccttcca ggcgccgttc ctgccctggg

93061

cgctcatggg cttttcaatg ctgctgggca actccatcct ggtggacctg ctgggtgagc

93121

ctgctgtcca gggagcctgc cccaagctgg gtgtgctggg ccagagccct ggtcctctcc

93181

ccgcccccac ccctcttccc cactcctggc gcccccatcc ttccagcccc tccaacaagt

93241

cagcctatag gttttactta ttcgagcctg acccatttgc tgacgcttgt gtggggcccg

93301

acccggtagg gatgggtggc tcagggtgcc tgctcacagc tccacttctt ctgacgtcct

93361

caggcctgac ctcctcccag gttctgccta ctctgggcca agcctggccc cacgctgggc

93421

tggctggccg tgcagggcat cagaccccca tgctttgggg gcttcagggc tgtggagggt

93481

ggcctcggca ttggcgcctc tcccacaggg attgcggtgg gccacgtcta ctacttcctg

93541

gaggacgtct tccccaacca gcctggaggc aagaggctgc tgctgacccc cagcttcctg

93601

tgagtgctga cagccttccc cacccccttc cccagatggc tctctacccc atgagggggg

93661

gggaccctgc cagctgccgc tcagcgtggg ctcctcccca caggaaactg ctactggatg

93721

ccccagagga ggaccccaat tacctgcccc tccccgagga gcagccagga cccctgcagc

93781

agtgaggacg acctcaccca gagccgggtc ccccaccccc acccctggcc tgcaacgcag

93841

ctccctgtcc tggaggccgg gcctgggccc agggcccccg ccctgaataa acaagtgacc

93901

tgcagcctgt tcgccacagc actggctctc ctgccgcggc cagcctctcc acgcggggca

93961

ggtgctgctg gccgagagcc agggccacca agcctgacgt gctctccgac ccagaacatt

94021

ggcacagctg gaggcccaga gagggtccag aacctgccca ctcgccagca gaactctgag

94081

cacagagggc agccctgctg gggttctcat ccctgccctg cctgtgccgt aattcagctt

94141

ccactgatgg ggctcacatc tcaggggcgg ggctgggact gggatgctgg gttgtgctga

94201

gctttggccg tgggggccct cctgtcccga actagcaacc cccaagggga cctctgcttc

94261

atttcccagc caggccactg aaggacgggc caggtgcaga agagggccag gccctttctg

94321

tgactccgaa gcctcaagtg tcagtgtttg cagagtccag tggctgaggc agaggcctct

94381

gggaagctct gcccctgccg tttgcagctg aggccggcag gagcctcacc tggtccccag

94441

ctcacgggca ttggaggacc agtccgcacg gtggtttact cctgggtcgg caccagccgc

94501

cgccggctgt ccctttcaca gaggataaaa gtactcgctc tggagttgga ctttaatgtt

94561

gtcatgaaac ctctggccca gcagcgggct ccgcagtggg tggcaggtga aggcccctcc

94621

ccgggcctct ccaggcaggt gccgcctggc cagcagggaa ggcaggcagt gtcatccccc

94681

actggctctg gggctcaggc tacctcctgc tgtggccgga acatctcccc cagtggtgga

94741

gcccagtgtc cgtgaggcca gctgggcctg aaaccttcct ctctgaagcc ccgctgtccc

94801

cttgccctgt atggagggca gaggctggag cgcaagttcc taggatgtgc ttgcgagacc

94861

cccgagccca ggggcgaggc ccatctcagc ccacccccga actggaaacc cttggagctc

94921

tgcccctcgt ggtgtgaggc ccctgctatg cgaccctcag ccctgccagc aacggaaggt

94981

gcagggcccg ggcccacggg cttaacgcaa ctgggcctgg gtcacctgcg gggcctggtc

95041

ccaggaggaa gacccaggtg ccaccctcct gggtgccacg tccaggtcac gtggggaccc

95101

gtccatgtca cagaagatgc agggtcaccc ggtgagctgg cgccgggccc tgccagagca

95161

ccagccgcgg gtggaggtgg gccccagctc tcctgtcagg cacgtggtgc tgggaggtgc

95221

ggccggagca gtgcccacca gctgcagcag gacaggtggg cacaggccca ccagcagtgc

95281

ccgcacggga tgggcccctg caagggccag agaagccacg ctcctggctg ggggctgggc

95341

tgggactgac aggtggccct gccctctgcg ccccactact tcccagccac ccgggactcc

95401

aaggacttgc tgagctgggc aggtgggacg ccgaggggag tcaaactgct cgtgggggca

95461

ggaggggcgg tccacagggc tgagccctga gctgaaccct ggccctgctc gtggttgtgg

95521

gggtgggggg gtccagtggc gccctagccc tgctgaggcc cagctgggac gtgcgcgccg

95581

gagggcgagg ggccagccca tgccatgctg tcccccgttc tcagctccat gctaccactt

95641

tgaagaaaca gaacctgttg cctttttatt tagaaagtgt tgcttgccct gcctggggct

95701

tctatacaaa aaacaaacac agctcaacgt ggcctctcct gaccagagac gggcggtggg

95761

gactggggct cagcagacgg aatgtgtccc cggcggcggg agaccaggag gcccctggcc

95821

cgctcctcag gacggctggg ctgtccccac ctggtcccct ccgagccaga agatggagga

95881

gaggtgggct gatctccaga tgctccctgg gagccaagcg ccacggggtg gtcaccaggc

95941

cggggccgtg ttggccagac gcctcatccg cctgtgggag ggggagggca gcaacccccg

96001

gatctctcag gcaaccgagt gaggaggcag gagcccccag cccctccctc ggccgctctg

96061

ctgcgtgggg ccctgaagtc gtcctctgtc tcgcccccct ccccagggag agtgagcctg

96121

ttctgggctg tggtcagacc tgcccgaggg ccagcctcgc ccggggccct gtcctgcctg

96181

gaaggggctg gggcagcacc ttgtgttccg gtcctggtcc cggatcttct tctccatctc

96241

tgcatccgtc agggtctcca gcagcgggca ccactggtca gcgtcgcctg tgttccggat

96301

ggcaatctcc accgtgggca gggggttctc actgtggagg acgagagagg tagacggctc

96361

acagagcagc tgcaggagag gcccctagaa agcagtgtcc accccgctgc gggcagacag

96421

gacatggagc ctggtttctg cacccggctc ccgacacagg gcggccgggc acgctgccaa

96481

catggcatct ccgggtctgc atgtggggag gggtccacag gacagtgctg caggtccagc

96541

cattcccagt ggacttgctg ggaggaggag ggccgtccgc cccgctcagt gtccaggaga

96601

aaggagagca aaggagtcca tccacccagg agtggagtcc cagggcccct gccctgacca

96661

gcctgcaggg ggcccctcgg cccacatcac aggggcccag aatccataag ccctgactgc

96721

tccaccccgg ggcccctcaa agacgcgcct agactccgtc cgagggccac ctgcacaccc

96781

tctggcgaag tggactcagg gctgggggtc agcctcggtg aggccgcaaa ggctggggac

96841

tcctggccga gctgctgcct ctgccaggag ccaggcccag cctgccggcg agcctcagcc

96901

acgccctcac ccaccctgcc cgcggcgcca cgctggcctc cgggtcctct cctctggcct

96961

cctgctgggc cactggtgct cagccccagc agtcggcctg ccaggagccc tgcagagtca

97021

gcccccagag ggaggagggg gcccggggga acagcacagg aacaaacaga cccctggcct

97081

tagttttagc tcctcatctg gaaaatgggg acagtgtcct tgctgcgagg ggtttcagag

97141

gaccactgcc atgcaacacc cagcacacac ccactgcgtg ggggctcggg cccgagccgg

97201

tgcccccgag tcccaggctg gtggctgggc cgccccagcc accctgccga cagctgcttc

97261

ccagccgggc ggtgctgcgg cagtccagaa gccagcactg cagacccaaa tgtcactcct

97321

cacgttgcgg gctcccagct gccttccttg ggggcagcag acacgaaagt caccaagccc

97381

acgccgacgg gagcaaacac gtcttcctct taaacaagtg cgggtcccgg aggccctgtg

97441

tttacctccc tgtggctccg ggaagattgc atcccagggg gttgttctaa accaagggct

97501

gctcgggcca ggcctggaag gaggggcctg gagccaggag cccaccctta cgggcattcg

97561

gcttcctggg tctcaaggcc ggctgggacc ctgcattccc accacccgcc aggtgcaagc

97621

agggaggccg tgtcggagga ggcagagggc ctggagggtc gtcttcgacg tgacctcact

97681

tttacaacct cacaggtgcg gcaggccagc tgggaggcat ggctgtgccc tcctggtaga

97741

tgagaacaag actgcaggga gtgatccccc tgaacttccc caaccaggag gagacaaaac

97801

tcggtgtcgc cctcctgctt aagatcaact gactctggac aaggggccca gcccacccga

97861

tggggaaagg gcagtccttc caacaagcgg tgctgggacg ggacccggca ggccatggtt

97921

tctcagctat gacaccagca gcacaagcac cccgagaaaa acagctaagc tgggcactgt

97981

cacacaagtg aactccaaac ccaagaaaac cacaaaaagc ctgcggatct tcagatatgt

98041

gggaagggac ctgtatctgg aatgtataac gaactcctga aaagtgaaag tgttagtcac

98101

tcagtctgtt cagctctttg caaccccatg gacggtagcc tgccaggctc ctctgcccat

98161

gggattctct aggcaagaat actggagtgg gttgccatgc cttcctccag gggatcttcc

98221

caacccaggg attgaacctg tgtctctctt gcactggcag gcgggttctt taccagtagc

98281

gccacctgag tagaaacact ccaggtgccc tgagtgtcag agcaggaggg actcggccca

98341

ggcctgtgag gggaccctct ccgagtcccc tgctgcacag cagtgagagg tgcgttctga

98401

gtcagcctcc agggatgagg gacttggtgt cgacatcact cccaggacct caggatctgc

98461

tctgggaagc gaggctcccc aggctggccc caggcccgct ggcctcagct cgtgagccgt

98521

gcgtggacag gtgccatgag caggcctccc acgggactcg gggcgcggcc tggaccccgg

98581

ggctgccagt ggtcgcgggg ggccccgtgt ggcggctgtt ccctctcttg ctccgagtcc

98641

taggaacatg gtgggcgctg cctcctgggg tttctggaga agcagctgag atgcaaacag

98701

ccccacgcgc tccctcagct gttccctgtc acgggtggcc ccttggtgac ggcctccatg

98761

cagggacggt gacagctcga gcagccgcgt aaaaccacac ggggacggtg gcagctcgag

98821

cagccgcgta aagcctgaca tccaatttgg aagcctcccg cagtggaaga ggggcccggg

98881

gacggggctg cccggggcga gctccaccgg gtcgggggtc acgaggagcc cacccgcgtc

98941

cccgccacca gcacctggga ccagataccc tccccgctct gagggcggcc tgaacgccgc

99001

cccctcccac gggggcgccc accgcctgct cgtggactga acaagaggcg gcagtggcct

99061

ccagaccccc tcgggggagg gcagacctgt ccgagactga gcacaagtcc agggaatgag

99121

caagggtctc agtaatgtcc ccaccgggac gggacgggag gaggcgacag aggccgctga

99181

ggtgcggggc agccctcagt agctggcatc aaggccccag gcagtcccgg ggcatccccg

99241

cagggggcgg gggcgaccac cggcccgagc ccaggcagtc ccggggcatc cctgcagcgg

99301

gcgggggcga ccaccggccc gagccctacc tgaaggcgta ggtcttctga tgccagctca

99361

gctgtccccg gatgctgtag gcgatggtgg tgacgaactc cccgcccagc cccagctcgg

99421

agcacagctt cagagcgaac ttctcgggcg agttctcctt ctccgacatg tcccactcga

99481

actggtccac caaggagatg ttccccacgt ggatgttcag ctggcccggg agcacagaca

99541

tgagccagag cggccccctc tggggccagg ccgcaccctc accacccctt ctccccggaa

99601

catccccgcc tcgttcttgg ccgcgcccct gtgctgctac ttggggtaag gaaaacaacc

99661

cccatctctc tgaaaagggt taactagcga ggaagatgcg ctggtaactg gaaaactccc

99721

tacaaagaaa gcttggatct gatggcttca ctggtgaatt ccaccaaaca tttcaagcac

99781

taacaccaat ccttatcaaa tcctgccaaa aaactgaaaa ggaaggaaca catcataact

99841

ccctgccttg ataccaaagc cagacaaaga tactacgaga aaggaaaggt gcagaccggc

99901

acttactgtg gacattgatg tgaaacctca gcagacacga gcaaaactac attcaccagc

99961

acgtcagaag aatcacacac cgttataaat gatgggatga tgacacaacc acattataaa

100021

cggtggggct tactctggtg atgtaaggac ggctcagtaa gaaaaccggt caatgccatg

100081

aaccacttga acagagtgaa ggacaaaaac cacacagtca tcttgataat tggaggaaaa

100141

tcattagaca aacttcaacg tgctttcacg ataaaagcac tcagtaaact aagatcagat

100201

ggaaaccaca tcaacaagat taattcagtc aaaaaattca ctgcaagtat cacccacaat

100261

ggcagaagac tggtaacttt tcctctaaga tcaggaacga gccaaagata cccagtcttg

100321

ccacttttgt tcaatatagc gttggaattt ctactcagtg cagtgcagtc gctcagtcgt

100381

gtccgactct tttcgacccc atggatcaca gcacgccagg cctccctgtc catcaccaac

100441

tcccggagtt cacccaaact catgtgcact gagtcagtga tgccatccag ccatctcatc

100501

ctctgtcgtc cccttctcct cctgcctcca atcccttcca gcagttaggc aagaaaaata

100561

aatcaaaggt atccacctgg aatggaagaa gtaaaactat ctctggtccg agatgttaca

100621

atcttatatg cagagtttaa gatgctaaca aaatactatt agaactaatg aatgaattca

100681

gcaaggtacc aggatacaaa gtcaacgtgc aaaaatcagc cgcatttcta catgctaaca

100741

ctgcacaatc tgaagaagaa aggatgaaca aattacaata acataaaaaa gaataaaatc

100801

cttagaaatt aacttgatca aagagatgta caatgaacaa tataaaacat actgaaagaa

100861

attgaagata taaataaatg gaaaaacatc ctatgtccat ggattggaag acttaaaatt

100921

attaagctgt caaggctatg gtttttccag tggtcatgta tggatgtgag agttggacta

100981

taaagaaagc tgagcaccga agaagtgatg cttttgaact gtggtgttgg agaagactct

101041

tgagaggtcc ttggactgca aggagatcca accagtccat cctaaaggag atcagtcctg

101101

ggtgttcatt ggaaggactg atgttaaagc tgaaactcca atactttggc cacctgatgc

101161

gaagagctga ctcatttgaa aagaccctga tgctgggtaa gattgagggc gggaggggaa

101221

ggggacaaca gaggatgaga tggttggatg gcatcaccga ctcaatggac atgggtttgg

101281

gtggactctg gaagttggtg atggacaggg aggcctggcg tgctgcggtt catggggttg

101341

tgaggagtcg gacacgactg agcgactgaa ctgaactgaa catgaatacc caaagcaatc

101401

tacaaagcca aatgtaatcc ctatcaaaat cccaatagca tttctgcaga aacaggaaaa

101461

aaaatcttaa aattcatatg gaatctaagg aaaagcaaag gatgtctggt caaaacaatg

101521

acgaaaagaa caacaaagct ggaagactca cacttcctga tttcagaact tactgcaaag

101581

atacaataat gaaaacactg tgggactaac gtaaaagcag acacgtgggc caacgggaca

101641

gcccagaaat aaactctcaa ataagcagtc aaatgatttt caacagagat gccaagacca

101701

ctcagtgaag gaaagtgttt gcaaccaacg gttttgggaa aaaagaaccc acatgcgaaa

101761

gaatgaagtg ggacccttac ccagccccat ctacagaaat caactcaaaa cagacagaac

101821

atatggctca agccataaaa cgctcagaaa aacagagcaa agctttatga tgttggattt

101881

ggcggtgatt tctcagatat gacgtcaaag gcataggtga taagcgaaaa aataaactgg

101941

acttcaccaa aatacaacac ttctatgcat ccaaggacac taccgacagc ataacaaggc

102001

agcccaggga aaggaggaaa catccgcaaa tcacagcatc tgggaacaga ccgctgcctg

102061

tgagatacag ggaaccgata aaaacaagaa aacagcaaaa cccggactca aaaatgggaa

102121

ggactccagc agacacagga gacagacaag ccgccagcag gtcactaatc agcaagcaag

102181

gcccgcaaag gcccgtatcc aaggctgtgg tttttccagt ggtcatgtag gaaagagagc

102241

tggatcgtaa gaaagctgag cgctgaagaa ttgattgaac tgtggtgttg gagaagactc

102301

ttgagagtcc cttggactgc aagatcaaac cagtccattc tgaaggagat cagtcccgaa

102361

tagtcactga aggactgatg ctgtagctcc aatactttgg ccacctgatt cgaagaactg

102421

actcattggc aaagaccctg atgctgggaa agattgaagg caggaggaga aggggacgac

102481

agaggatgag atggttggat ggcatcactg actccatgga catgagcttg ggcaagctcc

102541

gggagagagt gaaggacagg gaagcctggc gtgctgcagc ccgtgggtcc caaatctttg

102601

gaccaagcga ctgaacaata acaaatcaac agggaaatgc aaatcaaaac cacagtgaga

102661

tactgtccac caccaggcag gcgttcttca gcggggttcg gggcaggtgg tgccctcttc

102721

tctcgtaacg cccccaggac cgcgggggct gctgagacag catggggtgt gcttggccta

102781

gcctgcccat gacaagagtg gcagtgtgct cgcctcactg cgcccttccc tgctctgccc

102841

accagctggg ccacccctgg gaccacccag cttccgctcc gtggacggca aggccgcagc

102901

agcgcccgga cacgcccaga acgtggtgcc ctcctcagaa gtcggcctgt gcccttcctg

102961

ggacaagccg cccaagagac agtcttccag agccctgccc cacaacacgg accccagaca

103021

ggctcctgtg gaggcctcca cgcacctccg cacctcgcaa gccccgagga caaggcaggc

103081

ccgctgcggg tgaggagccg cctaccttga taatgacgcg ctggtctgac tggtcttcca

103141

ggatgctgtc cgtggggtag gactcgatct gctgtctgat ggcagaggca atggctggca

103201

cgaatgtcag tgggttcaga tccaggtcgt cacagagaat ctctgagaac atctccgggg

103261

tcatcagctt ctctgaaacg atgacggagc gggggaaccc ccagtggacc acagggccta

103321

cggtcagcgt gctcagcccc ggcctccccc agccttgcct cctctgccac cgcccccccg

103381

ggtgacgaca ggaccccctg gcagcacgca gacagagctg agtgcacgcc agccagggcg

103441

gcggacggac cattcatgtt ccaggtaaag gcatcccgca gcttctgccc gtcaatctcc

103501

atgtccagtc ggatggggac cagcacctcg ggctgggacg cgttctcgtg gatcacggct

103561

gggtcgtggt cgtcgaagct ggaaggggag cggccgcgtg ctcagcaaag cgggctgggc

103621

ccctgtgccc agggcctccc tctctgcacc actggtcgct gagacctgcc cagagaggac

103681

ctgtccacta cgggccgggc cggcagaaac agggctggcg ggggtccacg cggggcggga

103741

ggggagctgc cgactcggca gcgggacaag ctcagaggtt ccctgcagga agagaggttt

103801

aagccccaga gcaggcagga ttctcccagc agctgtgggg aagaaagggt atgtccagaa

103861

gaagaaaccc tggaacaaag gccgaggggc aggagggttg aggagctgct tggagagcag

103921

tgaagggggg ctgggcggct ggggggtgct ggggagcctc ggtggccaag cacccagggc

103981

tccccacctg cagcctggac cccgagggag ccccagagga cggagagcaa ggcagctccg

104041

cactcacacc tgccctttag gatggggaag agggaagaga cgggggctgc ggggggcaag

104101

gaaaccaggc acgccccgct tagacccggg ggcgagaacc actttccaag aacgcagggg

104161

cgccaatgat gaacaatggg tagcagcccg caggcgggag gcccggtggc cgaggcccct

104221

caccagagcg ggaaggtccg cttcttgtcg cggcccatgc ggttcctgtt gatggtggtg

104281

gagcagggca cggcgtccag gtggtgcgag ctgttgggca gggtgggcac ccactggctg

104341

ttcctcttgg ccttctgttc cctgggagac acagacgccc gtccgctcag cctatgggcc

104401

aaaagccgcc ccccagccgc caggttgtgg ccagtggacg cccgccatgc ccctctgggc

104461

ccaggccccc atggggacct ctgtgcgccc agctccgcgg tggttattcc ccaggctcca

104521

agcggcacct gctcggggtc accagtttta ggggaggagg agagggcagg ggccccagcc

104581

cagtctgtga gctgtcaccc ccaggctcca agcggcacct gctcggggtc accagtttta

104641

ggggaggagg agagggcagg ggccccagcc cagtctgtga gctgtcaccc ccaggctcca

104701

agcggcacct gctcggggtc accagtttta ggggaggagg agagggcagg ggccccagcc

104761

cagtctgtga gctgtcaccc ccaggctcca agcggcacct gctcggggtc accagtttta

104821

ggggaggagg agagggcagg ggccccagcc cagtctgtga gctgtcaccc gtgctatgtg

104881

ctgggctggg cactcaggaa agagggtcag ggttcacggg ggggtggcgc gcagatttcc

104941

aggagagccc cgagggcagc agagaggagg ctcaggtcaa tggttgggca gggggccagg

105001

gctggagaca cagagagggt cccgattcgg gggggtgccc tcagcaggtg gctgggagtc

105061

cctgggggtt tgcacacttt cgatcaggct gttatttcag acgcttggtc cagcctgaga

105121

caggtaatgc ctctggcctc cgggccttca gggatggaaa gatactctag aaagcgggac

105181

tcaaagtaac tcaaggaact cgcgtcccac agtggggagc ccttctctcc aatttacatg

105241

gggcgtttac tacgaggaaa ataccgaagg ccgttttgag ctgaggctcc cgggccgggc

105301

tgtccgtttg tgagactgct cgtcacccct gggccacatc cctggtggcc aagggggcaa

105361

tcagtgcggt gactgcacga cacacctctg cagccctgcc ccacagctgt caccatcggt

105421

gacgtccacc ccctggagaa cctgaccact gcccggtttc ccgctaaaac agcgcccttc

105481

caggatgggg ggcagaggga gaggccttgg ccttttcact cctcttctgc agcgggggcc

105541

cctcgcaccc cagtgcccgg gcccaggagc gccccttggg gtggggcagg gagggatcca

105601

cacaccaagg ggagccagga cccccccaaa tctgctgccc tgccctgata cccgagacct

105661

ggggaaacgg gggactgggg ctgatgcggg caggaccaag aactgaggcg gtgagacggg

105721

gtccccacca caggccatct ggctggcagt ttctactccg ggcctgcagg ccaagaggga

105781

aaaggtgccc cactcagatc aggcgcctcc cgtccccagg gagggcctac aaggtcagat

105841

cctttgtaac ttccacgggc aaaactggct tgctgggcct gtgcgggccg catgggcgtg

105901

gaccaccaca cctttcccca ctgagtctcc agccggagct gtcacccagg tccccccagg

105961

ccagccccac cccgccacct tgcagtagcc tctcgtatcc aggccgaggc tgcccggtcg

106021

acccctcctg cctgatggcc tcaagtggac aatgcgagtc acgttgcagc acgtgagtgg

106081

gacgggcagc gccacgcggg gtccgggcat ccgagtccca ccactcagcc tcccttccgc

106141

tgcagagagg tctgtccaag agccctgggg gccatccagc ccctgtccga cctggccggt

106201

gtggaagagg gggtgtgcca cccctcctgg ggggctggct gggcgctggg caggcccctc

106261

ctaagagtgg agcccactgg tggttttcct gcagccccac ctccacacag cagttctcac

106321

tgcccagtaa caggaggcta ctggcctagc tctctccctc gtgtgatgga ctcaaccagg

106381

agcgttcacg gccccacaca gggttctcgg ctgctgcatg aggatctcaa agccccatcc

106441

acgtgcatgt aatctcctcc ggtaacttct ctagggaagc ccggctatcc tgccatcctc

106501

accgcaccac cagggcgaga aaagccatct ccagcgctca catccacaat gggccaggcc

106561

gtgagcacac caccttcttc gggaggttgt gggggcgggn nnnnnnnnnn nnnnnnnnnn

106621

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

106681

nnnnnnnnnn nnnnnnnnng cgcgcccccc ccccccgcgg cgccggcacc ccgggcggcg

106741

gcccccggcg ctgggagcag gtgcggggcc gcggccgctc gtgagcctcc agcccggagg

106801

acgggccccg ggggccggcc cggtgcccag gccctgggag ccccggaggc cagagtgcca

106861

gagggccgga ggacccggga aggcccgaga gaggtgggaa gcacggggtt ccagccctag

106921

gccatttcag ccccaaagcc atcggtgaaa ccattgctgg ccccagataa aagcgtcgcc

106981

aactttttca ccccggcgga gactttagcg ggtagctgcc ccctaggggg aatggaaaaa

107041

ccaggattta ccaggtgggt ggaggtcaca actgcccaga tcctgagaaa gaggggtcag

107101

tggggcggga agattagtgg ggagaggagc tttcagaacc caagggaatg aaacgaggct

107161

tgaggttggt tatccagcag ccgccccctg ccccgtgagt gagcgaaggc tgggcccctt

107221

attgtcacat cttccagctc ttcgctagaa aacctagagt tttaaatact gtggcagctg

107281

agtcaaacaa taaggaaaag cccgactctt tgagagccag gcacaaggcg tctgtgacag

107341

ggtctccagg ctgcccattt gcagtctctg aaacggaggg tttttcgaga aggaggtctt

107401

ggggtgcctg ccagaattgg aggggggggc gcgggaagtg aggacccaga agagagggct

107461

tggcccgctg caaggaggtc actggacact ggagctgaag cgccagccga aactggaaac

107521

tcgaaatctg tctccgtgcc agccacaagg cctatgattt tccttggcga cgttcagcat

107581

cttaggagga gctggcgggg gaggcgggta gttcgtgggc ggttgcagca gggcaggaag

107641

gtgaggaacc tgaggctggt cagagagctg gttggagtga tgcccatcgg tggacccgct

107701

ggagaaggcc tgagtagaga aggtctaagc ttaacgggga aggggtgggc cagggtggaa

107761

atggggtggg aagtttgagg agggggagca gtggagatgg gggttgtgag gaatgggagt

107821

gagcttagac gtcttgagga tactgcagtt ctgtgctttt tttcacacct ggctgaaaat

107881

tcactgaaaa caaaacaacc cttgctctgt gacagcctag aggggtggga gggaggctta

107941

agagggaggg gacgtgcgtg tgcctatggg cgattcatgt gggtgtacgg cagaaagcaa

108001

cacagtatgt aattaccctc caattaaaga tcaagtacaa cttaaaaacc ccaaacacaa

108061

cattgtaagt cagctagact ccagtaaaca tttcagtaag aagattcaac tgggaatgag

108121

ttccgccgtg actatcctga tgaatttccc gtgtcttctt gaggccattc ctctttgaac

108181

ttccgtgttt ggggaagcgt gcctrtgtat ggagtcctga ggagtaaatg agacgggctt

108241

gtagaaggcc tagtagtgcc ttgcacgcgg cagatgctca ataacctcga gttgtcacca

108301

ttatggtacc tcaagagtct ccttggagct tgcacggttt ctgaatgggg tcctgcgggg

108361

ctcccttggg gctcccacat ggggttgggg ggctgagtgg ggtgtccccg ctccttgctt

108421

gtcccctgtg gaacaccccc ttccacccga gcagctctgc ttttgtctct tgtgtttgtt

108481

tatatctcct agattgttgt tcagtcgctc agtcgtgtcc aactctccga ccccatggac

108541

tgcagcacac caggccttct gccttcacca tctcccggag cttgctcaaa ctcctgtcca

108601

ttgagttgct gatgccgtcc aaccatctcg tcctctgtcg tccccttctc cttttgacct

108661

cagtctttcc cagcatcagg gtcttttcca atgagtcagc tctttgactc aggtggccaa

108721

gtattggagc ttcagcttca ttatcagtcc ttccaatgaa tattcagggt tgatttcttt

108781

taggattgag tgacttgatc tccttgcagt ccaagggact ctcaagagtc ttcaacacca

108841

cagttcaaaa gcatcagttc ttcggcactc agccttcttt atgatccaac gcccacatcg

108901

gtacatgact actggaaaaa ctttggctca gagataattg acttgattga atacaaagtt

108961

ctttggcaaa aaataaaagt gtggcaagca gtactgacac aaaagcaagt ggcttttcct

109021

ccgttgagtc atttatttat tcagtgggtg tgtgcgtgta gagacggagc ggctgtgctg

109081

ggagctgggg cttccacttc agaggagccc cggacctgcc ctcggggagt tcacaggcag

109141

tgctgcgggg ggtcctgcca ggacgcctgc cctgcgagtg cccagtgctg tgatggatgc

109201

gtgtcccgca tctgcggcca ctggggccac gtgcccgaga ttgtccgggt ctgagggtgc

109261

agagaagagg aggcatttgg actgagtctg gaaaaatgag catgtggcca cgtgagaagc

109321

cagtggtgag gggaccagtc aggcggagga aagagcggct catacgagtt gtggagctgg

109381

aagcatgagg gtgtgtggaa gcagaggccg gggacagggc cgcagggccg gccatggagg

109441

gcgtgggctg ctgcaggctc ctgagaaggg ggacgctgcc atcatgaccg ggtttaggtg

109501

tttgaccctg gtgtccacgt agaggacaga tgtgtggggg gggagctgga gatgggcatc

109561

catcgggagt cagcctggag agaggcagag accccgtcag tgggccctca ggacgtggat

109621

ggggcggatg ttgggaagat ctgactcctg ggttccggct ggggctccgg gctggagggg

109681

tgccgcccac cgagcacagg aggcaaacag atgccctctc ccagcaagac cccagcccca

109741

gcaccctccg gggccggact ccgcccctct tccagaatgg ctcccttgct gtcctcgccc

109801

atctttccgg tgccctgagc ctctagagtc tggacaccag cgtccgcctt gcgcttgttt

109861

ctgggaagtc tctggcttgt ctctgactca cccaggaccg tcttcgaggg caaggttgtg

109921

tccttggttc catctgcttt ggggtccggc tcctcgctgc ttgacctgct gatgtgacag

109981

