会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
首页 / 专利库 / 有蹄类动物 / Ungulates with Genetically Modified Immune Systems

Ungulates with Genetically Modified Immune Systems

申请号 US12433477 申请日 2009-04-30 公开(公告)号 US20100077494A1 公开(公告)日 2010-03-25
申请人 Kevin Wells; David Ayares; 发明人 Kevin Wells; David Ayares;
摘要 The present invention provides ungulate animals, tissue and organs as well as cells and cell lines derived from such animals, tissue and organs, which lack expression of functional endogenous immunoglobulin loci. The present invention also provides ungulate animals, tissue and organs as well as cells and cell lines derived from such animals, tissue and organs, which express xenogenous, such as human, immunoglobulin loci. The present invention further provides ungulate, such as porcine genomic DNA sequence of porcine heavy and light chain immunogobulins. Such animals, tissues, organs and cells can be used in research and medical therapy. In addition, methods are provided to prepare such animals, organs, tissues, and cells.
权利要求 1. A targeting vector comprising: (a) a first nucleotide sequence comprising at least 17 contiguous nucleic acids homologous to SEQ ID No 28 or 31; (b) a selectable marker gene; and (c) a second nucleotide sequence comprising at least 17 contiguous nucleic acids homologous to SEQ ID No 28 or 31, which does not overlap with the first nucleotide sequence.2. A transgenic ungulate that lacks any expression of functional endogenous immunoglobulins.3. The transgenic ungulate of claim 1, wherein the ungulate expresses an exogenous immunoglobulin loci.4. The transgenic ungulate of claim 3, wherein the xenogenous locus is a human immunoglobulin locus or fragment thereof.5. A transgenic ungulate that expresses a xenogenous immunoglobulin loci or fragment thereof, wherein the immunoglobulin is expressed from an immunoglobulin locus that is integrated within an endogenous ungulate chromosome.6. The transgenic ungulate of claim 5, wherein the immunoglobulin loci are expressed in B cells to produce xenogenous immunoglobulin in response to exposure to one or more antigens.7. A method of producing xenogenous antibodies, the method comprising the steps of: (a) administering one or more antigens of interest to an ungulate whose cells comprise one or more artificial chromosomes and lack any expression of functional endogenous immunoglobulin, each artificial chromosome comprising one or more xenogenous immunoglobulin loci that undergo rearrangement, resulting in production of xenogenous antibodies against the one or more antigens; and (b) recovering the xenogenous antibodies from the ungulate.8. The method of claim 8, wherein the immunoglobulin loci undergo rearrangement in a B cell.9. An isolated nucleotide sequence comprising porcine heavy chain immunoglobulin or fragment thereof, wherein the heavy chain immunoglobulin includes at least one joining region and at least one constant immunoglobulin region or an ungulate kappa light chain immunoglobulin locus or fragment thereof.10. The nucleotide sequence of claim 9, wherein the immunoglobulin comprises a sequence is at least 80% homologous to Seq ID No. 29 or at least 80% homologous to at least 17 contiguous nucleotides of Seq ID No. 4.11. The nucleotide sequence of claim 9 comprising at least 17 contiguous nucleotides of Seq ID No. 30 or at least 17 contiguous nucleotides of Seq ID No. 12.12. The nucleotide sequence of claim 9, wherein the ungulate lambda light chain immunoglobulin locus comprises a concatamer of J to C units.13. The nucleotide sequence of claim 9, wherein the ungulate lambda light chain immunoglobulin locus comprises at least one joining region-constant region pair and/or at least one variable region, for example, as represented by Seq ID No. 31 or comprising at least 17, 20, 25 or 30 contiguous nucleotides of Seq ID No 28 or 31.14. A targeting vector selected from a heavy chain targeting vector comprising: (a) a first nucleotide sequence comprising at least 17 contiguous nucleic acids homologous to SEQ ID No 29 or at least 17 contiguous nucleic acids homologous to SEQ ID No 30; (b) a selectable marker gene; and (c) a second nucleotide sequence comprising at least 17 contiguous nucleic acids homologous to SEQ ID No 29 or at least 17 contiguous nucleic acids homologous to SEQ ID No 30, which does not overlap with the first nucleotide sequence; and a light chain targeting vector comprising: (a) a first nucleotide sequence comprising at least 17 contiguous nucleic acids homologous to SEQ ID No 28 or 31; (b) a selectable marker gene; and (c) a second nucleotide sequence comprising at least 17 contiguous nucleic acids homologous to SEQ ID No 28 or 31, which does not overlap with the first nucleotide sequence.
说明书全文

FIELD OF THE INVENTION

The present invention provides ungulate animals, tissue and organs as well as cells and cell lines derived from such animals, tissue and organs, which lack expression of functional endogenous immunoglobulin loci. The present invention also provides ungulate animals, tissue and organs as well as cells and cell lines derived from such animals, tissue and organs, which express xenogenous, such as human, immunoglobulin loci. The present invention further provides ungulate, such as porcine genomic DNA sequence of porcine heavy and light chain immunogobulins. Such animals, tissues, organs and cells can be used in research and medical therapy. In addition, methods are provided to prepare such animals, organs, tissues, and cells.

BACKGROUND OF THE INVENTION

An antigen is an agent or substance that can be recognized by the body as ‘foreign’. Often it is only one relatively small chemical group of a larger foreign substance which acts as the antigen, for example a component of the cell wall of a bacterium. Most antigens are proteins, though carbohydrates can act as weak antigens. Bacteria, viruses and other microorganisms commonly contain many antigens, as do pollens, dust mites, molds, foods, and other substances. The body reacts to antigens by making antibodies. Antibodies (also called immunoglobulins (Igs)) are proteins that are manufactured by cells of the immune system that bind to an antigen or foreign protein. Antibodies circulate in the serum of blood to detect foreign antigens and constitute the gamma globulin part of the blood proteins. These antibodies interact chemically with the antigen in a highly specific manner, like two pieces of a jigsaw puzzle, forming an antigen/antibody complex, or immune complex. This binding neutralizes or brings about the destruction of the antigen.

When a vertebrate first encounters an antigen, it exhibits a primary humoral immune response. If the animal encounters the same antigen after a few days the immune response is more rapid and has a greater magnitude. The initial encounter causes specific immune cell (B-cell) clones to proliferate and differentiate. The progeny lymphocytes include not only effector cells (antibody producing cells) but also clones of memory cells, which retain the capacity to produce both effector and memory cells upon subsequent stimulation by the original antigen. The effector cells live for only a few days. The memory cells live for a lifetime and can be reactivated by a second stimulation with the same antigen. Thus, when an antigen is encountered a second time, its memory cells quickly produce effector cells which rapidly produce massive quantities of antibodies.

By exploiting the unique ability of antibodies to interact with antigens in a highly specific manner, antibodies have been developed as molecules that can be manufactured and used for both diagnostic and therapeutic applications. Because of their unique ability to bind to antigenic epitopes, polyclonal and monoclonal antibodies can be used to identify molecules carrying that epitope or can be directed, by themselves or in conjunction with another moiety, to a specific site for diagnosis or therapy. Polyclonal and monoclonal antibodies can be generated against practically any pathogen or biological target. The term polyclonal antibody refers to immune sera that usually contain pathogen-specific antibodies of various isotypes and specificities. In contrast, monoclonal antibodies consist of a single immunoglobulin type, representing one isotype with one specificity.

In 1890, Shibasaburo Kitazato and Emil Behring conducted the fundamental experiment that demonstrated immunity can be transmitted from one animal to another by transferring the serum from an immune animal to a non-immune animal. This landmark experiment laid the foundation for the introduction of passive immunization into clinical practice. However, wide scale serum therapy was largely abandoned in the 1940s because of the toxicity associated with the administration of heterologous sera and the introduction of effective antimicrobial chemotherapy. Currently, such polyclonal antibody therapy is indicated to treat infectious diseases in relatively few situations, such as replacement therapy in immunoglobulin-deficient patients, post-exposure prophylaxis against several viruses (e.g., rabies, measles, hepatitis A and B, varicella), and toxin neutralization (diphtheria, tetanus, and botulism). Despite the limited use of serum therapy, in the United States, more than 16 metric tons of human antibodies are required each year for intravenous antibody therapy. Comparable levels of use exist in the economies of most highly industrialized countries, and the demand can be expected to grow rapidly in developing countries. Currently, human antibody for passive immunization is obtained from the pooled serum of donors. Thus, there is an inherent limitation in the amount of human antibody available for therapeutic and prophylactic therapies.

The use of antibodies for passive immunization against biological warfare agents represents a very promising defense strategy. The final line of defense against such agents is the immune system of the exposed individual. Current defense strategies against biological weapons include such measures as enhanced epidemiologic surveillance, vaccination, and use of antimicrobial agents. Since the potential threat of biological warfare and bioterrorism is inversely proportional to the number of immune persons in the targeted population, biological agents are potential weapons only against populations with a substantial proportion of susceptible persons.

Vaccination can reduce the susceptibility of a population against specific threats; provided that a safe vaccine exists that can induce a protective response. Unfortunately, inducing a protective response by vaccination may take longer than the time between exposure and onset of disease. Moreover, many vaccines require multiple doses to achieve a protective immune response, which would limit their usefulness in an emergency to provide rapid prophylaxis after an attack. In addition, not all vaccine recipients mount a protective response, even after receiving the recommended immunization schedule.

Drugs can provide protection when administered after exposure to certain agents, but none are available against many potential agents of biological warfare. Currently, no small-molecule drugs are available that prevent disease following exposure to preformed toxins. The only currently available intervention that could provide a state of immediate immunity is passive immunization with protective antibody (Arturo Casadevall “Passive Antibody Administration (Immediate Immunity) as a Specific Defense Against Biological Weapons” from Emerging Infectious Diseases, Posted Sep. 12, 2002).

In addition to providing protective immunity, modern antibody-based therapies constitute a potentially useful option against newly emergent pathogenic bacteria, fungi, virus and parasites (A. Casadevall and M. D. Scharff, Clinical Infectious Diseases 1995; 150). Therapies of patients with malignancies and cancer (C. Botti et al, Leukemia 1997; Suppl 2:S55-59; B. Bodey, S. E. Siegel, and H. E. Kaiser, Anticancer Res 1996; 16(2):661), therapy of steroid resistant rejection of transplanted organs as well as autoimmune diseases can also be achieved through the use of monoclonal or polyclonal antibody preparations (N. Bonnefoy-Berard and J. P. Revillard, J Heart Lung Transplant 1996; 15(5):435-442; C. Colby, et al Ann Pharmacother 1996; 30(10):1164-1174; M. J. Dugan, et al, Ann Hematol 1997; 75(1-2):41 2; W. Cendrowski, Boll Ist Sieroter Milan 1997; 58(4):339-343; L. K. Kastrukoff, et al Can J Neurol Sci 1978; 5(2):175178; J. E. Walker et al J Neurol Sci 1976; 29(2-4):303309).

Recent advances in the technology of antibody production provide the means to generate human antibody reagents, while avoiding the toxicities associated with human serum therapy. The advantages of antibody-based therapies include versatility, low toxicity, pathogen specificity, enhancement of immune function, and favorable pharmacokinetics.

The clinical use of monoclonal antibody therapeutics has just recently emerged. Monoclonal antibodies have now been approved as therapies in transplantation, cancer, infectious disease, cardiovascular disease and inflammation. In many more monoclonal antibodies are in late stage clinical trials to treat a broad range of disease indications. As a result, monoclonal antibodies represent one of the largest classes of drugs currently in development.

Despite the recent popularity of monoclonal antibodies as therapeutics, there are some obstacles for their use. For example, many therapeutic applications for monoclonal antibodies require repeated administrations, especially for chronic diseases such as autoimmunity or cancer. Because mice are convenient for immunization and recognize most human antigens as foreign, monoclonal antibodies against human targets with therapeutic potential have typically been of murine origin. However, murine monoclonal antibodies have inherent disadvantages as human therapeutics. For example, they require more frequent dosing to maintain a therapeutic level of monoclonal antibodies because of a shorter circulating half-life in humans than human antibodies. More critically, repeated administration of murine immunoglobulin creates the likelihood that the human immune system will recognize the mouse protein as foreign, generating a human anti-mouse antibody response, which can cause a severe allergic reaction. This possibility of reduced efficacy and safety has lead to the development of a number of technologies for reducing the immunogenicity of murine monoclonal antibodies.

Polyclonal antibodies are highly potent against multiple antigenic targets. They have the unique ability to target and kill a plurality of “evolving targets” linked with complex diseases. Also, of all drug classes, polyclonals have the highest probability of retaining activity in the event of antigen mutation. In addition, while monoclonals have limited therapeutic activity against infectious agents, polyclonals can both neutralize toxins and direct immune responses to eliminate pathogens, as well as biological warfare agents.

The development of polyclonal and monoclonal antibody production platforms to meet future demand for production capacity represents a promising area that is currently the subject of much research. One especially promising strategy is the introduction of human immunoglobulin genes into mice or large domestic animals. An extension of this technology would include inactivation of their endogenous immunoglobulin genes. Large animals, such as sheep, pigs and cattle, are all currently used in the production of plasma derived products, such as hyperimmune serum and clotting factors, for human use. This would support the use of human polyclonal antibodies from such species on the grounds of safety and ethics. Each of these species naturally produces considerable quantities of antibody in both serum and milk.

Arrangement of Genes Encoding Immunoglobulins

Antibody molecules are assembled from combinations of variable gene elements, and the possibilities resulting from combining the many variable gene elements in the germline enable the host to synthesize antibodies to an extraordinarily large number of antigens. Each antibody molecule consists of two classes of polypeptide chains, light (L) chains (that can be either kappa (κ) L-chain or lambda (λ) L-chain) and heavy (H) chains. The heavy and light chains join together to define a binding region for the epitope. A single antibody molecule has two identical copies of the L chain and two of the H chain. Each of the chains is comprised of a variable region (V) and a constant region (C). The variable region constitutes the antigen-binding site of the molecule. To achieve diverse antigen recognition, the DNA that encodes the variable region undergoes gene rearrangement. The constant region amino acid sequence is specific for a particular isotype of the antibody, as well as the host which produces the antibody, and thus does not undergo rearrangement.

The mechanism of DNA rearrangement is similar for the variable region of both the heavy- and light-chain loci, although only one joining event is needed to generate a light-chain gene whereas two are needed to generate a complete heavy-chain gene. The most common mode of rearrangement involves the looping-out and deletion of the DNA between two gene segments. This occurs when the coding sequences of the two gene segments are in the same orientation in the DNA. A second mode of recombination can occur between two gene segments that have opposite transcriptional orientations. This mode of recombination is less common, although such rearrangements can account for up to half of all Vκ to Jκ joins; the transcriptional orientation of half of the human Vκ gene segments is opposite to that of the Jκ gene segments.

The DNA sequence encoding a complete V region is generated by the somatic recombination of separate gene segments. The V region, or V domain, of an immunoglobulin heavy or light chain is encoded by more than one gene segment. For the light chain, the V domain is encoded by two separate DNA segments. The first segment encodes the first 95-101 amino acids of the light chain and is termed a V gene segment because it encodes most of the V domain. The second segment encodes the remainder of the V domain (up to 13 amino acids) and is termed a joining or J gene segment. The joining of a V and a J gene segment creates a continuous exon that encodes the whole of the light-chain V region. To make a complete immunoglobulin light-chain messenger RNA, the V-region exon is joined to the C-region sequence by RNA splicing after transcription.

A heavy-chain V region is encoded in three gene segments. In addition to the V and J gene segments (denoted VH and JH to distinguish them from the light-chain VL and JL), there is a third gene segment called the diversity or DH gene segment, which lies between the VH and JH gene segments. The process of recombination that generates a complete heavy-chain V region occurs in two separate stages. In the first, a DH gene segment is joined to a JH gene segment; then a VH gene segment rearranges to DJH to make a complete VH-region exon. As with the light-chain genes, RNA splicing joins the assembled V-region sequence to the neighboring C-region gene.

Diversification of the antibody repertoire occurs in two stages: primarily by rearrangement (“V(D)J recombination”) of Ig V, D and J gene segments in precursor B cells resident in the bone marrow, and then by somatic mutation and class switch recombination of these rearranged Ig genes when mature B cells are activated. Immunoglobulin somatic mutation and class switching are central to the maturation of the immune response and the generation of a “memory” response.

The genomic loci of antibodies are very large and they are located on different chromosomes. The immunoglobulin gene segments are organized into three clusters or genetic loci: the κ, λ, and heavy-chain loci. Each is organized slightly differently. For example, in humans, immunoglobulin genes are organized as follows. The λ light-chain locus is located on chromosome 22 and a cluster of Vλ gene segments is followed by four sets of Jλ gene segments each linked to a single Cλ gene. The κ light-chain locus is on chromosome 2 and the cluster of Vκ, gene segments is followed by a cluster of Jκ gene segments, and then by a single Cκ gene. The organization of the heavy-chain locus, on chromosome 14, resembles that of the κ locus, with separate clusters of VH, DH, and JH gene segments and of CH genes. The heavy-chain locus differs in one important way: instead of a single C-region, it contains a series of C regions arrayed one after the other, each of which corresponds to a different isotype. There are five immunoglobulin heavy chain isotypes: IgM, IgG, IgA, IgE and IgD. Generally, a cell expresses only one at a time, beginning with IgM. The expression of other isotypes, such as IgG, can occur through isotype switching.

The joining of various V, D and J genes is an entirely random event that results in approximately 50,000 different possible combinations for VDJ(H) and approximately 1,000 for VJ(L). Subsequent random pairing of H and L chains brings the total number of antibody specificities to about 107 possibilities. Diversity is further increased by the imprecise joining of different genetic segments. Rearrangements occur on both DNA strands, but only one strand is transcribed (due to allelic exclusion). Only one rearrangement occurs in the life of a B cell because of irreversible deletions in DNA. Consequently, each mature B cell maintains one immunologic specificity and is maintained in the progeny or clone. This constitutes the molecular basis of the clonal selection; i.e., each antigenic determinant triggers the response of the pre-existing clone of B lymphocytes bearing the specific receptor molecule. The primary repertoire of B cells, which is established by V(D)J recombination, is primarily controlled by two closely linked genes, recombination activating gene (RAG)-1 and RAG-2.

Over the last decade, considerable diversity among vertebrates in both Ig gene diversity and antibody repertoire development has been revealed. Rodents and humans have five heavy chain classes, IgM, IgD, IgG, IgE and IgA, and each have four subclasses of IgG and one or two subclasses of IgA, while rabbits have a single IgG heavy chain gene but 13 genes for different IgA subclasses (Burnett, R. C et al. EMBO J. 8:4047; Honjo, In Honjo, T, Alt. F. W. T. H. eds, Immunoglobulin Genes p. 123 Academic Press, New York). Swine have at least six IgG subclasses (Kacskovics, I et al. 1994 J Immunol 153:3565), but no IgD (Butler et al. 1996 Inter. Immunol 8:1897-1904). A gene encoding IgD has only been described in rodents and primates. Diversity in the mechanism of repertoire development is exemplified by contrasting the pattern seen in rodents and primates with that reported for chickens, rabbits, swine and the domesticated Bovidae. Whereas the former group have a large number of VH genes belonging to seven to 10 families (Rathbun, G. In Hongo, T. Alt. F. W. and Rabbitts, T. H., eds, Immunoglobulin Genes, p. 63, Academic press New York), the VH genes of each member of the latter group belong to a single VH gene family (Sun, J. et al. 1994 J. Immunol. 1553:56118; Dufour, V et al. 1996, J Immunol. 156:2163). With the exception of the rabbit, this family is composed of less than 25 genes. Whereas rodents and primates can utilize four to six JH segments, only a single JH is available for repertoire development in the chicken (Reynaud et al. 1989 Adv. Immunol. 57:353). Similarly, Butler et al. (1996 Inter. Immunol 8:1897-1904) hypothesized that swine may resemble the chicken in having only a single JH gene. These species generally have fewer V, D and J genes; in the pig and cow a single VH gene family exists, consisting of less than 20 gene segments (Butler et al, Advances in Swine in Biomedical Research, eds: Tumbleson and Schook, 1996; Sinclair et al, J. Immunol. 159: 3883, 1997). Together with lower numbers of J and D gene segments, this results in significantly less diversity being generated by gene rearrangement. However, there does appear to be greater numbers of light chain genes in these species. Similar to humans and mice, these species express a single κ light chain but multiple λ light chain genes. However, these do not seem to affect the restricted diversity that is achieved by rearrangement.

Since combinatorial joining of more than 100 VH, 20-30 DH and four to six JH gene segments is a major mechanism of generating the antibody repertoire in humans, species with fewer VH, DH or JH segments must either generate a smaller repertoire or use alternative mechanisms for repertoire development. Ruminants, pigs, rabbits and chickens, utilize several mechanisms to generate antibody diversity. In these species there appears to be an important secondary repertoire development, which occurs in highly specialized lymphoid tissue such as ileal Peyer's patches (Binns and Licence, Adv. Exp. Med. Biol. 186: 661, 1985). Secondary repertoire development occurs in these species by a process of somatic mutation which is a random and not fully understood process. The mechanism for this repertoire diversification appears to be templated mutation, or gene conversion (Sun et al, J. Immunol. 153: 5618, 1994) and somatic hypermutation.

Gene conversion is important for antibody diversification in some higher vertebrates, such as chickens, rabbits and cows. In mice, however, conversion events appear to be infrequent among endogenous antibody genes. Gene conversion is a distinct diversifying mechanism characterized by transfers of homologous sequences from a donor antibody V gene segment to an acceptor V gene segment. If donor and acceptor segments have numerous sequence differences then gene conversion can introduce a set of sequence changes into a V region by a single event. Depending on the species, gene conversion events can occur before and/or after antigen exposure during B cell differentiation (Tsai et al. International Immunology, Vol. 14, No. 1, 55-64, January 2002).

Somatic hypermutation achieves diversification of antibody genes in all higher vertebrate species. It is typified by the introduction of single point mutations into antibody V(D)J segments. Generally, hypermutation appears to be activated in B cells by antigenic stimulation.

Production of Animals with Humanized Immune Systems

In order to reduce the immunogenicity of antibodies generated in mice for human therapeutics, various attempts have been made to replace murine protein sequences with human protein sequences in a process now known as humanization. Transgenic mice have been constructed which have had their own immunoglobulin genes functionally replaced with human immunoglobulin genes so that they produce human antibodies upon immunization. Elimination of mouse antibody production was achieved by inactivation of mouse Ig genes in embryonic stem (ES) cells by using gene-targeting technology to delete crucial cis-acting sequences involved in the process of mouse Ig gene rearrangement and expression. B cell development in these mutant mice could be restored by the introduction of megabase-sized YACs containing a human germline-configuration H- and κ L-chain minilocus transgene. The expression of fully human antibody in these transgenic mice was predominant, at a level of several 100 μg/l of blood. This level of expression is several hundred-fold higher than that detected in wild-type mice expressing the human Ig gene, indicating the importance of inactivating the endogenous mouse Ig genes in order to enhance human antibody production by mice.

The first humanization attempts utilized molecular biology techniques to construct recombinant antibodies. For example, the complementarity determining regions (CDR) from a mouse antibody specific for a hapten were grafted onto a human antibody framework, effecting a CDR replacement. The new antibody retained the binding specificity conveyed by the CDR sequences (P. T. Jones et al. Nature 321: 522-525 (1986)). The next level of humanization involved combining an entire mouse VH region with a human constant region such as gamma1 (S. L. Morrison et al., Proc. Natl. Acad. Sci., 81, pp. 6851-6855 (1984)). However, these chimeric antibodies, which still contain greater than 30% xenogeneic sequences, are sometimes only marginally less immunogenic than totally xenogeneic antibodies (M. Bruggemann et al., J. Exp. Med., 170, pp. 2153-2157 (1989)).

Subsequently, attempts were carried out to introduce human immunoglobulin genes into the mouse, thus creating transgenic mice capable of responding to antigens with antibodies having human sequences (Bruggemann et al. Proc. Nat'l. Acad. Sci. USA 86:6709-6713 (1989)). Due to the large size of human immunoglobulin genomic loci, these attempts were thought to be limited by the amount of DNA, which could be stably maintained by available cloning vehicles. As a result, many investigators concentrated on producing mini-loci containing limited numbers of V region genes and having altered spatial distances between genes as compared to the natural or germline configuration (See, for example, U.S. Pat. No. 5,569,825). These studies indicated that producing human sequence antibodies in mice was possible, but serious obstacles remained regarding obtaining sufficient diversity of binding specificities and effector functions (isotypes) from these transgenic animals to meet the growing demand for antibody therapeutics.

In order to provide additional diversity, work has been conducted to add large germline fragments of the human Ig locus into transgenic mammals. For example, a majority of the human V, D, and J region genes arranged with the same spacing found in the unrearranged germline of the human genome and the human Cμ and Cδ constant regions was introduced into mice using yeast artificial chromosome (YAC) cloning vectors (See, for example, WO 94/02602). A 22 kb DNA fragment comprising sequences encoding a human gamma-2 constant region and the upstream sequences required for class-switch recombination was latter appended to the foregoing transgene. In addition, a portion of a human kappa locus comprising Vκ, Jκ and Cκ region genes, also arranged with substantially the same spacing found in the unrearranged germline of the human genome, was introduced into mice using YACS. Gene targeting was used to inactivate the murine IgH & kappa light chain immunoglobulin gene loci and such knockout strains were bred with the above transgenic strains to generate a line of mice having the human V, D, J, Cμ, Cδ and Cγ2 constant regions as well as the human Vκ, Jκ and Cκ region genes all on an inactivated murine immunoglobulin background (See, for example, PCT patent application WO 94/02602 to Kucherlapati et al.; see also Mendez et al., Nature Genetics 15:146-156 (1997)).

Yeast artificial chromosomes as cloning vectors in combination with gene targeting of endogenous loci and breeding of transgenic mouse strains provided one solution to the problem of antibody diversity. Several advantages were obtained by this approach. One advantage was that YACs can be used to transfer hundreds of kilobases of DNA into a host cell. Therefore, use of YAC cloning vehicles allows inclusion of substantial portions of the entire human Ig heavy and light chain regions into a transgenic mouse thus approaching the level of potential diversity available in the human. Another advantage of this approach is that the large number of V genes has been shown to restore full B cell development in mice deficient in murine immunoglobulin production. This ensures that these reconstituted mice are provided with the requisite cells for mounting a robust human antibody response to any given immunogen. (See, for example, WO 94/02602; L. Green and A. Jakobovits, J. Exp. Med. 188:483-495 (1998)). A further advantage is that sequences can be deleted or inserted onto the YAC by utilizing high frequency homologous recombination in yeast. This provides for facile engineering of the YAC transgenes.

In addition, Green et al. Nature Genetics 7:13-21 (1994) describe the generation of YACs containing 245 kb and 190 kb-sized germline configuration fragments of the human heavy chain locus and kappa light chain locus, respectively, which contained core variable and constant region sequences. The work of Green et al. was recently extended to the introduction of greater than approximately 80% of the human antibody repertoire through introduction of megabase sized, germline configuration YAC fragments of the human heavy chain loci and kappa light chain loci, respectively, to produce XenoMouse™ mice. See, for example, Mendez et al. Nature Genetics 15:146-156 (1997), Green and Jakobovits J. Exp. Med. 188:483-495 (1998), European Patent No. EP 0 463 151 B1, PCT Publication Nos. WO 94/02602, WO 96/34096 and WO 98/24893.

Several strategies exist for the generation of mammals that produce human antibodies. In particular, there is the “minilocus” approach that is typified by work of GenPharm International, Inc. and the Medical Research Council, YAC introduction of large and substantially germline fragments of the Ig loci that is typified by work of Abgenix, Inc. (formerly Cell Genesys). The introduction of entire or substantially entire loci through the use microcell fusion as typified by work of Kirin Beer Kabushiki Kaisha.

In the minilocus approach, an exogenous Ig locus is mimicked through the inclusion of pieces (individual genes) from the Ig locus. Thus, one or more VH genes, one or more DH genes, one or more JH genes, a mu constant region, and a second constant region (such as a gamma constant region) are formed into a construct for insertion into an animal. See, for example, U.S. Pat. Nos. 5,545,807, 5,545,806, 5,625,825, 5,625,126, 5,633,425, 5,661,016, 5,770,429, 5,789,650, 5,814,318, 5,591,669, 5,612,205, 5,721,367, 5,789,215, 5,643,763; European Patent No. 0 546 073; PCT Publication Nos. WO 92/03918, WO 92/22645, WO 92/22647, WO 92/22670, WO 93/12227, WO 94/00569, WO 94/25585, WO 96/14436, WO 97/13852, and WO 98/24884; Taylor et al. Nucleic Acids Research 20:6287-6295 (1992), Chen et al. International Immunology 5:647-656 (1993), Tuaillon et al. J. Immunol. 154:6453-6465 (1995), Choi et al. Nature Genetics 4:117-123 (1993), Lonberg et al. Nature 368:856-859 (1994), Taylor et al. International Immunology 6:579-591 (1994), Tuaillon et al. J. Immunol. 154:6453-6465 (1995), and Fishwild et al. Nature Biotech. 14:845-851 (1996).

In the microcell fusion approach, portions or whole human chromosomes can be introduced into mice (see, for example, European Patent Application No. EP 0 843 961 A1). Mice generated using this approach and containing the human Ig heavy chain locus will generally possess more than one, and potentially all, of the human constant region genes. Such mice will produce, therefore, antibodies that bind to particular antigens having a number of different constant regions.

While mice remain the most developed animal for the expression of human immunoglobulins in humans, recent technological advances have allowed for progress to begin in applying these techniques to other animals, such as cows. The general approach in mice has been to genetically modify embryonic stem cells of mice to knock-out murine immunoglobulins and then insert YACs containing human immunoglobulins into the ES cells. However, ES cells are not available for cows or other large animals such as sheep and pigs. Thus, several fundamental developments had to occur before even the possibility existed to generate large animals with immunoglobulin genes knocked-out and that express human antibody. The alternative to ES cell manipulation to create genetically modified animals is cloning using somatic cells that have been genetically modified. Cloning using genetically modified somatic cells for nuclear transfer has only recently been accomplished.

Since the announcement of Dolly's (a cloned sheep) birth from an adult somatic cell in 1997 (Wilmut, I., et al (1997) Nature 385: 810-813), ungulates, including cattle (Cibelli, J et al 1998 Science 280: 1266-1258; Kubota, C. et al. 2000 Proc. Nat'l. Acad. Sci. 97: 990-995), goats (Baguisi, A. et al., (1999) Nat. Biotechnology 17: 456-461), and pigs (Polejaeva, I. A., et al. 2000 Nature 407: 86-90; Betthauser, J. et al. 2000 Nat. Biotechnology 18: 1055-1059) have been cloned.

The next technological advance was the development of the technique to genetically modify the cells prior to nuclear transfer to produce genetically modified animals. PCT publication No. WO 00/51424 to PPL Therapeutics describes the targeted genetic modification of somatic cells for nuclear transfer.

Subsequent to these fundamental developments, single and double allele knockouts of genes and the birth of live animals with these modifications have been reported. Between 2002 and 2004, three independent groups, Immerge Biotherapeutics, Inc. in collaboration with the University of Missouri (Lai et al. (Science (2002) 295: 1089-1092) & Kolber-Simonds et al. (PNAS. (2004) 101(19):7335-40)), Alexion Pharmaceuticals (Ramsoondar et al. (Biol Reprod (2003)69: 437-445) and Revivicor, Inc. (Dai et al. (Nature Biotechnology (2002) 20: 251-255) & Phelps et al. (Science (2003) January 17; 299(5605):411-4)) produced pigs that lacked one allele or both alleles of the alpha-1,3-GT gene via nuclear transfer from somatic cells with targeted genetic deletions. In 2003, Sedai et al. (Transplantation (2003) 76:900-902) reported the targeted disruption of one allele of the alpha-1,3-GT gene in cattle, followed by the successful nuclear transfer of the nucleus of the genetically modified cell and production of transgenic fetuses.