tgtctcttgt tttcttttca gaatccgaga gcagctgtgt gtgtcccaga cagacccagc

110041

cgctgggatg acgggcccct ctgtggagat ccccccggcc gccaagctgg gtgaggcttt

110101

cgtgtttgcc ggcgggctgg acatgcaggc agacctgttc gcggaggagg acctgggggc

110161

cccctttctt caggggaggg ctctggagca gatggccgtc atctacaagg agatccctct

110221

cggggagcaa ggcagggagc aggacgatta ccggggggac ttcgatctgt gctccagccc

110281

tgttccgcct cagagcgtcc ccccgggaga cagggcccag gacgatgagc tgttcggccc

110341

gaccttcctc cagaaaccag acccgactgc gtaccggatc acgggcagcg gggaagccgc

110401

cgatccgcct gccagggagg cggtgggcag gggtgacttg gggctgcagg ggccgcccag

110461

gaccgcgcag cccgccaagc cctacgcgtg tcgggagtgc ggcaaggcct tcagccagag

110521

ctcgcacctg ctccggcacc tggtgattca caccggggag aagccgtatg agtgcggcga

110581

gtgcggcaag gccttcagcc agagctcgca cctgctccgg caccaggcca tccacaccgg

110641

ggagaagccg tacgagtgcg gcgagtgcgg caaggccttc cggcagagct cggccctggc

110701

gcagcacgcg aagacgcaca gcgggaggcg gccgtacgtc tgccgcgagt gcggcaagga

110761

cttcagccgc agctccagcc tgcgcaagca cgagcgcatc cacaccgggg agaagcccta

110821

cgcgtgccag gagtgcggca aggccttcaa ccagagctcg ggcctgagcc agcaccgcaa

110881

gatccactcg ctgcagaggc cgcacgcctg cgagctgtgc gggaaggcct tctgccaccg

110941

ctcgcacctg ctgcggcacc agcgcgtcca cacgggcaag aagccgtacg cctgcgcgga

111001

ctgcggcaag gccttcagcc agagctccaa cctcatcgag caccgcaaga cgcacacggg

111061

cgagaggccc taccggtgcc acaagtgcgg caaggccttc agccagagct cggcgctcat

111121

cgagcaccag cgcacccaca cgggcgagag gccttacgag tgcggccagt gcggcaaggc

111181

cttccgccac agctcggcgc tcatccagca ccagcgcacg cacacgggcc gcaagcccta

111241

cgtgtgcaac gagtgcggca aggccttccg ccaccgctcg gcgctcatcg agcactacaa

111301

gacgcacacg cgcgagcggc cctacgagtg caaccgctgc ggcaaggcct tccggggcag

111361

ctcgcacctc ctccgccacc agaaggtcca cgcggcggac aagctctagg gtccgcccgg

111421

ggcgagggca cgccggccct ggcgcccccg gcccagcggg tggacctggg gggccagccg

111481

gacggcggaa tcccggccgg ctcttctctg ccgtgacccc ggggggttgg ttttgccctc

111541

cattcgcttt ttctaaagtg cagacgaata cacgtcagag ggacgaagtg gggttaagcc

111601

cccgggagac gtccggcgag ctctaacgtc agacacttga agaagtgaag cggactcgca

111661

gcccgtacag cccggggaag atgagtccaa agtcgagggt caccttggcc actgcagggt

111721

cgctcggcgg tggggcggag cgggtgcagg agggctcctc ctgggcttgg ggtggcaggc

111781

gaggaccccg cgcctctcag ccctcggcct gggttggctg agggcgggcc tggctgtagg

111841

ccctccagcg gaggtggagg cgctgcccgg ctcagccagg cacaggaccc tgccacgagg

111901

agtagccctc cgccagaccc ggcgtccagg ctggggcgcc tgcggggcct ccgttctgtg

111961

gctgggcagc ctgcgccctg tccagggatg aaggggttcc ggtctgaagg gctgggttca

112021

gggtccagct ctggcccctc ctgccttggt gtcctggagg aagccccaag gctccgtttc

112081

cctctccagg aggtggggac gttgggaatg ccacattccc ctggggggtg tgtgtgtgtg

112141

ttcaaggctc ccattcagac tgggactggg cactcacgag ctttggcaac tggcaactga

112201

ggacggagac ccagggtgac accccacctc ctgctgcggc ccccccggca ggggagacac

112261

aggcccgtct ggttcccaag atggcagggc ccctccccct ccagcttgtg ccctgggtgt

112321

ggtgcctggg gctacagcga ccctttccgg ttccccgggc cagttcagct gggcatcctc

112381

agggcggggc tctgagggtg ccatgtttcc agagctcctc ctcctcccac cagtagcagg

112441

cgggcggcca gctcccaggc agccccctgg catcgcctag gtgcacacct gcccgctgtg

112501

acccagcaag gcttgaaggt ggccatccca gttaagtccc ctgcccctgg cccaggaatg

112561

ggctcgggca gggccgcatc tggctgcccc agaagcgtct gtccctggcc tctgggagtt

112621

ggcggtggtc tctggtactg tccctcgcag ggccccttag cactgctcgg ggaggaggtg

112681

ggctgaactg attttgaagt tttacatgtc tgcggccgca gtcctacgag cccgtcaggg

112741

tcatgctggt tatttcagca gatggggctt ggctcggcag ctaggatggt cctgaataaa

112801

aatgggaagg ccagagctgt tcctccatca gcaggcttgg cagctgggga cgttgaaagg

112861

acaggtctgc tggtctgggg agaccagctc tgtgcagccc ctgctgtccg tgggggtact

112921

aaaccagccc ctgtgtgcgc ccatctgagt ggcagcccgc ctggaggatc gcccatcact

112981

tgtgagaatt gagagaatgc tgacaccccc gcttggtgca gggggacagg gccccctaag

113041

atctacctcc ttgccccacc cccgggaccc cctcagcctt ggccaggact gtccttactg

113101

ggcagggcag tcatccactt ccaacctttg ccgtctcctc cgcgcgctgt gctcccagcc

113161

aaattgtttt atttttttcc aagcatcact ttgcacacgt caccactctc cttaaaacca

113221

cccttccgga gtctcctgct cgtaaatcgc cggtttcagc caacctgggt cgccccccaa

113281

gcccagcaag cctgctgagc cccgcgcctc ccagctactt cacgctcgcc tcaagcttct

113341

aaacgcggac cttctccccc ccacccccat ccctttcttt tctgatttat gtaacacggc

113401

aggtaagact cctctcctga agggttgaca gactcacaca aaaccgtggt cagaccagge

113461

aagtgctttt tttcagaagt gtgagcggaa cctagtcttc agctcatgct ctttccttgt

113521

tttcttatgt gttctaagtc ctttgacttg ggctcccaga cagcgacgtt gtaagaggcc

113581

gtcctggtag catttgaatt gtcctcgagt ttcgttgtcg gattttgttt tattgtctta

113641

gttttccctt cttttagcag acgttgttga ctgtcgtaaa gctccagttc ttggttctgt

113701

ttactaatca aattgttttg tcaaagtaca tgtattctgc tcttttcttt atcttttttg

113761

ttgcttaata ttaacacttt acatttctaa gattaattat ttaggtaatt aataattttt

113821

aacatttcta gtaaacgtgg gtacttgggt ctgtgtttgt tttcttgtag ttacagcttt

113881

ttctgctcta tactgttgac gtctgggttt ttttttgctc ttaggaattt ccctttgacc

113941

ccattattat tattttaatt agtatttttt aataattaaa aattagtgtt tttaaattaa

114001

ccctaatcct aaccccagtg atgactgctt cagtcattgc tgttacttat tatgtgctgg

114061

tgtcaggatt tttaagtgtc catagacatt ctctgagcct gaatatatta tcagttttat

114121

acagcatttg tgtactctca agaaacgtgt tttcactctg tcagttcggt ttgttacctc

114181

agtctttatg ttattttgct ccagtccgca cttgctctaa cttgtcttcc cttcgaggtg

114241

tgaggacgcc tggcagccgg tgagcatgcc ggggtccggg gtcgtgggcc caggcgccca

114301

gcaaagccct gtgggtgtgt gcacggctgg gctgctccgg gaggaagcct gtggccccac

114361

ggtagttagg agcgctggtt tacctggtca caccacggtc tggttttgtg tgcttttccc

114421

tgacgtgttt ctgttttgcc ttggtttcta ttctgtttta tgagtgccgt ttacgctttg

114481

ttagtcatgc cgttatctcg atagacaggg tgtacgtgat caagtgatta ccgtatttgg

114541

agcagatgtc tatttaacag agatgaactg agaacctgtg cctttgcatg ccctctttgc

114601

ctcttttaat gcttctagct tcaacttctc ttttccaaac attataatgg aaaccccttg

114661

cttttttttt tttaatttgc atttgcatga gagtttattt agctcggcat tttattttta

114721

aaatttgtgt atatattttt gctatatatc tgtaacttat aaacagcaaa ttattggatt

114781

ttgctttctg attctttctg taattcttct tacataagaa gttctcctat gagtaacatt

114841

gctgtttaga gtgaggcatg atttatttcc agcttagtat gtattgggtc ggttaacccc

114901

caaaggtcat gctcatcccc gccccatctc tgtgagttat tgtccgagtg tggagcgccc

114961

tgtctaggcc gacgagagac ccaccatcgg gcacacctgc ccctcctggt ctggtcagtg

115021

ccgggctctg tcctgagtcc actcctgatg tcacaggctg gtgcttcagc gacctcggct

115081

gtgacacgga gggtgtgatg gcactgccca gccccatggg gcttggagga ctaaaggatg

115141

cacacctgcc tggcagactg agggcacagg tgtttctcac actgtcagcg ttttgaaata

115201

ttcctttgat tttctaccct aactcccaaa ggccgttcaa cataagctag aatgctacgt

115261

ggtgcttgat tacattttag aaaagtttca gcaaatacca cgagatgcag caaagaacta

115321

gacctcacag atcaggccgc ctgcataagg gagcccacac agtcgtggga gacggggacc

115381

ctctcccacg tcctgtctgt cccaggatgg tcccctcacc cgccccctct ctcccctcgc

115441

cctcctgtgg tgggggccgg ccaccatcac agctgcagag cctcaagaag ggggtcgccc

115501

tggccactcc cgtggcagga gggacacgag ggcaggagct taccgcgggt gcagtggtct

115561

cggatcagct cagctggccg ctgcggggtc ggggggacag ttcagtggga ggcaggagcc

115621

cccactacag ctgccaggac ttctcagagg tgacaagggg gttcagtcac ctcagcccag

115681

gtggaaacca aatggcctct tgcgcggctc ctggggccac gcggaggttc gctgggatca

115741

caggtatctg gatgtgtgcg ccatggacat gcaccacctt cggggggtaa ggggtgggga

115801

aaggcagccc ctttcttttg ggggaccccc tcttcagtgt ctgataacca ggaaaccaaa

115861

tcagaaggtg gtctgggggt gctgagcagg gtgtctccta caccacaggc cacacactca

115921

cacagcctcc aggactccag tggggctgag cgctggagac tcacccacgt ttgctacccc

115981

cccacccaag gccatcccag aacagctgcc tgcgtcctca cggctggccc ctcccctctg

116041

gtctaaccca gtgtgggtgg gccggcctgg ggtctccacc tgcctcctgc tgttccctgg

116101

gctgctggct gtctgcagat gcggggccct ggcccggaga agccccatca gagcccagag

116161

gacgggagtg gagcggggag gtgagccccg gagtctcgag gggccagagg caaaatactg

116221

ggctgtgtcc ctggaaggca gtttcccatg aaaccttcaa tataggccgc cccagacgat

116281

cagcctcatc tgctacgtgg attcctcccc gtagcgaatg gtgattgggt tctacatgga

116341

cccgggactt ctgtttgaat tataatcttt cccccactgc ccctccaggg atctggaaaa

116401

tggaggcctg ggctagacgg aagcttcctc caagattctt tattgaaggg attcgaagag

116461

aaacaggtgg tcagtaatct gtgggggatg gaggggtgag cgctacgtgt aacggtttta

116521

ctgttgctac gggaccagtt ttgatgtctt tccccttcaa gaagcagacc caaacaccga

116581

gatgctgagg ttagcagcac agagcgggtt catccacaag gcaaccaggc agggagacca

116641

gagacgctct ggaatctgcc tccctatggg cacgggctgg gtgctcacgg atgaagacca

116701

agcagcaggt ggcgtggggc gtggggagcc tgcggaaagc gatggacaag gtgcgggacc

116761

gcggtccgcg cggtggaccc aagctccgcc tctgcgctgc agcgcgagct gggggcggag

116821

cttccaggga cccgcgaccg cgcccagtgg gagggtccgc ggtccaccca gtcctaacag

116881

ctcagctcca gctagacgcc gctgagtccg gctttctaga gagcaacccc ggcgggtatt

116941

ttatggttct ggcttcctga ttggaggaca cgcgagtctt agaacaccct tgattagtgc

117001

gggcaggcgg aatggatttg actgatcacg atctgcagtt tcaccatctc aggggccgcc

117061

ctcaccccca cctatcctgc caaagggggg gcctcggtgc tgagatcggg gccacacgtg

117121

cactagacgg tcggtcagcg ctgctgctga gcggacccgg ggccatcctc acaccgccac

117181

tggcccctgt gctcaataaa aggaaggaaa gcgggaaaag cgctttctgg ccgcggtggc

117241

ctcgcgcgtt cctccatcgc catctgctgg cagagcccgg catggcaccc gctgcacaga

117301

aacctcggtg tccgtttggg tgccccatcc ttgaccccga gagagcaccc tccgtccaaa

117361

atgaaaaaca gctgctccca agagtcatta taatcacagc caattgtgtt aattcgtcct

117421

cggatccact cacagttcca cggaacattc tgctaacctc tgacaactcc tacataaagc

117481

aatactgaga agaaaagaac gtggttgata aatacaaagg catacaacaa taaggagcaa

117541

agaaaaaaga cagtcctcgc agttctgttt tgttcatctc tcatgagtag gatggcagat

117601

aaaacacaga atgcccagtg aataatttta gtctaagtat gtccccaata ctgcctaatc

117661

ttcaaatcta accttatttt taaaatatat attttttgct ggtcactcat cagttcatgc

117721

accaaagcct ttgtttcttg actcctaact ttttgacccc tctggggtga ggagcacccc

117781

taacctcgag agcccatcac acagtcccct tgggactaga cccttctttg cccatcacag

117841

ctgaccggaa gggccagccc atggccagcg ctcgcgcccc ctggcggaca gactctgcgc

117901

ggcagccccg ggagcccagg tgcgaccccg cggtctctgg cgccctctag tgtggaaaga

117961

tctcctcctg gtgttcccag tcattgggct gtattttatt agagaagatg ctcgcgtgac

118021

gatgatgatg gtcctttacc gggaggcacg tttggggcgc gtcggctcag gggccgagct

118081

attagcctgc atcgcgccca caggcatcgc gtccccctga gccgggtcag ctgtgggctg

118141

tcctgacacg ggtttccccc agtctctggc ccgctgtccc tcccaggtca gtgtccagcg

118201

ttgcccttct ggttgtggac ttgtgcagcg gtctcagcag atggaggggc gaccctaaag

118261

gatgtattga ggcatctcag cactgtcctc cgcccaggtt tgctggtcag cagtgaagtg

118321

accgggaaaa ggggctgtct tggggtcctt tcagaggcct gggttagacc aaagttttct

118381

agaagattca ccattgcagg gagtcaaaga caaaactagg gtggtcagca atctgtgggg

118441

gattcggcgg tgagggaatt ctgaatgcta catgtaatgg ttttactatt gttagggaac

118501

atttttcccc cctacaaaca gcaggccaaa atactgagat gtcaggtttg catcaaagag

118561

cgggttcatc cacaaggcaa ccagagaacg ctctggaatc tgcctccctg cgggcacagg

118621

ctgggtgctc acggatgaag accaagcagc aggtggcgtg gggagtgggg agcctgggga

118681

aagcgatgga caaggtgcga ggacctccgg cgcgagctgg aggcggagct tccagggaca

118741

cgcggccacg cccagtggga gggtcagcgg tccatccagt cctaacagct cagctccaac

118801

tagacgctgc tgagtctggc tttctagaga acactccggg cgggtatttt attgttttgg

118861

cttcgtgact ggaggacgtt caagtcttaa aacacccttg attagtgcgg ggaggcggaa

118921

tggatttgac tgatcacgac ccgcagtttc accatctcag gggccgccct caccccctcc

118981

taccctacca aaggtggggg catcggtgct gagatctggg gtgacacata aaatcaggtg

119041

aagtcttagg acagggggcc gattccaggt cctagggtgc agaaaaaacc tacctggccc

119101

cgggctagac agcgtggagg gcgtggcccg ggctggtgca cagaagtggc ccccaactgg

119161

tcagaaggtg tgggagccca gggctggtct actgcagaag gggtcgcctg gtggacagag

119221

tggggcctga gtgcctgctg aactggtccg tcagggctgc tgagcagaca cgggccatca

119281

tcactggctc ctgtgctcga tagaagggag ggaaaccagg aaagcaaagg cgctttatgg

119341

ccgcttttgt gtttcgcgtt cctctagcac cgtctgccgg cagaacgcgg cattacatcc

119401

gctggccaaa cctcggggtc cggcttggat gtccccatcc ttgtctcgga gatctcacct

119461

ctcagcagtt cccctgggga caatgtcgag aagatgcgac cttgacccgg agctcggtgg

119521

agagggtgcc ctgggttctt tccgcagttg cttggagtgg aggtgcctca tgttgggctg

119581

ggaacgggag gaaggaaaca ggtcatgatt gagatgctct agacagactg tccctgctct

119641

tgccaaattt cagaagattg tctttaataa atattccatt ttttgtatgc ccttaggtct

119701

atttccagac actttaaata tattgaaaga ctttaaatat ttatataaaa atattattta

119761

tagactgtat aaaaggaaca gttagaactg gacttggaac aacagactgg ttccaaatag

119821

gaaaaggagt acgtcaaggc tgtatattgt caccctgctt atttaactta tatgcagagt

119881

acatcatgag aaacgctggg ctggaagaaa cacaagctgg aatcaagatt gccgggagaa

119941

atatcaataa cctcagatat gcagatgaca ccacccttat ggcagaaagt gaagaggaac

120001

tcaaaagcct-cttgatgaag gtgaaagagg agagcgaaaa agttggctta aagctcaaca

120061

tttagaaaac gaagatcatg gcatctggtc ccatcacttc atggaaatag atggggaaac

120121

agttgagaca gtgtcagact ttatttttgg gggctccaat gaaattaaaa gacgcttact

120181

tcttggaagg aaagttatga ccaacctaga cagcatatta aaaagcagag acactacttt

120241

gccagcaaag gtccgtctag tcaaggctat ggtttttcca gtggtcatgt atggatgtga

120301

gagttggact gtgaagaagg ctgagcaccg aagaagtgat gcttttgaac tgtggtgttg

120361

gagaagactc ttgagaggcc cttggactgc aaggagatcc aaccagtcca tcgtaaagga

120421

gatcaccccc tgggtggtca ttggaaggac tgatgttgaa gctgaaactc cagtactttg

120481

gctacctaat gcgaagagct gactcattgg aaaagaccct gatgctggga aagattgaag

120541

gtgggaggag aaggggacaa cagaggatga gatggttgga ttgcatcact gactcgatgg

120601

acgtgagtct gagtgaagtc tgggagttgg tgatggccag ggaggccctg gcgtgctggc

120661

ggttcatggg gtcgcaaaga gtcggccatg actgagtgac tgaactgaac tgatccagaa

120721

atttaaaatt aatatataaa ccaaatccat gcagacaatt ataagcatat attataaatg

120781

cataattata agcaagtata tgttatattt ataatagttt ataatgtatt tataagcaag

120841

tatatattat tataagcata attgtaagta gaagtaactt tgggctttcc tggtggctca

120901

gacagtaaag aatctgcctg cagtacagga gaccgggttc gatccctggt ttggggaaat

120961

tccctggaga agggaatggc aaccaactcc aacatgtttg cctggagaat tccatggaca

121021

gaggagcccg gaaggttgca gtccatgggg ttgcaaagag ctggatacaa cagagtgact

121081

aacacatgta tataaataaa tttacctata tattgtatat atatttataa acatattcag

121141

atattataaa taattagaaa catattatac atgtatttaa atactgttat aaacataaat

121201

ttaaaaaata attttcagcc ctttggcttg ggggtgtgtt tgtggacgtc tttgtgctac

121261

tgttcctgaa gtggagctct cccctcccaa accagctttt gaaatgactg ggaaagcaat

121321

ggaatacata agcatcagga agatagcaac agagctgtca ttcttcacag agggtgtgct

121381

tgagtgtgta gcaagtcccg cagaatgtag acagattaat atagtctatt aaaaatagtg

121441

tagcaaattt acgaggtgcg atttcaagta taaagactta ctgggtctct cagttcagtt

121501

cagtcgcttg gttgtgtccg actctttttg accccatgga ccgcagcacg ccaggcctcc

121561

ctgtccatca ccaactcctg gagttcactc aaactcatgt ccatcgagtc ggtgatgcca

121621

tccaaccatc tcatcctctg gcgtcccctt ctcctcccac cttcaatctt tcccagcatc

121681

agggtctttc ccagtgagtc agttctttgc atcaggtggc cagagtagtg gagtttcagc

121741

ttcagcatcg gtccttccaa tgaatattct ggactgattt cctttaggat tgactggttg

121801

gatctccttg cagttcaagg gactctcaag agtcttctcc aacagcacag tctatgaata

121861

gaatagcaaa tgaatagaga ataacattta cgaggatata ttttaccatt gcataaaata

121921

tatcagcttg tagagaacag acttgttccc aggggagagg gtgggtaggg atggagtggg

121981

agtttgngat cancagaagc gagctgttat atagaagatg gataaaaagg atacacaaca

122041

atgtcctact gtgtggcacc gggacctata ttcagtagct tgtgagaaac cataatcgac

122101

aagactgagg aaaagtatat atatatgtat gtacttgagt tgctttgctg tacagaagaa

122161

attaacacaa cattgtaaat cgatatttca atagaatcca cccccccaaa tatataagtt

122221

tcctggagat ggagacggca acccactcca tttcttgcac ccaatattct tgcctggagg

122281

atcccatgga tagaggatcg caaagactcg gacataaccc agcgactaac actttccctt

122341

tcaaatgtgt aggtttacta gcgtgaatct acagagatgc ccaagacatt cgtttatgag

122401

gaaaactcca cacgcagctt cactgagaat tattaaacct attaaaggga gagagcgcca

122461

ggatattcat ggattgaaag attcgatgtg gtcaagttgc cagttttccc caaactgatt

122521

ggtaaattcc ccaggagctg gctcaaggcg caaaattccc tttacctttt tttaagagac

122581

gaagccaagg agccgattct ggttgagaga cgctcaggtc ctcctgcggg agagcagccc

122641

tcttcctccc ggtcgcctgg gcagtttcga ggccacgacc agaaggactt ggctccctgt

122701

gtcgcgcact cagaagtctc cctctccgtc ccaaggactc agaagctggg cgtcctgccc

122761

gcagcagagg aggcagcctg gaggggcccc gcgggcacag cggtccgggt ttcagccgag

122821

ttgcccgccc cgcccctcta cctgggcgct gccgcccggc tccggggccg gccgtgccct

122881

ccgtggccgc aaggcgtcgc tgtccccccg ctggaagtgc tgacccggag gaaggggccc

122941

agacggaggg actcggagcc tccgagtgac accctgggac tccgagcgct ggagcctggc

123001

gtcaccccag gcaggggcag tgggggcccg gggcggggtc aggggcctcc cccggttctc

123061

atttgacacc gcgggggtgc gctgggcaca gtgtccaggg gccacgttcc gagcaggggc

123121

gcgatgcagg cccgggcgcg gcctgtcccg ggcgcgagtc cagctgcttt gcagaggtgg

123181

cggcaggtcg cagtgaccct cacagagacg ccccactctg cggctccagg tgggcctgtg

123241

ccccccagaa gtgctgacct gtgcaccggg aaggcacagg gccccccagc catgtctgcg

123301

atggaagagc cggaaccgcg ccatgcccgt cctcgctgac cggcaggcac ccgccgtgtg

123361

tccacacgct gagccatctg gctccccttg cttgacatac acccaggacc tgagtgtgca

123421

ggaagttaga aggggcaggt gtggtgacac gatgccatcc agcatcacct gagaacctgg

123481

acaaacctca ggggcccagc ctgctctgtg aggccccgag ggccggcccc tccccggacc

123541

cctgccttga atccggccac actgcccgcc ttcctgctcc tgcggcttgt cagacacgcc

123601

tgagcccagg gcctgtgcac tcgctgtccc ttctgccagg actgctcctc cccaggctct

123661

tgctggggct ccccttcttc attcgggggt ggcctctctt gttcagtggc tcagctgtgc

123721

ccagtctttg caaccccatg gactgcagca cgccaggctt ccctgtcctt cactagctcc

123781

tggagtttgc tcaaactcat gtccattgag tcagtgatgc tatccaacca tctcatcctt

123841

tgctgcccac ttcttctcct gctctcaatc tttcccagca tcagggtctt ttccaatgag

123901

ttagctctct gcatcaggag gccaaagtat tggagcttca gcatcagtcc ttccagtgaa

123961

tatgcgaggt tgatttccct tagaattgac tggttggatc tccttcctgt ccagagaact

124021

ctcaagagtc ttctccagca ccacagtcgg agagcatcag ttcttcagtg atcaggtttc

124081

tttatagccc agctctcaca tcggtacatg actattggaa aacccatagc tttgattaga

124141

tggaccttca ttggcaaagt gatgggcctt cattggccct gctttttaat acaccatcta

124201

ggtttgtcgt agctttcctt ccaaagagca aacatctttt aatttcctgg ctgcagtaac

124261

catccatagt gattttggag cccaagaaaa taaaatctgc cactgtttcc actttttccc

124321

cttctatttg ctatgaagtg aggggactgg atgccatgat cttagtttaa accagcagtt

124381

gtcaccccga ccgcttcctt tcctaaagag ctcatcacac ctcccactgg aatgcaatgt

124441

gttgcctgtc cgcctgcttc acctcctggg actttgctgc aggtcttggt ctctgaggcc

124501

cctgccgtat ccccagggcc cagagcagtg ctgggcttcg agtccgatca gggactatgt

124561

gtgtggactg gatggtgctt gcttcttctg gggaacgaga gacctgggcc tggggaacga

124621

ggggacctgg tgtgaccgga tctcctccct cgggagagga gccaagcgag tggacacagg

124681

tcagtgtgtc ttgctcctgt gtggcaggtg tcccgtctgt gtctgtcatc ttggcatttc

124741

ggtgtttctg tgaacccagc ccctcccctc ctgatacccc atcccatcag cacagaggag

124801

actgggcttg gggactctct ggtcctgaga ttcctctccg catgtgactc ccccctcctg

124861

gggggagcag gcaccgtgtg tgaggagggt ggaagctttt caagaccccc agcttttctg

124921

tcccaggggg ctctggcagg gccttgggag ctggaatgag ctggaatctg ggccagtggg

124981

ggtttccctg gtggtaaaga acccgcctgc ccatgcacga ggcataagag acgcgggttc

125041

gatcactggg tcgggaagat cccctacagg agggcatggc aacccactcc agtattcttt

125101

cctgaagaat cccttggaca gaggagcctg gtgggctaca gtctctgggg tggcaaggag

125161

tcggacacga ctgaagcgac ttaccatgca cgcacgcggg gtcaggggtc agggccgcgc

125221

tgcttacctg ctgtgtgacc ttagccaggt cacacccccc aggctgtgaa agagaacagt

125281

cttcccagac tcgggcatcc aggtctttac agacgtgcct gtgagctttg tgactctggc

125341

tctgtggccg ctagagggcg ctgtccgccg ggccctatgt gcgtgcacgc atgtgagcat

125401

gttcgcatac gtgtgtgcat ctgtcggggg cgcacggtgc ggggacacgg gcacgcggtc

125461

aggaacgcag cccggacacc tccacgtggc ccgcgagtac cgtcaggtgg gggctgtggc

125521

tccgctgtgt gggtgacccg ccctcccccc gcgaacgtgg tgcatagtga ccgcctggct

125581

gggctcctga gctcagccat cctgcccccc gggtcagctc ccgacaggcc cagctctagg

125641

ccccaggcgt ggaccgaggc ccccaggccc cggcctgtga gatgggacct ccgtctgggg

125701

ggctcattct gctcccggag gcctggcagg cccctcctct ttggcattgc ataccctcgc

125761

attggggtgg gtaagcacag taccccatgc ctgtggcccc gtgggagcgg cctgctcagg

125821

gaggccggag cctcagctac agggctgtca caccgggctg cagaggaaga agacgggagc

125881

gaggcctaca ggaacctagc caggccctgg cccactgagc cgacaggagc ctggccagag

125941

gcctgcacag gacggggtgg cggggggggt ggggtggggt gctgggcccc gtggccttga

126001

ctgcagaccc cgagggctcc tcagcttaga acggccaagc ctgagtcttg ggggtgcagg

126061

tcaggggg



Primers

In another embodiment, primers are provided to generate 3′ and 5′ sequences of a targeting vector. The oligonucleotide primers can be capable of hybridizing to porcine immunoglobulin genomic sequence, such as Seq ID Nos. 1, 4, 29, 30, 12, 25, 15, 16, 19, 28 or 31, as described above. In a particular embodiment, the primers hybridize under stringent conditions to Seq ID Nos. 1, 4, 29, 30, 12, 25, 15, 16, 19, 28 or 31, as described above. Another embodiment provides oligonucleotide probes capable of hybridizing to porcine heavy chain, kappa light chain or lambda light chain nucleic acid sequences, such as Seq ID Nos. 1, 4, 29, 30, 12, 25, 15, 16, 19, 28 or 31, as described above. The polynucleotide primers or probes can have at least 14 bases, 20 bases, 30 bases, or 50 bases which hybridize to a polynucleotide of the present invention. The probe or primer can be at least 14 nucleotides in length, and in a particular embodiment, are at least 15, 20, 25, 28, or 30 nucleotides in length.

In one embodiment, primers are provided to amplify a fragment of porcine Ig heavy-chain that includes the functional joining region (the J6 region). In one non-limiting embodiment, the amplified fragment of heavy chain can be represented by Seq ID No 4 and the primers used to amplify this fragment can be complementary to a portion of the J-region, such as, but not limited to Seq ID No 2, to produce the 5′ recombination arm and complementary to a portion of Ig heavy-chain mu constant region, such as, but not limited to Seq ID No 3, to produce the 3′ recombination arm. In another embodiment, regions of the porcine Ig heavy chain (such as, but not limited to Seq ID No 4) can be subcloned and assembled into a targeting vector.

In other embodiments, primers are provided to amplify a fragment of porcine Ig kappa light-chain that includes the constant region. In another embodiment, primers are provided to amplify a fragment of porcine Ig kappa light-chain that includes the J region. In one non-limiting embodiment, the primers used to amplify this fragment can be complementary to a portion of the J-region, such as, but not limited to Seq ID No 21 or 10, to produce the 5′ recombination arm and complementary to genomic sequence 3′ of the constant region, such as, but not limited to Seq ID No 14, 24 or 18, to produce the 3′ recombination arm. In another embodiment, regions of the porcine Ig heavy chain (such as, but not limited to Seq ID No 20) can be subcloned and assembled into a targeting vector.

II. Genetic Targeting of the Immunoglobulin Genes

The present invention provides cells that have been genetically modified to inactivate immunoglobulin genes, for example, immunoglobulin genes described above. Animal cells that can be genetically modified can be obtained from a variety of different organs and tissues such as, but not limited to, skin, mesenchyme, lung, pancreas, heart, intestine, stomach, bladder, blood vessels, kidney, urethra, reproductive organs, and a disaggregated preparation of a whole or part of an embryo, fetus, or adult animal. In one embodiment of the invention, cells can be selected from the group consisting of, but not limited to, epithelial cells, fibroblast cells, neural cells, keratinocytes, hematopoietic cells, melanocytes, chondrocytes, lymphocytes (B and T), macrophages, monocytes, mononuclear cells, cardiac muscle cells, other muscle cells, granulosa cells, cumulus cells, epidermal cells, endothelial cells, Islets of Langerhans cells, blood cells, blood precursor cells, bone cells, bone precursor cells, neuronal stem cells, primordial stem cells, hepatocytes, keratinocytes, umbilical vein endothelial cells, aortic endothelial cells, microvascular endothelial cells, fibroblasts, liver stellate cells, aortic smooth muscle cells, cardiac myocytes, neurons, Kupffer cells, smooth muscle cells, Schwann cells, and epithelial cells, erythrocytes, platelets, neutrophils, lymphocytes, monocytes, eosinophils, basophils, adipocytes, chondrocytes, pancreatic islet cells, thyroid cells, parathyroid cells, parotid cells, tumor cells, glial cells, astrocytes, red blood cells, white blood cells, macrophages, epithelial cells, somatic cells, pituitary cells, adrenal cells, hair cells, bladder cells, kidney cells, retinal cells, rod cells, cone cells, heart cells, pacemaker cells, spleen cells, antigen presenting cells, memory cells, T cells, B cells, plasma cells, muscle cells, ovarian cells, uterine cells, prostate cells, vaginal epithelial cells, sperm cells, testicular cells, germ cells, egg cells, leydig cells, peritubular cells, sertoli cells, lutein cells, cervical cells, endometrial cells, mammary cells, follicle cells, mucous cells, ciliated cells, nonkeratinized epithelial cells, keratinized epithelial cells, lung cells, goblet cells, columnar epithelial cells, squamous epithelial cells, osteocytes, osteoblasts, and osteoclasts. In one alternative embodiment, embryonic stem cells can be used. An embryonic stem cell line can be employed or embryonic stem cells can be obtained freshly from a host, such as a porcine animal. The cells can be grown on an appropriate fibroblast-feeder layer or grown in the presence of leukemia inhibiting factor (LIF).

In a particular embodiment, the cells can be fibroblasts; in one specific embodiment, the cells can be fetal fibroblasts. Fibroblast cells are a suitable somatic cell type because they can be obtained from developing fetuses and adult animals in large quantities. These cells can be easily propagated in vitro with a rapid doubling time and can be clonally propagated for use in gene targeting procedures.

Targeting constructs

Homologous Recombination

In one embodiment, immunoglobulin genes can be genetically targeted in cells through homologous recombination. Homologous recombination permits site-specific modifications in endogenous genes and thus novel alterations can be engineered into the genome. In homologous recombination, the incoming DNA interacts with and integrates into a site in the genome that contains a substantially homologous DNA sequence. In non-homologous (“random” or “illicit”) integration, the incoming DNA is not found at a homologous sequence in the genome but integrates elsewhere, at one of a large number of potential locations. In general, studies with higher eukaryotic cells have revealed that the frequency of homologous recombination is far less than the frequency of random integration. The ratio of these frequencies has direct implications for “gene targeting” which depends on integration via homologous recombination (i.e. recombination between the exogenous “targeting DNA” and the corresponding “target DNA” in the genome).

A number of papers describe the use of homologous recombination in mammalian cells. Illustrative of these papers are Kucherlapati et al., Proc. Natl. Acad. Sci. USA 81:3153-3157, 1984; Kucherlapati et al., Mol. Cell. Bio. 5:714-720, 1985; Smithies et al, Nature 317:230-234, 1985; Wake et al., Mol. Cell. Bio. 8:2080-2089, 1985; Ayares et al., Genetics 111:375-388, 1985; Ayares et al., Mol. Cell. Bio. 7:1656-1662, 1986; Song et al., Proc. Natl. Acad. Sci. USA 84:6820-6824, 1987; Thomas et al. Cell 44:419-428, 1986; Thomas and Capecchi, Cell 51: 503-512, 1987; Nandi et al., Proc. Natl. Acad. Sci. USA 85:3845-3849, 1988; and Mansour et al., Nature 336:348-352, 1988. Evans and Kaufman, Nature 294:146-154, 1981; Doetschman et al., Nature 330:576-578, 1987; Thoma and Capecchi, Cell 51:503-512,4987; Thompson et al., Cell 56:316-321, 1989.

The present invention can use homologous recombination to inactivate an immunoglobulin gene in cells, such as the cells described above. The. DNA can comprise at least a portion of the gene(s) at the particular locus with introduction of an alteration into at least one, optionally both copies, of the native gene(s), so as to prevent expression of functional immunoglobulin. The alteration can be an insertion, deletion, replacement or combination thereof. When the alteration is introduce into only one copy of the gene being inactivated, the cells having a single unmutated copy of the target gene are amplified and can be subjected to a second targeting step, where the alteration can be the same or different from the first alteration, usually different, and where a deletion, or replacement is involved, can be overlapping at least a portion of the alteration originally introduced. In this second targeting step, a targeting vector with the same arms of homology, but containing a different mammalian selectable markers can be used. The resulting transformants are screened for the absence of a functional target antigen and the DNA of the cell can be further screened to ensure the absence of a wild-type target gene. Alternatively, homozygosity as to a phenotype can be achieved by breeding hosts heterozygous for the mutation.

Targeting Vectors

In another embodiment, nucleic acid targeting vector constructs are also provided. The targeting vectors can be designed to accomplish homologous recombination in cells. These targeting vectors can be transformed into mammalian cells to target the ungulate heavy chain, kappa light chain or lambda light chain genes via homologous recombination. In one embodiment, the targeting vectors can contain a 3′ recombination arm and a 5′ recombination arm (i.e. flanking sequence) that is homologous to the genomic sequence of ungulate heavy chain, kappa light chain or lambda light chain genomic sequence, for example, sequence represented by Seq ID Nos. 1, 4, 29, 30, 12, 25, 15, 16, 19, 28 or 31, as described above. The homologous DNA sequence can include at least 15 bp, 20 bp, 25 bp, 50 bp, 100 bp, 500 bp, 1 kbp, 2 kbp, 4 kbp, 5 kbp, 10 kbp, 15 kbp, 20 kbp, or 50 kbp of sequence, particularly contiguous sequence, homologous to the genomic sequence. The 3′ and 5′ recombination arms can be designed such that they flank the 3′ and 5′ ends of at least one functional variable, joining, diversity, and/or constant region of the genomic sequence. The targeting of a functional region can render it inactive, which results in the inability of the cell to produce functional immunoglobulin molecules. In another embodiment, the homologous DNA sequence can include one or more intron and/or exon sequences. In addition to the nucleic acid sequences, the expression vector can contain selectable marker sequences, such as, for example, enhanced Green Fluorescent Protein (eGFP) gene sequences, initiation and/or enhancer sequences, poly A-limiting tail sequences, and/or nucleic acid sequences that provide for the expression of the construct in prokaryotic and/or eukaryotic host cells. The selectable marker can be located between the 5′ and 3′ recombination arm sequence.

Modification of a targeted locus of a cell can be produced by introducing DNA into the cells, where the DNA has homology to the target locus and includes a marker gene, allowing for selection of cells comprising the integrated construct. The homologous DNA in the target vector will recombine with the chromosomal DNA at the target locus. The marker gene can be flanked on both sides by homologous DNA sequences, a 3′ recombination arm and a 5′ recombination arm. Methods for the construction of targeting vectors have been described in the art, see, for example, Dai et al., Nature Biotechnology 20: 251-255, 2002; WO 00/51424.

Various constructs can be prepared for homologous recombination at a target locus. The construct can include at least 50 bp, 100 bp, 500 bp, 1 kbp, 2 kbp, 4 kbp, 5 kbp, 10 kbp, 15 kbp, 20 kbp, or 50 kbp of sequence homologous with the target locus. The sequence can include any contiguous sequence of an immunoglobulin gene.

Various considerations can be involved in determining the extent of homology of target DNA sequences, such as, for example, the size of the target locus, availability of sequences, relative efficiency of double cross-over events at the target locus and the similarity of the target sequence with other sequences.

The targeting DNA can include a sequence in which DNA substantially isogenic flanks the desired sequence modifications with a corresponding target sequence in the genome to be modified. The substantially isogenic sequence can be at least about 95%, 97-98%, 99.0-99.5%, 99.6-99.9%, or 100% identical to the corresponding target sequence (except for the desired sequence modifications). In a particular embodiment, the targeting DNA and the target DNA can share stretches of DNA at least about 75, 150 or 500 base pairs that are 100% identical. Accordingly, targeting DNA can be derived from cells closely related to the cell line being targeted; or the targeting DNA can be derived from cells of the same cell line or animal as the cells being targeted.

Porcine Heavy Chain Targeting

In particular embodiments of the present invention, targeting vectors are provided to target the porcine heavy chain locus. In one particular embodiment, the targeting vector can contain 5′ and 3′ recombination arms that contain homologous sequence to the 3′ and 5′ flanking sequence of the J6 region of the porcine immunoglobulin heavy chain locus. Since the J6 region is the only functional joining region of the porcine immunoglobulin heavy chain locus, this will prevent the exression of a functional porcine heavy chain immunoglobulin. In a specific embodiment, the targeting vector can contain a 5′ recombination arm that contains sequence homologous to genomic sequence 5′ of the J6 region, optionally including J1-4 and a 3′ recombination arm that contains sequence homologous to genomic sequence 3′ of the J6 region, including the mu constant region (a “J6 targeting construct”), see for example, FIG. 1. Further, this J6 targeting construct can also contain a selectable marker gene that is located between the 5′ and 3′ recombination arms, see for example, Seq ID No 5 and FIG. 1. In other particular embodiments, the 5′ targeting arm can contain sequence 5′ of J1, such as depicted in Seq ID No. 1 and/or Seq ID No 4. In another embodiments, the 5′ targeting arm can contain sequence 5′ of J1, J2 and/or J3, for example, as depicted in approximately residues 1-300, 1-500, 1-750, 1-1000 and/or 1-1500 Seq ID No 4. In a further embodiment, the 5′ targeting arm can contain sequence 5′ of the constant region, for example, as depicted in approximately residues 1-300, 1-500, 1-750, 1-1000, 1-1500 and/or 1-2000 or any fragment thereof of Seq ID No 4 and/or any contiguous sequence of Seq ID No. 4 or fragment thereof. In another embodiment, the 3′ targeting arm can contain sequence 3′ of the constant region and/or including the constant region, for example, such as resides 7000-8000 and/or 8000-9000 or fragment thereof of Seq ID No 4. In other embodiments, targeting vector can contain any contiguous sequence or fragment thereof of Seq ID No 4. sequence In other embodiments, the targeting vector can contain a 5′ recombination arm that contains sequence homologous to genomic sequence 5′ of the diversity region, and a 3′ recombination arm that contains sequence homologous to genomic sequence 3′ of the diversity region of the porcine heavy chain locus. In a further embodiment, the targeting vector can contain a 5′ recombination arm that contains sequence homologous to genomic sequence 5′ of the mu constant region and a 3′ recombination arm that contains sequence homologous to genomic sequence 3′ of the mu constant region of the porcine heavy chain locus.

In further embodiments, the targeting vector can include, but is not limited to any of the following sequences: the Diversity region of heavy chain is represented, for example, by residues 1089-1099 of Seq ID No 29 (D(pseudo)), the Joining region of heavy chain is represented, for example, by residues 1887-3352 of Seq ID No 29 (for example: J(psuedo): 1887-1931 of Seq ID No 29, J(psuedo): 2364-2411 of Seq ID No 29, J(psuedo): 2756-2804 of Seq ID No 29, J (functional J): 3296-3352 of Seq ID No 29), the recombination signals are represented, for example, by residues 3001-3261 of Seq ID No 29 (Nonamer), 3292-3298 of Seq ID No 29 (Heptamer), the Constant Region is represented by the following residues: 3353-9070 of Seq ID No 29 (J to C mu intron), 5522-8700 of Seq ID No 29 (Switch region), 9071-9388 of Seq ID No 29 (Mu Exon 1), 9389-9469 of Seq ID No 29 (Mu Intron A), 9470-9802 of Seq ID No 29 (Mu Exon 2), 9830-10069 of Seq ID No 29 (Mu Intron B), 10070-10387 of Seq ID No 29 (Mu Exon 3), 10388-10517 of Seq ID No 29 (Mu Intron C), 10815-11052 of Seq ID No 29 (Mu Exon 4), 11034-11039 of Seq ID No 29 (Poly(A) signal) or any fragment or combination thereof. Still further, any contiguous sequence at least about 17, 20, 30, 40, 50, 100, 150, 200 or 300 nucleotides of Seq ID No 29 or fragment and/or combination thereof can be used as targeting sequence for the heavy chain targeting vector. It is understood that in general when designing a targeting construct one targeting arm will be 5′ of the other targeting arm.

In other embodiments, targeting vectors designed to disrupt the expression of porcine heavy chain genes can contain recombination arms, for example, the 3′ or 5′ recombination arm, that target the constant region of heavy chain. In one embodiment, the recombination arm can target the mu constant region, for example, the C mu sequences described above or as disclosed in Sun & Butler Immunogenetics (1997) 46: 452-460. In another embodiment, the recombination arm can target the delta constant region, such as the sequence disclosed in Zhao et al. (2003) J Immunol 171: 1312-1318, or the alpha constant region, such as the sequence disclosed in Brown & Butler (1994) Molec Immunol 31: 633-642.