Thus, the feasibility of knocking-out immunoglobulin genes in large animals and inserting human immunoglobulin loci into their cells is just now beginning to be explored. However, due to the complexity and species differences of immunoglobulin genes, the genomic sequences and arrangement of Ig kappa, lambda and heavy chains remain poorly understood in most species. For example, in pigs, partial genomic sequence and organization has only been described for heavy chain constant alpha, heavy chain constant mu and heavy chain constant delta (Brown and Butler Mol Immunol. 1994 June; 31(8):633-42, Butler et al Vet Immunol Immunopathol. 1994 October; 43(1-3):5-12, and Zhao et al J Immunol. 2003 Aug. 1; 171(3):1312-8).

In cows, the immunoglobulin heavy chain locus has been mapped (Zhao et al. 2003 J. Biol. Chem. 278:35024-32) and the cDNA sequence for the bovine kappa gene is known (See, for example, U.S. Patent Publication No. 2003/0037347). Further, approximately 4.6 kb of the bovine mu heavy chain locus has been sequenced and transgenic calves with decreased expression of heavy chain immunoglobulins have been created by disrupting one or both alleles of the bovine mu heavy chain. In addition, a mammalian artificial chromosome (MAC) vector containing the entire unarranged sequences of the human Ig H-chain and κ L-chain has been introduced into cows (TC cows) with the technology of microcell-mediated chromosome transfer and nuclear transfer of bovine fetal fibroblast cells (see, for example, Kuroiwa et al. 2002 Nature Biotechnology 20:889, Kuroiwa et al. 2004 Nat Genet. June 6 Epub, U.S. Patent Publication Nos. 2003/0037347, 2003/0056237, 2004/0068760 and PCT Publication No. WO 02/07648).

While significant progress has been made in the production of bovine that express human immunoglobulin, little has been accomplished in other large animals, such as sheep, goats and pigs. Although cDNA sequence information for immunoglobulin genes of sheeps, goats and pigs is readily available in Genbank, the unique nature of immunoglobulin loci, which undergo massive rearrangements, creates the need to characterize beyond sequences known to be present in mRNAs (or cDNAs). Since immunoglobulin loci are modular and the coding regions are redundant, deletion of a known coding region does not ensure altered function of the locus. For example, if one were to delete the coding region of a heavy-chain variable region, the function of the locus would not be significantly altered because hundreds of other function variable genes remain in the locus. Therefore, one must first characterize the locus to identify a potential “Achilles heel”.

Despite some advancements in expressing human antibodies in cattle, greater challenges remain for inactivation of the endogenous bovine Ig genes, increasing expression levels of the human antibodies and creating human antibody expression in other large animals, such as porcine, for which the sequence and arrangement of immunoglobulin genes are largely unknown.

It is therefore an object of the present invention to provide the arrangement of ungulate immunoglobin germline gene sequence.

It is another object of the present invention to provide novel ungulate immunoglobulin genomic sequences.

It is a further object of the present invention to provide cells, tissues and animals lacking at least one allele of a heavy and/or light chain immunoglobulin gene.

It is another object of the present invention to provide ungulates that express human immunoglobulins.

It is a still further object of the present invention to provide methods to generate cells, tissues and animals lacking at least one allele of novel ungulate immunoglobulin gene sequences and/or express human immunoglobulins.

SUMMARY OF THE INVENTION

The present invention provides for the first time ungulate immunoglobin germline gene sequence arrangement as well as novel genomic sequences thereof. In addition, novel ungulate cells, tissues and animals that lack at least one allele of a heavy or light chain immunoglobulin gene are provided. Based on this discovery, ungulates can be produced that completely lack at least one allele of a heavy and/or light chain immunoglobulin gene. In addition, these ungulates can be further modified to express xenoogenous, such as human, immunoglobulin loci or fragments thereof.

In one aspect of the present invention, a transgenic ungulate that lacks any expression of functional endogenous immunoglobulins is provided. In one embodiment, the ungulate can lack any expression of endogenous heavy and/or light chain immunoglobulins. The light chain immunoglobulin can be a kappa and/or lambda immunoglobulin. In additional embodiments, transgenic ungulates are provided that lack expression of at least one allele of an endogenous immunoglobulin wherein the immunoglobulin is selected from the group consisting of heavy chain, kappa light chain and lambda light chain or any combination thereof. In one embodiment, the expression of functional endogenous immunoglobulins can be accomplished by genetic targeting of the endogenous immunoglobulin loci to prevent expression of the endogenous immunoglobulin. In one embodiment, the genetic targeting can be accomplished via homologous recombination. In another embodiment, the transgenic ungulate can be produced via nuclear transfer.

In other embodiments, the transgenic ungulate that lacks any expression of functional endogenous immunoglobulins can be further genetically modified to express an xenogenous immunoglobulin loci. In an alternative embodiment, porcine animals are provided that contain an xenogeous immunoglobulin locus. In one embodiment, the xenogeous immunoglobulin loci can be a heavy and/or light chain immunoglobulin or fragment thereof. In another embodiment, the xenogenous immunoglobulin loci can be a kappa chain locus or fragment thereof and/or a lambda chain locus or fragment thereof. In still further embodiments, an artificial chromosome (AC) can contain the xenogenous immunoglobulin. In one embodiment, the AC can be a yeast AC or a mammalian AC. In a further embodiment, the xenogenous locus can be a human immunoglobulin locus or fragment thereof. In one embodiment, the human immunoglobulin locus can be human chromosome 14, human chromosome 2, and human chromosome 22 or fragments thereof. In another embodiment, the human immunoglobulin locus can include any fragment of a human immunoglobulin that can undergo rearrangement. In a further embodiment, the human immunoglobulin loci can include any fragment of a human immunoglobulin heavy chain and a human immunoglobulin light chain that can undergo rearrangement. In still further embodiment, the human immunoglobulin loci can include any human immunoglobulin locus or fragment thereof that can produce an antibody upon exposure to an antigen. In a particular embodiment, the exogenous human immunoglobulin can be expressed in B cells to produce xenogenous immunoglobulin in response to exposure to one or more antigens.

In another aspect of the present invention, transgenic ungulates are provided that expresses a xenogenous immunoglobulin loci or fragment thereof, wherein the immunoglobulin can be expressed from an immunoglobulin locus that is integrated within an endogenous ungulate chromosome. In one embodiment, ungulate cells derived from the transgenic animals are provided. In one embodiment, the xenogenous immunoglobulin locus can be inherited by offspring. In another embodiment, the xenogenous immunoglobulin locus can be inherited through the male germ line by offspring. In still further embodiments, an artificial chromosome (AC) can contain the xenogenous immunoglobulin. In one embodiment, the AC can be a yeast AC or a mammalian AC. In a further embodiment, the xenogenous locus can be a human immunoglobulin locus or fragment thereof. In one embodiment, the human immunoglobulin locus can be human chromosome 14, human chromosome 2, and human chromosome 22 or fragments thereof. In another embodiment, the human immunoglobulin locus can include any fragment of a human immunoglobulin that can undergo rearrangement. In a further embodiment, the human immunoglobulin loci can include any fragment of a human immunoglobulin heavy chain and a human immunoglobulin light chain that can undergo rearrangement. In still further embodiment, the human immunoglobulin loci can include any human immunoglobulin locus or fragment thereof that can produce an antibody upon exposure to an antigen. In a particular embodiment, the exogenous human immunoglobulin can be expressed in B cells to produce xenogenous immunoglobulin in response to exposure to one or more antigens.

In another aspect of the present invention, novel genomic sequences encoding the heavy chain locus of ungulate immunoglobulin are provided. In one embodiment, an isolated nucleotide sequence encoding porcine heavy chain is provided that includes at least one variable region, two diversity regions, at least four joining regions and at least one constant region, such as the mu constant region, for example, as represented in Seq ID No. 29. In another embodiment, an isolated nucleotide sequence is provided that includes at least four joining regions and at least one constant region, such as the mu constant region, of the porcine heavy chain genomic sequence, for example, as represented in Seq ID No. 4. In a further embodiment, nucleotide sequence is provided that includes 5′ flanking sequence to the first joining region of the porcine heavy chain genomic sequence, for example, as represented in Seq ID No 1. Still further, nucleotide sequence is provided that includes 3′ flanking sequence to the first joining region of the porcine heavy chain genomic sequence, for example, as represented in the 3′ region of Seq ID No 4. In further embodiments, isolated nucleotide sequences as depicted in Seq ID Nos 1, 4 or 29 are provided. Nucleic acid sequences at least 80, 85, 90, 95, 98 or 99% homologous to Seq ID Nos 1, 4 or 29 are also provided. In addition, nucleotide sequences that contain at least 10, 15, 17, 20, 25 or 30 contiguous nucleotides of Seq ID Nos 1, 4 or 29 are provided. In one embodiment, the nucleotide sequence contains at least 17, 20, 25 or 30 contiguous nucleotides of Seq ID No 4 or residues 1-9,070 of Seq ID No 29. In another embodiment, the nucleotide sequence contains residues 9,070-11039 of Seq ID No 29. Further provided are nucleotide sequences that hybridize, optionally under stringent conditions, to Seq ID Nos 1, 4 or 29, as well as, nucleotides homologous thereto.

In another embodiment, novel genomic sequences encoding the kappa light chain locus of ungulate immunoglobulin are provided. The present invention provides the first reported genomic sequence of ungulate kappa light chain regions. In one embodiment, nucleic acid sequence is provided that encodes the porcine kappa light chain locus. In another embodiment, the nucleic acid sequence can contain at least one joining region, one constant region and/or one enhancer region of kappa light chain. In a further embodiment, the nucleotide sequence can include at least five joining regions, one constant region and one enhancer region, for example, as represented in Seq ID No. 30. In a further embodiment, an isolated nucleotide sequence is provided that contains at least one, at least two, at least three, at least four or five joining regions and 3′ flanking sequence to the joining region of porcine genomic kappa light chain, for example, as represented in Seq ID No 12. In another embodiment, an isolated nucleotide sequence of porcine genomic kappa light chain is provided that contains 5′ flanking sequence to the first joining region, for example, as represented in Seq ID No 25. In a further embodiment, an isolated nucleotide sequence is provided that contains 3′ flanking sequence to the constant region and, optionally, the 5′ portion of the enhancer region, of porcine genomic kappa light chain, for example, as represented in Seq ID Nos. 15, 16 and/or 19.

In further embodiments, isolated nucleotide sequences as depicted in Seq ID Nos 30, 12, 25, 15, 16 or 19 are provided. Nucleic acid sequences at least 80, 85, 90, 95, 98 or 99% homologous to Seq ID Nos 30, 12, 25, 15, 16 or 19 are also provided. In addition, nucleotide sequences that contain at least 10, 15, 17, 20, 25 or 30 contiguous nucleotides of Seq ID Nos 30, 12, 25, 15, 16 or 19 are provided. Further provided are nucleotide sequences that hybridizes, optionally under stringent conditions, to Seq ID Nos 30, 12, 25, 15, 16 or 19, as well as, nucleotides homologous thereto.

In another embodiment, novel genomic sequences encoding the lambda light chain locus of ungulate immunoglobulin are provided. The present invention provides the first reported genomic sequence of ungulate lambda light chain regions. In one embodiment, the porcine lambda light chain nucleotides include a concatamer of J to C units. In a specific embodiment, an isolated porcine lambda nucleotide sequence is provided, such as that depicted in Seq ID No. 28. In one embodiment, a nucleotide sequence is provided that includes 5′ flanking sequence to the first lambda J/C unit of the porcine lambda light chain genomic sequence, for example, as represented by Seq ID No 32. Still further, nucleotide sequence is provided that includes 3′ flanking sequence to the J/C cluster region of the porcine lambda light chain genomic sequence, for example, approximately 200 base pairs downstream of lambda J/C, such as that represented by Seq ID No 33. Alternatively, nucleotide sequence is provided that includes 3′ flanking sequence to the J/C cluster region of the porcine lambda light chain genomic sequence, for example, as represented by Seq ID No 34, 35, 36, 37, 38, and/or 39.

In a further embodiment, nucleic acid sequences are provided that encode bovine lambda light chain locus, which can include at least one joining region-constant region pair and/or at least one variable region, for example, as represented by Seq ID No. 31. In further embodiments, isolated nucleotide sequences as depicted in Seq ID Nos 28, 31, 32, 33, 34, 35, 36, 37, 38, or 39 are provided. Nucleic acid sequences at least 80, 85, 90, 95, 98 or 99% homologous to Seq ID Nos 28, 31, 32, 33, 34, 35, 36, 37, 38, or 39 are also provided. In addition, nucleotide sequences that contain at least 10, 15, 17, 20, 25 or 30 contiguous nucleotides of Seq ID Nos 28, 31, 32, 33, 34, 35, 36, 37, 38, or 39 are provided. Further provided are nucleotide sequences that hybridizes, optionally under stringent conditions, to Seq ID Nos 28, 31, 32, 33, 34, 35, 36, 37, 38, or 39, as well as, nucleotides homologous thereto.

In another embodiment, nucleic acid targeting vector constructs are also provided. The targeting vectors can be designed to accomplish homologous recombination in cells. These targeting vectors can be transformed into mammalian cells to target the ungulate heavy chain, kappa light chain or lambda light chain genes via homologous recombination. In one embodiment, the targeting vectors can contain a 3′ recombination arm and a 5′ recombination arm (i.e. flanking sequence) that is homologous to the genomic sequence of ungulate heavy chain, kappa light chain or lambda light chain genomic sequence, for example, sequence represented by Seq ID Nos. 1, 4, 29, 30, 12, 25, 15, 16, 19, 28 or 31, as described above. The homologous DNA sequence can include at least 15 bp, 20 bp, 25 bp, 50 bp, 100 bp, 500 bp, 1 kbp, 2 kbp, 4 kbp, 5 kbp, 10 kbp, 15 kbp, 20 kbp, or 50 kbp of sequence homologous to the genomic sequence.

In one embodiment, the 5′ and 3′ recombination arms of the targeting vector can be designed such that they flank the 5′ and 3′ ends of at least one functional variable, joining, diversity, and/or constant region of the genomic sequence. The targeting of a functional region can render it inactive, which results in the inability of the cell to produce functional immunoglobulin molecules. In another embodiment, the homologous DNA sequence can include one or more intron and/or exon sequences. In addition to the nucleic acid sequences, the expression vector can contain selectable marker sequences, such as, for example, enhanced Green Fluorescent Protein (eGFP) gene sequences, initiation and/or enhancer sequences, poly A-tail sequences, and/or nucleic acid sequences that provide for the expression of the construct in prokaryotic and/or eukaryotic host cells. The selectable marker can be located between the 5′ and 3′ recombination arm sequence.

In one particular embodiment, the targeting vector can contain 5′ and 3′ recombination arms that contain homologous sequence to the 3′ and 5′ flanking sequence of the J6 region of the porcine immunoglobulin heavy chain locus. Since the J6 region is the only functional joining region of the porcine immunoglobulin heavy chain locus, this will prevent the expression of a functional porcine heavy chain immunoglobulin. In a specific embodiment, the targeting vector can contain a 5′ recombination arm that contains sequence homologous to genomic sequence 5′ of the J6 region, including J1-4, and a 3′ recombination arm that contains sequence homologous to genomic sequence 3′ of the J6 region, including the mu constant region (a “J6 targeting construct”), see for example, FIG. 1. Further, this J6 targeting construct can also contain a selectable marker gene that is located between the 5′ and 3′ recombination arms, see for example, Seq ID No 5 and FIG. 1. In other embodiments, the targeting vector can contain a 5′ recombination arm that contains sequence homologous to genomic sequence 5′ of the diversity region, and a 3′ recombination arm that contains sequence homologous to genomic sequence 3′ of the diversity region of the porcine heavy chain locus. In a further embodiment, the targeting vector can contain a 5′ recombination arm that contains sequence homologous to genomic sequence 5′ of the mu constant region and a 3′ recombination arm that contains sequence homologous to genomic sequence 3′ of the mu constant region of the porcine heavy chain locus.

In another particular embodiment, the targeting vector can contain 5′ and 3′ recombination arms that contain homologous sequence to the 3′ and 5′ flanking sequence of the constant region of the porcine immunoglobulin kappa light chain locus. Since the present invention discovered that there is only one constant region of the porcine immunoglobulin kappa light chain locus, this will prevent the expression of a functional porcine kappa light chain immunoglobulin. In a specific embodiment, the targeting vector can contain a 5′ recombination arm that contains sequence homologous to genomic sequence 5′ of the constant region, optionally including the joining region, and a 3′ recombination arm that contains sequence homologous to genomic sequence 3′ of the constant region, optionally including at least part of the enhancer region (a “Kappa constant targeting construct”), see for example, FIG. 2. Further, this kappa constant targeting construct can also contain a selectable marker gene that is located between the 5′ and 3′ recombination arms, see for example, Seq ID No 20 and FIG. 2. In other embodiments, the targeting vector can contain a 5′ recombination arm that contains sequence homologous to genomic sequence 5′ of the joining region, and a 3′ recombination arm that contains sequence homologous to genomic sequence 3′ of the joining region of the porcine kappa light chain locus.

In another particular embodiment, the targeting vector can contain 5′ and 3′ recombination arms that contain homologous sequence to the 3′ and 5′ flanking sequence of the J/C region of the porcine lambda light chain. See FIG. 3. Disruption of the J/C region will prevent the expression of a functional porcine kappa light chain immunoglobulin. In one embodiment, the targeting vector can contain a 5′ recombination arm that contains sequence homologous to genomic sequence 5′ of the first J/C unit and a 3′ recombination arm that contains sequence homologous to genomic sequence 3′ of the last J/C unit. Further, this lambda light chain targeting construct can also contain a selectable marker gene that is located between the 5′ and 3′ recombination arms, see for example FIG. 4.

In a further embodiment, more than one targeting vector can be used to target the ungulate heavy chain, kappa light chain or lambda light chain genes via homologous recombination. For example, two targeting vectors can be used to target the gene of interest. A first targeting vector can contain 5′ and 3′ recombination arms that contain homologous sequence to the 5′ flanking sequence of at least one functional variable, joining, diversity, and/or constant region of the genomic sequence. A second targeting vector can contain 5′ and 3′ recombination arms that contain homologous sequence to the 3′ flanking sequence at least one functional variable, joining, diversity, and/or constant region of the genomic sequence.

In a particular embodiment, the first targeting vector can contain 5′ and 3′ recombination arms that contain homologous sequence to the 5′ flanking sequence of the first J/C unit in the J/C cluster region. See FIG. 5. According to this embodiment, a second targeting vector can contain 5′ and 3′ recombination arms that contain homologous sequence to the 3′ flanking sequence of the last J/C unit in the J/C cluster region. See FIG. 6.

In another embodiment, primers are provided to generate 3′ and 5′ sequences of a targeting vector. The oligonucleotide primers can be capable of hybridizing to porcine immunoglobulin genomic sequence, such as Seq ID Nos. 1, 4, 29, 30, 12, 25, 15, 16, 19, 28 or 31, as described above. In a particular embodiment, the primers hybridize under stringent conditions to Seq ID Nos. 1, 4, 29, 30, 12, 25, 15, 16, 19, 28 or 31, as described above. Another embodiment provides oligonucleotide probes capable of hybridizing to porcine heavy chain, kappa light chain or lambda light chain nucleic acid sequences, such as Seq ID Nos. 1, 4, 29, 30, 12, 25, 15, 16, 19, 28 or 31, as described above. The polynucleotide primers or probes can have at least 14 bases, 20 bases, 30 bases, or 50 bases which hybridize to a polynucleotide of the present invention. The probe or primer can be at least 14 nucleotides in length, and in a particular embodiment, are at least 15, 20, 25, 28, or 30 nucleotides in length.

In one embodiment, primers are provided to amplify a fragment of porcine Ig heavy-chain that includes the functional joining region (the J6 region). In one non-limiting embodiment, the amplified fragment of heavy chain can be represented by Seq ID No 4 and the primers used to amplify this fragment can be complementary to a portion of the J-region, such as, but not limited to Seq ID No 2, to produce the 5′ recombination arm and complementary to a portion of Ig heavy-chain mu constant region, such as, but not limited to Seq ID No 3, to produce the 3′ recombination arm. In another embodiment, regions of the porcine Ig heavy chain (such as, but not limited to Seq ID No 4) can be subcloned and assembled into a targeting vector.

In other embodiments, primers are provided to amplify a fragment of porcine Ig kappa light-chain that includes the constant region. In another embodiment, primers are provided to amplify a fragment of porcine Ig kappa light-chain that includes the J region. In one non-limiting embodiment, the primers used to amplify this fragment can be complementary to a portion of the J-region, such as, but not limited to Seq ID No 21 or 10, to produce the 5′ recombination arm and complementary to genomic sequence 3′ of the constant region, such as, but not limited to Seq ID No 14, 24 or 18, to produce the 3′ recombination arm. In another embodiment, regions of the porcine Ig heavy chain (such as, but not limited to Seq ID No 20) can be subcloned and assembled into a targeting vector.

In another aspect of the present invention, ungulate cells lacking at least one allele of a functional region of an ungulate heavy chain, kappa light chain and/or lambda light chain locus produced according to the process, sequences and/or constructs described herein are provided. These cells can be obtained as a result of homologous recombination. Particularly, by inactivating at least one allele of an ungulate heavy chain, kappa light chain or lambda light chain gene, cells can be produced which have reduced capability for expression of ungulate antibodies. In other embodiments, mammalian cells lacking both alleles of an ungulate heavy chain, kappa light chain and/or lambda light chain gene can be produced according to the process, sequences and/or constructs described herein. In a further embodiment, porcine animals are provided in which at least one allele of an ungulate heavy chain, kappa light chain and/or lambda light chain gene is inactivated via a genetic targeting event produced according to the process, sequences and/or constructs described herein. In another aspect of the present invention, porcine animals are provided in which both alleles of an ungulate heavy chain, kappa light chain and/or lambda light chain gene are inactivated via a genetic targeting event. The gene can be targeted via homologous recombination.

In other embodiments, the gene can be disrupted, i.e. a portion of the genetic code can be altered, thereby affecting transcription and/or translation of that segment of the gene. For example, disruption of a gene can occur through substitution, deletion (“knock-out”) or insertion (“knock-in”) techniques. Additional genes for a desired protein or regulatory sequence that modulate transcription of an existing sequence can be inserted. To achieve multiple genetic modifications of ungulate immunoglobulin genes, in one embodiment, cells can be modified sequentially to contain multiple genetic modifications. In other embodiments, animals can be bred together to produce animals that contain multiple genetic modifications of immunoglobulin genes. As an illustrative example, animals that lack expression of at least one allele of an ungulate heavy chain gene can be further genetically modified or bred with animals lacking at least one allele of a kappa light chain gene.

In embodiments of the present invention, alleles of ungulate heavy chain, kappa light chain or lambda light chain gene are rendered inactive according to the process, sequences and/or constructs described herein, such that functional ungulate immunoglobulins can no longer be produced. In one embodiment, the targeted immunoglobulin gene can be transcribed into RNA, but not translated into protein. In another embodiment, the targeted immunoglobulin gene can be transcribed in an inactive truncated form. Such a truncated RNA may either not be translated or can be translated into a nonfunctional protein. In an alternative embodiment, the targeted immunoglobulin gene can be inactivated in such a way that no transcription of the gene occurs. In a further embodiment, the targeted immunoglobulin gene can be transcribed and then translated into a nonfunctional protein.

In a further aspect of the present invention, ungulate, such as porcine or bovine, cells lacking one allele, optionally both alleles of an ungulate heavy chain, kappa light chain and/or lambda light chain gene can be used as donor cells for nuclear transfer into recipient cells to produce cloned, transgenic animals. Alternatively, ungulate heavy chain, kappa light chain and/or lambda light chain gene knockouts can be created in embryonic stem cells, which are then used to produce offspring. Offspring lacking a single allele of a functional ungulate heavy chain, kappa light chain and/or lambda light chain gene produced according to the process, sequences and/or constructs described herein can be breed to further produce offspring lacking functionality in both alleles through mendelian type inheritance.

In one aspect of the present invention, a method is provided to disrupt the expression of an ungulate immunoglobulin gene by (i) analyzing the germline configuration of the ungulate heavy chain, kappa light chain or lambda light chain genomic locus; (ii) determining the location of nucleotide sequences that flank the 5′ end and the 3′ end of at least one functional region of the locus; and (iii) transfecting a targeting construct containing the flanking sequence into a cell wherein, upon successful homologous recombination, at least one functional region of the immunoglobulin locus is disrupted thereby reducing or preventing the expression of the immunoglobulin gene. In one embodiment, the germline configuration of the porcine heavy chain locus is provided. The porcine heavy chain locus contains at least four variable regions, two diversity regions, six joining regions and five constant regions, for example, as illustrated in FIG. 1. In a specific embodiment, only one of the six joining regions, J6, is functional. In another embodiment, the germline configuration of the porcine kappa light chain locus is provided. The porcine kappa light chain locus contains at least six variable regions, six joining regions, one constant region and one enhancer region, for example, as illustrated in FIG. 2. In a further embodiment, the germline configuration of the porcine lambda light chain locus is provided. The porcine lambda light chain locus contains a variable region and the J/C region. See FIG. 3.

In a further aspect of the present invention, a method is provided to disrupt the expression of an ungulate lambda light chain locus by (i) analyzing the germline configuration of the ungulate lambda light chain genomic locus; (ii) determining the location of nucleotide sequences that flank the 5′ end of at least one functional region of the locus; (ii) constructing a 5′ targeting construct; (iv) determining the location of nucleotide sequences that flank the 3′ end of at least one functional region of the locus; (v) constructing a 3′ targeting construct; (vi) transfecting both the 5′ and the 3′ targeting constructs into a cell wherein, upon successful homologous recombination of each targeting construct, at least one functional region of the immunoglobulin locus is disrupted thereby reducing or preventing the expression of the immunoglobulin gene. See FIGS. 5 and 6.

In one embodiment, the germline configuration of the porcine lambda light chain locus is provided. The porcine lambda light chain locus contains a variable region and a J/C region. See FIG. 3.

In further aspects of the present invention provides ungulates and ungulate cells that lack at least one allele of a functional region of an ungulate heavy chain, kappa light chain and/or lambda light chain locus produced according to the processes, sequences and/or constructs described herein, which are further modified to express at least part of a human antibody (i.e. immunoglobulin (Ig)) locus. In additional embodiments, porcine animals are provided that express xenogenous immunoglobulin. This human locus can undergo rearrangement and express a diverse population of human antibody molecules in the ungulate. These cloned, transgenic ungulates provide a replenishable, theoretically infinite supply of human antibodies (such as polyclonal antibodies), which can be used for therapeutic, diagnostic, purification, and other clinically relevant purposes. In one particular embodiment, artificial chromosomes (ACs), such as yeast or mammalian artificial chromosomes (YACS or MACS) can be used to allow expression of human immunoglobulin genes into ungulate cells and animals. All or part of human immunoglobulin genes, such as the Ig heavy chain gene (human chromosome 414), Ig kappa chain gene (human chromosome #2) and/or the Ig lambda chain gene (chromosome #22) can be inserted into the artificial chromosomes, which can then be inserted into ungulate cells. In further embodiments, ungulates and ungulate cells are provided that contain either part or all of at least one human antibody gene locus, which undergoes rearrangement and expresses a diverse population of human antibody molecules.

In additional embodiments, methods of producing xenogenous antibodies are provided, wherein the method can include: (a) administering one or more antigens of interest to an ungulate whose cells comprise one or more artificial chromosomes and lack any expression of functional endogenous immunoglobulin, each artificial chromosome comprising one or more xenogenous immunoglobulin loci that undergo rearrangement, resulting in production of xenogenous antibodies against the one or more antigens; and/or (b) recovering the xenogenous antibodies from the ungulate. In one embodiment, the immunoglobulin loci can undergo rearrangement in a B cell.

In one aspect of the present invention, an ungulate, such as a pig or a cow, can be prepared by a method in accordance with any aspect of the present invention. These cloned, transgenic ungulates (e.g., porcine and bovine animals) provide a replenishable, theoretically infinite supply of human polyclonal antibodies, which can be used as therapeutics, diagnostics and for purification purposes. For example, transgenic animals produced according to the process, sequences and/or constructs described herein that produce polyclonal human antibodies in the bloodstream can be used to produce an array of different antibodies which are specific to a desired antigen. The availability of large quantities of polyclonal antibodies can also be used for treatment and prophylaxis of infectious disease, vaccination against biological warfare agents, modulation of the immune system, removal of undesired human cells such as cancer cells, and modulation of specific human molecules.

In other embodiments, animals or cells lacking expression of functional immunoglobulin, produced according to the process, sequences and/or constructs described herein, can contain additional genetic modifications to eliminate the expression of xenoantigens. Such animals can be modified to eliminate the expression of at least one allele of the alpha-1,3-galactosyltransferase gene, the CMP-Neu5Ac hydroxylase gene (see, for example, U.S. Ser. No. 10/863,116), the iGb3 synthase gene (see, for example, U.S. Patent Application 60/517,524), and/or the Forssman synthase gene (see, for example, U.S. Patent Application 60/568,922). In additional embodiments, the animals discloses herein can also contain genetic modifications to express fucosyltransferase and/or sialyltransferase. To achieve these additional genetic modifications, in one embodiment, cells can be modified to contain multiple genetic modifications. In other embodiments, animals can be bred together to achieve multiple genetic modifications. In one specific embodiment, animals, such as pigs, lacking expression of functional immunoglobulin, produced according to the process, sequences and/or constructs described herein, can be bred with animals, such as pigs, lacking expression of alpha-1,3-galactosyl transferase (for example, as described in WO 04/028243).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates the design of a targeting vector that disrupts the expression of the joining region of the porcine heavy chain immunoglobulin gene.

FIG. 2 illustrates the design of a targeting vector that disrupts the expression of the constant region of the porcine kappa light chain immunoglobulin gene.

FIG. 3 illustrates the genomic organization of the porcine lambda immunoglobulin locus, including a concatamer of J-C sequences or units as well as flanking regions that include the variable region 5′ to the JC cluster region. Bacterial artificial chromosomes (BAC1 and BAC2) represent fragments of the porcine immunoglobulin genome that can be obtained from BAC libraries.

FIG. 4 represents the design of a targeting vector that disrupts the expression of the JC cluster region of the porcine lambda light chain immunoglobulin gene. “SM” stands for a selectable marker gene, which can be used in the targeting vector.

FIG. 5 illustrates a targeting strategy to insert a site specific recombinase target or recognition site into the region 5′ of the JC cluster region of the porcine lambda immunoglobulin locus. “SM” stands for a selectable marker gene, which can be used in the targeting vector. “SSRRS” stands for a specific recombinase target or recognition site.

FIG. 6 illustrates a targeting strategy to insert a site specific recombinase target or recognition site into the region 3′ of the JC cluster region of the porcine lambda immunoglobulin locus. “SM” stands for a selectable marker gene, which can be used in the targeting vector. “SSRRS” stands for a specific recombinase target or recognition site.