Seq ID No.5

GGCCAGACTTCCTCGGAACAGCTCAAAGAGCTCTGTCAA

AGCCAGATCCCATCACACGTGGGCACCAATAGGCCATGC

CAGCCTCCAAGGGCCGAACTGGGTTCTCCACGGCGCACA

TGAAGCCTGCAGCCTGGCTTATCCTCTTCCGTGGTGAAG

AGGCAGGCCCGGGACTGGACGAGGGGCTAGCAGGGTGTG

GTAGGCACCTTGCGCCCCCCACCCCGGCAGGAACCAGAG

ACCCTGGGGCTGAGAGTGAGCCTCCAAACAGGATGCCCC

ACCCTTCAGGCCACCTTTCAATCCAGCTACACTCCACCT

GCCATTCTCCTCTGGGCACAGGGCCCAGCCCCTGGATCT

TGGCCTTGGCTCGACTTGCACCCACGCGCACACACACAC

TTCCTAACGTGCTGTCCGCTCACCCCTCCCCAGGGTGGT

CCATGGGCAGCACGGCAGTGGGCGTCCGGCGGTAGTGAG

TGCAGAGGTCCCTTCCCCTCCCCCAGGAGCCCCAGGGGT

GTGTGCAGATCTGGGGGCTCCTGTCCCTTACACCTTCAT

GCCCCTCCCCTCATACCCACCCTCCAGGCGGGAGGCAGC

GAGACCTTTGCCCAGGGACTCAGCCAACGGGCACAGGGG

AGGCCAGCCCTCAGCAGCTGGCTCCCAAAGAGGAGGTGG

GAGGTAGGTCCACAGCTGCCACAGAGAGAAACCCTGACG

GACCCCACAGGGGCCACGCCAGCCGGAACCAGCTCCCTC

GTGGGTGAGCAATGGCCAGGGCCCGGCCGGCGACCACGG

CTGGCGTTGCGCCAGGTGAGAACTCACGTCCAGTGCAGG

GAGACTCAAGACAGCGTGTGCACACAGGGTCGGATCTGC

TCCCATTTCAAGCAGAAAAAGGAAACCGTGCAGGCAGCC

GTCAGCATTTCAAGGATTGTAGCAGCGGCCAACTATTCG

TCGGCAGTGGCCGATTAGAATGACCGTGGAGAAGGGCGG

AAGGGTCTCTCGTGGGCTCTGCGGCCAACAGGCCCTGGC

TCCACCTGCCCGCTGCCAGGCCGAGGGGCTTGGGCCGAG

CCAGGAACCACAGTGCTCACCGGGAGCACAGTGACTGAC

CAAACTCCGGGCCAGAGCAGCGCCAGGCGAGCCGGGGTC

TCGCCGTGGAGGACTCACCATCAGATGCACAAGGGGGCG

AGTGTGGAAGAGACGTGTCGCCCGGGCCATTTGGGAAGG

CGAAGGGACCTTCCAGGTGGACAGGAGGTGGGACGCACT

CCAGGCAAGGGACTGGGTCCCCAAGGCCTGGGGAAGGGG

TACTGGCTTGGGGGTTAGCCTGGCCAGGGAACGGGGAGC

GGGGCGGGGGGGTGAGCAGGGAGGACCTGAGCTGGTGGG

AGCGAGGCAAGTCAGGCTTCAGGCAGCAGCCGCAGATCC

CAGACCAGGAGGGTGAGGCAGGAGGGGGTTGCAGGGGGG

CGGGGGCCTGCCTGGCTCCGGGGGCTCCTGGGGGACGCT

GGCTCTTGTTTCCGTGTCCCGCAGCACAGGGCCAGCTCG

CTGGGCCTATGCTTACCTTGATGTCTGGGGCCGGGGCGT

CAGGGTCGTCGTCTCCTCAGGGGAGAGTCCCCTGAGGCT

ACGGTGGGG*GGGGACTATGGCAGCTCCACCAGGGGCCT

GGGGACCAGGGGCCTGGACCAGGCTGCAGCCCGGAGGAC

GGGGAGGGCTGTGGCTCTCCAGCATCTGGCCCTCGGAAA

TGGCAGAACGGCTGGCGGGTGAGCGAGCTGAGAGCGGGT

CAGACAGACAGGGGCCGGCCGGAAAGGAGAAGTTGGGGG

CAGAGCCCGCCAGGGGCCAGGCCCAAGGTTCTGTGTGCC

AGGGCCTGGGTGGGCACATTGGTGTGGCCATGGCTACTT

AGACGCGTGATCAAGGGCGAATTCCAGCACACTGGCGGC

CGTTACTAGTggatcccggcgcgccctaccgggtagggg

aggcgcttttcccaaggcagtctggagcatgcgctttag

cagccccgctgggcacttggcgctacacaagtggcctct

ggcctcgcacacattccacatccaccggtaggcgccaac

cggctccgttctttggtggccccttcgcgccaccttcta

ctcctcccctagtcaggaagttcccccccgccccgcagc

tcgcgtcgtgcaggacgtgacaaatggaagtagcacgtc

tcactagtctcgtgcagatggacagcaccgctgagcaat

ggaagcgggtaggcctttggggcagcggccaatagcagc

tttggctccttcgctttctgggctcagaggctgggaagg

ggtgggtccgggggcgggctcaggggcgggctcaggggc

ggggcgggcgcccgaaggtcctccggaagcccggcattc

tgcacgcttcaaaagcgcacgtctgccgcgctgttctcc

tcttcctcatctccgggcctttcgacctgcagccaatat

gggatcggccattgaacaagatggattgcacgcaggttc

tccggccgcttgggtggagaggctattcggctatgactg

ggcacaacagacaatcggctgctctgatgccgccgtgtt

ccggctgtcagcgcaggggcgcccggttctttttgtcaa

gaccgacctgtccggtgccctgaatgaactgcaggacga

ggcagcgcggctatcgtggctggccacgacgggcgttcc

ttgcgcagctgtgctcgacgttgtcactgaagcgggaag

ggactggctgctattgggcgaagtgccggggcaggatct

cctgtcatctcaccttgctcctgccgagaaagtatccat

catggctgatgcaatgcggcggctgcatacgcttgatcc

ggctacctgcccattcgaccaccaagcgaaacatcgcat

cgagcgagcacgtactcggatggaagccggtcttgtcaa

tcaggatgatctggacgaagagcatcaggggctcgcgcc

agccgaactgttcgccaggctcaaggcgcgcatgcccga

cggcgaggatctcgtcgtgacccatggcgatgcctgctt

gccgaatatcatggtggaaaatggccgcttttctggatt

catcgactgtggccggctgggtgtggcggatcgctatca

ggacatagcgttggctacccgtgatattgctgaagagct

tggcggcgaatgggctgaccgcttcctcgtgctttacgg

tatcgccgctcccgattcgcagcgcatcgccttctatcg

ccttcttgacgagttcttctgaggggatcaattcTCTAG

ATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGC

AGAATTCGCCCTtCCAGGCGTTGAAGTCGTCGTGTCCTC

AGGTAAGAACGGCCCTCCAGGGCCTTTAATTTCTGCTCT

CGTCTGTGGGCTTTTCTGACTCTGATCCTCGGGAGGCGT

CTGTGCCCCCCCCGGGGATGAGGCCGGCTTGCCAGGAGG

GGTCAGGGACCAGGAGCCTGTGGGAAGTTCTGACGGGGG

CTGCAGGCGGGAAGGGCCCCACCGGGGGGCGAGCCCCAG

GCCGCTGGGCGGCAGGAGACCCGTGAGAGTGCGCCTTGA

GGAGGGTGTCTGCGGAACCACGAACGCCCGCCGGGAAGG

GCTTGCTGCAATGCGGTCTTCAGACGGGAGGCGTCTTCT

GCCCTCACCGTCTTTCAAGCCCTTGTGGGTCTGAAAGAG

CCATGTCGGAGAGAGAAGGGACAGGCCTGTGGCGAGCTG

GCCGAGAGCGGGCAGCCCCGGGGGAGAGCGGGGCGATCG

GCGTGGGCTCTGTGAGGCCAGGTCCAAGGGAGGACGTGT

GGTCCTCGTGACAGGTGCACTTGCGAAACCTTAGAAGAC

GGGGTATGTTGGAAGCGGCTCCTGATGTTTAAGAAAAGG

GAGACTGTAAAGTGAGCAGAGTCCTCAAGTGTGTTAAGG

TTTTAAAGGTCAAAGTGTTTTAAAGCTTTGTGAGTGCAG

TTAGCAAGCGTGCGGGGAGTGAATGGGGTGCCAGGGTGG

CCGAGAGGCAGTACGAGGGCCGTGCCGTCCTGTAATTCA

GGGCTTAGTTTTGCAGAATAAAGTCGGCCTGTTTTCTAA

AAGCATTGGTGGTGCTGAGGTGGTGGAGGAGGCCGCGGG

CAGCCCTGGCCACCTGCAGCAGGTGGCAGGAAGCAGGTC

GGCCAAGAGGCTATTTTAGGAAGCCAGAAAACACGGTCG

ATGAATTTATAGCTTCTGGTTTCCAGGAGGTGGTTGGGC

ATGGCTTTGCGCAGCGCCACAGAACCGAAAGTGCCCACT

GAGAAAAAACAACTCCTGCTTAATTTGCATTTTTCTAAA

AGAAGAAACAGAGGCTGACGGAAACTGGAAAGTTCCTGT

TTTAACTACTCGAATTGAGTTTTCGGTCTTAGCTTATCA

ACTGCTCACTTAGATTCATTTTCAAAGTAAACGTTTAAG

AGCCGAGGCATTCCTATCCTCTTCTAAGGCGTTATTCCT

GGAGGCTCATTCACCGCCAGCACCTCCGCTGCCTGCAGG

CATTGCTGTCAGGGTCACCGTGACGGCGCGCACGATTTT

CAGTTGGCCCGCTTCCCCTCGTGATTAGGACAGACGCGG

GCACTCTGGCCCAGCCGTCTTGGCTCAGTATCTGCAGGC

GTCCGTCTCGGGACGGAGCTCAGGGGAAGAGCGTGACTC

CAGTTGAACGTGATAGTCGGTGCGTTGAGAGGAGACCCA

GTCGGGTGTCGAGTCAGAAGGGGCCCGGGGCCCGAGGCC

CTGGGCAGGACGGGCCGTGCCCTGGATCACGGGCCCAGC

GTCCTAGAGGCAGGACTCTGGTGGAGAGTGTGAGGGTGC

CTGGGGCCCCTCCGGAGCTGGGGCCGTGCGGTGCAGGTT

GGGCTCTCGGCGCGGTGTTGGCTGTTTCTGCGGGATTTG

GAGGAATTCTTCCAGTGATGGGAGTCGCCAGTGACCGGG

CACCAGGGTGGTAAGAGGGAGGCCGCCGTCGTGGCCAGA

GCAGGTGGGAGGGTTCGGTAAAAGGCTCGCCCGTTTCCT

TTAATGAGGACTTTTCCTGGAGGGCATTTAGTCTAGTCG

GGACCGTTTTCGACTCGGGAAGAGGGATGCGGAGGAGGG

CATGTGCCCAGGAGCCGAAGGCGCCGCGGGGAGAAGCCC

AGGGCTCTCCTGTCCCCACAGAGGCGACGCCACTGCCGC

AGACAGACAGGGCCTTTCCCTCTGATGACGGCAAAGGCG

CCTCGGCTCTTGCGGGGTGCTGGGGGGGAGTCGCCCCGA

AGCCGCTCACCCAGAGGCCTGAGGGGTGAGACTGACCGA

TGCCTCTTGGCCGGGCCTGGGGCCGGACCGAGGGGGACT

CCGTGGAGGCAGGGCGATGGTGGCTGCGGGAGGGAACCG

ACCCTGGGCCGAGCCCGGCTTGGCGATTCCCGGGCGAGG

GCCCTCAGGCGAGGCGAGTGGGTCCGGCGGAACCACCCT

TTCTGGCCAGCGCCACAGGGCTCTCGGGACTGTCCGGGG

CGACGCTGGGCTGCCCGTGGCAGGCCTGGGCTGACCTGG

ACTTCACCAGACAGAACAGGGCTTTCAGGGCTGAGCTGA

GCCAGGTTTAGCGAGGCCAAGTGGGGCTGAACCAGGCTC

AACTGGCCTGAGCTGGGTTGAGCTGGGCTGACCTGGGCT

GAGCTGAGCTGGGGTGGGCTGGGCTGGGCTGGGCTGGGG

TGGGCTGGACTGGCTGAGCTGAGCTGGGTTGAGCTGAGC

TGAGCTGGCCTGGGTTGAGCTGGGCTGGGTTGAGCTGAG

CTGGGTTGAGCTGGGTTGAGCTGGGTTGATCTGAGCTGA

GGTGGGCTGAGCTGAGCTAGGCTGGGGTGAGGTGGGGTG

ATCTGAGCTGAGCTGGGCTGAGCTGAGCTAGGCTGGGGT

GAGCTGGGCTGAGCTGGTTTGAGTTGGGTTGAGCTGAGC

TGAGCTGGGCTGTGCTGGCTGAGCTAGGCTGAGCTAGGC

TAGGTTGAGCTGGGCTGGGCTGAGCTGAGCTAGGCTGGG

CTGATTTGGGCTGAGCTGAGCTGAGCTAGGCTGCGTTGA

GCTGGCTGGGCTGGATTGAGCTGGCTGAGCTGGCTGAGC

TGGGCTGAGCTGGCCTGGGTTGAGCTGAGCTGGACTGGT

TTGAGCTGGGTCGATCTGGGTTGAGCTGTCCTGGGTTGA

GCTGGGCTGGGTTGAGCTGAGCTGGGTTGAGCTGGGCTC

AGCAGAGCTGGGTTGGGCTGAGCTGGGTTGAGCTGAGCT

GGGCTGAGCTGGCCTGGGTTGAGCTGGGCTGAGCTGAGC

TGGGCTGAGCTGGCCTGTGTTGAGCTGGGCTGGGTTGAG

CTGGGCTGAGCTGGATTGAGCTGGGTTGAGCTGAGCTGG

GCTGGGCTGTGCTGACTGAGCTGGGGTGAGCTAGGCTGG

GGTGAGCTGGGCTGAGCTGATCCGAGCTAGGCTGGGCTG

GTTTGGGCTGAGCTGAGCTGAGCTAGGCTGGATTGATCT

GGCTGAGCTGGGTTGAGCTGAGCTGGGCTGAGCTGGTCT

GAGCTGGCCTGGGTCGAGCTGAGCTGGACTGGTTTGAGC

TGGGTCGATCTGGGCTGAGCTGGCCTGGGTTGAGCTGGG

CTGGGTTGAGCTGAGCTGGGTTGAGCTGGGGTGAGCTGA

GGGCTGGGGTGAGGTGGGGTGAACTAGCCTAGCTAGGTT

GGGCTGAGCTGGGCTGGTTTGGGCTGAGCTGAGCTGAGG

TAGGGTGCATTGAGCAGGCTGAGCTGGGCTGAGCAGGCG

TGGGGTGAGCTGGGCTAGGTGGAGCTGAGCTGGGTCGAG

CTGAGTTGGGCTGAGCTGGCCTGGGTTGAGGTAGGCTGA

GCTGAGCTGAGCTAGGCTGGGTTGAGCTGGCTGGGCTGG

TTTGCGCTGGGTCAAGCTGGGCCGAGCTGGCCTGGGTTG

AGCTGGGCTCGGTTGAGCTGGGCTGAGCTGAGCCGACCT

AGGCTGGGATGAGCTGGGCTGATTTGGGCTGAGCTGAGC

TGAGCTAGGCTGCATTGAGCAGGCTGAGGTGGGGCTGGA

GCCTGGCGTGGGGTGAGCTGGGCTGAGCTGCGCTGAGCT

AGGCTGGGTTGAGCTGGCTGGGCTGGTTTGCGCTGGGTC

AAGCTGGGCCGAGCTGGCCTGGGATGAGCTGGGCCGGTT

TGGGCTGAGCTGAGCTGAGGTAGGCTGCATTGAGCAGGG

TGAGCTGGGGTGAGCTGGGCTGGGGTGAGCTGGGCTGAG

CTAAGCTGAGCTGGGCTGGTTTGGGGTGAGGTGGCTGAG

CTGGGTCCTGGTGAGCTGGGCTGAGGTGACCAGGGGTGA

GGTGGGCTGAGTTAGGCTGGGCTCAGCTAGGCTGGGTTG

ATCTGGCAGGGCTGGTTTGCGCTGGGTCAAGCTCCCGGG

AGATGGCCTGGGATGAGCTGGGCTGGTTTGGGCTGAGCT

GAGCTGAGCTGAGCTAGGCTGCATTGAGCAGGCTGAGCT

GGGCTGAGCTGGCCTGGGGTGAGGTGGGCTGGGTGGAGC

TGAGCTGGGCTGAACTGGGGTAAGCTGGCTGAGCTGGAT

CGAGCTGAGCTGGGGTGAGGTGGCCTGGGGTTAGCTGGG

CTGAGCTGAGCTGAGCTAGGGTGGGTTGAGCTGGCTGGG

CTGGTTTGCGGTGGGTCAAGGTGGGCGGAGGTGGCCTGG

GTTGAGCTGGGCTGGGCTGAGCTGAGCTAGGCTGGGTTG

AGCTGGGCTGGGCTGAGCTGAGCTAGGCTGCATTGAGCT

GGCTGGGATGGATTGAGCTGGCTGAGCTGGCTGAGCTGG

CTGAGCTGGGCTGAGCTGGCCTGGGTTGAGCTGGGCTGG

GTTGAGCTGAGCTGGGCTGAGCTGGGCTCAGCAGAGCTG

GGTTGAGCTGAGCTGGGTTGAGGTGGGGTGAGCTGGGGT

GAGCAGAGCTGGGTTGAGCTGAGCTGGGTTGAGCTGGGC

TCGAGCAGAGCTGGGTTGAGCTGAGCTGGGTTGAGCTGG

GCTCAGCAGAGCTGGGTTGAGCTGAGCTGGGTTGAGCTG

GGCTGAGCTAGCTGGGCTCAGCTAGGGTGGGTTGAGCTG

AGCTGGGCTGAAGTGGGCTGAGCTGGGCTGAAGTGGGGT

GAGCTGGGCTGAGCTGGGGTGAGCAGAGCTGGGCTGAGC

AGAGGTGGGTTGGTCTGAGCTGGGTTGAGCTGGGGTGAG

CTGGGCTGAGCAGAGTTGGGTTGAGCTGAGCTGGGTTCA

GCTGGGCTGAGCTAGGCTGGGTTGAGCTGGGTTGAGTTG

GGCTGAGCTGGGCTGGGTTGAGCGGAGCTGGGCTGAACT

GGGCTGAGCTGGGCTGAGCGGAACTGGGTTGATGTGAAT

TGAGCTGGGCTGAGCCGGGCTGAGCCGGGCTGAGCTGGG

CTAGGTTGAGCTTGGGTGAGCTTGCCTCAGCTGGTCTGA

GCTAGGTTGGGTGGAGCTAGGCTGGATTGAGGTGGGCTG

AGCTGAGCTGATCTGGCCTCAGCTGGGCTGAGGTAGGCT

GAACTGGGGTGTGCTGGGCTGAGGTGAGCTGAGCCAGTT

TGAGCTGGGTTGAGCTGGGCTGAGCTGGGCTGTGTTGAT

CTTTCCTGAACTGGGCTGAGCTGGGCTGAGCTGGCCTAG

CTGGATTGAACGGGGGTAAGCTGGGCCAGGCTGGACTGG

GCTGAGGTGAGCTAGGCTGAGCTGAGTTGAATTGGGTTA

GCTGGGCTGAGATGGGCTGGAGCTGGGCTGAGCTGGGTT

GAGCCAGGTCGGACTGGGTTACCCTGGGCCACACTGGGG

TGAGCTGGGCGGAGCTCGATTAACCTGGTCAGGCTGAGT

CGGGTCCAGCAGACATGCGCTGGCCAGGCTGGCTTGACC

TGGACACGTTCGATGAGCTGCCTTGGGATGGTTCACCTC

AGCTGAGCCAGGTGGCTCCAGCTGGGCTGAGCTGGTGAC

CCTGGGTGACCTCGGTGACCAGGTTGTCCTGAGTCCGGG

CCAAGCCGAGGCTGCATCAGAGTCGCCAGACCCAAGGCC

TGGGGCCCGGGTGGCAAGCCAGGGGCGGTGAAGGCTGGG

GTGGCAGGACTGTCCCGGAAGGAGGTGCACGTGGAGCCG

CCCGGACCCCGACCGGCAGGACCTGGAAAGACGGGTCTC

ACTCCCCTTTCTCTTCTGTCCCCTCTCGGGTGCTCAGAG

AGCCAGTCTGCCCCGAATCTGTACCCCCTCGTCTCCTGC

GTCAGCCCCCCGTCCGATGAGAGCCTGGTGGCCCTGGGC

TGCCTGGCCCGGGACTTCCTGCCCAGCTCCGTCACCTTC

TCCTGGAA

Porcine Kappa Chain Targeting

In particular embodiments of the present invention, targeting vectors are provided to target the porcine kappa chain locus. In one particular embodiment, the targeting vector can contain 5′ and 3′ recombination arms that contain homologous sequence to the 3′ and 5′ flanking sequence of the constant region of the porcine immunoglobulin kappa chain locus. Since the present invention discovered that there is only one constant region of the porcine immunoglobulin kappa light chain locus, this will prevent the expression of a functional porcine kappa light chain immunoglobulin. In a specific embodiment, the targeting vector can contain a 5′ recombination arm that contains sequence homologous to genomic sequence 5′ of the constant region, optionally including the joining region, and a 3′ recombination arm that contains sequence homologous to genomic sequence 3′ of the constant region, optionally including at least part of the enhancer region (a “Kappa constant targeting construct”), see for example, FIG. 2. Further, this kappa constant targeting construct can also contain a selectable marker gene that is located between the 5′ and 3′ recombination arms, see for example, Seq ID No 20 and FIG. 2. In other embodiments, the targeting vector can contain a 5′ recombination arm that contains sequence homologous to genomic sequence 5′ of the joining region, and a 3′ recombination arm that contains sequence homologous to genomic sequence 3′ of the joining region of the porcine kappa light chain locus. In other embodiments, the 5′ arm of the targeting vector can include Seq ID No 12 and/or Seq ID No 25 or any contiguous sequence or fragment thereof. In another embodiment, the 3′ arm of the targeting vector can include Seq ID No 15, 16 and/or 19 or any contiguous sequence or fragment thereof.

In further embodiments, the targeting vector can include, but is not limited to any of the following sequences: the coding region of kappa light chain is represented, for example by residues 1-549 of Seq ID No 30 and 10026-10549 of Seq ID No 30, whereas the intronic sequence is represented, for example, by residues 550-10025 of Seq ID No 30, the Joining region of kappa light chain is represented, for example, by residues 5822-7207 of Seq ID No 30 (for example, J1:5822-5859 of Seq ID No 30, J2:6180-6218 of Seq ID No 30, J3:6486-6523 of Seq ID No 30, J4:6826-6863 of Seq ID No 30, J5:7170-7207 of Seq ID No 30), the Constant Region is represented by the following residues: 10026-10549 of Seq ID No 30 (C exon) and 10026-10354 of Seq ID No 30 (C coding), 10524-10529 of Seq ID No 30 (Poly(A) signal) and 11160-11264 of Seq ID No 30 (SINE element) or any fragment or combination thereof. Still further, any contiguous sequence at least about 17, 20, 30, 40, 50, 100, 150, 200. or 300 nucleotides of Seq ID No 30 or fragment and/or combination thereof can be used as targeting sequence for the heavy chain targeting vector. It is understood that in general when designing a targeting construct one targeting arm will be 5′ of the other targeting arm.

Seq ID No.20

ctcaaacgtaagtggctttttccgactgattctttgc

tgtttctaattgttggttggctttttgtccatttttc

agtgttttcatcgaattagttgtcagggaccaaacaa

attgccttcccagattaggtaccagggaggggacatt

gctgcatgggagaccagagggtggctaatttttaacg

tttccaagccaaaataactggggaagggggcttgctg

tcctgtgagggtaggtttttatagaagtggaagttaa

ggggaaatcgctatggttcacttttggctcggggacc

aaagtggagcccaaaattgagtacattttccatcaat

tatttgtgagatttttgtcctgttgtgtcatttgtgc

aagtttttgacattttggttgaatgagccattcccag

ggacccaaaaggatgagaccgaaaagtagaaaagagc

caacttttaagctgagcagacagaccgaattgttgag

tttgtgaggagagtagggtttgtagggagaaagggga

acagatcgctggctttttctctgaattagcctttctc

atgggactggcttcagagggggtttttgatgagggaa

gtgttctagagccttaactgtgggttgtgttcggtag

cgggaccaagctggaaatcaaacgtaagtgcactttt

ctactcctttttctttcttatacgggtgtgaaattgg

ggacttttcatgtttggagtatgagttgaggtcagtt

ctgaagagagtgggactcatccaaaaatctgaggagt

aagggtcagaacagagttgtctcatggaagaacaaag

acctagttagttgatgaggcagctaaatgagtcagtt

gacttgggatccaaatggccagacttcgtctgtaacc

aacaatctaatgagatgtagcagcaaaaagagatttc

cattgaggggaaagtaaaattgttaatattgtggatc

acctttggtgaagggacatccgtggagattgaacgta

agtattttttctctactaccttctgaaatttgtctaa

atgccagtgttgacttttagaggcttaagtgtcagtt

ttgtgaaaaatgggtaaacaagagcatttcatattta

ttatcagtttcaaaagttaaactcagctccaaaaatg

aatttgtagacaaaaagattaatttaagccaaattga

atgattcaaaggaaaaaaaaattagtgtagatgaaaa

aggaattcttacagctccaaagagcaaaagcgaatta

attttctttgaactttgccaaatcttgtaaatgattt

ttgttctttacaatttaaaaaggttagagaaatgtat

ttcttagtctgttttctctcttctgtctgataaatta

ttatatgagataaaaatgaaaattaataggatgtgct

aaaaaatcagtaagaagttagaaaaatatatgtttat

gttaaagttgccacttaattgagaatcagaagcaatg

ttatttttaaagtctaaaatgagagataaactgtcaa

tacttaaattctgcagagattctatatcttgacagat

atctcctttttcaaaaatccaatttctatggtagact

aaatttgaaatgatcttcctcataatggagggaaaag

atggactgaccccaaaagctcagattt*aagaaaacc

tgtttaag*gaaagaaaataaaagaactgcatttttt

aaaggcccatgaatttgtagaaaaataggaaatattt

taataagtgtattcttttattttcctgttattacttg

atggtgtttttataccgccaaggaggccgtggcaccg

tcagtgtgatctgtagaccccatggcggccttttttc

gcgattgaatgaccttggcggtgggtccccagggctc

tggtggcagcgcaccagccgctaaaagccgctaaaaa

ctgccgctaaaggccacagcaaccccgcgaccgcccg

ttcaactgtgctgacacagtgatacagataatgtcgc

taacagaggagaatagaaatatgacgggcacacgcta

atgtggggaaaagagggagaagcctgatttttatttt

ttagagattctagagataaaattcccagtattatatc

cttttaataaaaaatttctattaggagattataaaga

atttaaagctatttttttaagtggggtgtaattcttt

cagtagtctcttgtcaaatggatttaagtaatagagg

cttaatccaaatgagagaaatagacgcataacccttt

caaggcaaaagctacaagagcaaaaattgaacacagc

agccagccatctagccactcagattttgatcagtttt

actgagtttgaagtaaatatcatgaaggtataattgc

tgataaaaaaataagatacaggtgtgacacatcttta

agtttcagaaatttaatggcttcagtaggattatatt

tcacgtatacaaagtatctaagcagataaaaatgcca

ttaatggaaacttaatagaaatatatttttaaattcc

ttcattctgtgacagaaattttctaatctgggtcttt

taatcacctaccctttgaaagagtttagtaatttgct

atttgccatcgctgtttactccagctaatttcaaaag

tgatacttgagaaagattatttttggtttgcaaccac

ctggcaggactattttagggccattttaaaactcttt

tcaaactaagtattttaaactgttctaaaccatttag

ggccttttaaaaatcttttcatgaatttcaaacttcg

ttaaaagttattaaggtgtctggcaagaacttcctta

tcaaatatgctaatagtttaatctgttaatgcaggat

ataaaattaaagtgatcaaggcttgacccaaacagga

gtatcttcatagcatatttcccctcctttttttctag

aattcatatgattttgctgccaaggctattttatata

atctctggaaaaaaaatagtaatgaaggttaaaagag

aagaaaatatcagaacattaagaattcggtattttac

taactgcttggttaacatgaaggtttttattttatta

aggtttctatctttataaaaatctgttcccttttctg

ctgatttctccaagcaaaagattcttgatttgttttt

taactcttactctcccacccaagggcctgaatgccca

caaaggggacttccaggaggccatctggcagctgctc

accgtcagaagtgaagccagccagttcctcctgggca

ggtggccaaaattacagttgacccctcctggtctggc

tgaaccttgccccatatggtgacagccatctggccag

ggcccaggtctccctctgaagcctttgggaggagagg

gagagtggctggcccgatcacagatgcggaaggggct

gactcctcaaccggggtgcagactctgcagggtgggt

ctgggcccaacacacccaaagcacgcccaggaaggaa

aggcagcttggtatcactgcccagagctaggagaggc

accgggaaaatgatctgtccaagacccgttcttgctt

ctaaactccgagggggtcagatgaagtggttttgttt

cttggcctgaagcatcgtgttccctgcaagaagcggg

gaacacagaggaaggagagaaaagatgaactgaacaa

agcatgcaaggcaaaaaaggGGGTCTAGCCGCGGTCT

AGGAAGCTTTCTAGGGTACCTCTAGGGATCCCGGCGC

GCCCTACCGGGTAGGGGAGGCGCTTTTCCCAAGGCAG

TCTGGAGCATGCGCTTTAGCAGCCCCGCTGGGCACTT

GGCGCTACACAAGTGGCCTCTGGCCTCGCACACATTG

CACATCCACCGGTAGGGGCCAACCGGCTGCGTTCTTT

GGTGGCCGCTTCGCGCCACCTTGTACTGCTCCCCTAG

TCAGGAAGTTCGCCGCGGCCCCGCAGCTCGCGTCGTG

GAGGACGTGACAAATGGAAGTAGCACGTCTGACTAGT

CTCGTGCAGATGGACAGCACCGCTGAGCAATGGAAGC

GGGTAGGCCTTTGGGGCAGCGGCCAATAGCAGCTTTG

GCTCCTTCGCTTTCTGGGCTCAGAGGCTGGGAAGGGG

TGGGTCCGGGGGCGGGCTCAGGGGCGGGGTCAGGGGC

GGGGCGGGCGCCCGAAGGTCCTCCGGAAGCCCGGCAT

TCTGCACGCTTCAAAAGCGCACGTCTGCCGCGCTGTT

CTCCTCTTCCTCATCTCCGGGCCTTTCGACCTGCAGC

CAATATGGGATCGGCCATTGAACAAGATGGATTGCAC

GCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCG

GCTATGACTGGGCACAACAGACAATCGGCTGCTCTGA

TGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCG

GTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGA

ATGAACTGCAGGACGAGGCAGCGCGGCTATCGTGGCT

GGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTCGAC

GTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGG

GCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCT

TGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCA

ATGCGGCGGGTGCATACGCTTGATCCGGGTAGGTGCC

GATTCGACCACCAAGCGAAACATCGCATCGAGCGAGC

ACGTACTCGGATGGAAGGCGGTCTTGTCAATCAGGAT

GATCTGGACGAAGAGCATGAGGGGCTCGCGGCAGCCG

AACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGG

CGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTG

CCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGAT

TCATCGACTGTGGCCGGCTGGGTGTGGCGGATCGCTA

TCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAA

GAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGC

TTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGC

CTTCTATCGCCTTCTTGACGAGTTCTTCTGAGGGGAT

CAATTCTCTAGAGCTCGCTGATCAGCCTCGACTGTGC

CTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCC

CGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACT

GTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATT

GTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGT

GGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAAT

AGCAGGCATGCTGGGGATGGGGTGGGCTCTATGGCTT

CTGAGGGGGAAAGAACCAGCTGGGGGCGCGCCCctcg

agcggccgccagtgtgatggatatctgcagaattcgc

ccttggatcaaacacgcatcctcatggacaatatgtt

gggttcttagcctgctgagacacaacaggaactcccc

tggcaccactttagaggccagagaaacagcacagata

aaattccctgccctcatgaagcttatagtctagctgg

ggagatatcataggcaagataaacacatacaaataca

tcatcttaggtaataatatatactaaggagaaaatta

caggggagaaagaggacaggaattgctagggtaggat

tataagttcagatagttcatcaggaacactgttgctg

agaagataacatttaggtaaagaccgaagtagtaagg

aaatggaccgtgtgcctaagtgggtaagaccattcta

ggcagcaggaacagcgatgaaagcactgaggtgggtg

ttcactgcacagagttgttcactgcacagagttgtgt

ggggaggggtaggtcttgcaggctcttatggtcacag

gaagaattgttttactcccaccgagatgaaggttggt

ggattttgagcagaagaataattctgcctggtttata

tataacaggatttccctgggtgctctgatgagaataa

tctgtcaggggtgggatagggagagatatggcaatag

gagccttggctaggagcccacgacaataattccaagt

gagaggtggtgctgcattgaaagcaggactaacaaga

cctgctgacagtgtggatgtagaaaaagatagaggag

acgaaggtgcatctagggttttctgcctgaggaatta

gaaagataaagctaaagcttatagaagatgcagcgct

ctggggagaaagaccagcagctcagttttgatccatc

tggaattaattttggcataaagtatgaggtatgtggg

ttaacattatttgttttttttttttccatgtagctat

ccaactgtcccagcatcatttattttaaaagactttc

ctttcccctattggattgttttggcaccttcactgaa

gatcaactgagcataaaattgggtctatttctaagct

cttgattccattccatgacctatttgttcatctttac

cccagtagacactgccttgatgattaaagcccctgtt

accatgtctgttttggacatggtaaatctgagatgcc

tattagccaaccaagcaagcacggcccttagagagct

agatatgagagcctggaattcagacgagaaaggtcag

tcctagagacatacatgtagtgccatcaccatgcgga

tggtgttaaaagccatcagactgcaacagactgtgag

agggtaccaagctagagagcatggatagagaaaccca

agcactgagctgggaggtgctcctacattaagagatt

agtgagatgaaggactgagaagattgatcagagaaga

aggaaaatcaggaaaatggtgctgtcctgaaaatcca

agggaagagatgttccaaagaggagaaaactgatcag

ttgtcagctagcgtcaattgggatgaaaatggaccat

tggacagagggatgtagtgggtcatgggtgaatagat

aagagcagcttctatagaatggcaggggcaaaattct

catctgatcggcatgggttctaaagaaaacgggaaga

aaaaattgagtgcatgaccagtcccttcaagtagaga

ggtggaaaagggaaggaggaaaatgaggccacgacaa

catgagagaaatgacagcatttttaaaaattttttat

tttattttatttatttatttttgctttttagggctgc

ccctgcaacatatggaggttcccaggttaggggtcta

atcagagctatagctgccagcctacaccacagccata

gcaatgccagatctacatgacctacaccacagctcac

agcaacgccggatccttaacccactgagtgaggccag

agatcaaacccatatccttatggatactagtcaggtt

cattaccactgagccaaaatgggaaatcctgagtaat

gacagcattttttaatgtgccaggaagcaaaacttgc

caccccgaaatgtctctcaggcatgtggattattttg

agctgaaaacgattaaggcccaaaaaacacaagaaga

aatgtggaccttcccccaacagcctaaaaaatttaga

ttgagggcctgttcccagaatagagctattgccagac

ttgtctacagaggctaagggctaggtgtggtggggaa

accctcagagatcagagggacgtttatgtaccaagca

ttgacatttccatctccatgcgaatggccttcttccc

ctctgtagccccaaaccaccacccccaaaatcttctt

ctgtctttagctgaagatggtgttgaaggtgatagtt

tcagccactttggcgagttcctcagttgttctgggtc

tttcctccTgatccacattattcgactgtgtttgatt

ttctcctgtttatctgtctcattggcacccatttcat

tcttagaccagcccaaagaacctagaagagtgaagga

aaatttcttccaccctgacaaatgctaaatgagaatc

accgcagtagaggaaaatgatctggtgctgcgggaga

tagaagagaaaatcgctggagagatgtcactgagtag

gtgagatgggaaaggggtgacacaggtggaggtgttg

ccctcagctaggaagacagacagttcacagaagagaa

gcgggtgtccgtggacatcttgcctcatggatgagga

aaccgaggctaagaaagactgcaaaagaaaggtaagg

attgcagagaggtcgatccatgactaaaatcacagta

accaaccccaaaccaccatgttttctcctagtctggc

acgtggcaggtactgtgtaggttttcaatattattgg

tttgtaacagtacctattaggcctccatcccctcctc

taatactaacaaaagtgtgagactggtcagtgaaaaa

tggtcttctttctctatgaatctttctcaagaagata

cataactttttattttatcataggcttgaagagcaaa

tgagaaacagcctccaacctatgacaccgtaacaaaa

tgtttatgatcagtgaagggcaagaaacaaaacatac

acagtaaagaccctccataatattgtgggtggcccaa

cacaggccaggttgtaaaagctttttattctttgata

gaggaatggatagtaatgtttcaacctggacagagat

catgttcactgaatccttccaaaaattcatgggtagt

ttgaattataaggaaaataagacttaggataaatact

ttgtccaagatcccagagttaatgccaaaatcagttt

tcagactccaggcagcctgatcaagagcctaaacttt

aaagacacagtcccttaataactactattcacagttg

cactttcagggcgcaaagactcattgaatcctacaat

agaatgagtttagatatcaaatctctcagtaatagat

gaggagactaaatagcgggcatgacctggtcacttaa

agacagaattgagattcaaggctagtgttctttctac

ctgttttgtttctacaagatgtagcaatgcgctaatt

acagacctctcagggaaggaa

Porcine Lambda Chain Targeting

In particular embodiments of the present invention, targeting vectors are provided to target the porcine heavy chain locus. In one embodiment, lambda can be targeted by designing a targeting construct that contains a 5′ arm containing sequence located 5′ to the first JC cluster and a 3′ arm containing sequence 3′ to the last JC cluster, thus preventing functional expression of the lambda locus (see, FIGS. 3-4). In one embodiment, the targeting vector can contain any contiguous sequence (such as about 17, 20, 30, 40, 50, 75, 100, 200, 300 or.5000 nucleotides of contiguous sequence) or fragment thereof Seq ID No 28. In one embodiment, the 5′ targeting arm can contain Seq ID No. 32, which includes 5′ flanking sequence to the first lambda J/C region of the porcine lambda light chain genomic sequence or any contiguous sequence (such as about 17, 20, 30, 40, 50, 75, 100, 200, 300 or 5000 nucleotides of contiguous sequence) or fragment thereof (see also, for example FIG. 5). In another embodiment, the 3′ targeting arm can contain, but is not limited to one or more of the following: Seq ID No. 33, which includes 3′ flanking sequence to the J/C cluster region of the porcine lambda light chain genomic sequence, from approximately 200 base pairs downstream of lambda J/C; Seq ID No.34, which includes 3′ flanking sequence to the J/C cluster region of the porcine lambda light chain genomic sequence, approximately 11.8 Kb downstream of the J/C cluster, near the enhancer; Seq ID No. 35, which includes approximately 12 Kb downstream of lambda, including the enhancer region; Seq ID No. 36, which includes approximately 17.6 Kb downstream of lambda; Seq ID No. 37, which includes approximately 19.1 Kb downstream of lambda; Seq ID No. 38, which includes approximately 21.3 Kb downstream of lambda; and Seq ID No. 39, which includes approximately 27 Kb downstream of lambda, or any contiguous sequence (such as about 17, 20, 30, 40, 50, 75, 100, 200, 300 or 5000 nucleotides of contiguous sequence) or fragment thereof of Seq ID Nos 32-39 (see also, for example FIG. 6). It is understood that in general when designing a targeting construct one targeting arm will be 5′ of the other targeting arm.

In additional embodiments, the targeting constructs for the lambda locus can contain site specific recombinase sites, such as, for example, lox. In one embodiment, the targeting arms can insert thesite specific recombinase site into the targeted region. Then, the site specific recombinase can be activated and/or applied to the cell such that the intervening nucleotide sequence between the two site specific recombinase sites is excised (see, for example, FIG. 6).

Selectable Marker Genes

The DNA constructs can be designed to modify the endogenous, target immunoglobulin gene. The homologous sequence for targeting the construct can have one or more deletions, insertions, substitutions or combinations thereof. The alteration can be the insertion of a selectable marker gene fused in reading frame with the upstream sequence of the target gene.

Suitable selectable marker genes include, but are not limited to: genes conferring the ability to grow on certain media substrates, such as the tk gene (thymidine kinase) or the hprt gene (hypoxanthine phosphoribosyltransferase) which confer the ability to grow on HAT medium (hypoxanthine, aminopterin and thymidine); the bacterial gpt gene (guanine/xanthine phosphoribosyltransferase) which allows growth on MAX medium (mycophenolic acid, adenine, and xanthine). See, for example, Song, K-Y., et al. Proc. Nat'l Acad. Sci. U.S.A. 84:6820-6824 (1987); Sambrook, J., et al., Molecular Cloning—A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1989), Chapter 16. Other examples of selectable markers include: genes conferring resistance to compounds such as antibiotics, genes conferring the ability to grow on selected substrates, genes encoding proteins that produce detectable signals such as luminescence, such as green fluorescent protein, enhanced green fluorescent protein (eGFP). A wide variety of such markers are known and available, including, for example, antibiotic resistance genes such as the neomycin resistance gene (neo) (Southern, P., and P. Berg, J. Mol. Appl. Genet. 1:327-341 (1982)); and the hygromycin resistance gene (hyg) (Nucleic Acids Research 11:6895-6911 (1983), and Te Riele, H., et al., Nature 348:649-651 (1990)). Other selectable marker genes include: acetohydroxyacid synthase (AHAS), alkaline phosphatase (AP), beta galactosidase (LacZ), beta glucoronidase (GUS), chloramphenicol acetyltransferase (CAT), green fluorescent protein (GFP), red fluorescent protein (RFP), yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), horseradish peroxidase (HRP), luciferase (Luc), nopaline synthase (NOS), octopine synthase (OCS), and derivatives thereof. Multiple selectable markers are available that confer resistance to ampicillin, bleomycin, chloramphenicol, gentamycin, hygromycin, kanamycin, lincomycin, methotrexate, phosphinothricin, puromycin, and tetracycline.

Methods for the incorporation of antibiotic resistance genes and negative selection factors will be familiar to those of ordinary skill in the art (see, e.g., WO 99/15650; U.S. Pat. No. 6,080,576; U.S. Pat. No. 6,136,566; Niwa et al., J. Biochem. 113:343-349 (1993); and Yoshida et al., Transgenic Research 4:277-287 (1995)).

Combinations of selectable markers can also be used. For example, to target an immunoglobulin gene, a neo gene (with or without its own promoter, as discussed above) can be cloned into a DNA sequence which is homologous to the immunoglobulin gene. To use a combination of markers, the HSV-tk gene can be cloned such that it is outside of the targeting DNA (another selectable marker could be placed on the opposite flank, if desired). After introducing the DNA construct into the cells to be targeted, the cells can be selected on the appropriate antibiotics. In this particular example, those cells which are resistant to G418 and gancyclovir are most likely to have arisen by homologous recombination in which the neo gene has been recombined into the immunoglobulin gene but the tk gene has been lost because it was located outside the region of the double crossover.

Deletions can be at least about 50 bp, more usually at least about 100 bp, and generally not more than about 20 kbp, where the deletion can normally include at least a portion of the coding region including a portion of or one or more exons, a portion of or one or more introns, and can or can not include a portion of the flanking non-coding regions, particularly the 5′-non-coding region (transcriptional regulatory region). Thus, the homologous region can extend beyond the coding region into the 5′-non-coding region or alternatively into the 3′-non-coding region. Insertions can generally not exceed 10 kbp, usually not exceed 5 kbp, generally being at least 50 bp, more usually at least 200 bp.

The region(s) of homology can include mutations, where mutations can further inactivate the target gene, in providing for a frame shift, or changing a key amino acid, or the mutation can correct a dysfunctional allele, etc. The mutation can be a subtle change, not exceeding about 5% of the homologous flanking sequences. Where mutation of a gene is desired, the marker gene can be inserted into an intron or an exon.

The construct can be prepared in accordance with methods known in the art, various fragments can be brought together, introduced into appropriate vectors, cloned, analyzed and then manipulated further until the desired construct has been achieved. Various modifications can be made to the sequence, to allow for restriction analysis, excision, identification of probes, etc. Silent mutations can be introduced, as desired. At various stages, restriction analysis, sequencing, amplification with the polymerase chain reaction, primer repair, in vitro mutagenesis, etc. can be employed.

The construct can be prepared using a bacterial vector, including a prokaryotic replication system, e.g. an origin recognizable by E. coli, at each stage the construct can be cloned and analyzed. A marker, the same as or different from the marker to be used for insertion, can be employed, which can be removed prior to introduction into the target cell. Once the vector containing the construct has been completed, it can be further manipulated, such as by deletion of the bacterial sequences, linearization, introducing a short deletion in the homologous sequence. After final manipulation, the construct can be introduced into the cell.

The present invention further includes recombinant constructs containing sequences of immunoglobulin genes. The constructs comprise a vector, such as a plasmid or viral vector, into which a sequence of the invention has been inserted, in a forward or reverse orientation. The construct can also include regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and are commercially available. The following vectors are provided by way of example. Bacterial: pBs, pQE-9 (Qiagen), phagescript, PsiX174, pBluescript SK, pBsKS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLneo, pSv2cat, pOG44, pXTl, pSG (Stratagene) pSVK3, pBPv, pMSG, pSVL (Pharmiacia), viral origin vectors (M13 vectors, bacterial phage 1 vectors, adenovirus vectors, and retrovirus vectors), high, low and adjustable copy number vectors, vectors which have compatible replicons for use in combination in a single host (pACYC184 and pBR322) and eukaryotic episomal replication vectors (pCDM8). Other vectors include prokaryotic expression vectors such as pcDNA II, pSL301, pSE280, pSE380, pSE420, pTrcHisA, B, and C, pRSET A, B, and C (Invitrogen, Corp.), pGEMEX-1, and pGEMEX-2 (Promega, Inc.), the pET vectors (Novagen, Inc.), pTrc99A, pKK223-3, the pGEX vectors, pEZZ18, pRIT2T, and pMC1871 (Pharmacia, Inc.), pKK233-2 and pKK388-1 (Clontech, Inc.), and pProEx-HT (Invitrogen, Corp.) and variants and derivatives thereof. Other vectors include eukaryotic expression vectors such as pFastBac, pFastBacHT, pFastBacDUAL, pSFV, and pTet-Splice (Invitrogen), pEUK-C1, pPUR, pMAM, pMAMneo, pBI101, pBI121, pDR2, pCMVEBNA, and pYACneo (Clontech), pSVK3, pSVL, pMSG, pCH110, and pKK232-8 (Pharmacia, Inc.), p3′SS, pXT1, pSG5, pPbac, pMbac, pMC1neo, and pOG44 (Stratagene, Inc.), and pYES2, pAC360, pBlueBacHis A, B, and C, pVL1392, pBlueBacIII, pCDM8, pcDNA1, pZeoSV, pcDNA3 pREP4, pCEP4, and pEBVHis (Invitrogen, Corp.) and variants or derivatives thereof. Additional vectors that can be used include: pUC18, pUC19, pBlueScript, pSPORT, cosmids, phagemids, YAC's (yeast artificial chromosomes), BAC's (bacterial artificial chromosomes), P1 (Escherichia coli phage), pQE70, pQE60, pQE9 (quagan), pBS vectors, PhageScript vectors, BlueScript vectors, pNH8A, pNH16A, pNH18A, pNH46A (Stratagene), pcDNA3 (Invitrogen), pGEX, pTrsfus, pTrc99A, pET-5, pET-9, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia), pSPORT1, pSPORT2, pCMVSPORT2.0 and pSV-SPORT1 (Invitrogen), pTrxFus, pThioHis, pLEX, pTrcHis, pTrcHis2, pRSET, pBlueBacHis2, pcDNA3.1/His, pcDNA3.1(−)/Myc-His, pSecTag, pEBVHis, pPIC9K, pPIC3.5K, pAO815, pPICZ, pPICZ□, pGAPZ, pGAPZ□, pBlueBac4.5, pBlueBacHis2, pMelBac, pSinRep5, pSinHis, pIND, pIND(SP1), pVgRXR, pcDNA2.1, pYES2, pZErO1.1, pZErO-2.1, pCR-Blunt, pSE280, pSE380, pSE420, pVL1392, pVL1393, pCDM8, pcDNA1.1, pcDNA1.1/Amp, pcDNA3.1, pcDNA3.1/Zeo, pSe, SV2, pRc/CMV2, pRc/RSV, pREP4, pREP7, pREP8, pREP9, pREP 10, pCEP4, pEBVHis, pCR3.1, pCR2.1, pCR3.1-Uni, and pCRBac from Invitrogen; □ ExCell, □ gt11, pTrc99A, pKK223-3, pGEX-1 □T, pGEX-2T, pGEX-2TK, pGEX-4T-1, pGEX-4T-2, pGEX-4T-3, pGEX-3X, pGEX-5X-1, pGEX-SX-2, pGEX-5X-3, pEZZ18, pRIT2T, pMC1871, pSVK3, pSVL, pMSG, pCH110, pKK232-8, pSL1180, pNEO, and pUC4K from Pharmacia; pSCREEN-1b(+), pT7Blue(R), pT7Blue-2, pCITE-4abc(+), pOCUS-2, pTAg, pET-32LIC, pET-30LIC, pBAC-2cp LIC, pBACgus-2cp LIC, pT7Blue-2 LIC, pT7Blue-2, □SCREEN-1, □BlueSTAR, pET-3abcd, pET-7abc, pET9abcd, pET11abcd, pET12abc, pET-14b, pET-15b, pET-16b, pET-17b-pET-17xb, pET-19b, pET-20b(+), pET-21abcd(+), pET-22b(+), pET-23abcd(+), pET-24abcd(+), pET-25b(+), pET-26b(+), pET-27b(+), pET-28abc(+), pET-29abc(+), pET-30abc(+), pET-31b(+), pET-32abc(+), pET-33b(+), pBAC-1, pBACgus-1, pBAC4x-1, pBACgus4x-1, pBAC-3cp, pBACgus-2cp, pBACsurf-1, plg, Signal plg, pYX, Selecta Vecta-Neo, Selecta Vecta-Hyg, and Selecta Vecta-Gpt from Novagen; pLexA, pB42AD, pGBT9, pAS2-1, pGAD424, pACT2, pGAD GL, pGAD GH, pGAD10, pGilda, pEZM3, pEGFP, pEGFP-1, pEGFP-N, pEGFP-C, pEBFP, pGFPuv, pGFP, p6xHis-GFP, pSEAP2-Basic, pSEAP2-Contral, pSEAP2-Promoter, pSEAP2-Enhancer, p□gal-Basic, p□gal-Control, p□gal-Promoter, p□gal-Enhancer, pCMV□, pTet-Off, pTet-On, pTK-Hyg, pRetro-Off, pRetro-On, pIRES1neo, pIRES1hyg, pLXSN, pLNCX, pLAPSN, pMAMneo, pMAMneo-CAT, pMAMneo-LUC, pPUR, pSV2neo, pYEX4T-1/2/3, pYEX-S1, pBacPAK-His, pBacPAK8/9, pAcUW31, BacPAK6, pTriplEx, □gt10, □gt11, pWE15, and □TriplEx from Clontech; Lambda ZAP II, pBK-CMV, pBK-RSV, pBluescript II KS ±, pBluescript II SK ±, pAD-GAL4, pBD-GAL4 Cam, pSurfscript, Lambda FIX II, Lambda DASH, Lambda EMBL3, Lambda EMBL4, SuperCos, pCR-Scrigt Amp, pCR-Script Cam, pCR-Script Direct, pBS ±, pBC KS ±, pBC SK ±, Phagescript, pCAL-n-EK, pCAL-n, pCAL-c, pCAL-kc, pET-3abcd, pET-11abcd, pSPUTK, pESP-1, pCMVLacI, pOPRSVI/MCS, pOPI3 CAT,pXT1, pSG5, pPbac, pMbac, pMC1neo, pMC1neo Poly A, pOG44, pOG45, pFRT□GAL, pNEO□GAL, pRS403, pRS404, pRS405, pRS406, pRS413, pRS414, pRS415, and pRS416 from Stratagene and variants or derivatives thereof Two-hybrid and reverse two-hybrid vectors can also be used, for example, pPC86, pDBLeu, pDBTrp, pPC97, p2.5, pGAD1-3, pGAD10, pACt, pACT2, pGADGL, pGADGH, pAS2-1, pGAD424, pGBT8, pGBT9, pGAD-GAL4, pLexA, pBD-GALI, pHISi, pHISi-1, placZi, pB42AD, pDG202, pJK202, pJG4-5, pNLexA, pYESTrp and variants or derivatives thereof. Any other plasmids and vectors may be used as long as they are replicable and viable in the host.

Techniques which can be used to allow the DNA construct entry into the host cell include, for example, calcium phosphate/DNA co precipitation, microinjection of DNA into the nucleus, electroporation, bacterial protoplast fusion with intact cells, transfection, or any other technique known by one skilled in the art. The DNA can be single or double stranded, linear or circular, relaxed or supercoiled DNA. For various techniques for transfecting mammalian cells, see, for example, Keown et al., Methods in Enzymology Vol.185, pp. 527-537 (1990).

In one specific embodiment, heterozygous or homozygous knockout cells can be produced by transfection of primary fetal fibroblasts with a knockout vector containing immunoglobulin gene sequence isolated from isogenic DNA. In another embodiment, the vector can incorporate a promoter trap strategy, using, for example, IRES (internal ribosome entry site) to initiate translation of the Neor gene.

Site Specific Recombinases

In additional embodiments, the targeting constructs can contain site specific recombinase sites, such as, for example, lox. In one embodiment, the targeting arms can insert thesite specific recombinase target sites into the targeted region such that one site specific recombinase target site is located 5′ to the second site specific recombinase target site . Then, the site specific recombinase can be activated and/or applied to the cell such that the intervening nucleotide sequence between the two site specific recombinase sites is excised.

Site-specific recombinases include enzymes or recombinases that recognize and bind to a short nucleic acid site or sequence-specific recombinase target site, i.e., a recombinase recognition site, and catalyze the recombination of nucleic acid in relation to these sites. These enzymes include recombinases, transposases and integrases. Examples of sequence-specific recombinase target sites include, but are not limited to, lox sites, att sites, dif sites and frt sites. Non-limiting examples of site-specific recombinases include, but are not limited to, bacteriophage P1 Cre recombinase, yeast FLP recombinase, Inti integrase, bacteriophage λ, phi 80, P22, P2, 186, and P4 recombinase, Tn3 resolvase, the Hin recombinase, and the Cin recombinase, E. coli xerC and xerD recombinases, Bacillus thuringiensis recombinase, TpnI and the β-lactamase transposons, and the immunoglobulin recombinases.

In one embodiment, the recombination site can be a lox site that is recognized by the Cre recombinase of bacteriophage P1. Lox sites refer to a nucleotide sequence at which the product of the cre gene of bacteriophage P1, the Cre recombinase, can catalyze a site-specific recombination event. A variety of lox sites are known in the art, including the naturally occurring loxP, loxB, loxL and loxR, as well as a number of mutant, or variant, lox sites, such as loxP511, loxP514, lox.DELTA.86, lox.DELTA.117, loxC2, loxP2, loxP3 and lox P23. Additional example of lox sites include, but are not limited to, loxB, loxL, loxR, loxP, loxP3, loxP23, loxΔ86, loxΔ117, loxP5 11, and loxC2.

In another embodiment, the recombination site is a recombination site that is recognized by a recombinases other than Cre. In one embodiment, the recombinase site can be the FRT sites recognized by FLP recombinase of the 2 pi plasmid of Saccharomyces cerevisiae. FRT sites refer to a nucleotide sequence at which the product of the FLP gene of the yeast 2 micron plasmid, FLP recombinase, can catalyze site-specific recombination. Additional examples of the non-Cre recombinases include, but are not limited to, site-specific recombinases include: att sites recognized by the Int recombinase of bacteriophage λ (e.g. att1, att2, att3, attP, attB, attL, and attR), the recombination sites recognized by the resolvase family, and the recombination site recognized by transposase of Bacillus thruingiensis.

In particular embodiments of the present invention, the targeting constructs can contain: sequence homologous to a porcine immunoglobulin gene as described herein, a selectable marker gene and/or a site specific recombinase target site.

Selection of Homologously Recombined Cells

The cells can then be grown in appropriately-selected medium to identify cells providing the appropriate integration. The presence of the selectable marker gene inserted into the immunoglobulin gene establishes the integration of the target construct into the host genome. Those cells which show the desired phenotype can then be further analyzed by restriction analysis, electrophoresis, Southern analysis, polymerase chain reaction, etc to analyze the DNA in order to establish whether homologous or non-homologous recombination occurred. This can be determined by employing probes for the insert and then sequencing the 5′ and. 3′ regions flanking the insert for the presence of the immunoglobulin gene extending beyond the flanking regions of the construct or identifying the presence of a deletion, when such deletion is introduced. Primers can also be used which are complementary to a sequence within the construct and complementary to a sequence outside the construct and at the target locus. In this way, one can only obtain DNA duplexes having both of the primers present in the. complementary chains if homologous recombination has occurred. By demonstrating the presence of the primer sequences or the expected size sequence, the occurrence of homologous recombination is supported.

The polymerase chain reaction used for screening homologous recombination events is known in the art, see, for example, Kim and Smithies, Nucleic Acids Res. 16:8887-8903, 1988; and Joyner et al., Nature 338:153-156, 1989. The specific combination of a mutant polyoma enhancer and a thymidine kinase promoter to drive the neomycin gene has been shown to be active in both embryonic stem cells and EC cells by Thomas and Capecchi, supra, 1987; Nicholas and Berg (1983) in Teratocarcinoma Stem Cell, eds. Siver, Martin and Strikland (Cold Spring Harbor Lab., Cold Spring Harbor, N.Y. (pp. 469-497); and Linney and Donerly, Cell 35:693-699, 1983.

The cell lines obtained from the first round of targeting are likely to be heterozygous for the targeted allele. Homozygosity, in which both alleles are modified, can be achieved in a number of ways. One approach is to grow up a number of cells in which one copy has been modified and then to subject these cells to another round of targeting using a different selectable marker. Alternatively, homozygotes can be obtained by breeding animals heterozygous for the modified allele, according to traditional Mendelian genetics. In some situations, it can be desirable to have two different modified alleles. This can be achieved by successive rounds of gene targeting or by breeding heterozygotes, each of which carries one of the desired modified alleles.

Identification of Cells That Have Undergone Homologous Recombination

In one embodiment, the selection method can detect the depletion of the immunoglobulin gene directly, whether due to targeted knockout of the immunoglobulin gene by homologous recombination, or a mutation in the gene that results in a nonfunctioning or nonexpressed immunoglobulin. Selection via antibiotic resistance has been used most commonly for screening (see above). This method can detect the presence of the resistance gene on the targeting vector, but does not directly indicate whether integration was a targeted recombination event or a random integration. Certain technology, such as Poly A and promoter trap technology, increase the probability of targeted events, but again, do not give direct evidence that the desired phenotype, a cell deficient in immunoglobulin gene expression, has been achieved. In addition, negative forms of selection can be used to select for targeted integration; in these cases, the gene for a factor lethal to the cells is inserted in such a way that only targeted events allow the cell to avoid death. Cells selected by these methods can then be assayed for gene disruption, vector integration and, finally, immunoglobulin gene depletion. In these cases, since the selection is based on detection of targeting vector integration and not at the altered phenotype, only targeted knockouts, not point mutations, gene rearrangements or truncations or other such modifications can be detected.

Animal cells believed to lacking expression of functional immunoglobulin genes can be further characterized. Such characterization can be accomplished by the following techniques, including, but not limited to: PCR analysis, Southern blot analysis, Northern blot analysis, specific lectin binding assays, and/or sequencing analysis.

PCR-analysis as described in the art can be used to determine the integration of targeting vectors. In one embodiment, amplimers can originate in the antibiotic resistance gene and extend into a region outside the vector sequence. Southern analysis can also be used to characterize gross modifications in the locus, such as the integration of a targeting vector into the immunoglobulin locus. Whereas, Northern analysis can be used to characterize the transcript produced from each of the alleles.

Further, sequencing analysis of the cDNA produced from the RNA transcript can also be used to determine the precise location of any mutations in the immunoglobulin allele.

In another aspect of the present invention, ungulate cells lacking at least one allele of a functional region of an ungulate heavy chain, kappa light chain and/or lambda light chain locus produced according to the process, sequences and/or constructs described herein are provided. These cells can be obtained as a result of homologous recombination. Particularly, by inactivating at least one allele of an ungulate heavy chain, kappa light chain or lambda light chain gene, cells can be produced which have reduced capability for expression of porcine antibodies. In other embodiments, mammalian cells lacking both alleles of an ungulate heavy chain, kappa light chain and/or lambda light chain gene can be produced according to the process, sequences and/or constructs described herein. In a further embodiment, porcine animals are provided in which at least one allele of an ungulate heavy chain, kappa light chain and/or lambda light chain gene is inactivated via a genetic targeting event produced according to the process, sequences and/or constructs described herein. In another aspect of the present invention, porcine animals are provided in which both alleles of an ungulate heavy chain, kappa light chain and/or lambda light chain gene are inactivated via a genetic targeting event. The gene can be targeted via homologous recombination. In other embodiments, the gene can be disrupted, i.e. a portion of the genetic code can be altered, thereby affecting transcription and/or translation of that segment of the gene. For example, disruption of a gene can occur through substitution, deletion (“knock-out”) or insertion (“knock-in”) techniques. Additional genes for a desired protein or regulatory sequence that modulate transcription of an existing sequence can be inserted.

In embodiments of the present invention, alleles of ungulate heavy chain, kappa light chain or lambda light chain gene are rendered inactive according to the process, sequences and/or constructs described herein, such that functional ungulate immunoglobulins can no longer be produced. In one embodiment, the targeted immunoglobulin gene can be transcribed into RNA, but not translated into protein. In another embodiment, the targeted immunoglobulin gene can be transcribed in an inactive truncated form. Such a truncated RNA may either not be translated or can be translated into a nonfunctional protein. In an alternative embodiment, the targeted immunoglobulin gene can be inactivated in such a way that no transcription of the gene occurs. In a further embodiment, the targeted immunoglobulin gene can be transcribed and then translated into a nonfunctional protein.

III. Insertion of Artificial Chromosomes Containing Human Immunoglobulin Genes

Artificial Chromosomes

One aspect of the present invention provides ungulates and ungulate cells that lack at least one allele of a functional region of an ungulate heavy chain, kappa light chain and/or lambda light chain locus produced according to the processes, sequences and/or constructs described herein, which are further modified to express at least part of a human antibody (i.e. immunoglobulin (Ig)) locus. This human locus can undergoe rearrangement and express a diverse population of human antibody molecules in the ungulate. These cloned, transgenic ungulates provide a replenishable, theoretically infinite supply of human antibodies (such as polyclonal antibodies), which can be used for therapeutic, diagnostic, purification, and other clinically relevant purposes.

In one particular embodiment, artificial chromosome (ACs) can be used to accomplish the transfer of human immunoglobulin genes into ungulate cells and animals. ACs permit targeted integration of megabase size DNA fragments that contain single or multiple genes. The ACs, therefore, can introduce heterologous DNA into selected cells for production of the gene product encoded by the heterologous DNA. In a one embodiment, one or more ACs with integrated human immunoglobulin DNA can be used as a vector for introduction of human Ig genes into ungulates (such as pigs).

First constructed in yeast in 1983, ACs are man-made linear DNA molecules constructed from essential cis-acting DNA sequence elements that are responsible for the proper replication and partitioning of natural chromosomes (Murray et al. (1983), Nature 301:189-193). A chromosome requires at least three elements to function. Specifically, the elements of an artificial chromosome include at least: (1) autonomous replication sequences (ARS) (having properties of replication origins—which are the sites for initiation of DNA replication), (2) centromeres (site of kinetochore assembly that is responsible for proper distribution of replicated chromosomes at mitosis and meiosis), and (3) telomeres (specialized structures at the ends of linear chromosomes that function to both stabilize the ends and facilitate the complete replication of the extreme termini of the DNA molecule).

In one embodiment, the human Ig can be maintained as an independent unit (an episome) apart from the ungulate chromosomal DNA. For example, episomal vectors contain the necessary DNA sequence elements required for DNA replication and maintenance of the vector within the cell. Episomal vectors are available commercially (see, for example, Maniatis, T. et al., Molecular Cloning, A Laboratory Manual (1982) pp. 368-369). The AC can stably replicate and segregate along side endogenous chromosomes. In an alternative embodiment, the human IgG DNA sequences can be integrated into the ungulate cell's chromosomes thereby permitting the new information to be replicated and partitioned to the cell's progeny as a part of the natural chromosomes (see, for example, Wigler et al. (1977), Cell 11:223). The AC can be translocated to, or inserted into, the endogenous chromosome of the ungulate cell. Two or more ACs can be introduced to the host cell simultaneously or sequentially.

ACs, furthermore, can provide an extra-genomic locus for targeted integration of megabase size DNA fragments that contain single or multiple genes, including multiple copies of a single gene operatively linked to one promoter or each copy or several copies linked to separate promoters. ACs can permit the targeted integration of megabase size DNA fragments that contain single or multiple human immunoglobulin genes. The ACs can be generated by culturing the cells with dicentric chromosomes (i.e., chromosomes with two centromeres) under such conditions known to one skilled in the art whereby the chromosome breaks to form a minichromosome and formerly dicentric chromosome.

ACs can be constructed from humans (human artificial chromosomes: “HACs”), yeast (yeast artificial chromosomes: “YACs”), bacteria (bacterial artificial chromosomes: “BACs”), bacteriophage P1-derived artificial chromosomes: “PACs”) and other mammals (mammalian artificial chromosomes: “MACs”). The ACs derive their name (e.g., YAC, BAC, PAC, MAC, HAC) based on the origin of the centromere. A YAC, for example, can derive its centromere from S. cerevisiae. MACs, on the other hand, include an active mammalian centromere while HACs refer to chromosomes that include human centromeres. Furthermore, plant artificial chromosomes (“PLACs”) and insect artificial chromosomes can also be constructed. The ACs can include elements derived from chromosomes that are responsible for both replication and maintenance. ACs, therefore, are capable of stably maintaining large genomic DNA fragments such as human Ig DNA.

In one emobidment, ungulates containing YACs are provided. YACs are genetically engineered circular chromosomes that contain elements from yeast chromosomes, such as S. cerevisiae, and segments of foreign DNAs that can be much larger than those accepted by conventional cloning vectors (e.g., plasmids, cosmids). YACs allow the propagation of very large segments of exogenous DNA (Schlessinger, D. (1990), Trends in Genetics 6:248-253) into mammalian cells and animals (Choi et al. (1993), Nature Gen 4:117-123). YAC transgenic approaches are very powerful and are greatly enhanced by the ability to efficiently manipulate the cloned DNA. A major technical advantage of yeast is the ease with which specific genome modifications can be made via DNA-mediated transformation and homologous recombination (Ramsay, M. (1994), Mol Biotech 1:181-201). In one embodiment, one or more YACs with integrated human Ig DNA can be used as a vector for introduction of human Ig genes into ungulates (such as pigs).

The YAC vectors contain specific structural components for replication in yeast, including: a centromere, telomeres, autonomous replication sequence (ARS), yeast selectable markers (e.g., TRP1, URA3, and SUP4), and a cloning site for insertion of large segments of greater than 50 kb of exogenous DNA. The marker genes can allow selection of the cells carrying the YAC and serve as sites for the synthesis of specific restriction endonucleases. For example, the TRP1 and URA3 genes can be used as dual selectable markers to ensure that only complete artificial chromosomes are maintained. Yeast selectable markers can be carried on both sides of the centromere, and two sequences that seed telomere formation in vivo are separated. Only a fraction of one percent of a yeast cell's total DNA is necessary for replication, however, including the center of the chromosome (the centromere, which serves as the site of attachment between sister chromatids and the sites of spindle fiber attachment during mitosis), the ends of the chromosome (telomeres, which serve as necessary sequences to maintain the ends of eukaryotic chromosomes), and another short stretch of DNA called the ARS which serves as DNA segments where the double helix can unwind and begin to copy itself.

In one embodiment, YACs can be used to clone up to about 1, 2, or 3 Mb of immunoglobulin DNA. In another embodiment, at least 25, 30, 40, 50, 60, 70, 75, 80, 85, 90, or 95 kilobases.

Yeast integrating plasmids, replicating vectors (which are fragments of YACs),can also be used to express human Ig. The yeast integrating plasmid can contain bacterial plasmid sequences that provide a replication origin and a drug-resistance gene for growth in bacteria (e.g., E. coli), a yeast marker gene for selection of transformants in yeast, and restriction sites for inserting Ig sequences. Host cells can stably acquire this plasmid by integrating it directly into a chromosome. Yeast replicating vectors can also be used to express human Ig as free plasmid circles in yeast. Yeast or ARS-containing vectors can be stabilized by the addition of a centromere sequence. YACs have both centromeric and telomeric regions, and can be used for cloning very large pieces of DNA because the recombinant is maintained essentially as a yeast chromosome.