FIG. 7 illustrates the site specific recombinase mediated transfer of a YAC into a host genome. “SSRRS” stands for a specific recombinase target or recognition site.

DETAILED DESCRIPTION

The present invention provides for the first time ungulate immunoglobin germline gene sequence arrangement as well as novel genomic sequences thereof. In addition, novel ungulate cells, tissues and animals that lack at least one allele of a heavy or light chain immunoglobulin gene are provided. Based on this discovery, ungulates can be produced that completely lack at least one allele of a heavy and/or light chain immunoglobulin gene. In addition, these ungulates can be further modified to express xenoogenous, such as human, immunoglobulin loci or fragments thereof.

In one aspect of the present invention, a transgenic ungulate that lacks any expression of functional endogenous immunoglobulins is provided. In one embodiment, the ungulate can lack any expression of endogenous heavy and/or light chain immunoglobulins. The light chain immunoglobulin can be a kappa and/or lambda immunoglobulin. In additional embodiments, transgenic ungulates are provided that lack expression of at least one allele of an endogenous immunoglobulin wherein the immunoglobulin is selected from the group consisting of heavy chain, kappa light chain and lambda light chain or any combination thereof. In one embodiment, the expression of functional endogenous immunoglobulins can be accomplished by genetic targeting of the endogenous immunoglobulin loci to prevent expression of the endogenous immunoglobulin. In one embodiment, the genetic targeting can be accomplished via homologous recombination. In another embodiment, the transgenic ungulate can be produced via nuclear transfer.

In other embodiments, the transgenic ungulate that lacks any expression of functional endogenous immunoglobulins can be further genetically modified to express an xenogenous immunoglobulin loci. In an alternative embodiment, porcine animals are provided that contain an xenogeous immunoglobulin locus. In one embodiment, the xenogeous immunoglobulin loci can be a heavy and/or light chain immunoglobulin or fragment thereof. In another embodiment, the xenogenous immunoglobulin loci can be a kappa chain locus or fragment thereof and/or a lambda chain locus or fragment thereof. In still further embodiments, an artificial chromosome (AC) can contain the xenogenous immunoglobulin. In one embodiment, the AC can be a yeast AC or a mammalian AC. In a further embodiment, the xenogenous locus can be a human immunoglobulin locus or fragment thereof. In one embodiment, the human immunoglobulin locus can be human chromosome 14, human chromosome 2, and human chromosome 22 or fragments thereof. In another embodiment, the human immunoglobulin locus can include any fragment of a human immunoglobulin that can undergo rearrangement. In a further embodiment, the human immunoglobulin loci can include any fragment of a human immunoglobulin heavy chain and a human immunoglobulin light chain that can undergo rearrangement. In still further embodiment, the human immunoglobulin loci can include any human immunoglobulin locus or fragment thereof that can produce an antibody upon exposure to an antigen. In a particular embodiment, the exogenous human immunoglobulin can be expressed in B cells to produce xenogenous immunoglobulin in response to exposure to one or more antigens.

In another aspect of the present invention, transgenic ungulates are provided that expresses a xenogenous immunoglobulin loci or fragment thereof, wherein the immunoglobulin can be expressed from an immunoglobulin locus that is integrated within an endogenous ungulate chromosome. In one embodiment, ungulate cells derived from the transgenic animals are provided. In one embodiment, the xenogenous immunoglobulin locus can be inherited by offspring. In another embodiment, the xenogenous immunoglobulin locus can be inherited through the male germ line by offspring. In still further embodiments, an artificial chromosome (AC) can contain the xenogenous immunoglobulin. In one embodiment, the AC can be a yeast AC or a mammalian AC. In a further embodiment, the xenogenous locus can be a human immunoglobulin locus or fragment thereof. In one embodiment, the human immunoglobulin locus can be human chromosome 14, human chromosome 2, and human chromosome 22 or fragments thereof. In another embodiment, the human immunoglobulin locus can include any fragment of a human immunoglobulin that can undergo rearrangement. In a further embodiment, the human immunoglobulin loci can include any fragment of a human immunoglobulin heavy chain and a human immunoglobulin light chain that can undergo rearrangement. In still further embodiment, the human immunoglobulin loci can include any human immunoglobulin locus or fragment thereof that can produce an antibody upon exposure to an antigen. In a particular embodiment, the exogenous human immunoglobulin can be expressed in B cells to produce xenogenous immunoglobulin in response to exposure to one or more antigens.

Definitions

The terms “recombinant DNA technology,” “DNA cloning,” “molecular cloning,” or “gene cloning” refer to the process of transferring a DNA sequence into a cell or organism. The transfer of a DNA fragment can be from one organism to a self-replicating genetic element (e.g., bacterial plasmid) that permits a copy of any specific part of a DNA (or RNA) sequence to be selected among many others and produced in an unlimited amount. Plasmids and other types of cloning vectors such as artificial chromosomes can be used to copy genes and other pieces of chromosomes to generate enough identical material for further study. In addition to bacterial plasmids, which can carry up to 20 kb of foreign DNA, other cloning vectors include viruses, cosmids, and artificial chromosomes (e.g., bacteria artificial chromosomes (BACs) or yeast artificial chromosomes (YACs)). When the fragment of chromosomal DNA is ultimately joined with its cloning vector in the lab, it is called a “recombinant DNA molecule.” Shortly after the recombinant plasmid is introduced into suitable host cells, the newly inserted segment will be reproduced along with the host cell DNA.

“Cosmids” are artificially constructed cloning vectors that carry up to 45 kb of foreign DNA. They can be packaged in lambda phage particles for infection into E. coli cells.

As used herein, the term “mammal” (as in “genetically modified (or altered) mammal”) is meant to include any non-human mammal, including but not limited to pigs, sheep, goats, cattle (bovine), deer, mules, horses, monkeys, dogs, cats, rats, mice, birds, chickens, reptiles, fish, and insects. In one embodiment of the invention, genetically altered pigs and methods of production thereof are provided.

The term “ungulate” refers to hoofed mammals. Artiodactyls are even-toed (cloven-hooved) ungulates, including antelopes, camels, cows, deer, goats, pigs, and sheep. Perissodactyls are odd toes ungulates, which include horses, zebras, rhinoceroses, and tapirs. The term ungulate as used herein refers to an adult, embryonic or fetal ungulate animal.

As used herein, the terms “porcine”, “porcine animal”, “pig” and “swine” are generic terms referring to the same type of animal without regard to gender, size, or breed.

A “homologous DNA sequence or homologous DNA” is a DNA sequence that is at least about 80%, 85%, 90%, 95%, 98% or 99% identical with a reference DNA sequence. A homologous sequence hybridizes under stringent conditions to the target sequence, stringent hybridization conditions include those that will allow hybridization occur if there is at least 85, at least 95% or 98% identity between the sequences.

An “isogenic or substantially isogenic DNA sequence” is a DNA sequence that is identical to or nearly identical to a reference DNA sequence. The term “substantially isogenic” refers to DNA that is at least about 97-99% identical with the reference DNA sequence, or at least about 99.5-99.9% identical with the reference DNA sequence, and in certain uses 100% identical with the reference DNA sequence.

“Homologous recombination” refers to the process of DNA recombination based on sequence homology.

“Gene targeting” refers to homologous recombination between two DNA sequences, one of which is located on a chromosome and the other of which is not.

“Non-homologous or random integration” refers to any process by which DNA is integrated into the genome that does not involve homologous recombination.

A “selectable marker gene” is a gene, the expression of which allows cells containing the gene to be identified. A selectable marker can be one that allows a cell to proliferate on a medium that prevents or slows the growth of cells without the gene. Examples include antibiotic resistance genes and genes which allow an organism to grow on a selected metabolite. Alternatively, the gene can facilitate visual screening of transformants by conferring on cells a phenotype that is easily identified. Such an identifiable phenotype can be, for example, the production of luminescence or the production of a colored compound, or the production of a detectable change in the medium surrounding the cell.

The term “contiguous” is used herein in its standard meaning, i.e., without interruption, or uninterrupted.

“Stringent conditions” refers to conditions that (1) employ low ionic strength and high temperature for washing, for example, 0.015 M NaCl/0.0015 M sodium citrate/0.1% SDS at 50° C., or (2) employ during hybridization a denaturing agent such as, for example, formamide. One skilled in the art can determine and vary the stringency conditions appropriately to obtain a clear and detectable hybridization signal. For example, stringency can generally be reduced by increasing the salt content present during hybridization and washing, reducing the temperature, or a combination thereof. See, for example, Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbour Laboratory Press, Cold Spring Harbour, N.Y., (1989).

I. Immunoglobulin Genes

In one aspect of the present invention, a transgenic ungulate that lacks any expression of functional endogenous immunoglobulins is provided. In one embodiment, the ungulate can lack any expression of endogenous heavy and/or light chain immunoglobulins. The light chain immunoglobulin can be a kappa and/or lambda immunoglobulin. In additional embodiments, transgenic ungulates are provided that lack expression of at least one allele of an endogenous immunoglobulin wherein the immunoglobulin is selected from the group consisting of heavy chain, kappa light chain and lambda light chain or any combination thereof. In one embodiment, the expression of functional endogenous immunoglobulins can be accomplished by genetic targeting of the endogenous immunoglobulin loci to prevent expression of the endogenous immunoglobulin. In one embodiment, the genetic targeting can be accomplished via homologous recombination. In another embodiment, the transgenic ungulate can be produced via nuclear transfer.

In another aspect of the present invention, a method is provided to disrupt the expression of an ungulate immunoglobulin gene by (i) analyzing the germline configuration of the ungulate heavy chain, kappa light chain or lambda light chain genomic locus; (ii) determining the location of nucleotide sequences that flank the 5′ end and the 3′ end of at least one functional region of the locus; and (iii) transfecting a targeting construct containing the flanking sequence into a cell wherein, upon successful homologous recombination, at least one functional region of the immunoglobulin locus is disrupted thereby reducing or preventing the expression of the immunoglobulin gene.

In one embodiment, the germline configuration of the porcine heavy chain locus is provided. The porcine heavy chain locus contains at least four variable regions, two diversity regions, six joining regions and five constant regions, for example, as illustrated in FIG. 1. In a specific embodiment, only one of the six joining regions, J6, is functional.

In another embodiment, the germline configuration of the porcine kappa light chain locus is provided. The porcine kappa light chain locus contains at least six variable regions, six joining regions, one constant region and one enhancer region, for example, as illustrated in FIG. 2.

In a further embodiment, the germline configuration of the porcine lambda light chain locus is provided.

Isolated nucleotide sequences as depicted in Seq ID Nos 1-39 are provided. Nucleic acid sequences at least 80, 85, 90, 95, 98 or 99% homologous to any one of Seq ID Nos 1-39 are also provided. In addition, nucleotide sequences that contain at least 10, 15, 17, 20, 25 or 30 contiguous nucleotides of any one of Seq ID Nos 1-39 are provided. Further provided are nucleotide sequences that hybridize, optionally under stringent conditions, to Seq ID Nos 1-39, as well as, nucleotides homologous thereto.

Homology or identity at the nucleotide or amino acid sequence level can be determined by BLAST (Basic Local Alignment Search Tool) analysis using the algorithm employed by the programs blastp, blastn, blastx, tblastn and tblastx (see, for example, Altschul, S. F. et al (1997) Nucleic Acids Res 25:3389-3402 and Karlin et al, (1900) Proc. Natl. Acad. Sci. USA 87, 2264-2268) which are tailored for sequence similarity searching. The approach used by the BLAST program is to first consider similar segments, with and without gaps, between a query sequence and a database sequence, then to evaluate the statistical significance of all matches that are identified and finally to summarize only those matches which satisfy a preselected threshold of significance. See, for example, Altschul et al., (1994) (Nature Genetics 6, 119-129). The search parameters for histogram, descriptions, alignments, expect (i.e., the statistical significance threshold for reporting matches against database sequences), cutoff, matrix and filter (low co M'plexity) are at the default settings. The default scoring matrix used by blastp, blastx, tblastn, and tblastx is the BLOSUM62 matrix (Henikoff et al., (1992) Proc. Natl. Acad. Sci. USA 89, 10915-10919), which is recommended for query sequences over 85 in length (nucleotide bases or amino acids).

Porcine Heavy Chain

In another aspect of the present invention, novel genomic sequences encoding the heavy chain locus of ungulate immunoglobulin are provided. In one embodiment, an isolated nucleotide sequence encoding porcine heavy chain is provided that includes at least one variable region, two diversity regions, at least four joining regions and at least one constant region, such as the mu constant region, for example, as represented in Seq ID No. 29. In another embodiment, an isolated nucleotide sequence is provided that includes at least four joining regions and at least one constant region, such as the mu constant region, of the porcine heavy chain genomic sequence, for example, as represented in Seq ID No. 4. In a further embodiment, nucleotide sequence is provided that includes 5′ flanking sequence to the first joining region of the porcine heavy chain genomic sequence, for example, as represented in Seq ID No 1. Still further, nucleotide sequence is provided that includes 3′ flanking sequence to the first joining region of the porcine heavy chain genomic sequence, for example, as represented in the 3′ region of Seq ID No 4. In further embodiments, isolated nucleotide sequences as depicted in Seq ID Nos 1, 4 or 29 are provided. Nucleic acid sequences at least 80, 85, 90, 95, 98 or 99% homologous to Seq ID Nos 1, 4 or 29 are also provided. Further provided are nucleotide sequences that hybridize, optionally under stringent conditions, to Seq ID Nos 1, 4 or 29, as well as, nucleotides homologous thereto.

In addition, nucleotide sequences that contain at least 10, 15, 17, 20, 25 or 30 contiguous nucleotides of Seq ID Nos 1, 4 or 29 are provided. In one embodiment, the nucleotide sequence contains at least 17, 20, 25 or 30 contiguous nucleotides of Seq ID No 4 or residues 1-9,070 of Seq ID No 29. In other embodiments, nucleotide sequences that contain at least 50, 100, 1,000, 2,500, 4,000, 4,500, 5,000, 7,000, 8,000, 8,500, 9,000, 10,000 or 15,000 contiguous nucleotides of Seq ID No. 29 are provided. In another embodiment, the nucleotide sequence contains residues 9,070-11039 of Seq ID No 29.

In further embodiments, isolated nucleotide sequences as depicted in Seq ID Nos 1, 4 or 29 are provided. Nucleic acid sequences at least 80, 85, 90, 95, 98 or 99% homologous to Seq ID Nos 1, 4 or 29 are also provided. In addition, nucleotide sequences that contain at least 10, 15, 17, 20, 25 or 30 contiguous nucleotides of Seq ID Nos 1, 4 or 29 are provided. Further provided are nucleotide sequences that hybridize, optionally under stringent conditions, to Seq ID Nos 1, 4 or 29, as well as, nucleotides homologous thereto.

In one embodiment, an isolated nucleotide sequence encoding porcine heavy chain is provided that includes at least one variable region, two diversity regions, at least four joining regions and at least one constant region, such as the mu constant region, for example, as represented in Seq ID No. 29. In Seq ID No. 29, the Diversity region of heavy chain is represented, for example, by residues 1089-1099 (D(pseudo)), the Joining region of heavy chain is represented, for example, by residues 1887-3352 (for example: J(psuedo): 1887-1931, J(psuedo): 2364-2411, J(psuedo): 2756-2804, J (functional J): 3296-3352), the recombination signals are represented, for example, by residues 3001-3261 (Nonamer), 3292-3298 (Heptamer), the Constant Region is represented by the following residues: 3353-9070 (J to C mu intron), 5522-8700 (Switch region), 9071-9388 (Mu Exon 1), 9389-9469 (Mu Intron A), 9470-9802 (Mu Exon 2), 9830-10069 (Mu Intron B), 10070-10387 (Mu Exon 3), 10388-10517 (Mu Intron C), 10815-11052 (Mu Exon 4), 11034-11039 (Poly(A) signal).