YACs are provided, for example, as disclosed in U.S. Pat. Nos. 6,692,954, 6,495,318, 6,391,642, 6,287,853, 6,221,588, 6,166,288, 6,096,878, 6,015,708, 5,981,175, 5,939,255, 5,843,671, 5,783,385, 5,776,745, 5,578,461, and 4,889,806; European Patent Nos. 1 356 062 and. 0 648 265; PCT Publication Nos. WO 03/025222, WO 02/057437, WO 02/101044, WO 02/057437, WO 98/36082, WO 98/12335, WO 98/01573, WO 96/01276, WO 95/14769, WO 95/05847, WO 94/23049, and WO 94/00569.

In another embodiment, ungulates containing BACs are provided. BACs are F-based plasmids found in bacteria, such as E. Coli, that can transfer approximately 300 kb of foreign DNA into a host cell. Once the Ig DNA has been cloned into the host cell, the newly inserted segment can be replicated along with the rest of the plasmid. As a result, billions of copies of the foreign DNA can be made in a very short time. In a particular embodiment, one or more BACs with integrated human Ig DNA are used as a vector for introduction of human Ig genes into ungulates (such as pigs).

The BAC cloning system is based on the E. coli F-factor, whose replication is strictly controlled and thus ensures stable maintenance of large constructs (Willets, N., and R. Skurray (1987), Structure and function of the F-factor and mechanism of conjugation. In Escherichia coli and Salmonella Typhimurium: Cellular and Molecular Biology (F. C. Neidhardt, Ed) Vol.2 pp 1110-1133, Am. Soc. Microbiol., Washington, D.C.). BACs have been widely used for cloning of DNA from various eukaryotic species (Cai et al. (1995), Genomics 29:413-425; Kim et al. (1996), Genomics 34:213-218; Misumi et al. (1997), Genomics 40:147-150; Woo et al. (1994), Nucleic Acids Res 22:4922-4931; Zimmer, R. and Gibbins, A. M. V. (1997), Genomics 42:217-226). The low occurance of the F-plasmid can reduce the potential for recombination between DNA fragments and can avoid the lethal overexpression of cloned bacterial genes. BACs can stably maintain the human immunoglobulin genes in a single copy vector in the host cells, even after 100 or more generations of serial growth.

BAC (or pBAC) vectors can accommodate inserts in the range of approximately 30 to 300 kb pairs. One specific type of BAC vector, pBeloBacl 1, uses a complementation of the lacZ gene to distinguish insert-containing recombinant molecules from colonies carrying the BAC vector, by color. When a DNA fragment is cloned into the lacZ gene of pBeloBacl 1, insertional activation results in a white colony on X-Gal/IPTG plates after transformation (Kim et al. (1996), Genomics 34:213-218) to easily identify positive clones.

For example, BACs can be provided such as disclosed in U.S. Pat. Nos. 6,713,281, 6,703,198, 6,649,347, 6,638,722, 6,586,184, 6,573,090, 6,548,256, 6,534,262, 6,492,577, 6,492,506, 6,485,912, 6,472,177, 6,455,254, 6,383,756, 6,277,621, 6,183,957, 6,156,574, 6,127,171, 5,874,259, 5,707,811, and 5,597,694; European Patent Nos. 0 805 851; PCT Publication Nos. WO 03/087330, WO 02/00916, WO 01/39797, WO 01/04302, WO 00/79001, WO 99/54487, WO 99/27118, and WO 96/21725.

In another embodiment, ungulates containing bacteriophage PACs are provided. In a particular embodiment, one or more bacteriophage PACs with integrated human Ig DNA are used as a vector for introduction of human Ig genes into ungulates (such as pigs). For example, PACs can be provided such as disclosed in U.S. Pat. Nos. 6,743,906, 6,730,500, 6,689,606, 6,673,909, 6,642,207, 6,632,934, 6,573,090, 6,544,768, 6,489,458, 6,485,912, 6,469,144, 6,462,176, 6,413,776, 6,399,312, 6,340,595, 6,287,854, 6,284,882, 6,277,621, 6,271,008, 6,187,533, 6,156,574, 6,153,740, 6,143,949, 6,017,755, and 5,973,133; European Patent Nos. 0 814 156; PCT Publication Nos. WO 03/091426, WO 03/076573, WO 03/020898, WO 02/101022, WO 02/070696, WO 02/061073, WO 02/31202, WO 01/44486, WO 01/07478, WO 01/05962, and WO 99/63103,.

In a further embodiment, ungulates containing MACs are provided. MACs possess high mitotic stability, consistent and regulated gene expression, high cloning capacity, and non-immunogenicity. Mammalian chromosomes can be comprised of a continuous linear strand of DNA ranging in size from approximately 50 to 250 Mb. The DNA construct can further contain one or more sequences necessary for the DNA construct to multiply in yeast cells. The DNA construct can also contain a sequence encoding a selectable marker gene. The DNA construct can be capable of being maintained as a chromosome in a transformed cell with the DNA construct. MACs provide extra-genomic specific integration sites for introduction of genes encoding proteins of interest and permit megabase size DNA integration so that, for example, genes encoding an entire metabolic pathway, a very large gene [e.g., such as the cystic fibrosis (CF) gene (˜600 kb)], or several genes [e.g., a series of antigens for preparation of a multivalent vaccine] can be stably introduced into a cell.

Mammalian artificial chromosomes [MACs] are provided. Also provided are artificial chromosomes for other higher eukaryotic species, such as insects and fish, produced using the MACS are provided herein. Methods for generating and isolating such chromosomes. Methods using the MACs to construct artificial chromosomes from other species, such as insect and fish species are also provided. The artificial chromosomes are fully functional stable chromosomes. Two types of artificial chromosomes are provided. One type, herein referred to as SATACs [satellite artificial chromosomes] are stable heterochromatic chromosomes, and the another type are minichromosomes based on amplification of euchromatin. As used herein, a formerly dicentric chromosome is a chromosome that is produced when a dicentric chromosome fragments and acquires new telomeres so that two chromosomes, each having one of the centromeres, are produced. Each of the fragments can be replicable chromosomes.

Also provided are artificial chromosomes for other higher eukaryotic species, such as insects and fish, produced using the MACS are provided herein. In one embodiment, SATACs [satellite artificial chromosomes] are provided. SATACs are stable heterochromatic chromosomes. In another embodiment, minichromosomes are provided wherein the minichromosomes are based on amplification of euchromatin.

In one embodiment, artificial chromosomes can be generated by culturing the cells with the dicentric chromosomes under conditions whereby the chromosome breaks to form a minichromosome and formerly dicentric chromosome. In one embodiment, the SATACs can be generated from the minichromosome fragment, see, for example, in U.S. Pat. No. 5,288,625. In another embodiment, the SATACs can be generated from the fragment of the formerly dicentric chromosome. The SATACs can be made up of repeating units of short satellite DNA and can be fully heterochromatic. In one embodiment, absent insertion of heterologous or foreign DNA, the SATACs do not contain genetic information. In other embodiments, SATACs of various sizes are provided that are formed by repeated culturing under selective conditions and subcloning of cells that contain chromosomes produced from the formerly dicentric chromosomes. These chromosomes can be based on repeating units 7.5 to 10 Mb in size, or megareplicons. These megareplicaonscan be tandem blocks of satellite DNA flanked by heterologous non-satellite DNA. Amplification can produce a tandem array of identical chromosome segments [each called an amplicon] that contain two inverted megareplicons bordered by heterologous [“foreign”] DNA. Repeated cell fusion, growth on selective medium and/or BrdU [5-bromodeoxyuridine] treatment or other genome destabilizing reagent or agent, such as ionizing radiation, including X-rays, and subcloning can result in cell lines that carry stable heterochromatic or partially heterochromatic chromosomes, including a 150-200 Mb “sausage” chromosome, a 500-1000 Mb gigachromosome, a stable 250-400 Mb megachromosome and various smaller stable chromosomes derived therefrom. These chromosomes are based on these repeating units and can include human immunoglobulin DNA that is expressed. (See also U.S. Pat. No. 6,743,967.

In other embodiments, MACs can be provided, for example, as disclosed in U.S. Pat. Nos. 6,743,967, 6,682,729, 6,569,643, 6,558,902, 6,548,287, 6,410,722, 6,348,353, 6,297,029, 6,265,211, 6,207,648, 6,150,170, 6,150,160, 6,133,503, 6,077,697, 6,025,155, 5,997,881, 5,985,846, 5,981,225, 5,877,159, 5,851,760, and 5,721,118; PCT Publication Nos. WO 04/066945, WO 04/044129, WO 04/035729, WO 04/033668, WO 04/027075, WO 04/016791, WO 04/009788, WO 04/007750, WO 03/083054, WO 03/068910, WO 03/068909, WO 03/064613, WO 03/052050, WO 03/027315, WO 03/023029, WO 03/012126, WO 03/006610, WO 03/000921, WO 02/103032, WO 02/097059, WO 02/096923, WO 02/095003, WO 02/092615, WO 02/081710, WO 02/059330, WO 02/059296, WO 00/18941, WO 97/16533, and WO 96/40965.

In another aspect of the present invention, ungulates and ungulate cells containing HACs are provided. In a particular embodiment, one or more HACs with integrated human Ig DNA are used as a vector for introduction of human Ig genes into ungulates (such as pigs). In a particular embodiment, one or more HACs with integrated human Ig DNA are used to generate ungulates (for example, pigs) by nuclear transfer which express human Igs in response to immunization and which undergo affinity maturation.

Various approaches may be used to produce ungulates that express human antibodies (“human Ig”). These approaches include, for example, the insertion of a HAC containing both heavy and light chain Ig genes into an ungulate or the insertion of human B-cells or B-cell precursors into an ungulate during its fetal stage or after it is born (e.g., an immune deficient or immune suppressed ungulate) (see, for example, WO 01/35735, filed Nov. 17, 2000, U.S. Ser. No. 02/08645, filed Mar. 20, 2002). In either case, both human antibody producing cells and ungulate antibody-producing B-cells may be present in the ungulate. In an ungulate containing a HAC, a single B-cell may produce an antibody that contains a combination of ungulate and human heavy and light chain proteins. In still other embodiments, the total size of the HAC is at least to approximately 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 Mb.

For example, HACs can be provided such as disclosed in U.S. Pat. Nos. 6,642,207, 6,590,089, 6,566,066, 6,524,799, 6,500,642, 6,485,910, 6,475,752, 6,458,561, 6,455,026, 6,448,041, 6,410,722, 6,358,523, 6,277,621, 6,265,211, 6,146,827, 6,143,566, 6,077,697,. 6,025,155, 6,020,142, and 5,972,649; U.S. Pat. Application No. 2003/0037347; PCT Publication Nos. WO 04/050704, WO 04/044156, WO 04/031385, WO 04/016791, WO 03/101396, WO 03/097812, WO 03/093469, WO 03/091426, WO 03/057923, WO 03/057849, WO 03/027638, WO 03/020898, WO 02/092812, and WO 98/27200.

Additional examples of ACs into which human immunoglobulin sequences can be inserted for use in the invention include, for example, BACs (e.g., pBeloBAC11 or pBAC108L; see, e.g., Shizuya et al. (1992), Proc Natl Acad Sci USA 89(18):8794-8797; Wang et al. (1997), Biotechniques 23(6):992-994), bacteriophage PACs, YACs (see, e.g., Burke (1990), Genet Anal Tech Appl 7(5):94-99), and MACs (see, e.g., Vos (1997), Nat. Biotechnol. 15(12):1257-1259; Ascenzioni et al. (1997), Cancer Lett 118(2):135-142), such as HACs, see also, U.S. Pat. Nos. 6,743,967, 6,716,608, 6,692,954, 6,670,154, 6,642,207, 6,638,722, 6,573,090, 6,492,506, 6,348,353, 6,287,853, 6,277,621, 6,183,957, 6,156,953, 6,133,503, 6,090,584, 6,077,697, 6,025,155, 6,015,708, 5,981,175, 5,874,259, 5,721,118, and 5,270,201; European Patent Nos. 1 437 400, 1 234 024, 1 356 062, 0 959 134, 1 056 878, 0 986 648, 0 648 265, and 0 338 266; PCT Publication Nos. WO 04/013299, WO 01/07478, WO 00/06715, WO 99/43842, WO 99/27118, WO 98/55637, WO 94/00569, and WO 89/09219. Additional examples incluse those AC provided in, for example, PCT Publication No. WO 02/076508, WO 03/093469, WO 02/097059; WO 02/096923; US Publication Nos US 2003/0113917 and US 2003/003435; and U.S. Pat. No. 6,025,155.

In other embodiments of the present invention, ACs transmitted through male gametogenesis in each generation. The AC can be ihntegrating or non-integrating. In one ambodiment, the AC can be transmitted through mitosis in substantially all dividing cells. In another embodiment, the AC can provide for position independent expression of a human immunogloulin nucleic acid sequence. In a particular embodiment, the AC can have a transmittal efficiency of at least 10% through each male and female gametogenesis. In one particular embodiment, the AC can be circular. In another particular embodiment, the non-integrating AC can be that deposited with the Belgian Coordinated Collections of Microorganisms—BCCM on Mar. 27, 2000 under accession number LMBP 5473 CB. In additional embodiments, methods for producing an AC are provided wherein a mitotically stable unit containing an exogenous nucleic acid transmitted through male gametogenesis is identified; and an entry site in the mitotically stable unit allows for the integration of human immunoglobulin genes into the unit.

In other embodiments, ACs are provided that include: a functional centromere, a selectable marker and/or a unique cloning site. Tin other embodiments, the AC can exhibit one or more of the following properties: it can segregate stably as an independent chromosome, immunoglobulin sequences can be inserted in a controlled way and can expressed from the AC, it can be efficiently transmitted through the male and female germline and/or the transgenic animals can bear the chromosome in greater than about 30, 40, 50, 60, 70, 80 or 90% of its cells.

In particular embodiments, the AC can be isolated from fibroblasts (such as any mammalian or human fibroblast) in which it was mitotically stable. After transfer of the AC into hamster cells, a lox (such as loxp) site and a selectable marker site can be inserted. In other embodiments, the AC can maintain mitotic stability, for example, showing a loss of less than about 5, 2, 1, 0.5 or 0.25 percent per mitosis in the absence of selection. See also, US 2003/0064509 and WO 01/77357.

Xenogenous Immunoglobulin Genes

In another aspect of the present invention, transgenic ungulates are provided that expresses a xenogenous immunoglobulin loci or fragment thereof, wherein the immunoglobulin can be expressed from an immunoglobulin locus that is integrated within an endogenous ungulate chromosome. In one embodiment, ungulate cells derived from the transgenic animals are provided. In one embodiment, the xenogenous immunoglobulin locus can be inherited by offspring. In another embodiment, the xenogenous immunoglobulin locus can be inherited through the male germ line by offspring. In still further embodiments, an artificial chromosome (AC) can contain the xenogenous immunoglobulin. In one embodiment, the AC can be a yeast AC or a mammalian AC. In a further embodiment, the xenogenous locus can be a human immunoglobulin locus or fragment thereof In one embodiment, the human immunoglobulin locus can be human chromosome 14, human chromosome 2, and human chromosome 22 or fragments thereof. In another embodiment, the human immunoglobulin locus can include any fragment of a human immunoglobulin that can undergo rearrangement. In a further embodiment, the human immunoglobulin loci can include any fragment of a human immunoglobulin heavy chain and a human immunoglobulin light chain that can undergo rearrangement. In still further. embodiment, the human immunoglobulin loci can include any human immunoglobulin locus or fragment thereof that can produce an antibody upon exposure to an antigen. In a particular embodiment, the exogenous human immunoglobulin can be expressed in B cells to produce xenogenous immunoglobulin in response to exposure to one or more antigens.

In other embodiments, the transgenic ungulate that lacks any expression of functional endogenous immunoglobulins can be further genetically modified to express an xenogenous immunoglobulin loci. In an alternative embodiment, porcine animals are provided that contain an xenogeous immunoglobulin locus. In one embodiment, the xenogeous immunoglobulin loci can be a heavy and/or light chain immunoglobulin or fragment thereof. In another embodiment, the xenogenous immunoglobulin loci can be a kappa chain locus or fragment thereof and/or a lambda chain locus or fragment thereof. In still further embodiments, an artificial chromosome (AC) can contain the xenogenous immunoglobulin. In one embodiment, the AC can be a yeast AC or a mammalian AC. In a further embodiment, the xenogenous locus can be a human immunoglobulin locus or fragment thereof. In one embodiment, the human immunoglobulin locus can be human chromosome 14, human chromosome 2, and human chromosome 22 or fragments thereof. In another embodiment, the human immunoglobulin locus can include any fragment of a human immunoglobulin that can undergo rearrangement. In a further embodiment, the human immunoglobulin loci can include any fragment of a human immunoglobulin heavy chain and a human immunoglobulin light chain that can undergo rearrangement. In still further embodiment, the human immunoglobulin loci can include any human immunoglobulin locus or fragment thereof that can produce an antibody upon exposure to an antigen. In a particular embodiment, the exogenous human immunoglobulin can be expressed in B cells to produce xenogenous immunoglobulin in response to exposure to one or more antigens.

In other embodiments, the transgenic ungulate that lacks any expression of functional endogenous immunoglobulins can be further genetically modified to express an xenogenous immunoglobulin loci. In an alternative embodiment, porcine animals are provided that contain an xenogeous immunoglobulin locus. In one embodiment, the xenogeous immunoglobulin loci can be a heavy and/or light chain immunoglobulin or fragment thereof In another embodiment, the xenogenous immunoglobulin loci can be a kappa chain locus or fragment thereof and/or a lambda chain locus or fragment thereof. In still further embodiments, an artificial chromosome (AC) can contain the xenogenous immunoglobulin. In one embodiment, the AC can be a yeast AC or a mammalian AC. In a further embodiment, the xenogenous locus can be a human immunoglobulin locus or fragment thereof. In one embodiment, the human immunoglobulin locus can be human chromosome 14, human chromosome 2, and human chromosome 22 or fragments thereof. In another embodiment, the human immunoglobulin locus can include any fragment of a human immunoglobulin that can undergo rearrangement. In a further embodiment, the human immunoglobulin loci can include any fragment of a human immunoglobulin heavy chain and a human immunoglobulin light chain that can undergo rearrangement. In still further embodiment, the human immunoglobulin loci can include any human immunoglobulin locus or fragment thereof that can produce an antibody upon exposure to an antigen. In a particular embodiment, the exogenous human immunoglobulin can be expressed in B cells to produce xenogenous immunoglobulin in response to exposure to one or more antigens.

In another embodiment, porcine animals are provided that contain an xenogeous immunoglobulin locus. In one embodiment, the xenogeous immunoglobulin loci can be a heavy and/or light chain immunoglobulin or fragment thereof. In another embodiment, the xenogenous immunoglobulin loci can be a kappa chain locus or fragment thereof and/or a lambda chain locus or fragment thereof. In still further embodiments, an artificial chromosome (AC) can contain the xenogenous immunoglobulin. In one embodiment, the AC can be a yeast AC or a mammalian AC. In a further embodiment, the xenogenous locus can be a human immunoglobulin locus or fragment thereof. In one embodiment, the human immunoglobulin locus can be human chromosome 14, human chromosome 2, and human chromosome 22 or fragments thereof In another embodiment, the human immunoglobulin locus can include any fragment of a human immunoglobulin that can undergo rearrangement. In a further embodiment, the human immunoglobulin loci can include any fragment of a human immunoglobulin heavy chain and a human immunoglobulin light chain that can undergo rearrangement. In still further embodiment, the human immunoglobulin loci can include any human immunoglobulin locus or fragment thereof that can produce an antibody upon exposure to an antigen. In a particular embodiment, the exogenous human immunoglobulin can be expressed in B cells to produce xenogenous immunoglobulin in response to exposure to one or more antigens.

Human immunoglobulin genes, such as the Ig heavy chain gene (human chromosome 414), Ig kappa chain gene (human chromosome #2) and/or the Ig lambda chain gene (chromosome #22) can be inserted into Acs, as described above. In a particular embodiment, any portion of the human heavy, kappa and/or lambda Ig genes can be inserted into ACs. In one embodiment, the nucleic acid can be at least 70, 80, 90, 95, or 99% identical to the corresponding region of a naturally-occurring nucleic acid from a human. In other embodiments, more than one class of human antibody is produced by the ungulate. In various embodiments, more than one different human Ig or antibody is produced by the ungulate. In one embodiment, an AC containing both a human Ig heavy chain gene and Ig light chain gene, such as an automatic human artificial chromosome (“AHAC,” a circular recombinant nucleic acid molecule that is converted to a linear human chromosome in vivo by an endogenously expressed restriction endonuclease) can be introduced. In one embodiment, the human heavy chain loci and the light chain loci are on different chromosome arms (i.e., on different side of the centromere). In one embodiments, the heavy chain can include the mu heavy chain, and the light chain can be a lambda or kappa light chain. The Ig genes can be introduced simultaneously or sequentially in one or more than one ACs.

In particular embodiments, the ungulate or ungulate cell expresses one or more nucleic acids encoding all or part of a human Ig gene which undergoes rearrangement and expresses more than one human Ig molecule, such as a human antibody protein. Thus, the nucleic acid encoding the human Ig chain or antibody is in its unrearranged form (that is, the nucleic acid has not undergone V(D)J recombination). In particular embodiments, all of the nucleic acid segments encoding a V gene segment of an antibody light chain can be separated from all of the nucleic acid segments encoding a J gene segment by one or more nucleotides. In a particular embodiment, all of the nucleic acid segments encoding a V gene segment of an antibody heavy chain can be separated from all of the nucleic acid segments encoding a D gene segment by one or more nucleotides, and/or all of the nucleic acid segments encoding a D gene segment of an antibody heavy chain are separated from all of the nucleic acid segments encoding a J gene segment by one or more nucleotides. Administration of an antigen to a transgenic ungulate containing an unrearranged human Ig gene is followed by the rearrangement of the nucleic acid segments in the human Ig gene locus and the production of human antibodies reactive with the antigen.

In one embodiment, the AC can express a portion or fragment of a human chromocome that contains an immunoglobulin gene. In one embodiment, the AC can express at least 300 or 1300 kb of the human light chain locus, such as described in Davies et al. 1993 Biotechnology 11: 911-914.

In another embodiment, the AC can express a portion of human chromosome 22 that contains at least the λ light-chain locus, including Vλ gene segments, Jλ gene segments, and the single Cλ gene. In another embodiment, the AC can express at least one Vλ gene segment, at least one Jλ gene segment, and the Cλ gene. In other embodiment, ACs can contain portions of the lambda locus, such as described in Popov et al. J Exp Med. 1999 May 17;189(10):1611-20.

In another embodiment, the AC can express a portion of human chromosome 2 that contains at least the κ light-chain locus, including Vκ gene segments, Jκ gene segments and the single Cκ gene. In another embodiment, the AC can express at least one Vκ gene segment, at least one Jκ gene segment and the Cκ gene. In other embodiments, AC containing portions of the kappa light chain locus can be those describe, for example, in Li et al. 2000 J Immunol 164: 812-824 and Li S Proc Natl Acad Sci USA. June 1987;84(12):4229-33. In another embodiment, AC containing approximatelty 1.3 Mb of human kappa locus are provided, such as descibed in Zou et al FASEB J. August 1996;10(10):1227-32.

In further embodiments, the AC can express a portion of human chromosome 14 that contains at least the human heavy-chain locus, including VH, DH, JH and CH gene segments. In another embodiment, the AC can express at least one VH gene segment, at least one DH gene segment, at least one JH gene segment and at least one at least one CH gene segment. In other embodiments, the AC can express at least 85 kb of the human heavy chain locus, such as described in Choi et al. 1993 Nat Gen 4:117-123 and/or Zou et al. 1996 PNAS 96: 14100-14105.

In other embodiments, the AC can express portions of both heavy and light chain loci, such as, at least 220, 170, 800 or 1020 kb, for example, as disclosed in Green et al. 1994 Nat Gen 7:13-22; Mendez et al 1995 Genomics 26: 294-307; Mendez et al. 1997 Nat Gen 15: 146-156; Green et al. 1998 J Exp Med 188: 483-495 and/or Fishwild et al. 1996 Nat Biotech 14: 845-851. In another embodiment, the AC can express megabase amounts of human immunoglobulin, such as described in Nicholson J Immunol. Dec. 15, 1999;163(12):6898-906 and Popov Gene. Oct. 24, 1996;177(1-2):195-201. In addition, in one particular embodiment, MACs derived from human chromosome #14 (comprising the Ig heavy chain gene), human chromosome #2 comprising the Ig kappa chain gene) and human chromosome #22 (comprising the Ig lambda chain gene) can be introduced simultaneously or successively, such as described in US Patent Publication No. 2004/0068760 to Robl et al. In another embodiments, the total size of the MAC is less than or equal to approximately 10, 9, 8, or 7 megabases.

In a particular embodiment, human Vh, human Dh, human Jh segments and human mu segments of human immunoglobulins in germline configuration can be inserted into an AC, such as a YAC, such that the Vh, Dh, Jh and mu DNA segments form a repertoire of immunoglobulins containing portions which correspond to the human DNA segments, for example, as described in U.S. Pat. No. 5,545,807 to the Babraham Insttitute. Such ACs, after insertion into ungulate cells and generation of ungulates can produce heavy chain immunoglobulins. In one embodiment, these immunoglobulins can form functional heavy chain-light chain immunoglobulins. In another embodiment, these immunoglobulins can be expressed in an amount allowing for recovery from suitable cells or body fluids of the ungulate. Such immunglobulins can be inserted into yeast artifical chromosome vectors, such as decribed by Burke, D T, Carle, G F and Olson, M V (1987) “Cloning of large segments of exogenous DNA into yeast by means of artifical chromosome vectors” Science, 236, 806-812, or by introduction of chromosome fragments (such as described by Richer, J and Lo, C W (1989) “Introduction of human DNA into mouse eggs by injection of dissected human chromosome fragments” Science 245, 175-177).

Additional information on specific ACs containing human immunoglobulin genes can be found in, for example, recent reviews by Giraldo & Montoliu (2001) Transgenic Research 10: 83-103 and Peterson (2003) Expert Reviews in Molecular Medicine 5: 1-25.

AC Transfer Methods

The human immunoglobulin genes can be first inserted into ACs and then the human-immunoglobulin-containing ACs can be inserted into the ungulate cells. Alternatively, the ACs can be transferred to an intermediary mammalian cell, such as a CHO cell, prior to insertion into the ungulate call. In one embodiment, the intermediary mammalian cell can also contain and AC and the first AC can be inserted into the AC of the mammalian cell. In particular, a YAC containing human immunoglobulin genes or fragments thereof in a yeast cell can be transferred to a mammalian cell that harbors an MAC. The YAC can be inserted into the MAC. The MAC can then be transferred to an ungulate cell. The human Ig genes can be inserted into ACs by homologous recombination. The resulting AC containing human Ig genes, can then be introduced into ungulate cells. One or more ungulate cells can be selected by techniques described herein or those known in the art, which contain an AC containing a human Ig.

Suitable hosts for introduction of the ACs are provided herein, which include but are not limited to any animal or plant, cell or tissue thereof, including, but not limited to: mammals, birds, reptiles, amphibians, insects, fish, arachnids, tobacco, tomato, wheat, monocots, dicots and algae. In one embodiment, the ACscan be condensed (Marschall et al Gene Ther. September 1999;6(9):1634-7) by any reagent known in the art, including, but not limited to, spermine, spermidine, polyethylenimine, and/or polylysine prior to introduction into cells. The ACs can be introduced by cell fusion or microcell fusion or subsequent to isolation by any method known to those of skill in this art, including but not limited to: direct DNA transfer, electroporation, nuclear transfer, microcell fusion, cell fusion, spheroplast fusion, lipid-mediated transfer, lipofection, liposomes, microprojectile bombardment, microinjection, calcium phosphate precipitation and/or any other suitable method. Other methods for introducing DNA into cells, include nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells. Polycations, such as polybrene and polyornithine, may also be used. For various techniques for transforming mammalian cells, see e.g., Keown et al. Methods in Enzymology (1990) Vol.185, pp. 527-537; and Mansour et al. (1988) Nature 336:348-352.

The ACs can be introduced by direct DNA transformation; microinjection in cells or embryos, protoplast regeneration for plants, electroporation, microprojectile gun and other such methods known to one skilled in the art (see, e.g., Weissbach et al. (1988) Methods for Plant Molecular Biology, Academic Press, N.Y., Section VIII, pp. 421-463; Grierson et al. (1988) Plant Molecular Biology, 2d Ed., Blackie, London, Ch. 7-9; see, also U.S. Pat. Nos. 5,491,075; 5,482,928; and 5,424,409; see, also, e.g., U.S. Pat. No. 5,470,708,).

In particular embodiments, one or more isolated YACs can be used that harbor human I genes. The isolated YACs can be condensed (Marschall et al Gene Ther. September 1999;6(9):1634-7) by any reagent known in the art, including, but not limited to spermine, spermidine, polyethylenimine, and/or polylysine. The condensed YACs can then be transferred to porcine cells by any method known in the art (for example, microinjection, electroporation, lipid mediated transfection, etc). Alternatively, the condensed YAC can be transferred to oocytes via sperm-mediated gene transfer or intracytoplasmic sperm injection (ICSI) mediated gene transfer. In one embodiment, spheroplast fusion can be used to transfer YACs that harbor human Ig genes to porcine cells.