Seq ID No. 29

tctagaagacgctggagagaggccagacttcctcgga

acagctcaaagagctctgtcaaagccagatcccatca

cacgtgggcaccaataggccatgccagcctccaaggg

ccgaactgggttctccacggcgcacatgaagcctgca

gcctggcttatcctcttccgtggtgaagaggcaggcc

cgggactggacgaggggctagcagggtgtggtaggca

ccttgcgccccccaccccggcaggaaccagagaccct

ggggctgagagtgagcctccaaacaggatgccccacc

cttcaggccacctttcaatccagctacactccacctg

ccattctcctctgggcacagggcccagcccctggatc

ttggccttggctcgacttgcacccacgcgcacacaca

cacttcctaacgtgctgtccgctcacccctccccagc

gtggtccatgggcagcacggcagtgcgcgtccggcgg

tagtgagtgcagaggtcccttcccctcccccaggagc

cccaggggtgtgtgcagatctgggggctcctgtccct

tacaccttcatgcccctcccctcatacccaccctcca

ggcgggaggcagcgagacctttgcccagggactcagc

caacgggcacacgggaggccagccctcagcagctggc

tcccaaagaggaggtgggaggtaggtccacagctgcc

acagagagaaaccctgacggaccccacaggggccacg

ccagccggaaccagctccctcgtgggtgagcaatggc

cagggccccgccggccaccacggctggccttgcgcca

gctgagaactcacgtccagtgcagggagactcaagac

agcctgtgcacacagcctcggatctgctcccatttca

agcagaaaaaggaaaccgtgcaggcagccctcagcat

ttcaaggattgtagcagcggccaactattcgtcggca

gtggccgattagaatgaccgtggagaagggcggaagg

gtctctcgtgggctctgcggccaacaggccctggctc

cacctgcccgctgccagcccgaggggcttgggccgag

ccaggaaccacagtgctcaccgggaccacagtgactg

accaaactcccggccagagcagccccaggccagccgg

gctctcgccctggaggactcaccatcagatgcacaag

ggggcgagtgtggaagagacgtgtcgcccgggccatt

tgggaaggcgaagggaccttccaggtggacaggaggt

gggacgcactccaggcaagggactgggtccccaaggc

ctggggaaggggtactggcttgggggttagcctggcc

agggaacggggagcggggcggggggctgagcagggag

gacctgacctcgtgggagcgaggcaagtcaggcttca

ggcagcagccgcacatcccagaccaggaggctgaggc

aggaggggcttgcagcggggcgggggcctgcctggct

ccgggggctcctgggggacgctggctcttgtttccgt

gtcccgcagcacagggccagctcgctgggcctatgct

taccttgatgtctggggccggggcgtcagggtcgtcg

tctcctcaggggagagtcccctgaggctacgctgggg

*ggggactatggcagctccaccaggggcctggggacc

aggggcctggaccaggctgcagcccggaggacgggca

gggctctggctctccagcatctggccctcggaaatgg

cagaacccctggcgggtgagcgagctgagagcgggtc

agacagacaggggccggccggaaaggagaagttgggg

gcagagcccgccaggggccaggcccaaggttctgtgt

gccagggcctgggtgggcacattggtgtggccatggc

tacttagattcgtggggccagggcatcctggtcaccg

tctcctcaggtgagcctggtgtctgatgtccagctag

gcgctggtgggccgcgggtgggcctgtctcaggctag

ggcaggggctgggatgtgtatttgtcaaggaggggca

acagggtgcagactgtgcccctggaaacttgaccact

ggggcaggggcgtcctggtcacgtctcctcaggtaag

acggccctgtgcccctctctcgcgggactggaaaagg

aattttccaagattccttggtctgtgtggggccctct

ggggcccccgggggtggctcccctcctgcccagatgg

ggcctcggcctgtggagcacgggctgggcacacagct

cgagtctagggccacagaggcccgggctcagggctct

gtgtggcccggcgactggcagggggctcgggtttttg

gacaccccctaatgggggccacagcactgtgaccatc

ttcacagctggggccgaggagtcgaggtcaccgtctc

ctcaggtgagtcctcgtcagccctctctcactctctg

gggggttttgctgcattttgtgggggaaagaggatgc

ctgggtctcaggtctaaaggtctagggccagcgccgg

ggcccaggaaggggccgaggggccaggctcggctcgg

ccaggagcagagcttccagacatctcgcctcctggcg

gctgcagtcaggcctttggccgggggggtctcagcac

caccaggcctcttggctcccgaggtccccggccccgg

ctgcctcaccaggcaccgtgcgcggtgggcccgggct

cttggtcggccaccctttcttaactgggatccgggct

tagttgtcgcaatgtgacaacgggctcgaaagctggg

gccaggggaccctagtctacgacgcctcgggtgggtg

tcccgcacccctccccactttcacggcactcggcgag

acctggggagtcaggtgttggggacactttggaggtc

aggaacgggagctggggagagggctctgtcagcgggg

tccagagatgggccgccctccaaggacgccctgcgcg

gggacaagggcttcttggcctggcctggccgcttcac

ttgggcgtcagggggggcttcccggggcaggcggtca

gtcgaggcgggttggaattctgagtctgggttcgggg

ttcggggttcggccttcatgaacagacagcccaggcg

ggccgttgtttggcccctgggggcctggttggaatgc

gaggtctcgggaagtcaggagggagcctggccagcag

agggttcccagccctgcggccgagggacctggagacg

ggcagggcattggccgtcgcagggccaggccacaccc

cccaGGTTTTTGTggggcgagcctggagattgcacCA

CTGTGATTACTATGCTATGGATCTCTGGGGCCCAGGC

GTTGAAGTCGTCGTGTCCTCAGgtaagaacggccctc

cagggcctttaatttctgctctcgtctgtgggctttt

ctgactctgatcctcgggaggcgtctgtgcccccccc

ggggatgaggccggcttgccaggaggggtcagggacc

aggagcctgtgggaagttctgacgggggctgcaggcg

ggaagggccccaccggggggcgagccccaggccgctg

ggcggcaggagacccgtgagagtgcgccttgaggagg

gtgtctgcggaaccacgaacgcccgccgggaagggct

tgctgcaatgcggtcttcagacgggaggcgtcttctg

ccctcaccgtctttcaagcccttgtgggtctgaaaga

gccatgtcggagagagaagggacaggcctgtcccgac

ctggccgagagcgggcagccccgggggagagcggggc

gatcggcctgggctctgtgaggccaggtccaagggag

gacgtgtggtcctcgtgacaggtgcacttgcgaaacc

ttagaagacggggtatgttggaagcggctcctgatgt

ttaagaaaagggagactgtaaagtgagcagagtcctc

aagtgtgttaaggttttaaaggtcaaagtgttttaaa

cctttgtgactgcagttagcaagcgtgcggggagtga

atggggtgccagggtggccgagaggcagtacgagggc

cgtgccgtcctctaattcagggcttagttttgcagaa

taaagtcggcctgttttctaaaagcattggtggtgct

gagctggtggaggaggccgcgggcagccctggccacc

tgcagcaggtggcaggaagcaggtcggccaagaggct

attttaggaagccagaaaacacggtcgatgaatttat

agcttctggtttccaggaggtggttgggcatggcttt

gcgcagcgccacagaaccgaaagtgcccactgagaaa

aaacaactcctgcttaatttgcatttttctaaaagaa

gaaacagaggctgacggaaactggaaagttcctgttt

taactactcgaattgagttttcggtcttagcttatca

actgctcacttagattcattttcaaagtaaacgttta

agagccgaggcattcctatcctcttctaaggcgttat

tcctggaggctcattcaccgccagcacctccgctgcc

tgcaggcattgctgtcaccgtcaccgtgacggcgcgc

acgattttcagttggcccgcttcccctcgtgattagg

acagacgcgggcactctggcccagccgtcttggctca

gtatctgcaggcgtccgtctcgggacggagctcaggg

gaagagcgtgactccagttgaacgtgatagtcggtgc

gttgagaggagacccagtcgggtgtcgagtcagaagg

ggcccggggcccgaggccctgggcaggacggcccgtg

ccctgcatcacgggcccagcgtcctagaggcaggact

ctggtggagagtgtgagggtgcctggggcccctccgg

agctggggccgtgcggtgcaggttgggctctcggcgc

ggtgttggctgtttctgcgggatttggaggaattctt

ccagtgatgggagtcgccagtgaccgggcaccaggct

ggtaagagggaggccgccgtcgtggccagagcagctg

ggagggttcggtaaaaggctcgcccgtttcctttaat

gaggacttttcctggagggcatttagtctagtcggga

ccgttttcgactcgggaagagggatgcggaggagggc

atgtgcccaggagccgaaggcgccgcggggagaagcc

cagggctctcctgtccccacagaggcgacgccactgc

cgcagacagacagggcctttccctctgatgacggcaa

aggcgcctcggctcttgcggggtgctgggggggagtc

gccccgaagccgctcacccagaggcctgaggggtgag

actgaccgatgcctcttggccgggcctggggccggac

cgagggggactccgtggaggcagggcgatggtggctg

cgggagggaaccgaccctgggccgagcccggcttggc

gattcccgggcgagggccctcagccgaggcgagtggg

tccggcggaaccaccctttctggccagcgccacaggg

ctctcgggactgtccggggcgacgctgggctgcccgt

ggcaggccTGGGCTGACCTGGACTTCACGAGACAGAA

CAGGGCTTTCAGGGCTGAGCTGAGCCAGGTTTAGCGA

GGCCAAGTGGGGCTGAACCAGGCTCAACTGGCCTGAG

CTGGGTTGAGCTGGGCTGACCTGGGCTGAGCTGAGCT

GGGCTGGGCTGGGCTGGGCTGGGCTGGGCTGGGCTGG

ACTGGCTGAGCTGAGCTGGGTTGAGCTGAGCTGAGCT

GGCCTGGGTTGAGCTGGGCTGGGTTGAGCTGAGCTGG

GTTGAGCTGGGTTGAGCTGGGTTGATCTGAGCTGAGC

TGGGCTGAGCTGAGCTAGGCTGGGGTGAGCTGGGCTG

AGCTGGTTTGAGTTGGGTTGAGCTGAGCTGAGCTGGG

CTGTGCTGGCTGAGCTAGGCTGAGCTAGGCTAGGTTG

AGCTGGGCTGGGCTGAGCTGAGCTAGGCTGGGCTGAT

TTGGGCTGAGCTGAGCTGAGCTAGGCTGCGTTGAGCT

GGCTGGGCTGGATTGAGCTGGCTGAGCTGGCTGAGCT

GGGCTGAGCTGGCCTGGGTTGAGCTGAGCTGGACTGG

TTTGAGCTGGGTCGATCTGGGTTGAGCTGTCCTGGGT

TGAGCTGGGCTGGGTTGAGCTGAGCTGGGTTGAGCTG

GGCTCAGCAGAGCTGGGTTGGGCTGAGCTGGGTTGAG

CTGAGCTGGGCTGAGCTGGCCTGGGTTGAGCTGGGCT

GAGCTGAGCTGGGCTGAGCTGGCCTGTGTTGAGCTGG

GCTGGGTTGAGCTGGGCTGAGCTGGATTGAGCTGGGT

TGAGCTGAGCTGGGCTGGGCTGTGCTGACTGAGCTGG

GCTGAGCTAGGCTGGGGTGAGCTGGGCTGAGCTGATC

CGAGCTAGGCTGGGCTGGTTTGGGCTGAGCTGAGCTG

AGCTAGGCTGGATTGATCTGGCTGAGCTGGGTTGAGC

TGAGCTGGGCTGAGCTGGTCTGAGCTGGCCTGGGTCG

AGCTGAGCTGGACTGGTTTGAGCTGGGTCGATCTGGG

CTGAGCTGGCCTGGGTTGAGCTGGGCTGGGTTGAGCT

GAGCTGGGTTGAGCTGGGCTGAGCTGAGGGCTGGGGT

GAGCTGGGCTGAACTAGCCTAGCTAGGTTGGGCTGAG

CTGGGCTGGTTTGGGCTGAGCTGAGCTGAGCTAGGCT

GCATTGAGCAGGCTGAGCTGGGCTGAGCAGGCCTGGG

GTGAGCTGGGCTAGGTGGAGCTGAGCTGGGTCGAGCT

GAGTTGGGCTGAGCTGGCCTGGGTTGAGGTAGGCTGA

GCTGAGCTGAGCTAGGCTGGGTTGAGCTGGCTGGGCT

GGTTTGCGCTGGGTCAAGCTGGGCCGAGCTGGCCTGG

GTTGAGCTGGGCTCGGTTGAGCTGGGCTGAGCTGAGC

CGACCTAGGCTGGGATGAGCTGGGCTGATTTGGGCTG

AGCTGAGCTGAGCTAGGCTGCATTGAGCAGGCTGAGC

TGGGCCTGGAGCCTGGCCTGGGGTGAGCTGGGCTGAG

CTGCGCTGAGCTAGGCTGGGTTGAGCTGGCTGGGCTG

GTTTGCGCTGGGTCAAGCTGGGCCGAGCTGGCCTGGG

ATGAGCTGGGCCGGTTTGGGCTGAGCTGAGCTGAGCT

AGGCTGCATTGAGCAGGCTGAGCTGGGCTGAGCTGGC

CTGGGGTGAGCTGGGCTGAGCTAAGCTGAGCTGGGCT

GGTTTGGGCTGAGCTGGCTGAGCTGGGTCCTGCTGAG

CTGGGCTGAGCTGACCAGGGGTGAGCTGGGCTGAGTT

AGGCTGGGCTCAGCTAGGCTGGGTTGATCTGGCAGGG

CTGGTTTGCGCTGGGTCAAGCTCCCGGGAGATGGCCT

GGGATGAGCTGGGCTGGTTTGGGCTGAGCTGAGCTGA

GCTGAGCTAGGCTGCATTGAGCAGGCTGAGCTGGGCT

GAGCTGGCCTGGGGTGAGCTGGGCTGGGTGGAGCTGA

GCTGGGCTGAACTGGGCTAAGCTGGCTGAGCTGGATC

GAGCTGAGCTGGGCTGAGCTGGCCTGGGGTTAGCTGG

GCTGAGCTGAGCTGAGCTAGGCTGGGTTGAGCTGGCT

GGGCTGGTTTGCGCTGGGTCAAGCTGGGCCGAGCTGG

CCTGGGTTGAGCTGGGCTGGGCTGAGCTGAGCTAGGC

TGGGTTGAGCTGGGCTGGGCTGAGCTGAGCTAGGCTG

CATTGAGCTGGCTGGGATGGATTGAGCTGGCTGAGCT

GGCTGAGCTGGCTGAGCTGGGCTGAGCTGGCCTGGGT

TGAGCTGGGCTGGGTTGAGCTGAGCTGGGCTGAGCTG

GGCTCAGCAGAGCTGGGTTGAGCTGAGCTGGGTTGAG

CTGGGGTGAGCTGGGCTGAGCAGAGCTGGGTTGAGCT

GAGCTGGGTTGAGCTGGGCTCGAGCAGAGCTGGGTTG

AGCTGAGCTGGGTTGAGCTGGGCTCAGCAGAGCTGGG

TTGAGCTGAGCTGGGTTGAGCTGGGCTGAGCTAGCTG

GGCTCAGCTAGGCTGGGTTGAGCTGAGCTGGGCTGAA

CTGGGCTGAGCTGGGCTGAACTGGGCTGAGCTGGGCT

GAGCTGGGCTGAGCAGAGCTGGGCTGAGCAGAGCTGG

GTTGGTCTGAGCTGGGTTGAGCTGGGCTGAGCTGGGC

TGAGCAGAGTTGGGTTGAGCTGAGCTGGGTTCAGCTG

GGCTGAGCTAGGCTGGGTTGAGCTGGGTTGAGTTGGG

CTGAGCTGGGCTGGGTTGAGCGGAGCTGGGCTGAACT

GGGCTGAGCTGGGCTGAGCGGAACTGGGTTGATCTGA

ATTGAGCTGGGCTGAGCCGGGCTGAGCCGGGCTGAGC

TGGGCTAGGTTGAGCTTGGGTGAGCTTGCCTCAGCTG

GTCTGAGCTAGGTTGGGTGGAGCTAGGCTGGATTGAG

CTGGGCTGAGCTGAGCTGATCTGGCCTCAGCTGGGCT

GAGGTAGGCTGAACTGGGCTGTGCTGGGCTGAGCTGA

GCTGAGCCAGTTTGAGCTGGGTTGAGCTGGGCTGAGC

TGGGCTGTGTTGATCTTTCCTGAACTGGGCTGAGCTG

GGCTGAGCTGGCCTAGCTGGATTGAACGGGGGTAAGC

TGGGCCAGGCTGGACTGGGCTGAGCTGAGCTAGGCTG

AGCTGAGTTGAATTGGGTTAAGCTGGGCTGAGATGGG

CTGAGCTGGGCTGAGCTGGGTTGAGCCAGGTCGGACT

GGGTTACCCTGGGCCACACTGGGCTGAGCTGGGCGGA

GCTCGattaacctggtcaggctgagtcgggtccagca

gacatgcgctggccaggctggcttgacctggacacgt

tcgatgagctgccttgggatggttcacctcagctgag

ccaggtggctccagctgggctgagctggtgaccctgg

gtgacctcggtgaccaggttgtcctgagtccgggcca

agccgaggctgcatcagactcgccagacccaaggcct

gggccccggctggcaagccaggggcggtgaaggctgg

gctggcaggactgtcccggaaggaggtgcacgtggag

ccgcccggaccccgaccggcaggacctggaaagacgc

ctctcactcccctttctcttctgtcccctctcgggtc

ctcagAGAGCCAGTCTGCCCCGAATCTCTACCCCCTC

GTCTCCTGCGTCAGCCCCCCGTCCGATGAGAGCCTGG

TGGCCCTGGGCTGCCTGGCCCGGGACTTCCTGCCCAG

CTCCGTCACCTTCTCCTGGAACTACAAGAACAGCAGC

AAGGTCAGCAGCCAGAACATCCAGGACTTCCCGTCCG

TCCTGAGAGGCGGCAAGTACTTGGCCTCCTCCCGGGT

GCTCCTACCCTCTGTGAGCATCCCCCAGGACCCAGAG

GCCTTCCTGGTGTGCGAGGTCCAGCACCCCAGTGGCA

CCAAGTCCGTGTCCATCTCTGGGCCAGgtgagctggg

ctccccctgtggctgtggcgggggcggggccgggtgc

cgccggcacagtgacgccccgttcctgcctgcagTCG

TAGAGGAGCAGCCCCCCGTCTTGAACATCTTCGTCCC

CACCCGGGAGTCCTTCTCCAGTACTCCCCAGCGCACG

TCCAAGCTCATCTGCCAGGCCTCAGACTTCAGCCCCA

AGCAGATCTCCATGGCCTGGTTCCGTGATGGGAAACG

GGTGGTGTCTGGCGTCAGCACAGGCCCCGTGGAGACC

CTACAGTCCAGTCCGGTGACCTACAGGCTCCACAGCA

TGCTGACCGTCACGGAGTCCGAGTGGCTCAGCCAGAG

CGTCTTCACCTGCCAGGTGGAGCACAAAGGGCTGAAC

TACGAGAAGAACGCGTCCTCTCTGTGCACCTCCAgtg

agtgcagcccctcgggccgggcggcggggcggcggga

gccacacacacaccagctgctccctgagccttggctt

ccgggagtggccaaggcggggaggggctgtgcagggc

agctggagggcactgtcagctggggcccagcaccccc

tcaccccggcagggcccgggctccgaggggccccgca

gtcgcaggccctgctcttgggggaagccctacttggc

cccttcagggcgctgacgctccccccacccacccccg

cctagATCCCAACTCTCCCATCACCGTCTTCGCCATC

GCCCCCTCCTTCGCTGGCATCTTCCTCACCAAGTCGG

CCAAGCTTTCCTGCGTGGTCACGGGCCTCGTCACCAG

GGAGAGCCTCAACATCTCCTGGACCCGCCAGGACGGC

GAGGTTCTGAAGACCAGTATCGTCTTCTCTGAGATCT

ACGCCAACGGCACCTTCGGCGCCAGGGGCGAAGCCTC

CGTCTGCGTGGAGGACTGGGAGTCGGGCGACAGGTTC

ACGTGCACGGTGACCCACACGGACCTGCCCTCGCCGC

TGAAGCAGAGCGTCTCCAAGCCCAGAGgtaggccctg

ccctgcccctgcctccgcccggcctgtgccttggccg

ccggggcgggagccgagcctggccgaggagcgccctc

ggccccccgcggtcccgacccacacccctcctgctct

cctccccagGGATCGCCAGGCACATGCCGTCCGTGTA

CGTGCTGCCGCCGGCCCCGGAGGAGCTGAGCCTGCAG

GAGTGGGCCTCGGTCACCTGCCTGGTGAAGGGCTTCT

CCCCGGCGGACGTGTTCGTGCAGTGGCTGCAGAAGGG

GGAGCCCGTGTCCGCCGACAAGTACGTGACCAGCGCG

CCGGTGCCCGAGCCCGAGCCCAAGGCCCCCGCCTCCT

ACTTCGTGCAGAGCGTCCTGACGGTGAGCGCCAAGGA

CTGGAGCGACGGGGAGACCTACACCTGCGTCGTGGGC

CACGAGGCCCTGCCCCACACGGTGACCGAGAGGACCG

TGGACAAGTCCACCGGTAAACCCACCCTGTACAACGT

CTCCCTGGTCCTGTCCGACACGGCCAGCACCTGCTAC

TGACCCCCTGGCTGCCCGCCGCGGCCGGGGCCAGAGC

CCCCGGGCGACCATCGCTCTGTGTGGGCCTGTGTGCA

ACCCGACCCTGTCGGGGTGAGCGGTCGCATTTCTGAA

AATTAGAaataaaAGATCTCGTGCCG

Seq ID No. 1

TCTAgAAGACGCTGGAGAGAGGCCagACTTCCTCGGA

ACAGCTCAAAGAGCTCTGTCAAAGCCAGATCCCATCA

CACGTGGGCACCAATAGGCCATGCCAGCCTCCAAGGG

CCGAACTGGGTTCTCCACGGCGCACATGAAGCCTGCA

GCCTGGCTTATCCTCTTCCGTGGTGAAGAGGCAGGCC

CGGGACTGGACGAGGGGCTAGCAGGGTGTGGTAGGCA

CCTTGCGCCCCCCACCCCGGCAGGAACCAGAGACCCT

GGGGCTGAGAGTGAGCCTCCAAACAGGATGCCCCACC

CTTCAGGCCACCTTTCAATCCAGCTACACTCCACCTG

CCATTCTCCTCTGGGCACAGGGCCCAGCCCCTGGATC

TTGGCCTTGGCTCGACTTGCACCGACGCGCACACACA

CACTTCCTAACGTGCTGTCCGCTCACCCCTCCCCAGC

GTGGTCCATGGGCAGCACGGCAGTGCGCGTCCGGCGG

TAGTGAGTGCAGAGGTCCCTTCCCCTCCCCCAGGAGC

CCCAGGGGTGTGTGCAGATCTGGGGGCTCCTGTCCCT

TACACCTTCATGCCCCTCCCCTCATACCCACCCTCCA

GGCGGGAGGCAGCGAGACCTTTGCCCAGGGACTCAGC

CAACGGGCACACGGGAGGCCA GCCCTCAGCAGCTGG

G

Seq ID No. 4

GGCCAGACTTCCTCGGAACAGCTCAAAGAGCTCTGTC

AAAGCCAGATCCCATCACACGTGGGCACCAATAGGCC

ATGCCAGCCTCCAAGGGCCGAACTGGGTTCTCCACGG

CGCACATGAAGCCTGCAGCCTGGCTTATCCTCTTCCG

TGGTGAAGAGGCAGGCCCGGGACTGGACGAGGGGCTA

GCAGGGTGTGGTAGGCACCTTGCGCCCCCCACCCCGG

CAGGAACCAGAGACCCTGGGGCTGAGAGTGAGCCTCC

AAACAGGATGCCCCACCCTTCAGGCCACCTTTCAATC

CAGCTACACTCCACCTGCCATTCTCCTCTGGGCACAG

GGCCCAGCCCCTGGATCTTGGCCTTGGCTCGACTTGC

ACCCACGCGCACACACACACTTCGTAACGTGCTGTCC

GCTCACCCCTCCCCAGCGTGGTCCATGGGCAGCACGG

CAGTGCGCGTCCGGCGGTAGTGAGTGCAGAGGTCCCT

TCCCCTCCCCCAGGAGCCCCAGGGGTGTGTGCAGATC

TGGGGGCTCCTGTCCCTTACACCTTCATGCCCCTCCC

CTCATACCCACCCTCCAGGCGGGAGGCAGCGAGACCT

TTGCCCAGGGACTCAGCCAACGGGCACACGGGAGGCC

AGCCCTCAGCAGCTGGCTCCCAAAGAGGAGGTGGGAG

GTAGGTCCACAGCTGCCACAGAGAGAAACCCTGACGG

ACCCCACAGGGGCCACGCCAGCCGGAACCAGCTCCCT

CGTGGGTGAGCAATGGCCAGGGCCCCGCCGGCCACCA

CGGCTGGCCTTGCGCCAGCTGAGAACTCACGTCCAGT

GCAGGGAGACTCAAGACAGCCTGTGCACACAGCCTCG

GATCTGCTCCCATTTCAAGCAGAAAAAGGAAACCGTG

CAGGCAGCCCTCAGCATTTCAAGGATTGTAGCAGCGG

CCAACTATTCGTCGGCAGTGGCCGATTAGAATGACCG

TGGAGAAGGGCGGAAGGGTCTCTCGTGGGCTCTGCGG

CCAACAGGCCCTGGCTCCACCTGCCCGCTGCCAGCCC

GAGGGGCTTGGGCCGAGCCAGGAACCACAGTGCTCAC

CGGGACCACAGTGACTGACCAAACTCCCGGCCAGAGC

AGCCCCAGGCCAGCCGGGCTCTCGCCCTGGAGGACTC

ACCATCAGATGCACAAGGGGGCGAGTGTGGAAGAGAC

GTGTCGCCCGGGCCATTTGGGAAGGCGAAGGGACCTT

CCAGGTGGACAGGAGGTGGGACGCACTCCAGGCAAGG

GACTGGGTCCCCAAGGCCTGGGGAAGGGGTACTGGCT

TGGGGGTTAGCCTGGCCAGGGAACGGGGAGCGGGGCG

GGGGGCTGAGCAGGGAGGACCTGACCTCGTGGGAGCG

AGGCAAGTCAGGCTTCAGGCAGCAGCCGCACATCCCA

GACCAGGAGGCTGAGGCAGGAGGGGCTTGCAGCGGGG

CGGGGGCCTGCCTGGCTCCGGGGGCTCCTGGGGGACG

CTGGCTCTTGTTTCCGTGTCCCGCAGCACAGGGCCAG

CTCGCTGGGCCTATGCTTACCTTGATGTCTGGGGCCG

GGGCGTCAGGGTCGTCGTCTCCTCAGGGGAGAGTCCC

CTGAGGCTACGCTGGGG*GGGGACTATGGCAGCTCCA

CCAGGGGCCTGGGGACCAGGGGCCTGGACCAGGCTGC

AGCCCGGAGGACGGGCAGGGCTCTGGCTCTCCAGCAT

CTGGCCCTCGGAAATGGCAGAACCCCTGGCGGGTGAG

CGAGCTGAGAGCGGGTCAGACAGACAGGGGCCGGCCG

GAAAGGAGAAGTTGGGGGCAGAGCCCGCCAGGGGCCA

GGCCCAAGGTTCTGTGTGCCAGGGCCTGGGTGGGCAC

ATTGGTGTGGCCATGGCTACTTAGATTCGTGGGGCCA

GGGCATCCTGGTCAGCGTCTCCTCAGGTGAGCCTGGT

GTCTGATGTCCAGCTAGGCGCTGGTGGGCCGCGGGTG

GGCCTGTCTCAGGCTAGGGCAGGGGCTGGGATGTGTA

TTTGTCAAGGAGGGGCAACAGGGTGCAGACTGTGCCC

CTGGAAACTTGACCACTGGGGCAGGGGCGTCCTGGTC

ACGTCTCCTCAGGTAAGACGGCCCTGTGCCCCTCTCT

CGCGGGACTGGAAAAGGAATTTTCCAAGATTCCTTGG

TCTGTGTGGGGCCCTCTGGGGCCCCCGGGGGTGGCTC

CCCTCCTGCCCAGATGGGGCCTCGGCCTGTGGAGCAC

GGGCTGGGCACACAGCTCGAGTCTAGGGCCACAGAGG

CCCGGGCTCAGGGCTCTGTGTGGCCCGGCGACTGGCA

GGGGGCTCGGGTTTTTGGACACCCCCTAATGGGGGCC

ACAGCACTGTGACCATCTTCACAGCTGGGGCCGAGGA

GTCGAGGTCACCGTCTCCTCAGGTGAGTCCTCGTCAG

CCCTCTCTCACTCTCTGGGGGGTTTTGCTGCATTTTG

TGGGGGAAAGAGGATGCCTGGGTCTCAGGTCTAAAGG

TCTAGGGCCAGCGCCGGGGCCCAGGAAGGGGCCGAGG

GGCCAGGCTCGGCTCGGCCAGGAGCAGAGCTTCCAGA

CATCTCGCCTCCTGGCGGCTGCAGTCAGGCCTTTGGC

CGGGGGGGTCTCAGCACCACCAGGCCTCTTGGCTCCC

GAGGTCCCCGGCCCCGGCTGCCTCACCAGGCACCGTG

CGCGGTGGGCCCGGGCTCTTGGTCGGCCACCCTTTCT

TAACTGGGATCCGGGCTTAGTTGTCGCAATGTGACAA

CGGGCTCGAAAGCTGGGGCCAGGGGACCCTAGT*TAC

GACGCCTCGGGTGGGTGTCCCGCACCCCTCCCCACTT

TCACGGCAGTCGGCGAGACCTGGGGAGTCAGGTGTTG

GGGACACTTTGGAGGTCAGGAACGGGAGCTGGGGAGA

GGGCTCTGTCAGCGGGGTCCAGAGATGGGCCGCCCTC

CAAGGACGCCCTGCGCGGGGACAAGGGCTTCTTGGCC

TGGCCTGGCCGCTTCACTTGGGCGTCAGGGGGGGCTT

CCCGGGGCAGGCGGTCAGTCGAGGCGGGTTGGAATTC

TGAGTCTGGGTTCGGGGTTCGGGGTTCGGCCTTCATG

AACAGACAGCCCAGGCGGGCCGTTGTTTGGCCCCTGG

GGGCCTGGTTGGAATGCGAGGTCTCGGGAAGTCAGGA

GGGAGCCTGGCCAGCAGAGGGTTCCCAGCCCTGCGGC

CGAGGGACCTGGAGACGGGCAGGGCATTGGCCGTCGC

AGGGCCAGGCCACACCCCCCAGGTTTTTGTGGGGCGA

GCCTGGAGATTGCACCACTGTGATTACTATGCTATGG

ATCTCTGGGGCCCAGGCGTTGAAGTCGTCGTGTCCTC

AGGTAAGAACGGCCCTCCAGGGCCTTTAATTTCTGCT

CTCGTCTGTGGGCTTTTCTGACTCTGATCCTCGGGAG

GCGTCTGTGCCCCCCCCGGGGATGAGGCCGGCTTGCC

AGGAGGGGTCAGGGACCAGGAGCCTGTGGGAAGTTCT

GACGGGGGCTGCAGGCGGGAAGGGCCCCACCGGGGGG

CGAGCCCCAGGCCGCTGGGCGGCAGGAGACCCGTGAG

AGTGCGCCTTGAGGAGGGTGTCTGCGGAACCACGAAC

GCCCGCCGGGAAGGGCTTGCTGCAATGCGGTCTTCAG

ACGGGAGGCGTCTTCTGCCCTCACCGTCTTTCAAGCC

CTTGTGGGTCTGAAAGAGCCATGTCGGAGAGAGAAGG

GACAGGCCTGTCCCGACCTGGCCGAGAGCGGGCAGCC

CCGGGGGAGAGCGGGGCGATCGGCCTGGGCTCTGTGA

GGCCAGGTCCAAGGGAGGACGTGTGGTCCTCGTGACA

GGTGCACTTGCGAAACCTTAGAAGACGGGGTATGTTG

GAAGCGGCTCCTGATGTTTAAGAAAAGGGAGACTGTA

AAGTGAGCAGAGTCCTCAAGTGTGTTAAGGTTTTAAA

GGTCAAAGTGTTTTAAACCTTTGTGACTGCAGTTAGC

AAGCGTGCGGGGAGTGAATGGGGTGCCAGGGTGGCCG

AGAGGCAGTACGAGGGCCGTGCCGTCCTCTAATTCAG

GGCTTAGTTTTGCAGAATAAAGTCGGCCTGTTTTCTA

AAAGCATTGGTGGTGCTGAGCTGGTGGAGGAGGCCGC

GGGCAGCCCTGGCCACCTGCAGCAGGTGGCAGGAAGC

AGGTCGGCCAAGAGGCTATTTTAGGAAGCCAGAAAAC

ACGGTCGATGAATTTATAGCTTCTGGTTTCCAGGAGG

TGGTTGGGCATGGCTTTGCGCAGCGCCACAGAACCGA

AAGTGCCCACTGAGAAAAAACAACTCCTGCTTAATTT

GCATTTTTCTAAAAGAAGAAACAGAGGCTGACGGAAA

CTGGAAAGTTCCTGTTTTAACTACTCGAATTGAGTTT

TCGGTCTTAGCTTATCAACTGCTCACTTAGATTCATT

TTCAAAGTAAACGTTTAAGAGCCGAGGCATTCCTATC

CTCTTCTAAGGCGTTATTCCTGGAGGCTCATTCACCG

CCAGCACCTCCGCTGCCTGCAGGCATTGCTGTCACCG

TCACCGTGACGGCGCGCACGATTTTCAGTTGGCCCGC

TTCCCCTCGTGATTAGGACAGACGCGGGCACTCTGGC

CCAGCCGTCTTGGCTCAGTATCTGCAGGCGTCCGTCT

CGGGACGGAGCTCAGGGGAAGAGCGTGACTCCAGTTG

AACGTGATAGTCGGTGCGTTGAGAGGAGACCCAGTCG

GGTGTCGAGTCAGAAGGGGCCCGGGGCCCGAGGCCCT

GGGCAGGACGGCCCGTGCCCTGCATCACGGGCCCAGC

GTCCTAGAGGCAGGACTCTGGTGGAGAGTGTGAGGGT

GCCTGGGGCCCCTCCGGAGCTGGGGCCGTGCGGTGCA

GGTTGGGCTCTCGGCGCGGTGTTGGCTGTTTCTGCGG

GATTTGGAGGAATTCTTCCAGTGATGGGAGTCGCCAG

TGACCGGGCACCAGGCTGGTAAGAGGGAGGCCGCCGT

CGTGGCCAGAGCAGCTGGGAGGGTTCGGTAAAAGGCT

CGCCCGTTTCCTTTAATGAGGACTTTTCCTGGAGGGC

ATTTAGTCTAGTCGGGACCGTTTTCGACTCGGGAAGA

GGGATGCGGAGGAGGGCATGTGCCCAGGAGCCGAAGG

CGCCGCGGGGAGAAGCCCAGGGCTCTCCTGTCCCCAC

AGAGGCGACGCCACTGCCGCAGACAGACAGGGCCTTT

CCCTCTGATGACGGCAAAGGCGCCTCGGCTCTTGCGG

GGTGCTGGGGGGGAGTCGCCCCGAAGCCGCTCACCCA

GAGGCCTGAGGGGTGAGACTGACCGATGCCTCTTGGC

CGGGCCTGGGGCCGGACCGAGGGGGACTCCGTGGAGG

CAGGGCGATGGTGGCTGCGGGAGGGAACCGACCCTGG

GCCGAGCCCGGCTTGGCGATTCCCGGGCGAGGGCCCT

CAGCCGAGGCGAGTGGGTCCGGCGGAACCACCCTTTC

TGGCCAGCGCCACAGGGCTCTCGGGACTGTCCGGGGC

GACGCTGGGCTGCCCGTGGCAGGCCTGGGCTGACCTG

GACTTCACCAGACAGAACAGGGCTTTCAGGGCTGAGC

TGAGCCAGGTTTAGCGAGGCCAAGTGGGGCTGAACCA

GGCTCAACTGGCCTGAGCTGGGTTGAGCTGGGCTGAC

CTGGGCTGAGCTGAGCTGGGCTGGGCTGGGCTGGGCT

GGGCTGGGCTGGGCTGGACTGGCTGAGCTGAGCTGGG

TTGAGCTGAGCTGAGCTGGCCTGGGTTGAGCTGGGCT

GGGTTGAGCTGAGCTGGGTTGAGCTGGGTTGAGCTGG

GTTGATCTGAGCTGAGCTGGGCTGAGCTGAGCTAGGC

TGGGGTGAGCTGGGCTGAGCTGGTTTGAGTTGGGTTG

AGCTGAGCTGAGCTGGGCTGTGCTGGCTGAGCTAGGC

TGAGCTAGGCTAGGTTGAGCTGGGCTGGGCTGAGCTG

AGCTAGGCTGGGCTGATTTGGGCTGAGCTGAGCTGAG

CTAGGCTGCGTTGAGCTGGCTGGGCTGGATTGAGCTG

GCTGAGCTGGCTGAGCTGGGCTGAGCTGGCCTGGGTT

GAGCTGAGCTGGACTGGTTTGAGCTGGGTCGATCTGG

GTTGAGCTGTCCTGGGTTGAGCTGGGCTGGGTTGAGC

TGAGCTGGGTTGAGCTGGGCTCAGCAGAGCTGGGTTG

GGCTGAGCTGGGTTGAGCTGAGCTGGGCTGAGCTGGC

CTGGGTTGAGCTGGGCTGAGCTGAGCTGGGCTGAGCT

GGCCTGTGTTGAGCTGGGCTGGGTTGAGCTGGGCTGA

GCTGGATTGAGCTGGGTTGAGCTGAGCTGGGCTGGGC

TGTGCTGACTGAGCTGGGCTGAGCTAGGCTGGGGTGA

GCTGGGCTGAGCTGATCCGAGCTAGGCTGGGCTGGTT

TGGGCTGAGCTGAGCTGAGCTAGGCTGGATTGATCTG

GCTGAGCTGGGTTGAGCTGAGCTGGGCTGAGCTGGTC

TGAGCTGGCCTGGGTCGAGCTGAGCTGGACTGGTTTG

AGCTGGGTCGATCTGGGCTGAGCTGGCCTGGGTTGAG

CTGGGCTGGGTTGAGCTGAGCTGGGTTGAGCTGGGCT

GAGCTGAGGGCTGGGGTGAGCTGGGCTGAACTAGCCT

AGCTAGGTTGGGCTGAGCTGGGCTGGTTTGGGCTGAG

CTGAGCTGAGCTAGGCTGCATTGAGCAGGCTGAGCTG

GGCTGAGCAGGCCTGGGGTGAGCTGGGCTAGGTGGAG

CTGAGCTGGGTCGAGCTGAGTTGGGCTGAGCTGGCCT

GGGTTGAGGTAGGCTGAGCTGAGCTGAGCTAGGCTGG

GTTGAGCTGGCTGGGCTGGTTTGCGCTGGGTCAAGCT

GGGCCGAGCTGGCCTGGGTTGAGCTGGGCTCGGTTGA

GCTGGGCTGAGCTGAGCCGACCTAGGCTGGGATGAGC

TGGGCTGATTTGGGCTGAGCTGAGCTGAGCTAGGCTG

CATTGAGCAGGCTGAGCTGGGCCTGGAGCCTGGCCTG

GGGTGAGCTGGGCTGAGCTGCGCTGAGCTAGGCTGGG

TTGAGCTGGCTGGGCTGGTTTGCGCTGGGTCAAGCTG

GGCCGAGCTGGCCTGGGATGAGCTGGGCCGGTTTGGG

CTGAGCTGAGCTGAGCTAGGCTGCATTGAGCAGGCTG

AGCTGGGCTGAGCTGGCCTGGGGTGAGCTGGGCTGAG

CTAAGCTGAGCTGGGCTGGTTTGGGCTGAGCTGGCTG

AGCTGGGTCCTGCTGAGCTGGGCTGAGCTGACCAGGG

GTGAGCTGGGCTGAGTTAGGCTGGGCTCAGCTAGGCT

GGGTTGATCTGGCAGGGCTGGTTTGCGCTGGGTCAAG

CTCCCGGGAGATGGCCTGGGATGAGCTGGGCTGGTTT

GGGCTGAGCTGAGCTGAGCTGAGCTAGGCTGCATTGA

GCAGGCTGAGCTGGGCTGAGCTGGCCTGGGGTGAGCT

GGGCTGGGTGGAGCTGAGCTGGGCTGAACTGGGCTAA

GCTGGCTGAGCTGGATCGAGCTGAGCTGGGCTGAGCT

GGCCTGGGGTTAGCTGGGCTGAGCTGAGCTGAGCTAG

GCTGGGTTGAGCTGGCTGGGCTGGTTTGCGCTGGGTC

AAGCTGGGCCGAGCTGGCCTGGGTTGAGCTGGGCTGG

GCTGAGCTGAGCTAGGCTGGGTTGAGCTGGGCTGGGC

TGAGCTGAGCTAGGCTGCATTGAGCTGGCTGGGATGG

ATTGAGCTGGCTGAGCTGGCTGAGCTGGCTGAGCTGG

GCTGAGCTGGCCTGGGTTGAGCTGGGCTGGGTTGAGC

TGAGCTGGGCTGAGCTGGGCTCAGCAGAGCTGGGTTG

AGCTGAGCTGGGTTGAGCTGGGGTGAGCTGGGCTGAG

CAGAGCTGGGTTGAGCTGAGCTGGGTTGAGCTGGGCT

CGAGCAGAGCTGGGTTGAGCTGAGCTGGGTTGAGCTG

GGCTCAGCAGAGCTGGGTTGAGCTGAGCTGGGTTGAG

CTGGGCTGAGCTAGCTGGGCTCAGCTAGGCTGGGTTG

AGCTGAGCTGGGCTGAACTGGGCTGAGCTGGGCTGAA

CTGGGCTGAGCTGGGCTGAGCTGGGCTGAGCAGAGCT

GGGCTGAGCAGAGCTGGGTTGGTCTGAGCTGGGTTGA

GCTGGGCTGAGCTGGGCTGAGCAGAGTTGGGTTGAGC

TGAGCTGGGTTCAGCTGGGCTGAGCTAGGCTGGGTTG

AGCTGGGTTGAGTTGGGCTGAGCTGGGCTGGGTTGAG

CGGAGCTGGGCTGAACTGGGCTGAGCTGGGCTGAGCG

GAACTGGGTTGATCTGAATTGAGCTGGGCTGAGCCGG

GCTGAGCCGGGCTGAGCTGGGCTAGGTTGAGCTTGGG

TGAGCTTGCCTCAGCTGGTCTGAGCTAGGTTGGGTGG

AGCTAGGCTGGATTGAGCTGGGCTGAGCTGAGCTGAT

CTGGCCTCAGCTGGGCTGAGGTAGGCTGAACTGGGCT

GTGCTGGGCTGAGCTGAGCTGAGCCAGTTTGAGCTGG

GTTGAGCTGGGCTGAGCTGGGCTGTGTTGATCTTTCC

TGAACTGGGCTGAGCTGGGCTGAGCTGGCCTAGCTGG

ATTGAACGGGGGTAAGCTGGGCCAGGCTGGACTGGGC

TGAGCTGAGCTAGGCTGAGCTGAGTTGAATTGGGTTA

AGCTGGGCTGAGATGGGCTGAGCTGGGCTGAGCTGGG

TTGAGCCAGGTCGGACTGGGTTACCCTGGGCCACACT

GGGCTGAGCTGGGCGGAGCTCGATTAACCTGGTCAGG

CTGAGTCGGGTCCAGCAGACATGCGCTGGCCAGGCTG

GCTTGACCTGGACACGTTCGATGAGCTGCCTTGGGAT

GGTTCACCTCAGCTGAGCCAGGTGGCTCCAGCTGGGC

TGAGCTGGTGACCCTGGGTGACCTCGGTGACCAGGTT

GTCCTGAGTCCGGGCCAAGCCGAGGCTGCATCAGACT

CGCCAGACCCAAGGCCTGGGCCCCGGCTGGCAAGCCA

GGGGCGGTGAAGGCTGGGCTGGCAGGACTGTCCCGGA

AGGAGGTGCACGTGGAGCCGCCCGGACCCCGACCGGC

AGGACCTGGAAAGACGCCTCTCACTCCCCTTCTCTTC

TGTCCCCTCTCGGGTCCTCAGAGAGCCAGTCTGCCCC

GAATCTCTACCCCCTCGTCTCCTGCGTCAGCCCCCCG

TCCGATGAGAGCCTGGTGGCCCTGGGCTGCCTGGCCC

GGGACTTCCTGCCCAGCTCCGTCACCTTCTCCTGGAA

Porcine Kappa Light Chain

In another embodiment, novel genomic sequences encoding the kappa light chain locus of ungulate immunoglobulin are provided. The present invention provides the first reported genomic sequence of ungulate kappa light chain regions. In one embodiment, nucleic acid sequence is provided that encodes the porcine kappa light chain locus. In another embodiment, the nucleic acid sequence can contain at least one joining region, one constant region and/or one enhancer region of kappa light chain. In a further embodiment, the nucleotide sequence can include at least five joining regions, one constant region and one enhancer region, for example, as represented in Seq ID No. 30. In a further embodiment, an isolated nucleotide sequence is provided that contains at least one, at least two, at least three, at least four or five joining regions and 3′ flanking sequence to the joining region of porcine genomic kappa light chain, for example, as represented in Seq ID No 12. In another embodiment, an isolated nucleotide sequence of porcine genomic kappa light chain is provided that contains 5′ flanking sequence to the first joining region, for example, as represented in Seq ID No. 25. In a further embodiment, an isolated nucleotide sequence is provided that contains 3′ flanking sequence to the constant region and, optionally, the 5′ portion of the enhancer region, of porcine genomic kappa light chain, for example, as represented in Seq ID Nos. 15, 16 and/or 19.

In further embodiments, isolated nucleotide sequences as depicted in Seq ID Nos 30, 12, 25, 15, 16 or 19 are provided. Nucleic acid sequences at least 80, 85, 90, 95, 98 or 99% homologous to Seq ID Nos 30, 12, 25, 15, 16 or 19 are also provided. In addition, nucleotide sequences that contain at least 10, 15, 17, 20, 25 or 30 contiguous nucleotides of Seq ID Nos 30, 12, 25, 15, 16 or 19 are provided. In addition, nucleotide sequences that contain at least 10, 15, 17, 20, 25 or 30 contiguous nucleotides of Seq ID Nos 1, 4 or 29 are provided. In other embodiments, nucleotide sequences that contain at least 50, 100, 1,000, 2,500, 5,000, 7,000, 8,000, 8,500, 9,000, 10,000 or 15,000 contiguous nucleotides of Seq ID No. 30 are provided. Further provided are nucleotide sequences that hybridizes, optionally under stringent conditions, to Seq ID Nos 30, 12, 25, 15, 16 or 19, as well as, nucleotides homologous thereto.