In other embodiments of the invention, the AC containing the human Ig can be inserted into an adult, fetal, or embryonic ungulate cell. Additional examples of ungulate cells include undifferentiated cells, such as embryonic cells (e.g., embryonic stem cells), differentiated or somatic cells, such as epithelial cells, neural cells epidermal cells, keratinocytes, hematopoietic cells, melanocytes, chondrocytes, B-lymphocytes, T-lymphocytes, erythrocytes, macrophages, monocytes, fibroblasts, muscle cells, cells from the female reproductive system, such as a mammary gland, ovarian cumulus, granulosa, or oviductal cell, germ cells, placental cell, or cells derived from any organ, such as the bladder, brain, esophagus, fallopian tube, heart, intestines, gallbladder, kidney, liver, lung, ovaries, pancreas, prostate, spinal cord, spleen, stomach, testes, thymus, thyroid, trachea, ureter, urethra, and uterus or any other cell type described herein.

Site Specific Recombinase Mediated Transfer

In particular embodiments of the present invention, the transfer of ACs containing human immunoglobulin genes to porcine cells, such as those described herein or known in the art, can be accomplished via site specific recombinase mediated transfer. In one particular embodiment, the ACs can be transferred into porcine fibroblast cells. In another particular embodiment, the ACs can be YACs.

In other embodiments of the present invention, the circularized DNA, such as an AC, that contain the site specific recombinase target site can be transferred into a cell line that has a site specific resombinase target site within its genome. In one embodiment, the cell's site specific recombinase target site can be located within an exogenous chromosome. The exogenous chromosome can be an artificial chromosome that does not integrate into the host's endogenous genome. In one embodiment, the AC can be transferred via germ line transmission to offspring. In one particular embodiment, a YAC containing a human immunoglobulin gene or fragment thereof can be circularized via a site specific recombinase and then transferred into a host cell that contains a MAC, wherein the MAC contains a site specific recombinase site. This MAC that now contains human immunoglobulin loci or fragments thereof can then be fused with a porcine cell, such as, but not limited to, a fibroblast. The porcine cell can then be used for nuclear transfer.

In certain embodiments of the present invention, the ACs that contain human immunoglobulin genes or fragments thereof can be transferred to a mammalian cell, such as a CHO cell, prior to insertion into the ungulate call. In one embodiment, the intermediary mammalian cell can also contain and AC and the first AC can be inserted into the AC of the mammalian cell. In particular, a YAC containing human immunoglobulin genes or fragments thereof in a yeast cell can be transferred to a mammalian cell that harbors a MAC. The YAC can be inserted in the MAC. The MAC can then be transferred to an ungulate cell. In particular embodiments, the YAC harboring the human Ig genes or fragments thereof can contain site specific recombinase trarget sites. The YAC can first be circularized via application of the appropriate site specific recombinase and then inserted into a mammalian cell that contains its own site specific recombinase target site. Then, the site specific recombinase can be applied to inegrate the YAC into the MAC in the intermediary mammalian cell. The site specific recoombinase can be applied in cis or trans. In particular, the site specific recombinase can be applied in trans. In one embodiment, the site specific recombinase can be expressed via transfection of a site specific recombainse expression plasmid, such as a Cre expression plasmid. In addition, one telomere region of the YAC can also be retrofitted with a selectable marker, such as a selectable marker described herein or known in the art. The human Ig genes or fragments thereof within the MAC of the intermediary mammalian cell can then be transferred to an ungulate cell, such as a fibroblast.

Alternatively, the AC, such as a YAC, harboring the human Ig genes or fragments thereof can contain site specific recombinase target sites optionally located near each telomere. The YAC can first be circularized via application of the appropriate site specific recombinase and then inserted into an ungulate cell directly that contains its own site specific recombinase target site within it genome. Alternatively, the ungulate cell can harbor its own MAC, which contains a site specific recombinase target site. In this embodiment, the YAC can be inserted directly into the endogenous genome of the ungulate cell. In particular embodiments, the ungulate cell can be a fibroblast cell or any other suitable cell that can be used for nuclear transfer. See, for example, FIG. 7; Call et al., Hum Mol Genet. Jul. 22, 2000;9(12):1745-51.

In other embodiments, methods to circularize at least 100 kb of DNA are provided wherein the DNA can then be integrated into a host genome via a site specific recombinase. In one embodiment, at least 100, 200, 300, 400, 500, 1000, 2000, 5000, 10,000 kb of DNA can be circularized. In another embodiment, at least 1000, 2000, 5000, 10,000, or 20,000 megabases of DNA can be circularized. In one embodiment, the circularization of the DNA can be accomplished by attaching site specific recombinase target sites at each end of the DNA sequence and then applying the site specific recombinase to result in circularization of the DNA. In one embodiment, the site specific recombinase target site can be lox. In another embodiment, the site specific recombinase target site can be Flt. In certain embodiments, the DNA can be an artificial chromosome, such as a YAC or any AC described herein or known in the art. In another embodiment, the AC can contain human immunoglobulin loci or fragments thereof.

In another preferred embodiment, the YAC can be converted to, or integrated within, an artificial mammalian chromosome. The mammalian artificial chromosome is either transferred to or harbored within a porcine cell. The artificial chromosome can be introduced within the porcine genome through any method known in the art including but not limited to direct injection of metaphase chromosomes, lipid mediated gene transfer, or microcell fusion.

Site-specific recombinases include enzymes or recombinases that recognize and bind to a short nucleic acid site or sequence-specific recombinase target site, i.e., a recombinase recognition site, and catalyze the recombination of nucleic acid in relation to these sites. These enzymes include recombinases, transposases and integrases. Examples of sequence-specific recombinase target sites include, but are not limited to, lox sites, att sites, dif sites and frt sites. Non-limiting examples of site-specific recombinases include, but are not limited to, bacteriophage P1 Cre recombinase, yeast FLP recombinase, Inti integrase, bacteriophage λ, phi 80, P22, P2, 186, and P4 recombinase, Tn3 resolvase, the Hin recombinase, and the Cin recombinase, E. coli xerC and xerD recombinases, Bacillus thuringiensis recombinase, TpnI and the β-lactamase transposons, and the immunoglobulin recombinases.

In one embodiment, the recombination site can be a lox site that is recognized by the Cre recombinase of bacteriophage P1. Lox sites refer to a nucleotide sequence at which the product of the cre gene of bacteriophage P1, the Cre recombinase, can catalyze a site-specific recombination event. A variety of lox sites are known in the art, including the naturally occurring loxP, loxB, loxL and loxR, as well as a number of mutant, or variant, lox sites, such as loxP511, loxP514, lox.DELTA.86, lox.DELTA.117, loxC2, loxP2, loxP3 and lox P23. Additional example of lox sites include, but are not limited to, loxB, loxL, loxR, loxP, loxP3, loxP23, loxΔ86, loxΔ117, loxP511, and loxC2.

In another embodiment, the recombination site is a recombination site that is recognized by a recombinases other than Cre. In one embodiment, the recombinase site can be the FRT sites recognized by FLP recombinase of the 2 pi plasmid of Saccharomyces cerevisiae. FRT sites refer to a nucleotide sequence at which the product of the FLP gene of the yeast 2 micron plasmid, FLP recombinase, can catalyze site-specific recombination. Additional examples of the non-Cre recombinases include, but are not limited to, site-specific recombinases include: att sites recognized by the Int recombinase of bacteriophage λ (e.g. att1, att2, att3, attP, attB, attL, and attR), the recombination sites recognized by the resolvase family, and the recombination site recognized by transposase of Bacillus thruingiensis.

IV. Production of Genetically Modified Animals

In additional aspects of the present invention, ungulates that contain the genetic modifications described herein can be produced by any method known to one skilled in the art. Such methods include, but -are not limited to: nuclear transfer, intracytoplasmic sperm injection, modification of zygotes directly and sperm mediated gene transfer.

In another embodiment, a method to clone such animals, for example, pigs, includes: enucleating an oocyte, fusing the oocyte with a donor nucleus from a cell in which at least one allele of at least one immunoglobulin gene has been inactivated, and implanting the nuclear transfer-derived embryo into a surrogate mother.

Alternatively, a method is provided for producing viable animals that lack any expression of functional immunoglobulin by inactivating both alleles of the immunoglobulin gene in embryonic stem cells, which can then be used to produce offspring.

In another aspect, the present invention provides a method for producing viable animals, such as pigs, in which both alleles of the immunoglobulin gene have been rendered inactive. In one embodiment, the animals are produced by cloning using a donor nucleus from a cell in which both alleles of the immunoglobulin gene have been inactivated. In one embodiment, both alleles of the immunoglobulin gene are inactivated via a genetic targeting event.

Genetically altered animals that can be created by modifying zygotes directly. For mammals, the modified zygotes can be then introduced into the uterus of a pseudopregnant female capable of carrying the animal to term. For example, if whole animals lacking an immunoglobulin gene are desired, then embryonic stem cells derived from that animal can be targeted and later introduced into blastocysts for growing the modified cells into chimeric animals. For embryonic stem cells, either an embryonic stem cell line or freshly obtained stem cells can be used.

In a suitable embodiment of the invention, the totipotent cells are embryonic stem (ES) cells. The isolation of ES cells from blastocysts, the establishing of ES cell lines and their subsequent cultivation are carried out by conventional methods as described, for example, by Doetchmann et al., J. Embryol. Exp. Morph. 87:27-45 (1985); Li et al., Cell 69:915-926 (1992); Robertson, E. J. “Tetracarcinomas and Embryonic Stem Cells: A Practical Approach,” ed. E. J. Robertson, IRL Press, Oxford, England (1987); Wurst and Joyner, “Gene Targeting: A Practical Approach,” ed. A. L. Joyner, IRL Press, Oxford, England (1993); Hogen et al., “Manipulating the Mouse Embryo: A Laboratory Manual,” eds. Hogan, Beddington, Costantini and Lacy, Cold Spring Harbor Laboratory Press, New York (1994); and Wang et al., Nature 336:741-744 (1992). In another suitable embodiment of the invention, the totipotent cells are embryonic germ (EG) cells. Embryonic Germ cells are undifferentiated cells finctionally equivalent to ES cells, that is they can be cultured and transfected in vitro, then contribute to somatic and germ cell lineages of a chimera (Stewart et al., Dev. Biol. 161:626-628 (1994)). EG cells are derived by culture of primordial germ cells, the progenitors of the gametes, with a combination of growth factors: leukemia inhibitory factor, steel factor and basic fibroblast growth factor (Matsui et al., Cell 70:841-847 (1992); Resnick et al., Nature 359:550-551 (1992)). The cultivation of EG cells can be carried out using methods described in the article by Donovan et al., “Transgenic Animals, Generation and Use,” Ed. L. M. Houdebine, Harwood Academic Publishers (1997), and in the original literature cited therein.

Tetraploid blastocysts for use in the invention may be obtained by natural zygote production and development, or by known methods by electrofusion of two-cell embryos and subsequently cultured as described, for example, by James et al., Genet. Res. Camb. 60:185-194 (1992); Nagy and Rossant, “Gene Targeting: A Practical Approach,” ed. A. L. Joyner, IRL Press, Oxford, England (1993); or by Kubiak and Tarkowski, Exp. Cell Res. 157:561-566 (1985).

The introduction of the ES cells or EG cells into the blastocysts can be carried out by any method known in the art. A suitable method for the purposes of the present invention is the microinjection method as described by Wang et al., EMBO J. 10:2437-2450 (1991).

Alternatively, by modified embryonic stem cells transgenic animals can be produced. The genetically modified embryonic stem cells can be injected into a blastocyst and then brought to term in a female host mammal in accordance with conventional techniques. Heterozygous progeny can then be screened for the presence of the alteration at the site of the target locus, using techniques such as PCR or Southern blotting. After mating with a wild-type host of the same species, the resulting chimeric progeny can then be cross-mated to achieve homozygous hosts.

After transforming embryonic stem cells with the targeting vector to alter the immunoglobulin gene, the cells can be plated onto a feeder layer in an appropriate medium, e.g., fetal bovine serum enhanced DMEM. Cells containing the construct can be detected by employing a selective medium, and after sufficient time for colonies to grow, colonies can be picked and analyzed for the occurrence of homologous recombination. Polymerase chain reaction can be used, with primers within and without the construct sequence but at the target locus. Those colonies which show homologous recombination can then be used for embryo manipulating and blastocyst injection. Blastocysts can be obtained from superovulated females. The embryonic stem cells can then be trypsinized and the modified cells added to a droplet containing the blastocysts. At least one of the modified embryonic stem cells can be injected into the blastocoel of the blastocyst. After injection, at least one of the blastocysts can be returned to each uterine horn of pseudopregnant females. Females are then allowed to go to term and the resulting litters screened for mutant cells having the construct. The blastocysts are selected for different parentage from the transformed ES cells. By providing for a different phenotype of the blastocyst and the ES cells, chimeric progeny can be readily detected, and then genotyping can be conducted to probe for the presence of the modified immunoglobulin gene.

In other embodiments, sperm mediated gene transfer can be used to produce the genetically modified ungulates described herein. The methods and compositions described herein to either eliminate expression of endogenous immunoglobulin genes or insert xenogenous immunoglobulin genes can be used to genetically modify the sperm cells via any technique described herein or known in the art. The genetically modified sperm can then be used to impregnate a female recipient via artificial insemination, intracytoplasmic sperm injection or any other known technique. In one embodiment, the sperm and/or sperm head can be incubated with the exogenous nucleic acid for a sufficient time period. Sufficient time periods include, for. example, about 30 seconds to about 5 minutes, typically about 45 seconds to about 3 minutes, more typically about 1 minute to about 2 minutes. In particular embodiments, the expression of xenogenous, such as human, immunoglobulin genes in ungulates as descrbed herein, can be accomplished via intracytoplasmic sperm injection.

The potential use of sperm cells as vectors for gene transfer was first suggested by Brackett et al., Proc., Natl. Acad. Sci. USA 68:353-357 (1971). This was followed by reports of the production of transgenic mice and pigs after in vitro fertilization of oocytes with sperm that had been incubated by naked DNA (see, for example, Lavitrano et al., Cell 57:717-723 (1989) and Gandolfi et al. Journal of Reproduction and Fertility Abstract Series 4, 10 (1989)), although other laboratories were not able to repeat these experiments (see, for example, Brinster et al. Cell 59:239-241 (1989) and Gavora et al., Canadian Journal of Animal Science 71:287-291 (1991)). Since then, there have been several reports of successful sperm mediated gene transfer in chicken (see, for example, Nakanishi and Iritani, Mol. Reprod. Dev. 36:258-261 (1993)); mice (see, for example, Maione, Mol. Reprod. Dev. 59:406 (1998)); and pigs (see, for example, Lavitrano et al. Transplant. Proc. 29:3508-3509 (1997); Lavitrano et al., Proc. Natl. Acad. Sci. USA 99:14230-5 (2002); Lavitrano et al., Mol. Reprod. Dev. 64-284-91 (2003)). Similar techniques are also described in U.S. Pat. No. 6,376,743; issued Apr. 23, 2002; U.S. Patent Publication Nos. 20010044937, published Nov. 22, 2001, and 20020108132, published Aug. 8, 2002.

In other embodiments, intracytoplasmic sperm injection can be used to produce the genetically modified ungulates described herein. This can be accomplished by coinserting an exogenous nucleic acid and a sperm into the cytoplasm of an unfertilized oocyte to form a transgenic fertilized oocyte, and allowing the transgenic fertilized oocyte to develop into a transgenic embryo and, if desired, into a live offspring. The sperm can be a membrane-disrupted sperm head or a demembranated sperm head. The coinsertion step can include the substep of preincubating the sperm with the exogenous nucleic acid for a sufficient time period, for example, about 30 seconds to about 5 minutes, typically about 45 seconds to about 3 minutes, more typically about 1 minute to about 2 minutes. The coinsertion of the sperm and exogenous nucleic acid into the oocyte can be via microinjection. The exogenous nucleic acid mixed with the sperm can contain more than one transgene, to produce an embryo that is transgenic for more than one transgene as described herein. The intracytoplasmic sperm injection can be accomplished by any technique known in the art, see, for example, U.S. Pat. No. 6,376,743. In particular embodiments, the expression of xenogenous, such as human, immunoglobulin genes in ungulates as descrbed herein, can be accomplished via intracytoplasmic sperm injection.

Any additional technique known in the art may be used to introduce the transgene into animals. Such techniques include, but are not limited to pronuclear microinjection (see, for example, Hoppe, P. C. and Wagner, T. E., 1989, U.S. Pat. No. 4,873,191); retrovirus mediated gene transfer into germ lines (see, for example, Yan der Putten et al., 1985, Proc. Natl. Acad. Sci., USA 82:6148-6152); gene targeting in embryonic stem cells (see, for example, Thompson et al., 1989, Cell 56:313-321; Wheeler, M. B., 1994, WO 94/26884); electroporation of embryos (see, for example, Lo, 1983, Mol Cell. Biol. 3:1803-1814); cell gun; transfection; transduction; retroviral infection; adenoviral infection; adenoviral-associated infection; liposome-mediated gene transfer; naked DNA transfer; and sperm-mediated gene transfer (see, for example, Lavitrano et al., 1989, Cell 57:717-723); etc. For a review of such techniques, see, for example, Gordon, 1989, Transgenic Animals, Intl. Rev. Cytol. 115:171-229. In particular embodiments, the expression of xenogenous, such as human, immunoglobulin genes in ungulates as descrbed herein, can be-accomplished via these techniques.

Somatic Cell Nuclear Transfer to Produce Cloned, Transgenic Offspring

In a further aspect of the present invention, ungulate, such as porcine or bovine, cells lacking one allele, optionally both alleles of an ungulate heavy chain, kappa light chain and/or lambda light chain gene can be used as donor cells for nuclear transfer into recipient cells to produce cloned, transgenic animals. Alternatively, ungulate heavy chain, kappa light chain and/or lambda light chain gene knockouts can be created in embryonic stem cells, which are then used to produce offspring. Offspring lacking a single allele of a functional ungulate heavy chain, kappa light chain and/or lambda light chain gene produced according to the process, sequences and/or constructs described herein can be breed to further produce offspring lacking functionality in both alleles through mendelian type inheritance.

In another embodiment, the present invention provides a method for producing viable pigs that lack any expression of functional alpha-1,3-GT by breeding a male pig heterozygous for the alpha-1,3-GT gene with a female pig heterozygous for the alpha-1,3-GT gene. In one embodiment, the pigs are heterozygous due to the genetic modification of one allele of the alpha-1,3-GT gene to prevent expression of that allele. In another embodiment, the pigs are heterozygous due to the presence of a point mutation in one allele of the alpha-1,3-GT gene. In another embodiment, the point mutation can be a T-to-G point mutation at the second base of exon 9 of the alpha-1,3-GT gene. In one specific embodiment, a method to produce a porcine animal that lacks any expression of functional alpha-1,3-GT is provided wherein a male pig that contains a T-to-G point mutation at the second base of exon 9 of the alpha-1,3-GT gene is bred with a female pig that contains a T-to-G point mutation at the second base of exon 9 of the alpha-1,3-GT gene, or vise versa.

The present invention provides a method for cloning an animal, such as a pig, lacking a functional immunoglobulin gene via somatic cell nuclear transfer. In general, the animal can be produced by a nuclear transfer process comprising the following steps: obtaining desired differentiated cells to be used as a source of donor nuclei; obtaining oocytes from the animal; enucleating said oocytes; transferring the desired differentiated cell or cell nucleus into the enucleated oocyte, e.g., by fusion or injection, to form NT units; activating the resultant NT unit; and transferring said cultured NT unit to a host animal such that the NT unit develops into a fetus.

Nuclear transfer techniques or nuclear transplantation techniques are known in the art(Dai et al. Nature Biotechnology 20:251-255; Polejaeva et al Nature 407:86-90 (2000); Campbell et al, Theriogenology, 43:181 (1995); Collas et al, Mol. Report Dev., 38:264-267 (1994); Keefer et al, Biol. Reprod., 50:935-939 (1994); Sims et al, Proc. Natl. Acad. Sci., USA, 90:6143-6147 (1993); WO 94/26884; WO 94/24274, and WO 90/03432, U.S. Pat. Nos. 4,944,384 and 5,057,420).

A donor cell nucleus, which has been modified to alter the immunoglobulin gene, is transferred to a recipient oocyte. The use of this method is not restricted to a particular donor cell type. The donor cell can be as described herein, see also, for example, Wilmut et al Nature 385 810 (1997); Campbell et al Nature 380 64-66 (1996); Dai et al., Nature Biotechnology 20:251-255, 2002 or Cibelli et al Science 280 1256-1258 (1998). All cells of normal karyotype, including embryonic, fetal and adult somatic cells which can be used successfully in nuclear transfer can be employed. Fetal fibroblasts are a particularly useful class of donor cells. Generally suitable methods of nuclear transfer are described in Campbell et al Theriogenology 43 181 (1995), Dai et al. Nature Biotechnology 20:251-255, Polejaeva et al Nature 407:86-90 (2000), Collas et al Mol. Reprod. Dev. 38 264-267 (1994), Keefer et al Biol. Reprod. 50 935-939 (1994), Sims et al Proc. Nat'l. Acad. Sci. USA 90 6143-6147 (1993), WO-A-9426884, WO-A-9424274, WO-A-9807841, WO-A-9003432, U.S. Pat. No. 4,994,384 and U.S. Pat. No. 5,057,420. Differentiated or at least partially differentiated donor cells can also be used. Donor cells can also be, but do not have to be, in culture and can be quiescent. Nuclear donor cells which are quiescent are cells which can be induced to enter quiescence or exist in a quiescent state in vivo. Prior art methods have also used embryonic cell types in cloning procedures (Campbell et al (Nature, 380:64-68, 1996) and Stice et al (Biol. Reprod., 20 54:100-110, 1996).

Somatic nuclear donor cells may be obtained from a variety of different organs and tissues such as, but not limited to, skin, mesenchyme, lung, pancreas, heart, intestine, stomach, bladder, blood vessels, kidney, urethra, reproductive organs, and a disaggregated preparation of a whole or part of an embryo, fetus, or adult animal. In a suitable embodiment of the invention, nuclear donor cells are selected from the group consisting of epithelial cells, fibroblast cells, neural cells, keratinocytes, hematopoietic cells, melanocytes, chondrocytes, lymphocytes (B and T), macrophages, monocytes, mononuclear cells, cardiac muscle cells, other muscle cells, OxtendedO cells, cumulus cells, epidermal cells or endothelial cells. In another embodiment, the nuclear donor cell is an embryonic stem cell. In a particular embodiment, fibroblast cells can be used as donor cells.

In another embodiment of the invention, the nuclear donor cells of the invention are germ cells of an animal. Any germ cell of an animal species in the embryonic, fetal, or adult stage may be used as a nuclear donor cell. In a suitable embodiment, the nuclear donor cell is an embryonic germ cell.

Nuclear donor cells may be arrested in any phase of the cell cycle (G0, G1, G2, S, M) so as to ensure coordination with the acceptor cell. Any method known in the art may be used to manipulate the cell cycle phase. Methods to control the cell cycle phase include, but are not limited to, G0 quiescence induced by contact inhibition of cultured cells, G0 quiescence induced by removal of serum or other essential nutrient, G0 quiescence induced by senescence, G0 quiescence induced by addition of a specific growth factor; G0 or G1 quiescence induced by physical or chemical means such as heat shock, hyperbaric pressure or other treatment with a chemical, hormone, growth factor or other substance; S-phase control via treatment with a chemical agent which interferes with any point of the replication procedure; M-phase control via selection using fluorescence activated cell sorting, mitotic shake off, treatment with microtubule. disrupting agents or any chemical which disrupts progression in mitosis (see also Freshney, R. I,. “Culture of Animal Cells: A Manual of Basic Technique,” Alan R. Liss, Inc, New York (1983).

Methods for isolation of oocytes are well known in the art. Essentially, this can comprise isolating oocytes from the ovaries or reproductive tract of an animal. A readily available source of oocytes is slaughterhouse materials. For the combination of techniques such as genetic engineering, nuclear transfer and cloning, oocytes must generally be matured in vitro before these cells can be used as recipient cells for nuclear transfer, and before they can be fertilized by the sperm cell to develop into an embryo. This process generally requires collecting immature (prophase I) oocytes from mammalian ovaries, e.g., bovine ovaries obtained at a slaughterhouse, and maturing the oocytes in a maturation medium prior to fertilization or enucleation until the oocyte attains the metaphase II stage, which in the case of bovine oocytes generally occurs about 18-24 hours post-aspiration. This period of time is known as the “maturation period”. In certain embodiments, the oocyte is obtained from a gilt. A “gilt” is a female pig that has never had offspring. In other embodiments, the oocyte is obtained from a sow. A “sow” is a female pig that has previously produced offspring.

A metaphase II stage oocyte can be the recipient oocyte, at this stage it is believed that the oocyte can be or is sufficiently “activated” to treat the introduced nucleus as it does a fertilizing sperm. Metaphase II stage oocytes, which have been matured in vivo have been successfully used in nuclear transfer techniques. Essentially, mature metaphase II oocytes can be collected surgically from either non-superovulated or superovulated animal 35 to 48, or 39-41, hours past the onset of estrus or past the injection of human chorionic gonadotropin (hCG) or similar hormone. The oocyte can be placed in an appropriate medium, such as a hyalurodase solution.

After a fixed time maturation period, which ranges from about 10 to 40 hours, about 16-18 hours, about 40-42 hours or about 39-41 hours, the oocytes can be enucleated. Prior to enucleation the oocytes can be removed and placed in appropriate medium, such as HECM containing 1 milligram per milliliter of hyaluronidase prior to removal of cumulus cells. The stripped oocytes can then be screened for polar bodies, and the selected metaphase II oocytes, as determined by the presence of polar bodies, are then used for nuclear transfer. Enucleation follows.

Enucleation can be performed by known methods, such as described in U.S. Pat. No. 4,994,384. For example, metaphase II oocytes can be placed in either HECM, optionally containing 7.5 micrograms per milliliter cytochalasin B, for immediate enucleation, or can be placed in a suitable medium, for example an embryo culture medium such as CR1aa, plus 10% estrus cow serum, and then enucleated later, such as not more than 24 hours later,or not more than 16-18 hours later.

Enucleation can be accomplished microsurgically using a micropipette to remove the polar body and the adjacent cytoplasm. The oocytes can then be screened to identify those of which have been successfully enucleated. One way to screen the oocytes is to stain the oocytes with 1 microgram per milliliter 33342 Hoechst dye in HECM, and then view the oocytes under ultraviolet irradiation for less than 10 seconds. The oocytes that have been successfully enucleated can then be placed in a suitable culture medium, for example, CR1aa plus 10% serum.

A single mammalian cell of the same species as the enucleated oocyte can then be transferred into the perivitelline space of the enucleated oocyte used to produce the NT unit. The mammalian cell and the enucleated oocyte can be used to produce NT units according to methods known in the art. For example, the cells can be fused by electrofusion. Electrofusion is accomplished by providing a pulse of electricity that is sufficient to cause a transient breakdown of the plasma membrane. This breakdown of the plasma membrane is very short because the membrane reforms rapidly. Thus, if two adjacent membranes are induced to breakdown and upon reformation the lipid bilayers intermingle, small channels can open between the two cells. Due to the thermodynamic instability of such a small opening, it enlarges until the two cells become one. See, for example, U.S. Pat. No. 4,997,384 by Prather et al. A variety of electrofusion media can be used including, for example, sucrose, mannitol, sorbitol and phosphate buffered solution. Fusion can also be accomplished using Sendai virus as a fusogenic agent (Graham, Wister Inot. Symp. Monogr., 9, 19, 1969). Also, the nucleus can be injected directly into the oocyte rather than using electroporation fusion. See, for example, Collas and Barnes, Mol. Reprod. Dev., 38:264-267 (1994). After fusion, the resultant fused NT units are then placed in a suitable medium until activation, for example, CR1aa medium. Typically activation can be effected shortly thereafter, for example less than 24 hours later, or about 4-9 hours later, or optimally 1-2 hours after fusion. In a particular embodiment, activation occurs at least one hour post fusion and at 40-41 hours post maturation.

The NT unit can be activated by known methods. Such methods include, for example, culturing the NT unit at sub-physiological temperature, in essence by applying a cold, or actually cool temperature shock to the NT unit. This can be most conveniently done by culturing the NT unit at room temperature, which is cold relative to the physiological temperature conditions to which embryos are normally exposed. Alternatively, activation can be achieved by application of known activation agents. For example, penetration of oocytes by sperm during fertilization has been shown to activate prefusion oocytes to yield greater numbers of viable pregnancies and multiple genetically identical calves after nuclear transfer. Also, treatments such as electrical and chemical shock can be used to activate NT embryos after fusion. See, for example, U.S. Pat. No. 5,496,720, to Susko-Parrish et al. Fusion and activation can be induced by application of an AC pulse of 5 V for 5 s followed by two DC pulses of 1.5 kV/cm for 60 μs each using an ECM2001 Electrocell Manipulator (BTX Inc., San Diego, Calif.). Additionally, activation can be effected by simultaneously or sequentially by increasing levels of divalent cations in the oocyte, and reducing phosphorylation of cellular proteins in the oocyte. This can generally be effected by introducing divalent cations into the oocyte cytoplasm, e.g., magnesium, strontium, barium or calcium, e.g., in the form of an ionophore. Other methods of increasing divalent cation levels include the use of electric shock, treatment with ethanol and treatment with caged chelators. Phosphorylation can be reduced by known methods, for example, by the addition of kinase inhibitors, e.g., serine-threonine kinase inhibitors, such as 6-dimethyl-aminopurine, staurosporine, 2-aminopurine, and sphingosine. Alternatively, phosphorylation of cellular proteins can be inhibited by introduction of a phosphatase into the oocyte, e.g., phosphatase 2A and phosphatase 2B.