In one embodiment, an isolated nucleotide sequence encoding kappa light chain is provided that includes at least five joining regions, one constant region and one enhancer region, for example, as represented in Seq ID No. 30. In Seq ID No. 30, the coding region of kappa light chain is represented, for example by residues 1-549 and 10026-10549, whereas the intronic sequence is represented, for example, by residues 550-10025, the Joining region of kappa light chain is represented, for example, by residues 5822-7207 (for example, J1:5822-5859, J2:6180-6218, J3:6486-6523, J4:6826-6863, J5:7170-7207), the Constant Region is represented by the following residues: 10026-10549 (C exon) and 10026-10354 (C coding), 10524-10529 (Poly(A) signal) and 11160-11264 (SINE element).

Seq ID No 30

GCGTCCGAAGTCAAAAATATCTGCAGCCTTCATGTAT

TCATAGAAACAAGGAATGTCTACATTTTCCAAAGTGG

GACCAGAATCTTGGGTCATGTCTAAGGCATGTGCATT

TGCACATGGTAGGCAAAGGACTTTGCTTCTCCCAGCA

CATCTTTCTGCAGAGATCCATGGAAACAAGACTCAAC

TCCAAAGCAGCAAAGAAGCAGCAAGTTCTCAAGTGAT

CTCCTCTGACTCCCTCCTCCCAGGCTAATGAAGCCAT

GTTGCCCCTGGGGGATTAAGGGCAGGTGTCCATTGTG

GCACCCAGCCCGAAGACAAGCAATTTGATCAGGTTCT

GAGCACTCCTGAATGTGGACTCTGGAATTTTCTCCTC

ACCTTGTGGCATATCAGCTTAAGTCAAGTACAAGTGA

CAAACAACATAATCCTAAGAAGAGAGGAATCAAGCTG

AAGTCAAAGGATCACTGCCTTGGATTCTACTGTGAAT

GATGACCTGGAAAATATCCTGAACAACAGCTTCAGGG

TGATCATCAGAGACAAAAGTTCCAGAGCCAGgtaggg

aaaccctcaagccttgcaaagagcaaaatcatgccat

tgggttcttaacctgctgagtgatttactatatgtta

ctgtgggaggcaaagcgctcaaatagcctgggtaagt

atgtcaaataaaaagcaaaagtggtgtttcttgaaat

gttagacctgaggaaggaatattgataacttaccaat

aattttcagaatgatttatagatgtgcacttagtcag

tgtctctccaccccgcacctgacaagcagtttagaat

ttattctaagaatctaggtttgctgggggctacatgg

gaatcagcttcagtgaagagtttgttggaatgattca

ctaaattttctatttccagcataaatccaagaacctc

tcagactagtttattgacactgcttttcctccataat

ccatctcatctccgtccatcatggacactttgtagaa

tgacaggtcctggcagagactcacagatgcttctgaa

acatcctttgccttcaaagaatgaacagcacacatac

taaggatctcagtgatccacaaattagtttttgccac

aatggttcttatgataaaagtctttcattaacagcaa

attgttttataatagttgttctgctttataataattg

catgcttcactttcttttcttttctttttttttcttt

ttttgctttttagtgccgcaggtgcagcatatgaaat

ttcccaggctaggggtcaaatcagaactacacctact

ggcctacgccacagccacagcaactcaggatctaagc

catgtcggtgacctacactacagctcatggcaatgcc

agatccttaacccaatgagcgaggccagggatcgaac

ccatgtcctcatggatactagtcaggctcattatccg

ctgagccataacaggaactcccgagtttgctttttat

caaaattggtacagccttattgtttctgaaaaccaca

aaatgaatgtattcacataattttaaaaggttaaata

atttatgatatacaagacaatagaaagagaaaacgtc

attgcctctttcttccacgacaacacgcctccttaat

tgatttgaagaaataactactgagcatggtttagtgt

acttctttcagcaattagcctgtattcatagccatac

atattcaattaaaatgagatcatgatatcacacaata

cataccatacagcctatagggatttttacaatcatct

tccacatgactacataaaaacctacctaaaaaaaaaa

aaaaccctacttcatcctcctattggctgctttgtgc

tccattaaaaagctctatcataattaggttatgatga

ggatttccattttctacctttcaagcaacatttcaat

gcacagtcttatatacacatttgagcctacttttctt

tttctttctttttttggtttttttttttttttttttt

ttggtctttttgtcttttctaaggctgcatatggagg

ttcccaggctagctgtctaatcagaactatagctgct

ggcctacgccacatccacagcaatacaagatctgagc

catgtctgcaacttacaccacagctcacagcaacggt

ggatccttaaaccactgagcaaggccagggatcaaac

ccataacttcatggctcctagttggatttgttaacca

ctgagccatgatggcaactcctgagcctacttttcta

atcatttccaaccctaggacacttttttaagtttcat

ttttctccccccaccccctgttttctgaagtgtgttt

gcttccactgggtgacttcactcccaggatctcatct

gcaggatactgcagctaagtgtatgagctctgaattt

gaatcccaactctgccactcaaagggataggagtttc

cgatgtggcccaatgggatcagtggcatctctgcagt

gccaggacgcaggttccatccctggcccagcacagtg

ggttaagaatctggcattgctgcagctgaggcataga

tttcaattgtgcctcagatctgatccttggcccaagg

actgcatatgcctcagggcaaccaaaaaagagaaaag

gggggtgatagcattagtttctagatttgggggataa

ttaaataaagtgatccatgtacaatgtatggcatttt

gtaaatgctcaacaaatttcaactattatggagttcc

catcatggctcagtggaagggaatctgattagcatcc

atgaggacacaggtccaaccccgaccttgctcagtgg

gcattgctgtgagctgtggcatgggttacagacgaag

ctcggatctggcattgctgtggctgtggtgtaagcca

gcaactacagctctcattcagcccctagcctgggaac

ctccatatgcctaaaagacaaaaaataaaatttaaat

taaaaataaagaaatgttaactattatgattggtact

gcttgcattactgcaaagaaagtcactttctatactc

tttaatatcttagttgactgtgtgctcagtgaactat

tttggacacttaatttccactctcttctatctccaac

ttgacaactctctttcctctcttctggtgagatccac

tgctgactttgctctttaaggcaactagaaaagtgct

cagtgacaaaatcaaagaaagttaccttaatcttcag

aattacaatcttaagttctcttgtaaagcttactatt

tcagtggttagtattattccttggtcccttacaactt

atcagctctgatctattgctgattttcaactatttat

tgttggagttttttccttttttccctgttcattctgc

aaatgtttgctgagcatttgtcaagtgaagatactgg

actgggccttccaaatataagacaatgaaacatcggg

agttctcattatggtgcagcagaaacgaatccaacta

ggaaatgtgaggttgcaggttcgatccctgcccttgc

tcagtgggttaaggatccagcattaccgtgagctgtg

gtgtaggttgcagacgtggctcagatcctgcgttgct

gtggctgtggcataggctggcagctctagctctgatt

cgaccgctagcctgggaacctccatgcgccccgagtg

cagcccttaaaaagcaaaaaaaaaagaaagaaagaaa

aagacaatgaaacatcaaacagctaacaatccagtag

ggtagaaagaatctggcaacagataagagcgattaaa

tgttctaggtccagtgaccttgcctctgtgctctaca

cagtcgtgccacttgctgagggagaaggtctctcttg

agttgagtcctgaaagacattagttgttcacaaacta

atgccagtgagtgaaggtgtttccaagcagagggaga

gtttggtaaaaagctggaagtcacagaaagactctaa

agagtttaggatggtgggagcaacatacgctgagatg

gggctggaaggttaagagggaaacaactatagtaagt

gaagctggactcacagcaaagtgaggacctcagcatc

cttgatggggttaccatggaaacaccaaggcacacct

tgatttccaaaacagcaggcacctgattcagcccaat

gtgacatggtgggtacccctctagctctacctgttct

gtgacaactgacaaccaacgaagttaagtctggattt

tctactctgctgatccttgtttttgtttcacacgtca

tctatagcttcatgccaaaatagagttcaaggtaaga

cgcgggccttggtttgatatacatgtagtctatcttg

tttgagacaatatggtggcaaggaagaggttcaaaca

ggaaaatactctctaattatgattaactgagaaaagc

taaagagtcccataatgacactgaatgaagttcatca

tttgcaaaagccttcccccccccccaggagactataa

aaaagtgcaattttttaaatgaacttatttacaaaac

agaaatagactcacagacataggaaacgaacagatgg

ttaccaagggtgaaagggagtaggagggataaataag

gagtctggggttagcagatacaccccagtgtacacaa

aataaacaacagggacctactatatagcacagggaac

tatatgcagtagcttacaataacctataatggaaaag

aatgtgaaaaagaatatatgtatgcgtgtgtgtgtaa

ctgaatcactttgctgtaacctgaatctaacataaca

ttgtaaatcaactacagttttttttttttttaagtgc

agggttttggtgttttttttttttcatttttgttttt

gtttttgttttttgctttttagggccacacccagaca

tatgggggttcccaggctaggggtctaattagagcta

cagttgccggcttgcaccacagccacagcaacatcag

atccgagccgcacttgcgacttacaccacagctcatg

gcaataccagatccttaacccactgagcaaggcccag

ggatcgtacccgcaacctcatggttcctagtcagatt

catttctgctgcgctacaatgggaactccaagtgcag

ttttttgtaatgtgcttgtctttctttgtaattcata

ttcatcctacttcccaataaataaataaatacataaa

taataaacataccattgtaaatcaactacaatttttt

ttaaatgcagggtttttgttttttgttttttgttttg

tctttttgccttttctagggccgctcccatggcatat

ggaggttcccaggctaggggtcgaatcggagctgtag

ccaccggcctacgccagagccacagcaacgcgggatc

cgagccgcgtctgcaacctacaccacagctcacggca

acgccggatcgttaacccactgagcaagggcagggat

cgaacctgcaacctcatggttcctagtcagattcgtt

aactactgagccacaacggaaactcctaaagtgcagt

ttttaaatgtgcttgtctttctttgtaatttacactc

aacctacttcccaataaataaataaataaacaaataa

atcatagacatggttgaattctaaaggaagggaccat

caggccttagacagaaatacgtcatcttctagtattt

taaaacacactaaagaagacaaacatgctctgccaga

gaagcccagggcctccacagctgcttgcaaagggagt

taggcttcagtagctgacccaaggctctgttcctctt

cagggaaaagggtttttgttcagtgagacagcagaca

gctgtcactgtgGTGGACGTTCGGCCAAGGAACCAAG

CTGGAACTCAAACgtaagtcaatccaaacgttccttc

cttggctgtctgtgtcttacggtctctgtggctctga

aatgattcatgtgctgactctctgaaaccagactgac

attctccagggcaaaactaaagcctgtcatcaaactg

gaaaactgagggcacattttctgggcagaactaagag

tcaggcactgggtgaggaaaaacttgttagaatgata

gtttcagaaacttactgggaagcaaagcccatgttct

gaacagagctctgctcaagggtcaggaggggaaccag

tttttgtacaggagggaagttgagacgaacccctgtg

TATATGGTTTCGGCGCGGGGACCAAGCTGGAGCTCAA

ACgtaagtggctttttccgactgattctttgctgttt

ctaattgttggttggctttttgtccatttttcagtgt

tttcatcgaattagttgtcagggaccaaacaaattgc

cttcccagattaggtaccagggaggggacattgctgc

atgggagaccagagggtggctaatttttaacgtttcc

aagccaaaataactggggaagggggcttgctgtcctg

tgagggtaggtttttatagaagtggaagttaagggga

aatcgctatgGTTCACTTTTGGCTCGGGGACCAAAGT

GGAGCCCAAAAttgagtacattttccatcaattattt

gtgagatttttgtcctgttgtgtcatttgtgcaagtt

tttgacattttggttgaatgagccattcccagggacc

caaaaggatgagaccgaaaagtagaaaagagccaact

tttaagctgagcagacagaccgaattgttgagtttgt

gaggagagtagggtttgtagggagaaaggggaacaga

tcgctggctttttctctgaattagcctttctcatggg

actggcttcagagggggtttttgatgagggaagtgtt

ctagagccttaactgtgGGTTGTGTTCGGTAGCGGGA

CCAAGCTGGAAATCAAACgtaagtgcacttttctact

cctttttctttcttatacgggtgtgaaattggggact

tttcatgtttggagtatgagttgaggtcagttctgaa

gagagtgggactcatccaaaaatctgaggagtaaggg

tcagaacagagttgtctcatggaagaacaaagaccta

gttagttgatgaggcagctaaatgagtcagttgactt

gggatccaaatggccagacttcgtctgtaaccaacaa

tctaatgagatgtagcagcaaaaagagatttccattg

aggggaaagtaaaattgttaatattgtgGATCACCTT

TGGTGAAGGGACATCCGTGGAGATTGAACgtaagtat

tttttctctactaccttctgaaatttgtctaaatgcc

agtgttgacttttagaggcttaagtgtcagttttgtg

aaaaatgggtaaacaagagcatttcatatttattatc

agtttcaaaagttaaactcagctccaaaaatgaattt

gtagacaaaaagattaatttaagccaaattgaatgat

tcaaaggaaaaaaaaattagtgtagatgaaaaaggaa

ttcttacagctccaaagagcaaaagcgaattaatttt

ctttgaactttgccaaatcttgtaaatgatttttgtt

ctttacaatttaaaaaggttagagaaatgtatttctt

agtctgttttctctcttctgtctgataaattattata

tgagataaaaatgaaaattaataggatgtgctaaaaa

atcagtaagaagttagaaaaatatatgtttatgttaa

agttgccacttaattgagaatcagaagcaatgttatt

tttaaagtctaaaatgagagataaactgtcaatactt

aaattctgcagagattctatatcttgacagatatctc

ctttttcaaaaatccaatttctatggtagactaaatt

tgaaatgatcttcctcataatggagggaaaagatgga

ctgaccccaaaagctcagatttaaagaaatctgttta

agtgaaagaaaataaaagaactgcattttttaaaggc

ccatgaatttgtagaaaaataggaaatattttaataa

gtgtattcttttattttcctgttattacttgatggtg

tttttataccgccaaggaggccgtggcaccgtcagtg

tgatctgtagaccccatggcggccttttttcgcgatt

gaatgaccttggcggtgggtccccagggctctggtgg

cagcgcaccagccgctaaaagccgctaaaaactgccg

ctaaaggccacagcaaccccgcgaccgcccgttcaac

tgtgctgacacagtgatacagataatgtcgctaacag

aggagaatagaaatatgacgggcacacgctaatgtgg

ggaaaagagggagaagcctgatttttattttttagag

attctagagataaaattcccagtattatatcctttta

ataaaaaatttctattaggagattataaagaatttaa

agctatttttttaagtggggtgtaattctttcagtag

tctcttgtcaaatggatttaagtaatagaggcttaat

ccaaatgagagaaatagacgcataaccctttcaaggc

aaaagctacaagagcaaaaattgaacacagcagccag

ccatctagccactcagattttgatcagttttactgag

tttgaagtaaatatcatgaaggtataattgctgataa

aaaaataagatacaggtgtgacacatctttaagtttc

agaaatttaatggcttcagtaggattatatttcacgt

atacaaagtatctaagcagataaaaatgccattaatg

gaaacttaatagaaatatatttttaaattccttcatt

ctgtgacagaaattttctaatctgggtcttttaatca

cctaccctttgaaagagtttagtaatttgctatttgc

catcgctgtttactccagctaatttcaaaagtgatac

ttgagaaagattatttttggtttgcaaccacctggca

ggactattttagggccattttaaaactcttttcaaac

taagtattttaaactgttctaaaccatttagggcctt

ttaaaaatcttttcatgaatttcaaacttcgttaaaa

gttattaaggtgtctggcaagaacttccttatcaaat

atgctaatagtttaatctgttaatgcaggatataaaa

ttaaagtgatcaaggcttgacccaaacaggagtatct

tcatagcatatttcccctcctttttttctagaattca

tatgattttgctgccaaggctattttatataatctct

ggaaaaaaaatagtaatgaaggttaaaagagaagaaa

atatcagaacattaagaattcggtattttactaactg

cttggttaacatgaaggtttttattttattaaggttt

ctatctttataaaaatctgttcccttttctgctgatt

tctccaagcaaaagattcttgatttgttttttaactc

ttactctcccacccaagggcctgaatgcccacaaagg

ggacttccaggaggccatctggcagctgctcaccgtc

agaagtgaagccagccagttcctcctgggcaggtggc

caaaattacagttgacccctcctggtctggctgaacc

ttgccccatatggtgacagccatctggccagggccca

ggtctccctctgaagcctttgggaggagagggagagt

ggctggcccgatcacagatgcggaaggggctgactcc

tcaaccggggtgcagactctgcagggtgggtctgggc

ccaacacacccaaagcacgcccaggaaggaaaggcag

cttggtatcactgcccagagctaggagaggcaccggg

aaaatgatctgtccaagacccgttcttgcttctaaac

tccgagggggtcagatgaagtggttttgtttcttggc

ctgaagcatcgtgttccctgcaagaagcggggaacac

agaggaaggagagaaaagatgaactgaacaaagcatg

caaggcaaaaaaggccttaggatggctgcaggaagtt

agttcttctgcattggctccttactggctcgtcgatc

gcccacaaacaacgcacccagtggagaacttccctgt

tacttaaacaccattctctgtgcttgcttcctcagGG

GCTGATGCCAAGCCATCCGTCTTCATCTTCCCGCCAT

CGAAGGAGCAGTTAGCGACCCCAACTGTCTCTGTGGT

GTGCTTGATCAATAACTTCTTCCCCAGAGAAATCAGT

GTCAAGTGGAAAGTGGATGGGGTGGTCCAAAGCAGTG

GTCATCCGGATAGTGTCACAGAGCAGGACAGCAAGGA

CAGCACCTACAGCCTCAGCAGCACCCTCTCGCTGCCC

ACGTCACAGTACCTAAGTCATAATTTATATTCCTGTG

AGGTCACCCACAAGACCCTGGCCTCCCCTCTGGTCAC

AAGCTTCAACAGGAACGAGTGTGAGGCTtagAGGCCC

ACAGGCCCCTGGCCTGCCCCCAGCCCCAGCCCCCCTC

CCCACCTCAAGCCTCAGGCCCTTGCCCCAGAGGATCC

TTGGCAATCCCCCAGCCCCTCTTCCCTCCTCATCCCC

TCCCCCTCTTTGGCTTTAACCGTGTTAATACTGGGGG

GTGGGGGAATGAATAaataaaGTGAACCTTTGCACCT

GTGAtttctctctcctgtctgattttaaggttgttaa

atgttgttttccccattatagttaatcttttaaggaa

ctacatactgagttgctaaaaactacaccatcactta

taaaattcacgccttctcagttctcccctcccctcct

gtcctccgtaagacaggcctccgtgaaacccataagc

acttctctttacaccctctcctgggccggggtaggag

actttttgatgtcccctcttcagcaagcctcagaacc

attttgagggggacagttcttacagtcacat*tcctg

tgatctaatgactttagttaccgaaaagccagtctct

caaaaagaagggaacggctagaaaccaagtcatagaa

atatatatgtataaaatatatatatatccatatatgt

aaaataacaaaataatgataacagcataggtcaacag

gcaacagggaatgttgaagtccattctggcacttcaa

tttaagggaataggatgccttcattacattttaaata

caatacacatggagagcttcctatctgccaaagacca

tcctgaatgccttccacactcactacaaggttaaaag

cattcattacaatgttgatcgaggagttcccgttgtg

gctcagcaggttaagaacgtgactggtatccaggagg

atgcgggtttggtccccagcctcgctcagtggattaa

ggatccagtgttgctgcaagatcacgggctcagatcc

cgtgttctatggctatggtgtaggctggtagctgcat

gcagccctaatttgacccctagcctgggaactgccat

atgccacatgtgaggcccttaaaacctaaaagaaaaa

aaaagaaaagaaatatcttacacccaatttatagata

agagagaagctaaggtggcaggcccaggatcaaagcc

ctacctgcctatcttgacacctgatacaaattctgtc

ttctagggtttccaacactgcatagaacagagggtca

aacatgctaccctcccagggactcctcccttcaaatg

acataaattttgttgcccatctctgggggcaaaactc

aacaatcaatggcatctctagtaccaagcaaggctct

tctcatgaagcaaaactctgaagccagatccatcatg

acccaaggaagtaaagacaggtgttactggttgaact

gtatccttcaattcaatatgctcaatttccaactccc

agtccccgtaaatacaaccccctttgggaagagagtc

cttgcagatgtagccacgttaaaaagagattatacag

aaaggctagtgaggatgcagtgaaacgggatctttca

tacattgctggtggaaatgtaaaatgctgcaggcact

ctagaaaataatttgccagttttttgaaaagctaaac

aaaatagtttagttgcattctgggttatttatccccc

agaaattaaaaattatgtccgcacaaaaacgtgtaca

taatcattcataacagccttgtac

Seq ID No. 12

caaggaaccaagctggaactcaaacgtaagtcaatcc

aaacgttccttccttggctgtctgtgtcttacggtct

ctgtggctctgaaatgattcatgtgctgactctctga

aaccagactgacattctccagggcaaaactaaagcct

gtcatcaaactggaaaactgagggcacattttctggg

cagaactaagagtcaggcactgggtgaggaaaaactt

gttagaatgatagtttcagaaacttactgggaagcaa

agcccatgttctgaacagagctctgctcaagggtcag

gaggggaaccagtttttgtacaggagggaagttgaga

cgaacccctgtgtatatggtttcggcgcggggaccaa

gctggagctcaaacgtaagtggctttttccgactgat

tctttgctgtttctaattgttggttggctttttgtcc

atttttcagtgttttcatcgaattagttgtcagggac

caaacaaattgccttcccagattaggtaccagggagg

ggacattgctgcatgggagaccagagggtggctaatt

tttaacgtttccaagccaaaataactggggaaggggg

cttgctgtcctgtgagggtaggtttttatagaagtgg

aagttaaggggaaatcgctatggttcacttttggctc

ggggaccaaagtggagcccaaaattgagtacattttc

catcaattatttgtgagatttttgtcctgttgtgtca

tttgtgcaagtttttgacattttggttgaatgagcca

ttcccagggacccaaaaggatgagaccgaaaagtaga

aaagagccaacttttaagctgagcagacagaccgaat

tgttgagtttgtgaggagagtagggtttgtagggaga

aaggggaacagatcgctggctttttctctgaattagc

ctttctcatgggactggcttcagagggggtttttgat

gagggaagtgttctagagccttaactgtgggttgtgt

tcggtagcgggaccaagctggaaatcaaacgtaagtg

cacttttctactcctttttctttcttatacgggtgtg

aaattggggacttttcatgtttggagtatgagttgag

gtcagttctgaagagagtgggactcatccaaaaatct

gaggagtaagggtcagaacagagttgtctcatggaag

aacaaagacctagttagttgatgaggcagctaaatga

gtcagttgacttgggatccaaatggccagacttcgtc

tgtaaccaacaatctaatgagatgtagcagcaaaaag

agatttccattgaggggaaagtaaaattgttaatatt

gtggatcacctttggtgaagggacatccgtggagatt

gaacgtaagtattttttctctactaccttctgaaatt

tgtctaaatgccagtgttgacttttagaggcttaagt

gtcagttttgtgaaaaatgggtaaacaagagcatttc

atatttattatcagtttcaaaagttaaactcagctcc

aaaaatgaatttgtagacaaaaagattaatttaagcc

aaattgaatgattcaaaggaaaaaaaaattagtgtag

atgaaaaaggaattcttacagctccaaagagcaaaag

cgaattaattttctttgaactttgccaaatcttgtaa

atgatttttgttctttacaatttaaaaaggttagaga

aatgtatttcttagtctgttttctctcttctgtctga

taaattattatatgagataaaaatgaaaattaatagg

atgtgctaaaaaatcagtaagaagttagaaaaatata

tgtttatgttaaagttgccacttaattgagaatcaga

agcaatgttatttttaaagtctaaaatgagagataaa

ctgtcaatacttaaattctgcagagattctatatctt

gacagatatctcctttttcaaaaatccaatttctatg

gtagactaaatttgaaatgatcttcctcataatggag

ggaaaagatggactgaccccaaaagctcagattt*aa

gaaaacctgtttaag*gaaagaaaataaaagaactgc

attttttaaaggcccatgaatttgtagaaaaatagga

aatattttaataagtgtattcttttattttcctgtta

ttacttgatggtgtttttataccgccaaggaggccgt

ggcaccgtcagtgtgatctgtagaccccatggcggcc

ttttttcgcgattgaatgaccttggcggtgggtcccc

agggctctggtggcagcgcaccagccgctaaaagccg

ctaaaaactgccgctaaaggccacagcaaccccgcga

ccgcccgttcaactgtgctgacacagtgatacagata

atgtcgctaacagaggagaatagaaatatgacgggca

cacgctaatgtggggaaaagagggagaagcctgattt

ttattttttagagattctagagataaaattcccagta

ttatatccttttaataaaaaatttctattaggagatt

ataaagaatttaaagctatttttttaagtggggtgta

attctttcagtagtctcttgtcaaatggatttaagta

atagaggcttaatccaaatgagagaaatagacgcata

accctttcaaggcaaaagctacaagagcaaaaattga

acacagcagccagccatctagccactcagattttgat

cagttttactgagtttgaagtaaatatcatgaaggta

taattgctgataaaaaaataagatacaggtgtgacac

atctttaagtttcagaaatttaatggcttcagtagga

ttatatttcacgtatacaaagtatctaagcagataaa

aatgccattaatggaaacttaatagaaatatattttt

aaattccttcattctgtgacagaaattttctaatctg

ggtcttttaatcacctaccctttgaaagagtttagta

atttgctatttgccatcgctgtttactccagctaatt

tcaaaagtgatacttgagaaagattatttttggtttg

caaccacctggcaggactattttagggccattttaaa

actcttttcaaactaagtattttaaactgttctaaac

catttagggccttttaaaaatcttttcatgaatttca

aacttcgttaaaagttattaaggtgtctggcaagaac

ttccttatcaaatatgctaatagtttaatctgttaat

gcaggatataaaattaaagtgatcaaggcttgaccca

aacaggagtatcttcatagcatatttcccctcctttt

tttctagaattcatatgattttgctgccaaggctatt

ttatataatctctggaaaaaaaatagtaatgaaggtt

aaaagagaagaaaatatcagaacattaagaattcggt

attttactaactgcttggttaacatgaaggtttttat

tttattaaggtttctatctttataaaaatctgttccc

ttttctgctgatttctccaagcaaaagattcttgatt

tgttttttaactcttactctcccacccaagggcctga

atgcccacaaaggggacttccaggaggccatctggca

gctgctcaccgtcagaagtgaagccagccagttcctc

ctgggcaggtggccaaaattacagttgacccctcctg

gtctggctgaaccttgccccatatggtgacagccatc

tggccagggcccaggtctccctctgaagcctttggga

ggagagggagagtggctggcccgatcacagatgcgga

aggggctgactcctcaaccggggtgcagactctgcag

ggtgggtctgggcccaacacacccaaagcacgcccag

gaaggaaaggcagcttggtatcactgcccagagctag

gagaggcaccgggaaaatgatctgtccaagacccgtt

cttgcttctaaactccgagggggtcagatgaagtggt

tttgtttcttggcctgaagcatcgtgttccctgcaag

aagcggggaacacagaggaaggagagaaaagatgaac

tgaacaaagcatgcaaggcaaaaaaggccttaggatg

gctgcaggaagttagttcttctgcattggctccttac

tggctcgtcgatcgcccacaaacaacgcacccagtgg

agaacttccctgttacttaaacaccattctctgtgct

tgcttcctcaggggctgatgccaagccatccgtcttc

atcttcccgccatcgaaggagcagttagcgaccccaa

ctgtctctgtggtgtgcttgatca

Seq ID No. 15

gatgccaagccatccgtcttcatcttcccgccatcga

aggagcagttagcgaccccaactgtctctgtggtgtg

cttgatcaataacttcttccccagagaaatcagtgtc

aagtggaaagtggatggggtggtccaaagcagtggtc

atccggatagtgtcacagagcaggacagcaaggacag

cacctacagcctcagcagcaccctctcgctgcccacg

tcacagtacctaagtcataatttatattcctgtgagg

tcacccacaagaccctggcctcccctctggtcacAAG

CTTCAACAGGAACGAGTGTGAGGCTTAGAGGCCCACA

GGCCCCTGGCCTGCCCCCAGCCCCAGCCCCCCTCCCC

ACCTCAAGCCTCAGGCCCTTGCCCCAGAGGATCCTTG

GCAATCCCCCAGCCCCTCTTCCCTCCTCATCCCCTCC

CCCTCTTTGGCTTTAACCGTGTTAATACTGGGGGGTG

GGGGAATGAATAAATAAAGTGAACCTTTGCACCTGTG

ATTTCTCTCTCCTGTCTGATTTTAAGGTTGTTAAATG

TTGTTTTCCCCATTATAGTTAATCTTTTAAGGAACTA

CATACTGAGTTGCTAAAAACTACACCATCACTTATAA

AATTCAcgCCTTCTCAGTTCTCCCCTCCCCTCCTGTC

CTCCGTAAGACAGGCCTCCGTGAAACCCATAAGCACT

TCTCTTTACACCCTCTCCTGGGCCGGGGTAGGAGACT

TTTTGATGTCCCCTcTTCAGCAAGCCTCAGAACCATT

TTGAGGGGGACAGTTCTTACAGTCACAT*TCCtGtGA

TCTAATGACTTTAGTTaCCGAAAAGCCAGTCTCTCAA

AAAGAAGGGAACGGCTAGAAACCAAGTCATAGAAATA

TATATGTATAAAATATATATATATCCATATATGTAAA

ATAACAAAATAATGATAACAGCATAGGTCAACAGGCA

ACAGGGAATGTTGAAGTCCATTCTGGCACTTCAATTT

AAGGGAATAGGATGCCTTCATTACATTTTAAATACAA

TACACATGGAGAGCTTCCTATCTGCCAAAGACCATCC

TGAATGCCTTCCACACTCACTACAAGGTTAAAAGCAT

TCATTACAATGTTGATCGAGGAGTTCCCGTTGTGGCT

CAGCAGGTTAAGAACGTGACTGGTATCCAGGAGGATG

CGGGTTTGGTCCCCAGCCTCGCTCAGTGGATTAAGGA

TCCAGTGTTGCTGCAAGATCACGGGCTCAGATCCCGT

GTTCTATGGCTATGGTGTAGGCTGGTAGCTGCATGCA

GCCCTAATTTGACCCCTAGCCTGGGAACTGCCATAtG

CCACATGTGAGGCCCTTAAAACCTAAAAGAAAAAaAA

AGAAAAGAAATATCTTACACCCAATTTATAGATAAGA

GAGAAGCTAAGGTGGCAGGCCCAGGATCAAAGCCCTA

CCTGCCTATCTTGACACCTGAtACAAATTCTGTCTTC

TAGGGtTTCCAACACTGCATAGAACAGAGGGTCAAAC

ATGCTACCCTCCCAGGGACTCCTCCCTTCAAATGACA

TAAATTTTGTTGCCCATCTCTGGGGGCAAAACTCAAC

AATCAATGGCATCTCTAGTACCAAGCAAGGCTCTTCT

CATGAAGCAAAACTCTGAAGCCAGATCCATCATGACC

CAAGGAAGTAAAGACAGGTGTTACTGGTTGAACTGTA

TCCTTCAATTCAATATGCTCAATTTCCAACTCCCAGT

CCCCGTAAATACAACCCCCTTTGGGAAGAGAGTCCTT

GCAGATGTAGCCACGTTAAAAAGAGATTATACAGAAA

GGCTAGTGAGGATGCAGTGAAACGGGATCTTTCATAC

ATTGCTGGTGGAAATGTAAAATGCTGCAGGCACTCTA

GAAAATAATTTGCCAGTTTTTTGAAAAGCTAAACAAA

ATAGTTTAGTTGCATTCTGGGTTATTTATCCCCCAGA

AATTAAAAATTATGTCCGCACAAAAACGTGTACATAA

TCATTCATAACAGCCTTGTACGAAAAGCTT

Seq ID No. 16

GGATCCTTAACCCACTAATCGAGGATCAAACACGCAT

CCTCATGGACAATATGTTGGGTTCTTAGCCTGCTGAG

ACACAACAGGAACTCCCCTGGCACCACTTTAGAGGCC

AGAGAAACAGCACAGATAAAATTCCCTGCCCTCATGA

AGCTTATAGTCTAGCTGGGGAGATATCATAGGCAAGA

TAAACACATACAAATACATCATCTTAGGTAATAATAT

ATACTAAGGAGAAAATTACAGGGGAGAAAGAGGACAG

GAATTGCTAGGGTAGGATTATAAGTTCAGATAGTTCA

TCAGGAACACTGTTGCTGAGAAGATAACATTTAGGTA

AAGACCGAAGTAGTAAGGAAATGGACCGTGTGCCTAA

GTGGGTAAGACCATTCTAGGCAGCAGGAACAGCGATG

AAAGCACTGAGGTGGGTGTTCACTGCACAGAGTTGTT

CACTGCACAGAGTTGTGTGGGGAGGGGTAGGTCTTGC

AGGCTCTTATGGTCACAGGAAGAATTGTTTTACTCCC

ACCGAGATGAAGGTTGGTGGATTTTGAGCAGAAGAAT

AATTCTGCCTGGTTTATATATAACAGGATTTCCCTGG

GTGCTCTGATGAGAATAATCTGTCAGGGGTGGGATAG

GGAGAGATATGGCAATAGGAGCCTTGGCTAGGAGCCC

ACGACAATAATTCCAAGTGAGAGGTGGTGCTGCATTG

AAAGCAGGACTAACAAGACCTGCTGACAGTGTGGATG

TAGAAAAAGATAGAGGAGACGAAGGTGCATCTAGGGT

TTTCTGCCTGAGGAATTAGAAAGATAAAGCTAAAGCT

TATAGAAGATGCAGCGCTCTGGGGAGAAAGACCAGCA

GCTCAGTTTTGATCCATCTGGAATTAATTTTGGCATA

AAGTATGAGGTATGTGGGTTAACATTATTTGTTTTTT

TTTTTTCCATGTAGCTATCCAACTGTCCCAGCATCAT

TTATTTTAAAAGACTTTCCTTTCCCCTATTGGATTGT

TTTGGCACCTTCACTGAAGATCAACTGAGCATAAAAT

TGGGTCTATTTCTAAGCTCTTGATTCCATTCCATGAC

CTATTTGTTCATCTTTACCCCAGTAGACACTGCCTTG

ATGATTAAAGCCCCTGTTACCATGTCTGTTTTGGACA

TGGTAAATCTGAGATGCCTATTAGCCAACCAAGCAAG

CACGGCCCTTAGAGAGCTAGATATGAGAGCCTGGAAT

TCAGACGAGAAAGGTCAGTCCTAGAGACATACATGTA

GTGCCATCACCATGCGGATGGTGTTAAAAGCCATCAG

ACTGCAACAGACTGTGAGAGGGTACCAAGCTAGAGAG

CATGGATAGAGAAACCCAAGCACTGAGCTGGGAGGTG

CTCCTACATTAAGAGATTAGTGAGATGAAGGACTGAG

AAGATTGATCAGAGAAGAAGGAaAATCAGGAAAATGG

TGCTGTCcTGAAAATCCAAGGGAAGAGATGTTCCAAA

GAGGAGAaAACTGATCAGTTGTCAGCTAGCGTCAATT

GGGATGAAAATGGACCATTGGACAGAGGGATGTAGTG

GGTCATGGGTGAATAGATAAGAGCAGCTTCTATAGAA

TGGCAGGGGCAAAATTCTCATCTGATCGGCATGGGTT

cTAAAGAAAACGGGAAGAAAAAATTGAGTGCATGACC

AGTCCCTTCAAGTAGAGAGGTgGAAAAGGGAAGGAGG

AAAATGAGGCCACGACAACATGAGAGAAATGACAGCA

TTTTTAAAAATTTTTTATTTTATTTtATTTATTTATT

TTTGCTTTTTAGGGCTGCCCCTGCAAcatatggaggt

tcccaggttaggggtctaatcagagctatagctgcca

gcctacaccacagccatagcaatgccagatctacatg

acctacaccacagctcacagcaacgccggatccttaa

cccactgagtgaggccagagatcaaacccatatcctt

atggatactagtcaggttcattaccactgagccaaaa

tgggaaATCCTGAGTAATGACAGCATTTTTTAATGTG

CCAGGAAGCAAAACTTGCCACCCCGAAATGTCTCTCA

GGCATGTGGATTATTTTGAGCTGAAAACGATTAAGGC

CCAAAAAACACAAGAAGAAATGTGGACCTTCCCCCAA

CAGCCTAAAAAATTTAGATTGAGGGCCTGTTCCCAGA

ATAGAGCTATTGCCAGACTTGTCTACAGAGGCTAAGG

GCTAGGTGTGGTGGGGAAACCCTCAGAGATCAGAGGG

ACGTTTATGTACCAAGCATTGACATTTCCATCTCCAT

GCGAATGGCCTTCTTCCCCTCTGTAGCCCCAAACCAC

CACCCCCAAAATCTTCTTCTGTCTTTAGCTGAAGATG

GTGTTGAAGGTGATAGTTTCAGCCACTTTGGCGAGTT

CCTCAGTTGTTCTGGGTCTTTCCTCCGGATCCACATT

ATTCGACTGTGTTTGATTTTCTCCTGTTTATCTGTCT

CATTGGCACCCATTTCATTCTTAGACCAGCCCAAAGA

ACCTAGAAGAGTGAAGGAAAATTTCTTCCACCCTGAC

AAATGCTAAATGAGAATCACCgCAGTAGAGGAAAATG

ATCTGGTgCTGCGGGAGATAGAAGAGAAAATcGCTGG

AGAGATGTCACTGAGTAGGTGAGATGGGAAAGGGGGG

GCACAGGTGGAGGTGTTGCCCTCAGCTAGGAAGACAG

ACAGTTcacagaagagaagcgggtgtccgtGGACATC

TTGCCTCATGGATGAGGAAACCGAGGCTAAGAAAGAC

TGCAAAAGAAAGGTAAGGATTGCAGAGAGGTCGATCC

ATGACTAAAATCACAGTAACCAACCCCAAACCACCAT

GTTTTCTCCTAGTCTGGCACGTGGCAGGTACTGTGTA

GGTTTTCAATATTATTGGTTTGTAACAGTACCTATTA

GGCCTCCATCcCCTCCTCTAATACTAACAAAAGTGTG

AGACTGGTCAGTGAAAAATGGTCTTCTTTCTCTATGC

AATCTTTCTCAAGAAGATACATAACTTTTTATTTTAT

CATaGGCTTGAAGAGCAAATGAGAAACAgCCTCCAAC

CTATGACACCGTAACAAAGTGTTTATGATCAGTGAAG

GGCAAGAAACAAAACATACACaGTAAAGACCCTCCAT

AATATTGtGGGCTGGCCCAaCACAGGCCAGGTTGTAA

AAGCTTTTTATTCTTTGATAGAGGAATGGATAGTAAT

GTTTCAACCTGGACAGAGAT*CATGTTCACTGAATCC

TTCCAAAAATTCATGGGTAGTTTGAAtTATAAGGAAA

ATAAGACTTAGGATAAATACTTTgTCCA*GATCCCAG

AGTTAATgCCAAAATCAGTTTTCAGACTCCAGGCAGC

CTGATCAAGAGCCTAAACTTTAAAGACACAGTCCCTT

AATAACTACTATTCACAGTTGCACTTTCAgGGCGCAA

AGACTCATTGAATCCTACAATAGAATGAGTTTAGATA

TCAAATCTCTCAGTAATAGATGAGGAGACTAAATAGC

GGGCATGACCTGGTCACTTAAAGACAGAATTGAGATT

CAAGGCTAGTGTTCTTTCTACCTGTTTTGTTTCTACA

AGATGTAGCAATGCGCTAATTACAGACCTCTCAGGGA

AGGAATTCACAACCCTCAGCAAAAACCAAAGACAAAT

CTAAGACAACTAAGAGTGTTGGTTTAATTTGGAAAAA

TAACTCACTAACCAAACGCCCCTCTTAGCACCCCAAT

GTCTTCCACCATCACAGTGCTCAGGCCTCAACCATGC

CCCAATGACCCCAGCCCCAGACTGGTTATTACCAAGT

TTCATGATGACTGGCCTGAGAAGATCAAAAAAGCAAT

GACATCTTACAGGGGACTACCCCGAGGACCAAGATAG

CAACTGTCATAGCAACCGTCACACTGCTTTGGTCA

Seq ID No. 19

ggatcaaacacgcatcctcatggacaatatgttgggt

tcttagcctgctgagacacaacaggaactcccctggc

accactttagaggccagagaaacagcacagataaaat

tccctgccctcatgaagcttatagtctagctggggag

atatcataggcaagataaacacatacaaatacatcat

cttaggtaataatatatactaaggagaaaattacagg

ggagaaagaggacaggaattgctagggtaggattata

agttcagatagttcatcaggaacactgttgctgagaa

gataacatttaggtaaagaccgaagtagtaaggaaat

ggaccgtgtgcctaagtgggtaagaccattctaggca

gcaggaacagcgatgaaagcactgaggtgggtgttca

ctgcacagagttgttcactgcacagagttgtgtgggg

aggggtaggtcttgcaggctcttatggtcacaggaag

aattgttttactcccaccgagatgaaggttggtggat

tttgagcagaagaataattctgcctggtttatatata

acaggatttccctgggtgctctgatgagaataatctg

tcaggggtgggatagggagagatatggcaataggagc

cttggctaggagcccacgacaataattccaagtgaga

ggtggtgctgcattgaaagcaggactaacaagacctg

ctgacagtgtggatgtagaaaaagatagaggagacga

aggtgcatctagggttttctgcctgaggaattagaaa

gataaagctaaagcttatagaagatgcagcgctctgg

ggagaaagaccagcagctcagttttgatccatctgga

attaattttggcataaagtatgaggtatgtgggttaa

cattatttgttttttttttttccatgtagctatccaa

ctgtcccagcatcatttattttaaaagactttccttt

cccctattggattgttttggcaccttcactgaagatc

aactgagcataaaattgggtctatttctaagctcttg

attccattccatgacctatttgttcatctttacccca

gtagacactgccttgatgattaaagcccctgttacca

tgtctgttttggacatggtaaatctgagatgcctatt

agccaaccaagcaagcacggcccttagagagctagat

atgagagcctggaattcagacgagaaaggtcagtcct

agagacatacatgtagtgccatcaccatgcggatggt

gttaaaagccatcagactgcaacagactgtgagaggg

taccaagctagagagcatggatagagaaacccaagca

ctgagctgggaggtgctcctacattaagagattagtg

agatgaaggactgagaagattgatcagagaagaagga

aaatcaggaaaatggtgctgtcctgaaaatccaaggg

aagagatgttccaaagaggagaaaactgatcagttgt

cagctagcgtcaattgggatgaaaatggaccattgga

cagagggatgtagtgggtcatgggtgaatagataaga

gcagcttctatagaatggcaggggcaaaattctcatc

tgatcggcatgggttctaaagaaaacgggaagaaaaa

attgagtgcatgaccagtcccttcaagtagagaggtg

gaaaagggaaggaggaaaatgaggccacgacaacatg

agagaaatgacagcatttttaaaaattttttatttta

ttttatttatttatttttgctttttagggctgcccct

gcaacatatggaggttcccaggttaggggtctaatca

gagctatagctgccagcctacaccacagccatagcaa

tgccagatctacatgacctacaccacagctcacagca

acgccggatccttaacccactgagtgaggccagagat

caaacccatatccttatggatactagtcaggttcatt

accactgagccaaaatgggaaatcctgagtaatgaca

gcattttttaatgtgccaggaagcaaaacttgccacc

ccgaaatgtctctcaggcatgtggattattttgagct

gaaaacgattaaggcccaaaaaacacaagaagaaatg

tggaccttcccccaacagcctaaaaaatttagattga

gggcctgttcccagaatagagctattgccagacttgt

ctacagaggctaagggctaggtgtggtggggaaaccc

tcagagatcagagggacgtttatgtaccaagcattga

catttccatctccatgcgaatggccttcttcccctct

gtagccccaaaccaccacccccaaaatcttcttctgt

ctttagctgaagatggtgttgaaggtgatagtttcag

ccactttggcgagttcctcagttgttctgggtctttc

ctccTgatccacattattcgactgtgtttgattttct

cctgtttatctgtctcattggcacccatttcattctt

agaccagcccaaagaacctagaagagtgaaggaaaat

ttcttccaccctgacaaatgctaaatgagaatcaccg

cagtagaggaaaatgatctggtgctgcgggagataga

agagaaaatcgctggagagatgtcactgagtaggtga

gatgggaaaggggtgacacaggtggaggtgttgccct

cagctaggaagacagacagttcacagaagagaagcgg

gtgtccgtggacatcttgcctcatggatgaggaaacc

gaggctaagaaagactgcaaaagaaaggtaaggattg

cagagaggtcgatccatgactaaaatcacagtaacca

accccaaaccaccatgttttctcctagtctggcacgt

ggcaggtactgtgtaggttttcaatattattggtttg

taacagtacctattaggcctccatcccctcctctaat

actaacaaaagtgtgagactggtcagtgaaaaatggt

cttctttctctatgaatctttctcaagaagatacata

actttttattttatcataggcttgaagagcaaatgag

aaacagcctccaacctatgacaccgtaacaaaatgtt

tatgatcagtgaagggcaagaaacaaaacatacacag

taaagaccctccataatattgtgggtggcccaacaca

ggccaggttgtaaaagctttttattctttgatagagg

aatggatagtaatgtttcaacctggacagagatcatg

ttcactgaatccttccaaaaattcatgggtagtttga

attataaggaaaataagacttaggataaatactttgt

ccaagatcccagagttaatgccaaaatcagttttcag

actccaggcagcctgatcaagagcctaaactttaaag

acacagtcccttaataactactattcacagttgcact

ttcagggcgcaaagactcattgaatcctacaatagaa

tgagtttagatatcaaatctctcagtaatagatgagg

agactaaatagcgggcatgacctggtcacttaaagac

agaattgagattcaaggctagtgttctttctacctgt

tttgtttctacaagatgtagcaatgcgctaattacag

acctctcagggaaggaattcacaaccctcagcaaaaa

ccaaagacaaatctaagacaactaagagtgttggttt

aatttggaaaaataactcactaaccaaacgcccctct

tagcaccccaatgtcttccaccatcacagtgctcagg

cctcaaccatgccccaatcacc

Seq ID No.25

GCACATGGTAGGCAAAGGACTTTGCTTCTCCCAGCAC

ATCTTTCTGCAGAGATCCATGGAAACAAGACTCAACT

CCAAAGCAGCAAAGAAGCAGCAAGTTCTCAAGTGATC

TCCTCTGACTCCCTCCTCCCAGGCTAATGAAGCCATG

TTGCCCCTGGGGGATTAAGGGCAGGTGTCCATTGTGG

CACCCAGCCCGAAGACAAGCAATTTGATCAGGTTCTG

AGCACTCCTGAATGTGGACTCTGGAATTTTCTCCTCA

CCTTGTGGCATATCAGCTTAAGTCAAGTACAAGTGAC

AAACAACATAATCCTAAGAAGAGAGGAATCAAGCTGA

AGTCAAAGGATCACTGCCTTGGATTCTACTGTGAATG

ATGACCTGGAAAATATCCTGAACAACAGCTTCAGGGT

GATCATCAGAGACAAAAGTTCCAGAGCCAGGTAGGGA

AACCCTCAAGCCTTGCAAAGAGCAAAATCATGCCATT

GGGTTCTTAACCTGCTGAGTGATTTACTATATGTTAC

TGTGGGAGGCAAAGCGCTCAAATAGCCTGGGTAAGTA

TGTCAAATAAAAAGCAAAAGTGGTGTTTCTTGAAATG

TTAGACCTGAGGAAGGAATATTGATAACTTACCAATA

ATTTTCAGAATGATTTATAGATGTGCACTTAGTCAGT

GTCTCTCCACCCCGCACCTGACAAGCAGTTTAGAATT

TATTCTAAGAATCTAGGTTTGCTGGGGGCTACATGGG

AATCAGCTTCAGTGAAGAGTTTGTTGGAATGATTCAC

TAAATTTTCTATTTCCAGCATAAATCCAAGAACCTCT

CAGACTAGTTTATTGACACTGCTTTTCCTCCATAATC

CATCTCATCTCCGTCCATCATGGACACTTTGTAGAAT

GACAGGTCCTGGCAgAGACTCaCAGATGCTTCTGAAA

CATCCTTTGCCTTCAAAGAATGAACAGCACACATACT

AAGGATCTCAGTGATCCACAAATTAGTTTTTGCCACA

ATGGTTCTTATGATAAAAGTCTTTCATTAACAGCAAA

TTGTTTTATAATAGTTGTTCTGCTTTATAATAATTGC

ATGCTTCACTTTCTTTTCTTTTCTTTTTTTTTCTTTT

TTTGCTTTTTAGTGCCGCAGGTgcagcatatgaaatt

tcccaggctaggggtcaaatcagaactacacctactg

gcctacgccacagccacagcaactcaggatctaagcc

atgtcggtgacctacactacagctcatggcaatgcca

gatccttaacccaatgagcgaggccagggatcgaacc

catgtcctcatggatactagtcaggctcattatccgc

tgagccataacaggaactcccGAGTTTGCTTTTTATC

AAAATTGGTACAGCCTTATTGTTTCTGAAAACCACAA

AATGAATGTATTCACATAATTTTAAAAGGTTAAATAA

TTTATGATATACAAGACAATAGAAAGAGAAAACGTCA

TTGCCTCTTTCTTCCACGACAACACGCCTCCTTAATT

GATTTGAAGAAATAACTACTGAGCATGGTTTAGTGTA

CTTCTTTCAGCAATTAGCCTGTATTCATAGCCATACA

TATTCAATTAAAATGAGATCATGATATCACACAATAC

ATACCATACAGCCTATAGGGATTTTTACAATCATCTT

CCACATGACTACATAAAAACCTACCTAAAAAAAAAAA

AAACCCTACTTCATCCTCCTATTGGCTGCTTTGTGCT

CCATTAAAAAGCTCTATCATAATTAGGTTATGATGAG

GATTTCCATTTTCTACCTTTCAAGCAACATTTCAATG

CACAGTCTTATATACACATTTGAGCCTACTTTTCTTT

TTCTTTCTTTTTTTGGTTTTTTTTTTTTTTTTTTTTT

TGGTCTTTTTGTCTTTTCTAAGgctgcatatggaggt

tcccaggctagctgtctaatcagaactatagctgctg

gcctacgccacatccacagcaatacaagatctgagcc

atgtctgcaacttacaccacagctcacagcaacggtg

gatccttaaaccactgagcaaggccagggatcaaacc

catAACTTCATGGCTCCTAGTTGGATTTGTTAACCAC

TGAGCCATGATGGCAACTCCTGAGCCTACTTTTCTAA

TCATTTCCAACCCTAGGACACTTTTTTAAGTTTCATT

TTTCTCCCCCCACCCCCTGTTTTCTGAAGtGTGTTTG

CTTCCACTGGGTGACTTCACtCCCAGGATCTCATCTG

CAGGATACTGCAGCTAAGTGTATGAGCTCTGAATTTG

AATCCCAACTCTGCCACTCAAAGGGATAGGAGTTTCC

GATGTGGCCCAATGGGATCAGTGGCATCTCTGCAGTG

CCAGGACGCaggttccatccctggcccagcacagtgg

gttaagaatctggCATTGCTGCAGCTGAGGCATAGAT

TTCAATTGTGCCTCAgATCTGATCCTTGGCCCAAGGA

CTGCATATGCCTCAGGGCAACCAAAAAAGAGAAAAGG

GGGGTGATAGCATTAGTTTCTAGATTTGGGGGATAAT

TAAATAAAGTGATCCATGTACAATGTATGGCATTTTG

TAAATGCTCAACAAATTTCAACTATTATggagttccc

atcatggctcagtggaagggaatctgattagcatcca

tgaggacacaggtCCAACCCCGACCTTGCTCAGTGGG

CATTGCTGTGAGCTGTGGCATGGGTTACAGACGAAGC

TCGGATCTGGCATTGCTGTGGCTGTGGTGTAAGCCAg

CAActacagctctcattcagcccctagcctgggaacc

tccatatgccTAAAAGACAAAAAATAAAATTTAAATT

AAAAATAAAGAAATGTTAACTATTATGATTGgTACTG

CTTGCATTACTGCAAAGAAAGTCACTTTCTATACTCT

TTAATATCTTAGTTGACTGTGTGCTCAGTGAACTATT

TTGGACACTTAATTTCCACTCTCTTCTATCTCCAACT

TGACAACTCTCTTTCCTCTCTTCTGGTGAGATCCACT

GCTGACTTTGCTCTTTAAGGCAACTAGAAAAGTGCTC

AGTGACAAAATCAAAGAAAGTTACCTTAATCTTCAGA

ATTACAATCTTAAGTTCTCTTGTAAAGCTTACTATTT

CAGTGGTTAGTATTATTCCTTGGTCCCTTACAACTTA

TCAGCTCTGATCTATTGCTGATTTTCAACTATTTATT

GTTGGAGTTTTTTCCTTTTTTCCCTGTTCATTCTGCA

AATGTTTGCTGAGCATTTGTCAAGTGAAGATACTGGA

CTGGGCCTTCCAAATATAAGACAATGAAACATCGGGA

GTTCTCATTATGGTGCAGCAGAaacgaatccaactag

gaaatgtgaggttgcaggttcgatccctgcccttgct

cagtgggttaaggatccagcattaccgtgagctgtgg

tgtaggttgcagacgtggctcagatcctgcgttgctg

tggctgtggcataggctggcagctctagctctgattc

gaccgctagcctgggaacctccatGCGCCCCGAGTGC

AGCCCTTAAAAAGCAAAAAAAAAAGAAAGAAAGAAAA

AGACAATGAAACATCAAACAGCTAACAATCCAGTAGG

GTAGAAAGAATCTGGCAACAGATAAGAGCGATTAAAT

GTTCTAGGTCCAGTGACCTTGCCTCTGTGCTCTACAC

AGTCGTGCCACTTGCTGAGGGAGAAGGTCTCTCTTGA

GTTGAGTCCTGAAAGACATTAGTTGTTCACAAACTAA

TGCCAGTGAGTGAAGGTGTTTCCAAGCAGAGGGAGAG

TTTGGTAAAAAGCTGGAAGTCACAGAAAGACTCTAAA

GAGTTTAGGATGGTGGGAGCAACATACGCTGAGATGG

GGCTGGAAGGTTAAGAGGGAAACAACTATAGTAAGTG

AAGCTGGACTCACAGCAAAGTGAGGACCTCAGCATCC

TTGATGGGGTTACCATGGAAACACCAAGGCACACCTT

GATTTCCAAAACAGCAGGCACCTGATTCAGCCCAATG

TGACATGGTGGGTACCCCTCTAGCTCTACCTGTTCTG

TGACAACTGACAACCAACGAAGTTAAGTCTGGATTTT

CTACTCTGCTGATCCTTGTTTTTGTTTCACACGTCAT

CTATAGCTTCATGCCAAAATAGAGTTCAAGGTAAGAC

GCGGGCCTTGGTTTGATATACATGTAGTCTATCTTGT

TTGAGACAATATGGTGGCAAGGAAGAGGTTCAAACAG

GAAAATACTCTCTAATTATGATTAACTGAGAAAAGCT

AAAGAGTCCCATAATGACACTGAATGAAGTTCATCAT

TTGCAAAAGCCTTCCCCCCCCCCCAGGAGACTATAAA

AAAGTGCAATTTTTTAAATGAACTTATTTACAAAACA

GAAATAGACTCACAGACATAGGAAACGAACAGATGGT

TACCAAGGGTGAAAGGGAGTAGGAGGGATAAATAAGG

AGTCTGGGGTTAGCAGATACACCCCAGTGTACACAAA

ATAAACAACAGGGACCTACTATATAGCACAGGGAACT

ATATGCAGTAGCTTACAATAACCTATAATGGAAAAGA

ATGTGAAAAAGAATATATGTATGCGTGTGTGTGTAAC

TGAATCACTTTGCTGTAACCTGAATCTAACATAACAT

TGTAAATCAACTACAGTTTTTTTTTTTTTTAAGTGCA

GGGTTTTGGTGTTTTTTTTTTTTCATTTTTGTTTTTGT

TTTTGTTTTTTGCTTTTTAGGGCCACACCCAGACAT

ATGGGGGTTCCCAGGctAGGGGTcTAaTTAGAGcTAC

AGtTGCCGGCTTGCAccacagccacagcaacatcaga

tccgagccgcacttgcgacttacaccacagctcatgg

caataccagatccttaacccactgagcaaggcccagg

gatcgtacccgcaacctcatggttcctagtcagattc

attTCTGCTGCGCTACAATGGGAACTCCAAGTGCAGT

TTTTTGTAATGTGCTtGTCTTTCTTTGTAATTCATAT

TCATCCTACTTCCCAATAAATAAATAAATACATAAAT

AATAAACATACCATTGTAAATCAACTACAATTTTTTT

TAAATGCAGGGTTTTTGTTTTTTGTTTTTTGTTTTGT

CTTTTTGCCTTTTCTAgggccgctcccatggcatatg

gaggttcccaggctaggggtcgaatcggagctgtagc

caccggcctacgccagagccacagcaacgcgggatcc

gagccgcgtctgcaacctacaccacagctcacggcaa

cgccggatcgttaacccactgagcaagggcagggatc

gaacctgcaacctcatggttcctagtcagattcgtta

actactgagccacaacggaaacTCCTAAAGTGCAGTT

TTTAAATGTGCTTGTCTTTCTTTGTAATTTACACTCA

ACCTACTTCCCAATAAATAAATAAATAAACAAATAAA

TCATAGACATGGTTGAATTCTAAAGGAAGGGACCATC

AGGCCTTAGACAGAAATACGTCATCTTCTAGTATTTT

AAAACACACTAAAGAAGACAAACATGCTCTGCCAGAG

AAGCCCAGGGCCTCCACAGCTGCTTGCAAAGGGAGTT

AGGCTTCAGTAGCTGACCCAAGGCTCTGTTCCTCTTC

AGGGAAAAGGGTTTTTGTTCAGTGAGACAGCAGACAG

CTGTCACTGTGgtggacgttcggccaaggaaccaagc

tggaactcaaacGTAAGTCAATCCAAACGTTCCTTCC

TTGGCTGTCTGTGTCTTACGGTCTCTGTGGCTCTGAA

ATGATTCATGTGCTGACTCTCTGAAACCAGACTGACA

TTCTCCAGGGCAAAACTAAAGCCTGTCATCAAACcGG

AAAACTGAGGGCACATTTTCTGGGCAGAACTAAGAGT

CAGGCACTGGGTGAGGAAAAACTTGTTAGAATGATAG

TTTCAGAAACTTACTGGGAAGCAAAGCCCATGTTCTG

AACAGAGCTCTGCTCAAGGGTCAGGAGGGGAACCAGT

TTTTGTACAGGAGGGAAGTTGAGACGAACCCCTGTGT

Atatggtttcggcgcggggaccaagctggagctcaaa

cGTAAGTGGCTTTTTCCGACTGATTCTTTGCTGTTTC

TAATTGTTGGTTGGCTTTTTGTCCATTTTTCAGTGTT

TTCATCGAATTAGTTGTCAGGGACCAAACAAATTGCC

TTCCCAGATTAGGTACCAGGGAGGGGACATTGCTGCA

TGGGAGACCAGAGGGTGGCTAATTTTTAACGTTTCCA

AGCCAAAATAACTGGGGAAGGGGGCTTGCTGTCCTGT

GAGGGTAGGTTTTTATAGAAGTGGAAGTTAAGGGGAA

ATCGCTATGGTtcacttttggctcggggaccaaagtg

gagcccaaaattgaGTACATTTTCCATCAATTATTTG

TGAGATTTTTGTCCTGTTGTGTCATTTGTGCAAGTTT

TTGACATTTTGGTTGAATGAGCCATTCCCAGGGACCC

AAAAGGATGAGACCGAAAAGTAGAAAAGAGCCAACTT

TTAAGCTGAGCAGACAGACCGAATTGTTGAGTTTGTG

AGGAGAGTAGGGTTTGTAGGGAGAAAGGGGAACAGAT

CGCTGGCTTTTTCTCTGAATTAGCCTTTCTCATGGGA

CTGGCTTCAGAGGGGGTTTTTGATGAGGGAAGTGTTC

TAGAGCCTTAACTGTGGgttgtgttcggtagcgggac

caagctggaaatcaaaCGTAAGTGCACTTTTCTACTC

C

Porcine Lambda Light Chain

In another embodiment, novel genomic sequences encoding the lambda light chain locus of ungulate immunoglobulin are provided. The present invention provides the first reported genomic sequence of ungulate lambda light chain regions. In one embodiment, the porcine lambda light chain nucleotides include a concatamer of J to C units. In a specific embodiment, an isolated porcine lambda nucleotide sequence is provided, such as that depicted in Seq ID No. 28. See FIG. 3 for a diagram of the organization of the porcine lamba immunoglobulin locus.

In one embodiment, nucleotide sequence is provided that includes 5′ flanking sequence to the first lambda J/C region of the porcine lambda light chain genomic sequence, for example, as represented by Seq ID No 32.

Still further, nucleotide sequence is provided that includes 3′ flanking sequence to the J/C cluster region of the porcine lambda light chain genomic sequence, for example, approximately 200 base pairs downstream of lambda J/C, such as that represented by Seq ID No 33. Alternatively, nucleotide sequence is provided that includes 3′ flanking sequence to the J/C cluster region of the porcine lambda light chain genomic sequence, for example, approximately 11.8 kb downstream of the J/C cluster, near the enhancer (such as that represented by Seq ID No. 34), approximately 12 Kb downstream of lambda, including the enhancer region (such as that represented by Seq ID No. 35), approximately 17.6 Kb downstream of lambda (such as that represented by Seq ID No. 36, approximately 19.1 Kb downstream of lambda (such as that represented by Seq ID No. 37), approximately 21.3 Kb downstream of lambda (such as that represented by Seq ID No. 38), and/or approximately 27 Kb downstream of lambda (such as that represented by Seq ID No. 39).