The activated NT units, or “fused embyos”, can then be cultured in a suitable in vitro culture medium until the generation of cell colonies. Culture media suitable for culturing and maturation of embryos are well known in the art. Examples of known media, which can be used for embryo culture and maintenance, include Ham's F-10+10% fetal calf serum (FCS), Tissue Culture Medium-199 (TCM-199)+10% fetal calf serum, Tyrodes-Albumin-Lactate-Pyruvate (TALP), Dulbecco's Phosphate Buffered Saline (PBS), Eagle's and Whitten's media, and, in one specific example, the activated NT units can be cultured in NCSU-23 medium for about 1-4 h at approximately 38.6° C. in a humidified atmosphere of 5% CO2.

Afterward, the cultured NT unit or units can be washed and then placed in a suitable media contained in well plates which can contain a suitable confluent feeder layer. Suitable feeder layers include, by way of example, fibroblasts and epithelial cells. The NT units are cultured on the feeder layer until the NT units reach a size suitable for transferring to a recipient female, or for obtaining cells which can be used to produce cell colonies. These NT units can be cultured until at least about 2 to 400 cells, about 4 to 128 cells, or at least about 50 cells.

Activated NT units can then be transferred (embryo transfers) to the oviduct of an female pigs. In one embodiment, the female pigs can be an estrus-synchronized recipient gilt. Crossbred gilts (large white/Duroc/Landrace) (280-400 lbs) can be used. The gilts can be synchronized as recipient animals by oral administration of 18-20 mg Regu-Mate (Altrenogest, Hoechst, Warren, N.J.) mixed into the feed. Regu-Mate can be fed for 14 consecutive days. One thousand units of Human Chorionic Gonadotropin (hCG, Intervet America, Millsboro, Del.) can then be administered i.m. about 105 h after the last Regu-Mate treatment. Embryo transfers can then be performed about 22-26 h after the hCG injection. In one embodiment, the pregnancy can be brought to term and result in the birth of live offspring. In another embodiment, the pregnancy can be terminated early and embryonic cells can be harvested.

Breeding for Desired Homozygous Knockout Animals

In another aspect, the present invention provides a method for producing viable animals that lack any expression of a functional immunoglobulin gene is provided by breeding a male heterozygous for the immunoglobulin gene with a female heterozygous for the immunoglobulin gene. In one embodiment, the animals are heterozygous due to the genetic modification of one allele of the immunoglobulin gene to prevent expression of that allele. In another embodiment, the animals are heterozygous due to the presence of a point mutation in one allele of the alpha-immunoglobulin gene. In further embodiments, such heterozygous knockouts can be bred with an ungulate that expresses xenogenous immunoglobulin, such as human. In one embodiment, a animal can be obtained by breeding a transgenic ungulate that lacks expression of at least one allele of an endogenous immunoglobulin wherein the immunoglobulin is selected from the group consisting of heavy chain, kappa light chain and lambda light chain or any combination thereof with an ungulate that expresses an xenogenous immunoglobulin. In another embodiment, a animal can be obtained by breeding a transgenic ungulate that lacks expression of one allele of heavy chain, kappa light chain and lambda light chain with an ungulate that expresses an xenogenous, such as human, immunoglobulin. In a further embodiment, an animal can be obtained by breeding a transgenic ungulate that lacks expression of one allele of heavy chain, kappa light chain and lambda light chain and expresses an xenogenous, such as human, immunoglobulin with another transgenic ungulate that lacks expression of one allele of heavy chain, kappa light chain and lambda light chain with an ungulate and expresses an xenogenous, such as human, immunoglobulin to produce a homozygous transgenic ungulate that lacks expression of both alleles of heavy chain, kappa light chain and lambda light chain and expresses an xenogenous, such as human, immunoglobulin. Methods to produce such animals are also provided.

In one embodiment, sexually mature animals produced from nuclear transfer from donor cells that carrying a double knockout in the immunoglobulin gene, can be bred and their offspring tested for the homozygous knockout. These homozygous knockout animals can then be bred to produce more animals.

In another embodiment, oocytes from a sexually mature double knockout animal can be in vitro fertilized using wild type sperm from two genetically diverse pig lines and the embryos implanted into suitable surrogates. Offspring from these matings can be tested for the presence of the knockout, for example, they can be tested by cDNA sequencing, and/or PCR. Then, at sexual maturity, animals from each of these litters can be mated. In certain methods according to this aspect of the invention, pregnancies can be terminated early so that fetal fibroblasts can be isolated and further characterized phenotypically and/or genotypically. Fibroblasts that lack expression of the immunoglobulin gene can then be used for nuclear transfer according to the methods described herein to produce multiple pregnancies and offspring carrying the desired double knockout.

Additional Genetic Modifications

In other embodiments, animals or cells lacking expression of functional immunoglobulin, produced according to the process, sequences and/or constructs described herein, can contain additional genetic modifications to eliminate the expression of xenoantigens. The additional genetic modifications can be made by further genetically modifying cells obtained from the transgenic cells and animals described herein or by breeding the animals described herein with animals that have been further genetically modified. Such animals can be modified to elimate the expression of at least one allele of the alpha-1,3-galactosyltransferase gene, the CMP-Neu5Ac hydroxylase gene (see, for example, U.S. Ser. No. 10/863,116), the iGb3 synthase gene (see, for example, U.S. Patent Application 60/517,524), and/or the Forssman synthase gene (see, for example, U.S. Patent Application 60/568,922). In additional embodiments, the animals discloses herein can also contain genetic modifications to expresss fucosyltransferase, sialyltransferase and/or any member of the family of glucosyltransferases. To achieve these additional genetic modifications, in one embodiment, cells can be modified to contain multiple genentic modifications. In other embodiments, animals can be bred together to achieve multiple genetic modifications. In one specific embodiment, animals, such as pigs, lacking expression of functional immunoglobulin, produced according to the process, sequences and/or constructs described herein, can be bred with animals, such as pigs, lacking expression of alpha-1,3-galactosyl transferase (for example, as described in WO 04/028243).

In another embodiment, the expression of additional genes responsible for xenograft rejection can be eliminated or reduced. Such genes include, but are not limited to the CMP-NEUAc Hydroxylase Gene, the isoGloboside 3 Synthase gene, and the Forssman synthase gene. In addition, genes or cDNA encoding complement related proteins, which are responsible for the suppression of complement mediated lysis can also be expressed in the animals and tissues of the present invention. Such genes include, but are not limited to CD59, DAF, MCP and CD46 (see, for example, WO 99/53042; Chen et al. Xenotransplantation, Volume 6 Issue 3 Page 194—August 1999, which describes pigs that express CD59/DAF transgenes; Costa C et al, Xenotransplantation. January 2002;9(1):45-57, which describes transgenic pigs that express human CD59 and H-transferase; Zhao L et al.; Diamond LE et al. Transplantation. January 15, 2001;71(1):132-42, which describes a human CD46 transgenic pigs.

Additional modifications can include expression of tissue factor pathway inhibitor (TFPI). heparin, antithrombin, hirudin, TFPI, tick anticoagulant peptide, or a snake venom factor, such as described in WO 98/42850 and U.S. Pat. No. 6,423,316, entitled “Anticoagulant fusion protein anchored to cell membrane”; or compounds, such as antibodies, which down-regulate the expression of a cell adhesion molecule by the cells, such as described in WO 00/31126, entitled “Suppression of xenograft rejection by down regulation of a cell adhesion molecules” and compounds in which co-stimulation by signal 2 is prevented, such as by administration to the organ recipient of a soluble form of CTLA-4 from the xenogeneic donor organism, for eample as described in WO 99/57266, entitled “Immunosuppression by blocking T cell co-stimulation signal 2 (B7/CD28 interaction)”.

Certain aspects of the invention are described in greater detail in the non-limiting Examples that follow.

EXAMPLES

Example 1

Porcine Heavy Chain Targeting and Generation of Porcine Animals that Lack Expression of Heavy Chain

A portion of the porcine Ig heavy-chain locus was isolated from a 3X redundant porcine BAC library. In general, BAC libraries can be generated by fragmenting pig total genomic DNA, which can then be used to derive a BAC library representing at least three times the genome of the whole animal. BACs that contain porcine heavy chain immunoglobulin can then be selected through hybridization of probes selective for porcine heavy chain immunoglobulin as described herein.

Sequence from a clone (Seq ID 1) was used to generate a primer complementary to a portion of the J-region (the primer is represented by Seq ID No. 2). Separately, a primer was designed that was complementary to a portion of Ig heavy-chain mu constant region (the promer is represented by Seq ID No. 3). These primers were used to amplify a fragment of porcine Ig heavy-chain (represented by Seq ID No. 4) that led the functional joining region (J-region) and sufficient flanking region to design and build a targeting vector. To maintain this fragment and sublcones of this fragment in a native state, the E. coli (Stable 2, Invitrogen cat #1026-019) that harbored these fragments was maintained at 30° C. Regions of Seq. ID No. 4 were subcloned and used to assemble a targeting vector as shown in Seq. ID No. 5. This vector was transfected into porcine fetal fibroblasts that were subsequently subjected to selection with G418. Resulting colonies were screened by PCR to detect potential targeting events (Seq ID No. 6 and Seq ID No. 7, 5′ screen prmers; and Seq ID No. 8 and Seq ID No. 9, 3′ screen primers). See FIG. 1 for a schematic illustrating the targeting. Targeting was confirmed by southern blotting. Piglets were generated by nuclear transfer using the targeted fetal fibroblasts as nuclear donors.

Nuclear Transfer.

The targeted fetal fibroblasts were used as nuclear donor cells. Nuclear transfer was performed by methods that are well known in the art (see, e.g., Dai et al., Nature Biotechnology 20: 251-255, 2002; and Polejaeva et al., Nature 407:86-90, 2000).

Oocytres were collected 46-54 h after the hCG injection by reverse flush of the oviducts using pre-warmed Dulbecco's phosphate buffered saline (PBS) containing bovine serum albumin (BSA; 4 gl−1) (as described in Polejaeva, I. A., et al. (Nature 407, 86-90 (2000)). Enucleation of in vitro-matured oocytes (BioMed, Madison, Wis.) was begun between 40 and 42 hours post-maturation as described in Polejaeva, I. A., et al. (Nature 407, 86-90 (2000)). Recovered oocytes were washed in PBS containing 4 gl−1 BSA at 38° C., and transferred to calcium-free phosphate-buffered NCSU-23 medium at 38° C. for transport to the laboratory. For enucleation, we incubated the oocytes in calcium-free phosphate-buffered NCSU-23 medium containing 5 μg ml−1 cytochalasin B (Sigma) and 7.5 μg ml−1 Hoechst 33342 (Sigma) at 38° C. for 20 min. A small amount of cytoplasm from directly beneath the first polar body was then aspirated using an 18 μM glass pipette (Humagen, Charlottesville, Va.). We exposed the aspirated karyoplast to ultraviolet light to confirm the presence of a metaphase plate.

For nuclear transfer, a single fibroblast cell was placed under the zona pellucida in contact with each enucleated oocyte. Fusion and activation were induced by application of an AC pulse of 5 V for 5 s followed by two DC pulses of 1.5 kV/cm for 60 μs each using an ECM2001 Electrocell Manipulator (BTX Inc., San Diego, Calif.). Fused embryos were cultured in NCSU-23 medium for 1-4 h at 38.6° C. in a humidified atmosphere of 5% CO2, and then transferred to the oviduct of an estrus-synchronized recipient gilt. Crossbred gilts (large white/Duroc/landrace) (280-400 lbs) were synchronized as recipients by oral administration of 18-20 mg Regu-Mate (Altrenogest, Hoechst, Warren, N.J.) mixed into their feed. Regu-Mate was fed for 14 consecutive days. Human chorionic gonadotropin (hCG, 1,000 units; Intervet America, Millsboro, Del.) was administered intra-muscularly 105 h after the last Regu-Mate treatment. Embryo transfers were done 22-26 h after the hCG injection.

Nuclear transfer produced 18 healthy piglets from four litters. These animals have one functional wild-type Ig heavy-chain locus and one disrupted Ig heavy chain locus.

Seq ID 2: primer from

ggccagacttcctcggaacagctca

Butler subclone to

amplify J to C

heavychain (637Xba5′)

Seq ID 3: primer for

ttccaggagaaggtgacggagct

C to amplify J to C

heavychain (JM1L)

Seq ID 6: heavychain

tctagaagacgctggagagaggccag

5′ primer for 5′

screen (HCKOXba5′2)

Seq ID 7: heavychain

taaagcgcatgctccagactgcctt

3′ primer for 5′

screen (5′arm5′)

Seq ID 8: heavychain

catcgccttctatcgccttctt

5′ primer for 3′

screen (NEO4425)

Seq ID 9: heavychain

Aagtacttgccgcctctcagga

3′ primer for 3′

screen (650+CA)

Southern blot analysis of cell and pig tissue samples. Cells or tissue samples were lysed overnight at 60° C. in lysis buffer (10 mM Tris, pH 7.5, 10 mM EDTA, 10 mM NaCl, 0.5% (w/v) Sarcosyl, 1 mg/ml proteinase K) and the DNA precipitated with ethanol. The DNA was then digested with NcoI or XbaI, depending on the probe to be used, and separated on a 1% agarose gel. After electrophoresis, the DNA was transferred to a nylon membrane and probed with digoxigenin-labeled probe (SEQ ID No 41 for NcoI digest, SEQ ID No 40 for XbaI digest). Bands were detected using a chemiluminescent substrate system (Roche Molecular Biochemicals).

Probes for Heavy Chain Southern:

HC J Probe (used with Xba I digest)

(Seq ID No 40)

CTCTGCACTCACTACCGCCGGACGCGCACTGCCGTGCTGCCCATGGACCA

CGCTGGGGAGGGGTGAGCGGACAGCACGTTAGGAAGTGTGTGTGTGCGCG

TGGGTGCAAGTCGAGCCAAGGCCAAGATCCAGGGGCTGGGCCCTGTGCCC

AGAGGAGAATGGCAGGTGGAGTGTAGCTGGATTGAAAGGTGGCCTGAAGG

GTGGGGCATCCTGTTTGGAGGCTCACTCTCAGCCCCAGGGTCTCTGGTTC

CTGCCGGGGTGGGGGGCGCAAGGTGCCTACCACACCCTGCTAGCCCCTCG

TCCAGTCCCGGGCCTGCCTCTTCACCACGGAAGAGGATAAGCCAGGCTGC

AGGCTTCATGTGCGCCGTGGAGAACCCAGTTCGGCCCTTGGAGG

HC Mu Probe (used with NcoI digest)

(Seq ID No 41)

GGCTGAAGTCTGAGGCCTGGCAGATGAGCTTGGACGTGCGCTGGGGAGTA

CTGGAGAAGGACTCCCGGGTGGGGACGAAGATGTTCAAGACGGGGGGCTG

CTCCTCTACGACTGCAGGCAGGAACGGGGCGTCACTGTGCCGGCGGCACC

CGGCCCCGCCCCCGCCACAGCCACAGGGGGAGCCCAGCTCACCTGGCCCA

GAGATGGACACGGACTTGGTGCCACTGGGGTGCTGGACCTCGCACACCAG

GAAGGCCTCTGGGTCCTGGGGGATGCTCACAGAGGGTAGGAGCACCCGGG

AGGAGGCCAAGTACTTGCCGCCTCTCAGGACGG

Example 2

Porcine Kappa Light Chain Targeting and Generation of Porcine Lacking Expression of Kappa Light Chain

A portion of the porcine Ig kappa-chain locus was isolated from a 3× redundant porcine BAC library. In general, BAC libraries can be generated by fragmenting pig total genomic DNA, which can then be used to derive a BAC library representing at least three times the genome of the whole animal. BACs that contain porcine kappa chain immunoglobulin can then be selected through hybridization of probes selective for porcine kappa chain immunoglobulin as described herein.

A fragment of porcine Ig light-chain kappa was amplified using a primer complementary to a portion of the J-region (the primer is represented by Seq ID No. 10) and a primer complementary to a region of kappa C-region (represented by Seq ID No. 11). The resulting amplimer was cloned into a plasmid vector and maintained in Stable2 cells at 30° C. ( Seq ID No. 12). See FIG. 2 for a schematic illustration.

Separately, a fragment of porcine Ig light-chain kappa was amplified using a primer complementary to a portion of the C-region (Seq ID No. 13) and a primer complementary to a region of the kappa enhancer region (Seq ID No. 14). The resulting amplimer was fragmented by restriction enzymes and DNA fragments that were produced were cloned, maintained in Stable2 cells at 30 degrees C. and sequenced. As a result of this sequencing, two non-overlapping contigs were assembled ( Seq ID No. 15, 5′ portion of amplimer; and Seq ID No. 16, 3′ portion of amplimer). Sequence from the downstream contig (Seq ID No. 16) was used to design a set of primers (Seq ID No. 17 and Seq ID No. 18) that were used to amplify a contiguous fragment near the enhancer (Seq ID No. 19). A subclone of each Seq ID No. 12 and Seq ID No. 19 were used to build a targeting vector (Seq ID No. 20). This vector was transfected into porcine fetal fibroblasts that were subsequently subjected to selection with G418. Resulting colonies were screened by PCR to detect potential targeting events (Seq ID No. 21 and Seq ID No. 22, 5′ screen primers; and Seq ID No. 23 and Seq Id No 43, 3′ screen primers, and Seq ID No. 24 and Seq Id No 24, endogenous screen primers). Targeting was confirmed by southern blotting. Southern blot strategy design was facilitated by cloning additional kappa sequence, it corresponds to the template for germline kappa transcript (Seq ID No. 25). Fetal pigs were generated by nuclear transfer.

Nuclear Transfer.

The targeted fetal fibroblasts were used as nuclear donor cells. Nuclear transfer was performed by methods that are well known in the art (see, e.g., Dai et al., Nature Biotechnology 20: 251-255, 2002; and Polejaeva et al., Nature 407:86-90, 2000).

Oocytres were collected 46-54 h after the hCG injection by reverse flush of the oviducts using pre-warmed Dulbecco's phosphate buffered saline (PBS) containing bovine serum albumin (BSA; 4 gl−1) (as described in Polejaeva, I. A., et al. (Nature 407, 86-90 (2000)). Enucleation of in vitro-matured oocytes (BioMed, Madison, Wis.) was begun between 40 and 42 hours post-maturation as described in Polejaeva, I. A., et al. (Nature 407, 86-90 (2000)). Recovered oocytes were washed in PBS containing 4 gl−1 BSA at 38° C., and transferred to calcium-free phosphate-buffered NCSU-23 medium at 38° C. for transport to the laboratory. For enucleation, we incubated the oocytes in calcium-free phosphate-buffered NCSU-23 medium containing 5 μg ml−1 cytochalasin B (Sigma) and 7.5 μg ml−1Hoechst 33342 (Sigma) at 38° C. for 20 min. A small amount of cytoplasm from directly beneath the first polar body was then aspirated using an 18 μM glass pipette (Humagen, Charlottesville, Va.). We exposed the aspirated karyoplast to ultraviolet light to confirm the presence of a metaphase plate.

For nuclear transfer, a single fibroblast cell was placed under the zona pellucida in contact with each enucleated oocyte. Fusion and activation were induced by application of an AC pulse of 5 V for 5 s followed by two DC pulses of 1.5 kV/cm for 60 μs each using an ECM2001 Electrocell Manipulator (BTX Inc., San Diego, Calif.). Fused embryos were cultured in NCSU-23 medium for 14h at 38.6° C. in a humidified atmosphere of 5% CO2, and then transferred to the oviduct of an estrus-synchronized recipient gilt. Crossbred gilts (large white/Duroc/landrace) (280-400 lbs) were synchronized as recipients by oral administration of 18-20 mg Regu-Mate (Altrenogest, Hoechst, Warren, N.J.) mixed into their feed. Regu-Mate was fed for 14 consecutive days. Human chorionic gonadotropin (hCG, 1,000 units; Intervet America, Millsboro, Del.) was administered intramuscularly 105 h after the last Regu-Mate treatment. Embryo transfers were done 22-26 h after the hCG injection.

Nuclear transfer using kappa targeted cells produced 33 healthy pigs from 5 litters. These pigs have one functional wild-type allele of porcine Ig light-chain kappa and one disrupted Ig light-chain kappa allele.

Seq ID 10: kappa J

caaggaqaccaagctggaactc

to C 5′ primer

(kjc5′1)

Seq ID 11: kappa J

tgatcaagcacaccacagagacag

to C 3′ primer

(kjc3′2)

Seq ID 13: 5′

gatgccaagccatccgtcttacatc

primer for Kappa C

to E (porKCS1)

Seq ID 14: 3′

tgaccaaagcagtgtgacggttgc

primer for Kappa C

to E (porKCA1)

Seq ID 17: kappa 5′

ggatcaaacacgcatcctcatggac

primer for amplifi-

cation of enhancer

region (K3′arm1S)

Seq ID 18: kappa 3′

ggtgattggggcatggttgagg

primer for amplifi-

cation of enhancer

region (K3′arm1A)

Seq ID 21: kappa

cgaacccctgtgtatatagtt

screen, 5′ primer,

5′ (kappa5armS)

Seq ID 22: kappa

gagatgaggaagaggagaaca

screen, 3′ primer,

5′ (kappaNeoA)

Seq ID 23: kappa

gcattgtctgagtaggtgtcatt

screen, 5′ primer,

3′ (kappaNeoS)

Seq ID 24: kappa

cgcttcttgcagggaacacgat

screen, 3′ primer,

5′ (kappa5armProbe3′)

Seq ID No 43, Kappa

GTCTTTGGTTTTTGCTGAGGGTT

screen, 3′ primer

(kappa3armA2)

Southern blot analysis of cell and pig tissue samples. Cells or tissue samples were lysed overnight at 60° C. in lysis buffer (10 mM Tris, pH 7.5, 10 mM EDTA, 10 mM NaCl, 0.5% (w/v) Sarcosyl, 1 mg/ml proteinase K) and the DNA precipitated with ethanol. The DNA was then digested with SacI and separated on a 1% agarose gel. After electrophoresis, the DNA was transferred to a nylon membrane and probed with digoxigenin-labeled probe (SEQ ID No 42). Bands were detected using a chemiluminescent substrate system (Roche Molecular Biochemicals).

Probe for Kappa Southern:

Kappa5ArmProbe 5′/3′

(SEQ ID No 42)

gaagtgaagccagccagttcctcctgggcaggtggccaaaattacagttg

acccctcctggtctggctgaaccttgccccatatggtgacagccatctgg

ccagggcccaggtctccctctgaagcctttgggaggagagggagagtggc

tggcccgatcacagatgcggaaggggctgactcctcaaccggggtgcaga

ctctgcagggtgggtctgggcccaacacacccaaagcacgcccaggaagg

aaaggcagcttggtatcactgcccagagctaggagaggcaccgggaaaat

gatctgtccaagacccgttcttgcttctaaactccgagggggtcagatga

agtggttttgtttcttggcctgaagcatcgtgttccctgcaagaagcgg

Example 3

Characterization of the Porcine Lambda Gene Locus

To disrupt or disable porcine lambda, a targeting strategy has been devised that allows for the removal or disruption of the region of the lambda locus that includes a concatamer of J to C expression cassettes. BAC clones that contain portions of the porcine genome can be generated. A portion of the porcine Ig lambda-chain locus was isolated from a 3× redundant porcine BAC library in general, BAC libraries can be generated by fragmenting pig total genomic DNA, which can then be used to derive a BAC library representing at least three times the genome of the whole animal. BACs that contain porcine lambda chain immunoglobulin can then be selected through hybridization of probes selective for porcine lambdachain immunoglobulin as described herein.

BAC clones containing a lambda J-C flanking region (see FIG. 3), can be independently fragmented and subcloned into a plasmid vector. Individual subclones have been screened by PCR for the presence of a portion of the J to C intron. We have cloned several of these cassettes by amplifying from one C region to the next C region. This amplification was accomplished by using primers that are oriented to allow divergent extension within any one C region (Seq ID 26 and Seq ID 27). To obtain successful amplification, the extended products converge with extended products originated from adjacent C regions (as opposed to the same C region). This strategy produces primarily amplimers that extend from one C to the adjacent C. However, some amplimers are the result of amplification across the adjacent C and into the next C which lies beyond the adjacent C. These multi-gene amplimers contain a portion of a C, both the J and C region of the next J-C unit, the J region of the third J-C unit, and a portion of the C region of the third J-C unit. Seq ID 28 is one such amplimer and represents sequence that must be removed or disrupted.

Other porcine lambda sequences that have been cloned include: Seq ID No. 32, which includes 5′ flanking sequence to the first lambda J/C region of the porcine lambda light chain genomic sequence; Seq ID No. 33, which includes 3′ flanking sequence to the J/C cluster region of the porcine lambda light chain genomic sequence, from approximately 200 base pairs downstream of lambda J/C; Seq ID No. 34, which includes 3′ flanking sequence to the J/C cluster region of the porcine lambda light chain genomic sequence, approximately 11.8 Kb downstream of the J/C cluster, near the enhancer; Seq ID No. 35, which includes approximately 12 Kb downstream of lambda, including the enhancer region; Seq ID No. 36, which includes approximately 17.6 Kb downstream of lambda; Seq ID No. 37, which includes approximately 19.1 Kb downstream of lambda; Seq ID No. 38, which includes approximately 21.3 Kb downstream of lambda; and Seq ID No. 39, which includes approximately 27 Kb downstream of lambda.

Seq ID 26: 5′ primer

ccttcctcctgcacctgtcaac

for lambda C to C

amplimer (lamC5′)

Seq ID 27: 3′ primer

tagacacaccagggtggccttg

for lambda C to C

amplimer (lamC3′)

Example 4

Production of Targeting Vectors for the Lambda Gene

In one example, a vector has been designed and built with one targeting arm that is homologous to a region upstream of J1 and the other arm homologous to a region that is downstream of the last C (see FIG. 4). One targeting vector is designed to target upstream of J1. This targeting vector utilizes a selectable marker that can be selected for or against. Any combination of positive and negative selectable markers described herein or known in the art can be used. A fusion gene composed of the coding region of Herpes simplex thymidine kinase (TK) and the Tn5 aminoglycoside phosphotransferase (Neo resistance) genes is used. This fusion gene is flanked by recognition sites for any site specific recombinase (SSRRS) described herein or known in the art, such as lox sites. Upon isolation of targeted cells through the use of G418 selection, Cre is supplied in trans to delete the marker gene (See FIG. 5). Cells that have deleted the marker gene are selected by addition of any drug known in the art that can be metabolized by TK into a toxic product, such as ganciclovir. The resulting genotype is then targeted with a second vector. The second targeting vector (FIG. 6) is designed to target downstream of last C and uses a positive/negative selection system that is flanked on only one side by a specific recombination site (lox). The recombination site is placed distally in relation to the first targeting event. Upon isolation of the targeted genotype, Cre is again supplied in trans to mediate deletion from recombination site provided in the first targeting event to the recombination site delivered in the second targeting event. The entire J to C cluster will be removed. The appropriate genotype is again selected by administration of ganciclovir.

In another example, insertional targeting vectors are used to disrupt each C regions independently. An insertional targeting vector will be designed and assembled to disrupt individual C region genes. There are at least 3 J to C regions in the J-C cluster. We will begin the process by designing vectors to target the first and last C regions and will include in the targeting vector site-specific recombination sites. Once both insertions have been made, the intervening region will be deleted with the site-specific recombinase.

Example 5

Crossbreeding of Heavy Chain Single Knockout with Kappa Single Knockout Pigs

To produce pigs that have both one disrupted Ig heavy chain locus and one disrupted Ig light-chain kappa allele, single knockout animals were crossbred. The first pregnancy yielded four fetuses, two of which screened positive by both PCR and Southern for both heavy-chain and kappa targeting events (see examples 1 and 2 for primers). Fetal fibroblasts were isolated, expanded and frozen. A second pregnancy resulting from the mating of a kappa single knockout with a heavy chain single knockout produced four healthy piglets.

Fetal fibroblast cells that contain a heavy chain single knockout and a kappa chain single knockout will be used for further targeting. Such cells will be used to target the lambda locus via the methods and compositins described herein. The resulting offspring will be hereozygous knockouts for heavy chain, kappa chain and lambda chain. These animals will be further crossed with animals containing the human Ig genes as decsibed herein and then crossbred with other single Ig knockout animals to produce porcine Ig double knockout animals with human Ig replacement genes.

This invention has been described with reference to its preferred embodiments. Variations and modifications of the invention, will be obvious to those skilled in the art from the foregoing detailed description of the invention.