In still further embodiments, isolated nucleotide sequences as depicted in Seq ID Nos 28, 31, 32, 33, 34, 35, 36, 37, 38, or 39 are provided. Nucleic acid sequences at least 80, 85, 90, 95, 98 or 99% homologous to Seq ID Nos 28, 31, 32, 33, 34, 35, 36, 37, 38, or 39 are also provided. In addition, nucleotide sequences that contain at least 10, 15, 17, 20, 25, 30, 40, 50, 75, 100, 150, 200, 250, 500 or 1,000 contiguous nucleotides of Seq ID Nos 28, 31, 32, 33, 34, 35, 36, 37, 38, or 39 are provided. Further provided are nucleotide sequences that hybridizes, optionally under stringent conditions, to Seq ID Nos 28, 31, 32, 33, 34, 35, 36, 37, 38, or 39, as well as, nucleotides homologous thereto.

Seq ID No. 28

CCTTCCTCCTGCACCTGTCAACTCCCAATAAACCGTCCTCCTTGTCATTC

AGAAATCATGCTCTCCGCTCACTTGTGTCTACCCATTTTCGGGCTTGCAT

GGGGTCATCCTCGAAGGTGGAGAGAGTCCCCCTTGGCCTTGGGGAAGTCG

AGGGGGGCGGGGGGAGGCCTGAGGCATGTGCCAGCGAGGGGGGTCACCTC

CACGCCCCTGAGGACCTTCTAGAACCAGGGGCGTGGGGCCACCGCCTGAG

TGGAAGGCTGTCCACTTTTCCCCCGGGCCCCCAGGCTCCCTCCTCCGTGT

GGACCTTGTCCACCTCTGACTGGCCCAGCCACTCATGCATTGTTTCCCCG

AAACCCCAGGACGATAGCTCAGCACGCGACAGTGTCCCCCTCTGAGGGCC

TCTGTCCATTTCAGGACGACCCGCATGTACAGCGTGACCACTCTGCTCAC

GCCCACTCACCACGTCCTAGAGCCCCACCCCCAGCCCCATCCTTAGGGGC

ACAGCCAGcTCCGACCGCCCCGGGGACACCACCCTCTGCCCCTTcCCCAG

GCCCTCCCTGTCACACGCACCACAGGGCCCTCCGTCCCGAGACCCTGCTC

CCTCATCCCTCGGTCCCCTCAGGTAGCCTTCCACCCGCGTGTGTCCCGAG

GTCCCAGATGCAGCAAGGCCCCTGGGACAACGCCAGATCTCTGCTCTcCC

CGACCCCTCAGAAGCCAGCCCACGCCTGGCCCCACCACCACTGCCTAACg

TCCAAGTGTCCATAGGCCTCGGGACCTCCAAGTCCAGGTTCTGCCTCTGG

GATTCCGCCATGGGTCTGCCTGGGAAATGATGCACTTGGAGGAGCTCAGC

ATGGGATGCGGGACCTTGTCTCTAGGCGCTcCCTCAGGATCCCACAGCTG

CCCTGTGAGACACACACACACACACACACACACACACACACACACACACA

CACACAAACACGCATGCACGCACGCCGGCACACACGCTATTGCAGAGATG

GCCACGGTAGCTGTGCCTCGAGGCCGAGTGGAGTGTCTAGAACTCTCGGG

GGTCCCCTCTGCAGACGACACTGCTCCATCCCCCCCGTGCCCTGAAGGGC

TCCTCACTCTCCCATCAGGATCTCTCCAAGCTGCTGACCTGGAGAGGAAG

GGGCCTGGGACAGGCGGGGACACTCAGACCTCCCTGCTGCCCCTCCTCTG

CCTGGGCTTGGACGGCTCCCCCCTTCCCACGGGTGAAGGTGCAGGTGGGG

AGAGGGCACCCCCCTCAGCCTCCCAGACCCAGACCAGCCCCCGTGGCAGG

GGCAGCCTGTGAGCCTCCAGCCAGATGCAGGTGGCCTGGGGTGGGGGGTG

GAGGGGGCGGGAGGTTTATGTTTGAGGCTGTATCACTGTGTAATATTTTC

GGCGGTGGGACCCATCTGACCGTCCTCGGTGAGTCTCCCCTTTTCTCTCC

TCCTTGGGGATCCGAGTGAAATCTGGGTCGATCTTCTCTCCGTTCTCCTC

CGACTGGGGCTGAGGTCTGAACCTCGGTGGGGTCCGAAGAGGAGGCCCCT

AGGCCAGGCTCCTCAGCCCCTCCAGCCCGACcgGCCCTCTTGACACAGGG

TCCAGCTAAGGGCAGACATGGAGGCTGCTAGTCCAGGGCCAGGCTCTGAG

ACCCAAGGGCGCTGCCCAAGGAACCCTTGCCCCAGGGACCCTGGGAGCAA

AGCTCCTCACTCAGAGCCTGCAGCCCTGGGGTCTGAGGACAAGGAGGGAC

TGAGGACTGGGCGTGGGGAGTTCAGGCGGGGACACCAGGTCCAGGGAGGT

GACAAAGGCGCTGGGAGGGGGCGGACGGTGCCGGGGACTCCTCCTGGGCC

CTGTGGGCTCGGGGTCCTTGTGAGGACCCTGAGGGACTGAGGGGCCCCTG

GGCCTAGGGACTTGCAgTgAGGGAGGCAGGGAGTGTCCCTTGAGAACGTG

GCCTCCGCGGGCTGGGTCCCCCTCGTGCTCCCAGCC*GGGAGGACACCCC

AGAGCAAGCGCCCCAGGTGGGCGGGGAGGGTCTCCTCACAGGGGCAGCTG

ACAGATAGAGGCCCCCGCCAGGCAGATGCTTGATCCTGGCAgTTATACTG

GGTTC**GCACAACTTTCCCTGAACAAGGGGCCCTCCGAACAGACACAGA

CGCAACCCAGTCGACCcaggCTCAGCACAgAAAATGCACTGACACCCAAA

ACCCTCATCTggggGCCTGGCCGGcAtCCCGCCCCAGGACCCAAGGCCCC

TGCCCCCTGGCAGCCCTGGACACGGTCCTCTGTGGGCGGTGGGGTCgGGG

CTGTGGTGACGGTGGCATCGGGGAGCCTGTGCCCCCTCCCTGAAAGGGCG

GAGAGGCTCAAGAGGGGAGAGAAATGTCCTCCCCTAGGAAGACCTCGGAC

GGGGGCGGGGGGGTGGTCTCCGACAGACAGATGCCCGGGACCGACAGACC

TGCCGAGGGAAGAGGGCACCTCGGTCGGGTTAGGCTCCAGGCAGCACGAG

GGAGCGAGGCTGGGAGGGTGAGGACATGGGAGCCTGAGGAGGAGCTGGAG

ACTTCAGCAGGCCCCCAGCTCCGGGCTTCGGGCTCTGAGATGCTCGGACG

CAAGGTGAGTGACCCCACCTGTGGCTGACCTGACCTCAgGGgGACAAGGC

TCAGCCTGGGACTCTGTGTCCCCATCGCCTGcACAGGGGATTCCCCTGAT

GGACACTGAGCCAACGACCTCCCGTCTCTCCCCGACCCCCAGGTCAGCCC

AAgGCCaCTCCCACGGTCAACCTCTTCCCGCCCTCCTCTGAGGAGCTCGG

CACCAACAAGGCCACCCTGGTGTGTCTAATAAGTGACTTCTACCCGGGCG

CCGTGACGGTGACCTGGAAGGCAGGCGGCACCACCGTCACCCAGGGCGTG

GAGACCACCAAGCCCTCGAAACAGAGCAACAACAAGTACGCGGCCAGCAG

CTACCTGGCCCTGTCCGCCAGTGACTGGAAATCTTCCAGCGGCTTCACCT

GCCAGGTCACCCACGAGGGGACCATTGTGGAGAAGACAGTGACGCCCTCC

GAGTGCGCCTAGGTCCCTGGGCCCCCACCCTCAGGGGCCTGGAGCCACAG

GACCCCCGCGAGGGTCTCCCCGCGACCCTGGTCCAGCCCAGCCCTTCCTC

CTGCACCTGTCAACTCCCAATAAACCGTCCTCCTTGTCATTCAGAAATCA

TGCTCTCCGCTCACTTGTGTCTACCCATTTTCGGGCTTGCATGGGGTCAT

CCTCGAAGGTGGAGAGAGTCCCCCTTGGCCTTGGGgAAATCGAGGGGGGC

GGGGGGAGGCCTGAGGCATGTGCCAGCGAGGGGGGTCACCTCCACGCCCC

TGAGGACCTTCTAGAACCAGGGGCGTGGGGCCACCGCCAGAGTGGAAGGC

TGTCCACTTTTCCCCCGGGCCCCCAGGCTCCCTCCTCCGTGTGGACCTTG

TCCACCTCTGACTGGCCCAGCCACTCATGCATTGTTTCCCCGAAACCCCA

GGACGATAGCTCAGCACGCGACAGTGTCCCCCTCTGAGGGCCTCTGTCCA

TTTCAGGACGACCCGCATGTACAGCGTGACCACTCTGCTCACGCCCACTC

ACCACGTCCTAGAGCCCCACCCCCAGCCCCATCCTTAGGGGCACAGCCAG

CTCCGACCGCCCCGGGGACACCACCCTCTGCCCCTTCCCCAGGCCCTCCC

TGTCACACGCACCACAGGGCCCTCCGTCCCGAGACCCTGCTCCCTCATCC

CTCGGTCCCCTCAGGTAGCCTTCCACCCGCGTGTGTCCCGAGGTCCCAGA

TGCAGCAAGGCCCCTGGGACAACGCCAGATCTCTGCTCTCCCCGACCCTC

AGAAGCCAGCCCACGCCTGGCCCACCACCACTGCCTAACGTCCAAGTGTC

CATAGGCTCGGGAcCTCcAaGTCCAGGTTCTGCCTCTGGGATTCCGCCAT

GGGTCTGCCTGGAATGATGCACTTGGAGgAgCTCAGcATGGGATGcGGAA

CTTGTCTAGcGCTCCTCAGATCCAcAGcTGCCTGtGAgAcacacacacac

acacacacacaccAAAcaCGcATGCACGCACGCCGGCACACACGCTATTA

CAGAGATGGCCACGGTAGCTGTGCCTCGAGGCCGAGTGGAGTGTCTAGAA

CTCTCGGGGGTCCCCTCTGCAGACGACACTGCTCCATCCCCCCCGTGCCC

TGAAGGGCTCCTCACTCTCCCATCAGGATCTCTCCAAGCTGCTGACCTGG

AGAGGAAGGGGCCTGGGACAGGCGGGGACACTCAGACCTCCCTGCTGCCC

CTCCTCTGCCTGGGCTTGGACGGCTCCCCCCTTCCCACGGGTGAAGGTGC

AGGTGGGGAGAGGGCACCCCCCTCACCCTCCCAGACCCAGACCAGCCCCC

GTGGCAGGGGCAGCCTGTGAGCCTCCAGCCAGATGCAGGTGGCCTGGGGT

GGGGGGTGGAGGGGGCGGGAGGTTTATGTTTGAGGCTGTATTCATCTGTG

TAATATttTCGGCGGTGGGACCCATCTGACCGTCCTCGGTGAGTCTCCCC

TtttctttcctccttggggatccgagtgaaATcTGGGTCGATCTTCTCTC

CGTTCTCCTCCGACTGGGGCTGAGGTCTGAACCTCGGTgGGGTCCGAAGA

GGAGGCCCCTAGGCC*GGCTCcTCAGCCCCTCCAGCCCGACCCGCCCTCT

TGACACAGGGTCCAGCTAAGGGCAGACAT***GGCTGCTAGTCCAGGGCC

AGGCTcTGAGACCCAAGGGCGCTGCCCAAGGAACCCTTGCCCCAGGGACC

CTGGGAGCAAAGCTCCTCACTCAGAGCCTGCAGCCCTGGgGTGTGAGGAC

AAGGAGGGACTGAGGACTGGGCGTGGGGAGTTCAGGCgGGGACACCGGGT

CCAGGGAGGTGACAAAGGCGCTGGGAGGGGGCGGACGGTGCCGGAGACTC

CTCCTGGGCCCTGTGGGCTCGTGGTCCTTGTGAGGACCCTGAGGG*CTGA

GGGGCCCCTGGGCCTAGGGACTTGCAGTGAGGGAGGCAGGGAGTGTCCCT

TGAGAACGTGGCCTCCGCGGGCTGGGTCCCCCTCGTGCTCCCAGCAGGGA

GGACACCCCAGAGCAAGCGCCCCAGGTGGGCGGGGAGGGTCTCCTCACAG

GGGCAGCTGACAGATAGAC*GgccCCCGCCAGACAGATGCTTGATCCTGG

TCag***TACTGGGTTCGCcACTTCCCTGAACAGGGGCCCTCCGAACAGA

CACAGACGCAGACCaggCTCAGCACAgAAAATGCACTGACACCCAAAACC

CTCATCTGggGGCCTGGCCGGCATCCCGCCCCAGGACCCAAGGCCCCTGC

CCCCTGGCAGCCCTGGACACGGTCCTCTGTGGGCGGTGGGGTCgGGGCTG

TGGTGACGGTGGCATCGGGGAGCCTGTGCCCCCTCCCTGAAAGGGCGGAG

AGGCTCAAGAGGGGACAGAAATGTCCTCCCCTAGGAAGACCTCGGACGGG

GGCGGGGGGGTGGTCTCCGACAGACAGATGCCCGGGACCGACAGACCTGC

CGAGGGAAGAGGGCACCTCGGTCGGGTTAGGCTCCAGGCAGCACGAGGGA

GCGAGGCTGGGAGGGTGAGGACATGGGAGCCTGAGGAGGAGCTGGAGACT

TCAGCAGGCCCCCAGCTCCGGGCTTCGGGCTCTGAGATGCTCGGACGCAA

GGTGAGTGACCCCACCTGTGGCTGACCTGACCTGACCtCAGGGGGACAAG

GCTCAGCCTGGGACTCTgTGTCCCCATCGCCTGCACAGGGGATTCCCCTG

ATGGACACTGAGCCAACGACCTCCCGTCTCTCCCCGACCCCCAGGTCAGC

CCAAGGCCACTCCCACGGTCAACCTCTTCCCGCCCTCCTCTGAGGAGCTC

GGCACCAACAAGGCCACCCTGGTGTGTCTA

Seq ID No. 32

GCCACGCCCACTCCATCATGCGGGGAGGGGATGGGCAGACCCTCCAGAAA

GAAGCTCCCTGGGGTGCAGGTTAACAGCTTTCCCAGACACAGCCAGTACT

AGAGTGAGGTGAATAAGACATCCTCCTTGCTTGTGAAATTTAGGAAGTGC

CCCCAAACATCAGTCATTAAGATAAATAATATTGAATGCACTTTTTTTTT

TTTATTTTTTTTTTTTGCTTTTTAGGGCCTAATCTGCAGCatatggaagt

tcccaggctacaagtcgaaccagagctgcagctgccagcctacatcacag

ccacagcaacaccagatccgagccacatctgtgactaacactgcagttca

cagcaacgccagatccttaacccattgagtgaggccagggatcaaaccca

catcctcatggatactagtctggttcgtaaaccactgagccaCAAGGGGA

ACTCCTGAATGCAATATTTTTGAAAATTGAAATTAAATCTGTCACTCTTT

CACTTAAGAGTCCCCTTAGATTGGGGAAAATTTAAATATCTGTCATCTTA

GTGCATCTTTGCTCATATGATGTGAATAAAATCCCAAAATCCATATGAAT

GAAGCATCAAAATGTACATGAAGTCAGCCTGACCCTGCACTGCCCTCACT

TGCCTCATGTACCCCCCACCTCAAAGGAAGATGCAGAAAGGAGTCCAGCC

CCTACACCGCCACCTGCCCCCACCACTGGAGCCCCTCAGGTCTCCCACCT

CCTTTTCTGAGCTTCAGTCTTCCTGTGGCATTGCCTACCTCTACAGCTGC

CCCCTACTAGGCCCTCCCCCTGGGGCTGAGCTCCAGGCACTGGACTGGGA

AAGTTAGAGGTTAAAGCATGGAAAATTCCCAAAGCCACCAGTTCCAGGCT

GCCCCCCACCCCACCGCCACGTCCAAAAAGGGGCATCTTCCCAGATCTCT

GGCTGGTATTGGTAGGACCCAGGACATAGTCTTTATACCAATTCTGCTGT

GTGTCTTAGGAAAGAaactctccctctctgtgcttcagtttcctcatcaa

taaaAGGAGCAGGCCAGGTTGGAGGGTCTGTGACGTCTGCTGAAGCAGCA

GGATTCTCTCTCCTTTTGCTGGAGGAGAACTGATCCTTCACCCCCAGGAT

CAACAGAGAAGCCAAGGTCTTCAGCCTTCCTGGGGACCCCTCAGAGGGAA

CTCAGGGCCACAGAGCCAGACCCTGATGCCAGAACCTTTGTCATATGCCC

AGACGGAGACTTCATCCCCCTCCTCCTCAGACCCTCCAGGCCCCAACAGT

GAGATGCTGAAGATATTAAGAGAAGGGCAAGTCAGcTTAAGTTTGGGGGT

AGAGGGGAACAGGGAGTGAGGAGATCTGGCCTGAGAGATAGGAGCCCTGG

TGGCCACAGGAGGACTCTTTGGGTCCTGTCGGATGGACACAGGGCGGCCC

GGGGGCATGTTGGAGCCCGGCTGGTTCTTACCAGAGGCAGGGGGCACCCT

CTGACACGGGAGCAGGGCATGTTCCATACATGACACACCCCTCTGCTCCA

GGGCAGGTGGGTGGCGGCACAGAGGAGCCAGGGACTCTGAGCAAGGGGTC

CACCAGTGGGGCAGTTGGATCCAGACTTCTCTGGGCCAGCGAGAGTCTAG

CCCTCAGCCGTTCTCTGTCCAGGAGGGGGGTGGGGCAGGCCTGGGCGGCC

AGAGCTCATCCCTCAAGGGTTCCCAGGGTCCTGCCAGACCCAGATTTCCG

ACCGCAGCCACCACAAGAGGATGTGGTCTGCTGTGGCAGCTGCCAAGACC

TTGCAGCAGGTGCAGGGTGGGGGGGTGGGGGCACCTGGGGGCAGCTGGGG

TCACTGAGTTCAGGGAAAACCCCTTTTTTCCCCTAAACCTGGGGCCATCC

CTAGGGGAAACCACAACTTCTGAGCCCTGGGCAGTGGCTGCTGGGAGGGA

AGAGCTTCATCCTGGACCCTGGGGGGGAACCCAGCTCCAAAGGTGCAAGG

GGCCCAGGTCCAAGGCTAGAGTGGGCCAAGCACCGCAATGGCCAGGGAGT

GGGGGAGGTGGAGCTGGACTGGATCAGGGCCTCCTTGGGACTCCCTACAC

CCTGTGTGACATGTTAGGGTACCCACACCCCATCACCAGTCAGGGCCTGG

CCCATCTCCAGGGCCAGGGATGTGCATGTAAGTGTGTGTGAGTGTGTGTG

TGTGGTGTAGTACACCCCTTGGCATCCGGTTCCGAGGCCTTGGGTTCCTC

CAAAGTTGCTCTCTGAATTAGGTCAAACTGTGAGGTCCTGATCGCCATCA

TCAACTTCGTTCTCCCCACCTCCCATCATTATCAAGAGCTGGGGAGGGTC

TGGGATTTCTTCCCACCCACAAGCCAAAAGATAAGCCTGCTGGTGATGGC

AGAAGACACAGGATCCTGGGTCAGAGACAAAGGCCAGTGTGTCACAGCGA

GAGAGGCAGCCGGACTATCAGCTGTCACAGAGAGGCCTTAGTCCGCTGAA

CTCAGGCCCCAGTGACTCCTGTTCCACTGGGCACTGGCCCCCCTCCACAG

CGCCCCCAGGCCCCAGGGAGAGGCGTCACAGCTTAGAGATGGCCCTGCTG

AACAGGGAACAAGAACAGGTGTGCCCCATCCAGCGCCCCAGGGGTGGGAC

AGGTGGGCTGGATTTGGTGTGAAGCCCTTGAGCCCTGgAACCCAAcCACA

GCAgGGCAGTTGGTAGATGCCATTTGGGGAGAGGCCCCAGGAGTAAGGGC

CATGGGCCCTTGAGGGGGCCAGGAGCTGAGGACAGGGACAGAGACGGCCC

AGGCAGAGGACAGGGCCATGAGGGGTGCACTGAGATGGCCACTGCCAGCA

GGGGCAGCTGCCAACCCGTCCAGGGAACTTATTCAGCAGTCAGCTGGAGG

TGCCATTGACCCTGAGGGCAGATGAAGCCCAGGCCAGGCTAGGTGGGCTG

TGAAGACCCCAGGGGACAGAGCTCTGTCCCTGGGCAGCACTGGCCTCTCA

TTCTGCAGGGCTTGACGGGATCCCAAGGCCTGCTGCCCCTGATGGTAGTG

GCAGTACCGCCCAGAGCAGGACCCCAGCATGGAAACCCCAACGGGACGCA

GCCTGCGGAGCCCACAAAACCAGTAAGGAGCCGAAGCAGTCATGGCACGG

GGAGTGTGGACTTCCCTTTGATGGGGCCCAGGCATGAAGGACAGAATGGG

ACAGCGGCCATGAGCAGAAAATCAGCCGGAGGGGATGGGCCTAGGCAGAC

GCTGGCTTTATTTGAAGTGTTGGCATTTTGTCTGGTGTGTATTGTTGGTA

TTGATTTTATTTTAGTATGTCAGTGACATACTGACATATTATGTAACGAC

ATATTATTATGTGTTTTAAGAAGCACTCCAAGGGAACAGGCTGTCTGTAA

TGTGTCCAGAGAAGAGAGCAAGAGCTTGGCTCAGTCTCCCCCAAGGAGGT

CAGTTCCTCAACAGGGGTCCTAAATGTTTCCTGGAGCCAGGCCTGAATCA

AGGGGgTCATATCTACACGTGGGGCAGACCCATGGACCATTTTCGGAGCA

ATAAGATGGCAGGGAGGATACCAAGCTGGTCTTACAGATCCAGGGCTTTG

ACCTGTGACGCGGGCGCTCCTCCAGGCAAAGGGAGAAGCCAGCAGGAAGC

TTTCAGAACTGGGGAGAACAGGGTGCAGACCTCCAGGGTCTTGTACAACG

CACCCTTTATCCTGGGGTCCAGGAGGGGTCACTGAGGGATTTAAGTGGGG

GACCATCAGAACCAGGTTTGTGTTTTGGAAAAATGGCTCCAAAGCAGAGA

CCAGTGTGAGGCCAGATTAGATGATGAAGAAGAGGCAGTGGAAAGTCGAT

GGGTGGCCAGGTAGCAAGAGGGCCTATGGAGTTGGCAAGTGAATTTAAAG

TGGTGGCACCAGAGGGCAGATGGGGAGGAGCAGGCACTGTCATGGACTGT

CTATAGAAATCTAAAATGTATACCCTTTTTAGCAATATGCAGTGAGTCAT

AAAAGAACACATATATATTTAAATTGTGTAATTCCACTTCTAAGGATTCA

TCCCAAGGGGGGAAAATAATCAAAGATGTAACCAAAGGTTTACAAACAAG

AACTCATCATTAATCTTCCTTGTTGTTATTTCAACGATATTATTATTATT

ACTATTATTATTATTATTATTttgtctttttgcattttctagggccactc

ccacggcatagagaggttcccaggctaggggtcaaatcggagctacagct

gccggcctacgccagagccacagcaacgcaggatctgagccacagcaatg

caggatctacaccacagctcatggtaacgctggatccttaacccaatgag

tgaggccagggatcgaacctgtaacttcatggttcctagtcggattcatt

aaccactgagccacgacaggaactccAACATTATTAATGATGGGAGAAAA

CTGGAAGTAACCTAAATATCCAGCAGAAAGGGTGTGGCCAAATACAGCAT

GGAGTAGCCATCATAAGGAATCTTACACAAGCCTCCAAAATTGTGTTTCT

GAAATTGGGTTTAAAGTACGTTTGCATTTTAAAAAGCCTGCCAGAAAATA

CAGAAAAATGTCTGTGATATGTCTCTGGCTGATAGGATTTTGCTTAGTTT

TAATTTTGGCTTTATAATTTTCTATAGTTATGAAAATGTTCACAAGAAGA

TATATTTCATTTTAGCTTCTAAAATAATTATAACACAGAAGTAATTTGTG

CTTTAAAAAAATATTCAACACAGAAGTATATAAAGTAAAAATTGaggagt

tcccatcgtggctcagtgattaacaaacccaactagtatccatgaggata

tggatttgatccctggccttgctcagtgggttgaggatccagtgttgctg

tgagctgtggtgtaggttgcagacacagcactctggcgttgctgtgactc

tggcgtaggccggcagctacagctccatttggacccttagcctgggaacc

tccatatgcctgagatacggcccTAAAAAGTCAAAAGCCAAAAAAATAGT

AAAAATTGAGTGTTTCTACTTACCACCCCTGCCCACATCTTATGCTAAAA

CCCGTTCTCCAGAGACAAACATCGTCAGGTGGGTCTATATATTTCCAGCC

CTCCTCCTGTGTGTGTATGTCCGTAAAACACACACACACACACACACACG

CACACACACACACACGTATCTAATTAGCATTGGTATTAGTTTTTCAAAAG

GGAGGTCATGCTCTACCTTTTAGGCGGCAAATAGATTATTTAAACAAATC

TGTTGACATTTTCTATATCAACCCATAAGATCTCCCATGTTCTTGGAAAG

GCTTTGTAAGACATCAACATCTGGGTAAACCAGCATGGTTTTTAGGGGGT

TGTGTGGATTTTTTTCATATTTTTTAGGGCACACCTGCAgcatatggagg

ttcccaggctaggggttgaatcagagctgtagctgccggcctacaccaca

gccacagcaacgccagatccttaacccactgagaaaggccagggattgaa

cctgcatcctcatggATGCTGGTCAGATTTATTTCTGCTGAGCCACAACA

GGAACTCCCTGAACCAGAATGCTTTTAACCATTCCACTTTGCATGGACAT

TTAGATTGTTTCCATTTAAAAATACAAATTACAaggagttcccgtcgtgg

ctcagtggtaacgaattggactaggaaccatgaggtttcgggttcgatcc

ctggccttgctcggtgggttaaggatccagcattgatgtgagatatggtg

taggtcgcagacgtggctcggatcccacgttgctgtggctctggcgtagg

ccggcaacaacagctccgattcgacccctagccTGggaacctccatgtgc

cacaggagcagccctaGAAAAGGCAAAAAGACAAAAAAATAAAAAATTAA

AATGAAAAAATAAAATAAAAATACAAATTACAAGAGACGGCTACAAGGAA

ATCCCCAAGTGTGTGCAAATGCCATATATGTATAAAATGTACTAGTGTCT

CCTCGCGGGAAAGTTGCCTAAAAGTGGGTTGGCTGGACAGAGAGGACAGG

CTTTGACATTCTCATAGGTAGTAGCAATGGGCTTCTCAAAATGCTGTTCC

AGTTTACACTCACCATAGCAAATGACAGTGCCTCTTCCTCTCCACCCTTG

CCAATAATGTGACAGGTGGATCTTTTTCTATTTTGTGTATCTGACAAGCA

AAAAATGAGAACAggagttcctgtcgtggtgcagtggagacaaatctgac

taggaaccatgaaatttcgggttcaatccctggcctcactcagtaggtaa

aggatccagggttgcagtgagctgtggggtaggtcgcagacacagtgcaa

atttggccctgttgtggctgtggtgtaggccggcagctatagctccaatt

ggacccctagcctgggaacctccttatgccgtgggtgaggccctAAAAAA

AAGAGTGCAAAAAAAAAAAATAAGAACAAAAATGATCATCGTTTAATTCT

TTATTTGATCATTGGTGAAACTTATTTTCCTTTTATATTTTTATTGACTG

ATTTTATTTCTCCTATGAATTTACCGGTCATAGTTTTGCCTGGGTGTTTT

TACTCCGGTTTTAGTTTTGGTTGGTTGTATTTTCTTAGAGAGCTATAGAA

ACTCTTCATCTATTTGGAATAGTAATTCCTCATTAAGTATTTGTGCTGCA

AAAAATTTTCCCTGATCTGTTTTATGCTTTTGTTTGTGGGGTCTTTCACG

AGAAAGCCTTTTTAGTTTTTACACCTCAGCTTGGTTGTTTTTCTTGATTG

TGTCTGTAATCTGCGGCCAACATAGGAAACACATTTTTACTTTAGTGTTT

TTTTCCTATTTTCTTCAAGTACGTCCATTGTTTTGGTGTCTGATTTTACT

TTGCCTGGGGTTTGTTTTTGTGTGGCAGGAATATAAACTTATGTATTTTC

CAAATGGAGAGCCAATGGTTGTATATTTGTTGAATTCAAATGCAACTTTA

TCAAACACCAAATCATCGATTTATCACAACTCTTCTCTGGTTTATTGATC

TAATGATCAATTCCTGTTCCACGCTGTTTTAATTATTTTAGCTTTGTGGA

TTTTGGTGCCTGGTAGAGAACAAAGCCTCCATTATTTTCATTCAAAATAG

TCCCGTCTATTATCTGCCATTGTTGTAGTATTAGACTTTAAAATCAATTT

ACTGATTTTCAAAAGTTATTCCTTTGGTGATGTGGAATACTTTATACTTC

ATAAGGTACATGGATTCATTTGTGGGGAATTGATGTCTTTGCTATTGTGG

CCATTTGTCAAGTTGTGTAATATTTTACCCATGCCAACTTTGCATATTGT

ATGTGAGTTTATTCCCAGGGTTTTTAATAGGATGTTTATTGAAGTTGTCA

GTGTTTCCACAATTTCATCGCCTCAGTGCTTACTGTTTGCATAAAAGGAA

ACCTACTCACTTTTGCCTATTGCTCTTGTATTCAATCATTTTAGTTAACT

CTTGTGTTAATTTTGAGAGTTTTTCAGCTGACTGTCTGGGGTTTTCTTTA

ATAGACTAGCCCTTTGTCTGTAAAGAATAATTTTATCGAATTTTTCTTAA

CACTCACACTCTCCCCACCCCCACCCCCGCTCATCTCCTTTCATTGGGTC

AAATCTGTAGAATACAATAAAAGTAAGAGTGGGAACCTTAGCCTTTAAGT

CGATTTTGCCTTTAAATGTGAATGTTGCTATGTTTCGGGACATTCTCTTT

ATCAAGTTGCGGATGTTTCCTTAGATAATTAACTTAATAAAAGACTGGAT

GTTTGCTTTCTTCAAATCAGAATTGTGTTGAATTTATATTGCTATTCTGT

TTAATTTTGTTTCAAAAAATTTACATGCACACCTTAAAGATAACCATGAC

CAAATAGTCCTCCTGCTGAGAGAAAATGTTGGCCCCAATGCCACAGGTTA

CCTCCCGACTCAGATAAACTACAATGGGAGATAAAATCAGATTTGGCAAA

GCCTGTGGATTCTTGCCATAACTCTCAGAGCATGACTTGGGTGTTTTTTC

CTTTTCTAAGTATTTTAATGGTATTTTTGTGTTACAATAGGAAATCTAGG

ACACAGAGAGTGATTCAATGAGGGGAACGCATTCTGGGATGACTCTAGGC

CTCTGGTTTGGGGAGAGCTCTATTGAAGTAAAGACAATGAGAGGAAGCAA

GTTTGCAGGGAACTGTGAGGAATTTAGATGGGGAATGTTGGGTTTGAGGT

TTCTATAGGGCACGCAAGCAGAGATGCACTCAGGAGGAAGAAGGAGCATA

AATCTAGAGGCAAAAAGAGAGGTCAGGACTGGAAATAGAGATGCGAGACA

CCAGGGTGGCAGTCAGAGAGCACAGTGTGGGTCAGAAGACAGTGGAAGAA

CACAAGGGACAGAGAGGGATCTCCAACTTCACTGGGATGAGGGCCTTGTT

GGCCTTGACCTGAGAGATTTCCAGGAGTTGAGGGTGGGAAGGAGAGGGCT

CCTGCACATGTCCTGACATGAAACGGTGCCCAGCATATGGGTGCTTGGAA

GACATTGTTGGACAGATGGATGGATGATGGATGATGGATGAATGGATGGA

TGGAAGATGATGGATAAATGGATGATGGATGGATGGACAGAAGGACAAAG

AGATGGACAGAAAGACAGTGATCTGAGAGAGCAGAGAAGGCTTCATGAAA

GGACAGGAACTGAACTGTCTCAGTGGGTGGAGACAATGGTGTAGGGGGTT

TCCACATGGAGGCACCAGGGGTCAGGAATAATCTAGTGTCCACAGGCCCA

GGAAGGAAGCTGTCTGCAGGAAATTGTGGGGAAGAACCTCAGAGTCCTTA

AATGAGGTCAGGAGTGGTCAGGAGGGTCTGATCAGGTAAGGACTCATGTC

CATCATCACATGGTCACCTAAGGGCATGTAGCTCTCAGCATCTCCATCAG

GACAGTCTCAGAATGGGGGCGGGGTCACACACTGGGTGACTCAAGGCGTG

GGTCATGCCTGCCTCGGACGTGGGCCTGGGCATGGGGACACCTCCAGACC

ATGGGCCCGCCCAGGGCTGCACTGGcctctggtgggctagctacccgtcc

aagcaacacaggacacagccctacctgctgcaaccctgtgcccgaaacgc

ccatctggttcctgctccagcccggccccagggaacaggactcaggtgct

agcccaatggggttttgttcgagcctcagtcagcgtggTATTTCTCCGGC

AGCGAGACTCAGTTCACCGCCTTAGGttaagtggttctcatgaatttcct

agcagtcctgcactctgctatgccgggaaagtcacttttgtcgctggggg

ctgtttccccgtgcccttggagaatcaaggattgcccaactttctctgtg

ggggaggtggctggtcttggggtgaccagcaggaagggccccaaaagcag

gagcagctgcctccagAATACAACTGTCGGCTACAGCTCAAACAGGAGGC

CTGGACTGGGGTTTAACCACCAGGGCGGCACGAAGGAGCGAGGCTGGGAG

GGTGAGGACATGGGAGCCTGAGGAGGAGCTGGAGACTTCAGCAGGCCCCC

AGCTCCGGGCTTCGGGCTCTGAGATGCTCGGACGCAAGGTGAGTGACCCC

ACCTGTGGCTGACCTGACCTCAGGGGGACAAGGCTCAGCCTGAGACTCTG

TGTCCCCATCGCCTGCACAGgggattcccctgatggacactgagccaacg

acctcccgtctctccccgacccccaggtcagcccaaggccgcccccacgg

tcaacctcttcccgccctcctctgaggagctcggcaccaacaaggccacc

ctggtgtgtctaataagtgacttctacccgAAGGGCGAATTCCAGCACAC

TGGCGGCCGTTACTAGTGGATCCGAGCTCGGTACCAAGCTTGATGCATAG

CTTGAGTATCTA

Seq ID No. 33

agatctttaaaccaccgagcaaggccagggatcgaacccgcatcctcatg

aatcctagttgggttcgttaaccgctgaaccacaatgggaactcctGTCT

TTCACATTTAATTCACAACCTCTCCAGGATTCTGGGGGTGGGTGGGGAAT

CCTAGGTACCCACTGGGAAAGTAATCCAAGGGGAGAGGCTCACGGACTcT

AGGGATCGGCGGAGGAGGGAAGGTATCTCCCAGGAAACTGGCCAGGACAC

ATTGGTCCTCCGCCCTCCCCTTCCTCCCACTCCTCCTCCAGACAGGACTG

TGCCCACCCCCTGCCACCTTTCTGGCCAGAACTGTCCATGGCAGGTGACC

TTCACATGAGCCCTTCCTCCCTGCCTGCCCTAGTGGGACCCTCCATACCT

CCCCCTGGACCCCGTTGTCCTTTCTTTCCAGTGTGGCCCTGAGCATAACT

GATGCCATCATGGGCTGCTGACCCACCCGGGACTGTGTTGTGCAGTGAGT

CACTTCTCTGTCATCAGGGCTTTGTAATTGATAGATAGTGTTTCATCATC

ATTAGGACCGGGTGGCCTCTATGCTCTGTTAGTCTCCAAACACTGATGAA

AACCTTCGTTGGCATAGTCCCAGCTTCCTGTTGCCCATCCATAAATCTTG

ACTTAGGGATGCACATCCTGTCTCCAAGCAACCACCCCTCCCCTAGGCTA

ACTATAAAACTGTCCCAATGGCCCTTGTGTGGTGCAGAGTTCATGCTTCC

AGATCATTTCTCTGCTAGATCCATATCTCACCTTGTAAGTCATCCTATAA

TAAACTGATCCATTGATTATTTGCTTCTGTTTTTTCCATCTCAAAACAGC

TTCTCAGTTCAGTTCGAATTTTTTATTCCCTCCATCCACCCATACTTTCC

TCAGCCTGGGGAACCCTTGCCCCCAGTCCCATGCCCTTCCTCCCTCTCTG

CCCAGCTCAGCACCTGCCCACCCTCACCCTTCCTGTCACTCCCTAGGACT

GGACCATCCACTGGGGCCAGGACACTCCAGCAGCCTTGGCTTCATGGGCT

CTGAAATCCATGGCCCATCTCTATTCCTCACTGGATGGCAGGTTCAGAGA

TGTGAAAGGTCTAGGAGGAAGCCAGGAAGGAAACTGTTGCATGAAAGGCC

GGCCTGATGGTTCAGTACTTAAATAATATGAGCTCTGAGCTCCCCAGGAA

CCAAAGCATGGAGGGAGTATGTGCCTCAGAATCTCTCTGAGATTCAGCAA

AGCCTTTGCTAGAGGGAAAATAGTGGCTCAACCTTGAGGGCCAGCATCTT

GCACCACAGTTAAAAGTGGGTATTTGTTTTACCTGAGGCCTCAGCATTAT

GGGAACCGGGCTCTGACACAAACACAGGTGCAGCCCGGCAGCCTCAGAAC

ACAGCAACGACCACAAGCTGGGACAGCTGCCCCTGAACGGGGAGTCCACC

ATGCTTCTGTCTCGGGTACCACCAGGTCACCATCCCTGGGGGAGGTAGTT

CCATAGCAGTAGTCCCCTGATTTCGCCCCTCGGGCGTGTAGCCAGGCAAG

CTCCTGCCTCTGGACCCAGGGTGGACCCTTGCTCCCCACTACCCTGCACA

TGCCAGACAGTCAAGACCACTCCCACCTCTGTCTGAGGCCCCCTTGGGTG

TCCCAGGGCCCCCGAGCTGTCCTCTACTCATGGTTCTTCCACCTGGGTAC

AAAAGAGGCGAGGGACACTTTTCTCAGGTTTGCGGCTCAGAAAGGTACCT

TCCTAGGGTTTGTCCACTGGGAGTCACCTCCCTTGCATCTCAATGTCAGT

GGGGAAAACTGGGTCCCATGGGGGGATTAGTGCCACTGTGAGGCCCCTGA

AGTCTGGGGCCTCTAGACACTATGATGATGAGGGATGTGGTGAAAAACCC

CACCCCAGCCCTTCTTGCCGGGACCCTGGGCTGTGGCTCCCCCATTGCAC

TTGGGGTCAGAGGGGTGGATGGTGGCTATGGTCAGGCATGTTTCCCATGA

GCTGGGGGCACCCTGGGTGACTTTCTCCTGTGAATCCTGAATTAGCAGCT

ATAACAAATTGCCCAAACTCTTAGGCTTAAAACAACACACATTTATTCCT

CTGGGTCCCAGGGTCAGAAGTCCAAAATGAGTCCTATAGGCTAAATTTGA

GGTGTCTCTGGGTTGAGCTCCTCCTGGAAGCCTTTTCCAGCCTCTAGAGT

CCCAAGTCCTTGGCTCTGGGCCCCTCCCTCAAGCTTCAAAGCCACAGAAG

CTTCTAATCTCTCTCCCTTCCCCTCTGACCTCTGCTCCCATCCTCATACC

CTGTCCCCTCACTCTGACCCTCCTGCCTCCCTCTTTCCCTTATAAAGACC

CTGCATGGGGCCAGGGAGATAATCCAGGGTAATCGCCCCTCTTCCAGCCC

TTAACTCCATCCCATCTGCAAAATCCCTGTCACCCCATAATGGACCTACT

GATGGTCTGGGGGTTAGGACGTGGACAACTTGGGGCCTTATTCATCTGAT

CACAACTCCAGTTCCCAGACCCCCAGACCCCCGGGCATTAGGGAAACTTC

TCCCAGTTCCTCTCCCTCTGTGTCCTGCCCAGTCTCCAGGATGGGCCACT

CCCGAGGGCCCTTCAGCTCAGGCTCCCCCTCCTTTCTCCCTGGCCTCTTG

TGGCCCCATCTCCTCCTCCGCTCACAGGGAGAGAACTTTGATTTCAGCTT

TGGCTCTGGGGCTTTGCTTCCTTCTGGCCATTGGCTGAAGGGCGGGTTTC

TCCAGGTCTTACCTGTCAGTCATCAAACCGCCCTTGGAGGAAGACCCTAA

TATGATCCTTACCCTACAGATGGAGACTCGAGGCCCAGAGATCCTGAGTG

ACCTGCTCACATTCACAGCAGGGACTGAACCCCAGTCACCTACCCAACTC

CAGGGCTCAGCGCTTTTTTTTTTTTTTTTCTTTTTgccttttcgagggcc

gctcccgcaacatatggagatttccaggctaggggtctaattggagcagt

cgacactggcctaagccaaagccacagcaacaagggcaagccgcttctgc

agcctataccacagctcacggcaatgccggatccttaacccactgagcaa

agccagggattgaacctgcaacctcatgtttcctagtcaaatttgttaac

cactgacccatgacgggaactcccAGGGCTCAGCTCTTGACTCCAGGTTC

GCAGCTGCCCTCAAAGCAATGCAACCCTGGCTGGCCCCGCCTCATGCATC

CGGCCTCCTCCCCAAAGAGCTCTGAGCCCACCTGGGCCTAGGTCCTCCTC

CCTGGGACTCATGGCCTAAGGGTACAGAGTTACTGGGGCTGATGAAGGGA

CCAATGGGGACAGGGGCCTCAAATCAAAGTGGCTGTCTCTCTCATGTCCC

TTCCTCTCCTCAGGGTCCAAAATCAGGGTCAGGGCCCCAGGGCAGGGGCT

GAGAGGGCCTCTTTCTGAAGGCCCTGTCTCAGTGCAGGTTATGGGGGTCT

GGGGGAGGGTCAATGCAGGGCTCACCCTTCAGTGCCCCAAAGCCTAGAGA

GTGAGTGCCTGCCAGTGGCTTCCCAGGCCCAATCCCTTGACTGCCTGGGA

ATGCTCAAATGCAGGAACTGTCACAACACCTTCAGTCAGGGGCTGCTCTG

GGAGGAAAAACACTCAGAATTGGGGGTTCAGGGAAGGCCCAGTGCCAAGC

ATAGCAGGAGCTCAGGTGGCTGCAGATGGTGTGAACCCCAGGAGCAGGAT

GGCCGGCACTCCCCCCAGACCCTCCAGAGCCCCAGGTTGGCTGCCCTCTT

CACTGCCGACACCCCTGGGTCCACTTCTGCCCTTTCCCACCTAAAACCTT

TAGGGCTCCCACTTTCTCCCAAATGTGAGACATCACCACGGCTCCCAGGG

AGTGTCCAGAAGGGCATCTGGCTGAGAGGTCCTGACATCTGGGAGCCTCA

GGCCCCACAATGGACAGACGCCCTGCCAGGATGCTGCTGCAGGGCTGTTA

GCTAGGCGGGGTGGAGATGGGGTACTTTGCCTCTCAGAGGCCCCGGCCCC

ACCATGAAACCTCAGTGACACCCCATTTCCCTGAGTTCACATACCTGTAT

CCTACTCCAGTCACCTTCCCCACGAACCCCTGGGAGCCCAGGATGATGCT

GGGGCTGGAGCCACGACCAGCCCACGAGTGATCCAGCTCTGCCAATCAGC

AGTCATTTCCCAAGTGTTCCAGCCCTGCCAGGTCCCACTACAGCAGTAAT

GGAGGCCCCAGACACCAGTCCAGCAGTTAGAGGGCTGGACTAGCACCAGC

TTTCAAGCCTCAGCATCTCAAGGTGAATGGCCAGTGCCCCTCCCCGTGGC

CATCACAGGATCGCAGATATGACCCTAGGGGAAGAAATATCCTGGGAGTA

AGGAAGTGCCCATACTCAAGGATGGCCCCTCTGTGACCTAACCTGTCCCT

GAGGATTGTACTTCCAGGCGTTAAAACAGTAGAACGCCTGCCTGTGAACC

CCCGCCAAGGGACTGCTTGGGGAGGCCCCCTAAACCAGAACACAGGCACT

CCAGCAGGACCTCTGAACTCTGACCACCCTCAGCAAGTGGCACCCCCCGC

AGCTTCCAAGGCAC

Seq ID No. 34

AACAAGATGCTACCCCACCAACAAAATTCACCGGAGAAGACAAGGACAGG

GGGTTCCTGGGGTCCTGACAGGGTCACCAAAGAGGGTTCTGGGGCAGCAG

CAACTCCAGCCGCCTCAGAACAGAGCCTGGAAGCTGTACCCTCAGAGCAG

AGGCGGAGAGAGAAAGGGCCTCTTGGTGGGTCAGCAGGAGCAGAGGCTCA

GAGGTGGGGGTTGCAGCCCCCCCTTCAACAGGCCAACACAGTGAAGCAGC

TGACCCCTCCACCTTGGAGACCCCAGACTCCTGTCTCCCACGCCACCTTG

GTTTTTAAGGTAATTTTTATTTTATATCAGAGTATGGTTGACTTACAATG

TTGTGTTGGTTTCAGGTGTACAGCAGAGTGATTCACTTCTACATAGACTC

ATATCTATTCTTTCTCAGATTCTTTTCCCATATAGGTTATTACAGAATAT

TGAGTAGATCCCTGCTGATTACCCATTTTTATAATTGTATATGTTAATCC

CAAACTCCTAATTTATCCCTCCCCAGACTATGATTCTTTATATCTCTATC

TGTTTCCTAATCTGTCTCCTCTAAGTCACCCTAGGAGAGCAGAGGGGTCA

CGTCTGTCCTGTCCTGGCCCAGCCACCTCTCTCCACCCAGGAATCCCTTG

CATTTGGTGCCAAGGGCCCGGCCCCGCCCTAAAGAGAAAGGAGAACGGGA

TGTGGACAGGACACCGGGCAGAGAGGGACAAGCAGAGGATGCCAGGGTAG

GGAGGTCTCCAGGGTGGATGGTGGTCTGTCCGCAGGCAGGATGAGGCAGG

AAGGGTGTGGATGTACTCGGTGAGGCTGGCGCATGGCCTGGAGTGTCCTG

AGCCCTGGGAGGCCTCAGCCCTGGATCAGATCTGTGATTCCAAAGGGCCA

CTGCATCCAGAGACCGTTGAGTGGCCCATTGTCCTGAACCATTTATAGAA

CACAGGACAAGCGGTACCTGACTAAGCTGCTCACAGATTCCATGAGGCTG

ATGCCAGGGTTGTCACCCCATCTCACAGGCAGGGAAACTGATGCATATAC

TGCAGAGCCAGGCAGAGGCCCTCCCAGTGCCCCCTCCCAGCCTGTGGCCC

CCCTCCAGTGGCTGGACACTGAGGCCACACTGGGGCACCCTGTGGAGATC

t

Seq ID No. 35

AGATCTGGCCAGGCCAGAGAAGCCCATGTGGTGACCTCCCTCCATCACTC

CACGCCCTGACCTGCCAGGGAGCAGAAAGTAGGCCCAGGGTGGACCCGGT

GGCCACCTGCCACCCCATGGCTGGGAGAAGGGAGGGCCTGGGCAAAGGGC

CTGGGAAGCCTGTGGTGGGACCCCAGACCCCAGGGTGGACAGGGAGGGTC

CCACACCCACAGCCATTTGCTTCCCTCTGTGGGTTCAGTGTCCTCATCTC

ATCTGTGGGGAGGGGGCTGATAATGAATCTCCCCCATTGGGGTGGGCTTG

GGGATTAAAGGGCCAGTGTCTGTGATATGCCTGGACCATAGTGACCCTCA

CCCTCCCCAGCCATTGCTGTCACCTTCCGGGCTCTTGCCCAGGCCTGCCT

GACATGCTGTGTGACCCTGGGCAAGATGATCCCCCTTTCTGGGCCCCAGC

CTTCCTCTCTGCTCCGGAAGTGCTTCCTGGGGAAACCTGTGGGCTGGATC

CTATAGGAAACCTGTCCAATTCCTGGATGCACAGAGGGGCAGGGAGGCCC

TGGGCCTGGAGGGGCAGGGAGGCTCGAGGTGGGAGCAGGGTAGGGGCCAG

TCCAGGGCAAGGAGGTGGGTGGGTAGGGTG

Seq ID No. 36:

GATCTGTGTTCCATCTCAGAGCTATCTTAGCAGAGAGGTGCAGGGGCCTC

CAGGGCCACCAAAGTCCAGGCTCAGCCAGAGGCAATGGGGTATCGATGAG

CTACAGGACACAGGCGTCAGCCCAGTGTCAGGGAGAATCACCTTGTTTGT

TTTCTGAGTTCCTCTTAAAATAGAGTTAATTGGTCTTGGCCTTACGGTTT

ACAATAACAACTGCACCCTGTAAACAACGTGAAGAGTACAGAACAACAAA

TGGGGGAAAACATATTTCACCTGAAAGAGCCACCGCTCATATTTTGATGG

ATTTCCTTCTAGTTTAATCCTGTTTTAATTGTAAACTGTTAAAACAAACA

TAAATAAAGAAAATGCATCTGTAAAGTTTAAAAGTCATATCTATGGTGAT

GGTTGCAAAACACTGTGAATGTTCACTTTGAAATCGTGAACTCTACGTGA

TATGCATGTCCCGTTAATTAACCTCACAGGCTCAGAATGTGGTTCATTAT

TTCTTTAATTTTCCTTTAATTTTATGTCCTGTGTGTGTGCCCTTAAACCA

ACTACTTTTCAGCTCTGCCTGTTTTTGACCTTCACATAGATGACATTTGT

GAGTGTTTTCTTTCTCAACACTGGGTCTGATACCCACCCACGCTGTCTGC

TGTCACTGCGGACGTGGAGGGCCACCACCCAGCTATGGCCCCAGCCAGGC

CAACACTGGATGAATCTGCCCCCAGAGCAGGGCCACCAACACTGGAGGTG

CAGAGAGGGTTTCTTCAGGGCCATCATTATCCAAGGCATTGTTTCTACTG

TAAGCTTTCAAAATGCTTCCCCTGATTATTAAAAGAAATAATAAGATGGG

GGGAAAGTACAAGAAGGGAAGTTTCCAGCCCAGCCTGAAGATCGTGCTGG

TTGTATCTGGAGCCTGTCTTCCTGACAGGCCTCTATTCCCAGAGTTA

Seq ID No. 37:

GGATCCTAGGGAAGGGAGGGCGGGGGCCTGGACAAAGGGGGCCTAAAGGA

CATTCTCACCTATCCCACTGGACCcctgctgtgctctgagggagggagca

gagagggggtctgaggccttttcccagCTCCTCTGAGTCCCTCCTCCGAG

CACCTGGACGGAAGCCCCTCCTCAGGGAGTCCTCAGACCCCTCCCCTCCA

GCCAGGTTGGCCTGTGTGGAGTCCCCAGTAAGAATAGAATGCTCAGGGCT

TCGAGCTGAGCCCTGGCTACTTGGGGGGGTGCTGGGGATTGGGGGTGCTG

GGCGGGGAGCTGGGGTGTCACTAGATGCCAGTAGGCTGTGGGCTCGGGTC

TGGGGGGTCTGCACATGTGCAGCTGTGGGAAGGCCCTATTGGTGGTACCC

TCAGACACATATGGCCCCTCAATTTCTGAGACCAGAGACCCCAGTCTGGC

CTTCCCAGAACAGCTGCCCCTGGTGGGGGAGATGTAGGGGGGCCTTCAGC

CCAGGACCCCCAACGGCAGGGCCTGAGGCCCCCATCCCCTTGTCCTGGGC

CCAGAGCCTCAGCTATCAGGCCTATCAGAGATCCTGGCTGCCCAGCTCAG

GTTCCCCAGGAGCCAGAGGGAGGCCAGGGGTTACTAGGAAATCCGGAAAG

GGTCTTTGAGGCTGGGCCCCACCCTCTCAGCTTTCACAGGAGAAACAGAG

GCCCACAGGGGGCAAAGGACTTGCCAGACTCACAATGAGCCCAGCAGCTG

GACTCAAGGCCCAGTGTTCGGCCCCACAACAGCACTCACGTGCCCTTGAT

CGTGAGGGGCCCCCTCTCAGCCAGGCATTCAGACCTGTGACCTGCATCTA

AGATTCAGCATCAGCCATTCTGAGCTGAAGAGCCCTCAGGGTCTGCAGTC

AAGGCCACAGGGCCAGACCTCCAACGGCCAGACATCCCAGCCAGATTCCT

TTCTGGTCAATGGGCCCCAGTCTGGCTTGGCTCCTGCAGGCCCAGTGCCG

CCTTCTTCCCCTGGGCCTGTGGAGTCCAGCCTTTCAGTTTCCCACCCACA

TCCTCAGCCACAATCCAGGCTCAGAGGCAATGTCCGTGGGCAGCCCCTGT

GTGACCCCTCTGTGGGTGATCCTCAGTCCTACCCTTAGCAGACAGCGCAT

GAGGGGCCCTCTTGAACCTGAGGGATACTCCATGTCGGAGGGGAGAAGCT

GGCCTTCCCCACCCCCACTTCCAGGCCTTGGGGAGCAGAGAAAGACCCCA

GACCTGGGTCCCTTCTAACAGGCCAGGCCCCAGCCCAGCTCTCCACCAGC

CCCAGGGGCCTCGGGTCCACGCCTGGGGACTGGAGGGTGGGCCTGTCAGG

CGCTGACCCAGAGGCAGGACAGCCAAGTTCAGGATCCCAGCCAGGTGGTC

CCCGTGCACCATGCAGGGGTGTCACCCACACAGGGGTGTTGCCACCCTCA

CCTGACTGTCCTCATGGGCCACATGGAGGTATCCTGGGTTCATTACTGGT

CAACATACCCGTGTCCCTGCAGTGCCCCCTCTGGcgcacgcgtgcacgcg

cacacgcacacactcatacaGAGGCTCCAGCCAACAGTGCCCTCTAGTAG

GCACTGCTGTCACTTCTCTAAAAGGTCGCAATCATACTTGTAAAGACCCA

AGATTGTTCAGAAATCCCAGATGGAGAAGTCTGGAAAGATCtTTTTCTCC

TTTCACGGGCTGGGGAAATGTGACCTGGCCAAGGTCACACAGCAAGTGGT

GGAACCCTGGCCCCTGATTCCAGCTCATTCCAGTTCCCAAGGCCCTGCCA

GAGCCCAGAGGCTGGGCCCTCTGGGGCAGAGGAGCTGGGGTCCTCCCCCC

TACACAGAGCACACAGCCCCGCAAGAGAGAAGAGACACCTTGGGGAGAGG

AATCTCCAGACCAGAGATCCCAGTATGGGTCTCCTCTATGCTGACGGGAT

GGGATGTCAAGAGGGGAGGGGGCTGGGCTTTAGGGAAACACACAAAAATC

GCTGAGAACACTGACAGGTGCGACACACCCACCCCTAATGCTAACCTGTG

GCCCATTACTCAgatct

Seq ID No. 38

GATCTTCTCCTAAGACCAAGGAAAACTGGTCATACCAGGTCCACTTGTCC

CCTGTGGCCATTGTCCCTCCTTCCCCAGAAGAAACAAGCACTTTCCACTC

CACAAGTAGCTCCTGATCAGCTTGGAAGCCCGGTGCTGCTCTGGGCCCTG

GGGACACGGCAGGGGCATCAGAGACCAAATCCTGGAACAAAGTTCCAGTG

GGTGAGGCAGGCCGGACAAGCAACACGTTATACCATAATATGAGGCAAAA

TATAATGTGAGTTCTTTATGAAAGGAAGGGGTTGCAGGTGCAACTGTTGG

CTTAGGTGGATGGTCACCCCTGAATGGAGGAGGGGGTTCCCAGGGCATGT

GCCTGGGGAGAAGGGCTCCTGGCAGGAGGGACAGCAAGTGCAAGGGCCCT

GTGATCAAATGTGCCTGGCAAGTTGCAGGAACAGCTAGAAGGCCAGCAAG

GTTGGAACCAAGGAAGGGGTGAGGGGAGGGGCAGGGCCCTCAGGGCCTTG

CCCAGCAGCCTGAGCATCTGGAGATTTGTCCAAAGTTTCAAATGTACCTG

GGCAACCTCATGCCCATATACCATTCCTAACTTCTGCACTTAACATCTCT

AGGACTGGGACCCAGCCAGTCAAGCGGGGGGACCCAGAGAGCTCCGGTGT

GAACACCGAGGTGCTGGTGGGTCTGCGTGTGTGGACATAGGGCAGTCCCG

GTCCTTCCTTCACTAACACGGCCCGGGAAGCCCTGTGCCTCCCTGGTGCG

CGGGTCGGCGCTTCCGGAGGGTACAGGCCCACCTGGAGCCCGGGCACAGT

GCATGCAAGTCGGGTTCACGGCAACCTGAGCTGGCTCTGCAGGGCAGTGG

GACTCACAGCCAGGGGTACAGGGCAGACCGGTCCTGCCTCTGCGCCCCTC

CCTGGCCTGTGGCCCCTGGACGTGATCCCCAACAGTTAGCATGCCCCGCC

GGTGCTGAGAACCTGGACGAGGTCCGCAGGCGTCACTGGGCGGTCACTGA

GCCCGCCCCAGGCCCCCTCTGCCCCTTCCTGGGGTGACCGTGGACTCCTG

GATGACCCTGGACCCTAGACTTCCCAGGGTGTCTCGCGGAGGTTCCTCAG

CCAGGATCTCTGCGTCTCCTCCTTCCATAGAGGGGACGGCGCCCCCTTGT

GGCCAAGGAGGGGACGGTGGGTCCCGGAGCTGGGGCGGAGAACACAGGGA

GCCCCTCCCAGACCCCGCTCTGGGCAGAACCTGGGAAGGGATGTGGCCAT

CGGGGGATCCCTCCAGGCCATCTCCTCAGATGGGGGCTGGTCGACTAGCT

TCTGAGTCCTCCAAGGAACCGGGTCCTTCTAGTCATGACTCTGCCCAGAT

GAAGAAGGAGAGCACTTCTCTCCATCAGGAGGATCTGAGCTTCTCTTAAT

TAGAATCAGCTCCTTGGCTTCTACCCCTTAAAAAAAGGTACAGAAACTTT

GCACCTTGATCCAGTATCAGGGGAATTTATCAATCAATGTGGGAGAAATT

GGCATCTTTACCACACTGAATCTTTCAATCCATGAATATCCTCTCTCTCT

TCCATGCATAGGTTTTAATAATTCTCAATGGAGTTTAATGTAAGTTTTCC

TCATAGACAATTGCCTTTGGACATCTCTTTAGACTCATCTCTAGTAAACT

GATATTCTTAATGCAATTATAAAATGTATCCTGCTTAATGTTATTTTCTA

TTCATTTGCTGTTATATAGAGATACAATGAGTTTCCACATTTGAAACTGG

ATCTGGTAAATTGGCTACCCTTTTTTTATAGATTCTATTAATTTTTATAC

ATTCTGTGGGACTTGCTACATACTTAATCATGTCACCTGTGAAGAATGAC

AATTTGGTTGCTACCCTCCCAATTCTTATATGTCTCATTTCTTTCCCTCT

GCTGGTACTCTGGCAGCAGCAGGGAAGATAATGGGCCTCCTTATCTTGTC

ACAAAAGGATGTTTTTAAAGATTTCGTTATAAAACATAACGCTTTCTGGT

TTTCTTTAAAGATTCTCTCACCAGCTTAAGAAAATTTTCTTATACTCTGT

ATGATAAATGGGTTTTTGACAATCATTTGTTGCATTTTACCTAGTGTTTT

CTCTGCATCTTTATATGCTTTTTCTCCTTTAATCCTGAAAATTGTTTCGA

TTTTTCTAACATTGAACCAATCTTACATTCCTGGAATGGATGGACCAGAC

TAGTCCACATGTTTATTCTGCCCAATGGCTAGATTTTGTGTTCaatattt

tgttcagaatgtttgcatctatattcttGAGTGAGACAGAGCTGCCCTTG

TTAGGTTTCACAACCGAGGTTGTGTTAGCTTCATAAAATGAGACGTTTAT

TCTCTAAAAGAATTGTTTCGCTTCTCTGGATGAATTTGTGTAAGGTTAGA

ATTGCTTACCAGTGAagatctCGGGgCCAGTTCTTCTTTAGGGGAAGATT

TTCAACAATTAAGCTCAATGCCTTTAGAAGAACTGAGAGTTTCTATTATT

TCTTGAGTTAAATATATGTATTTAATTAGACTTTCTAGGAATAGTCTCAT

TTCATCTCAAATAATTGACATATGCTATTAAAGCAGATTCTCATGAACCA

TTGTAGGTATTCCAGGTCTAGAAAAATGTTCCCCTTTGCATCCCTAATGT

GTTTAATTTTCACCTTCTTTCTTTTGTTCTTGAGAAATTCACCAAATCAT

TTTCAATTTCAGTCATATCCCAAAGCAACCAACTCTCTACCTTCTTGTTT

TATCATCCCTGCTGGATTTTTGTTATCTACTTCTTCAGTATTTGTTCTTC

CCTTTCTTCTATTCCTCATTCCATTTTTCCCTTGTTTTCTAACTTTCTGA

GATATATGCTTAGTTCCTTCATTTGAAGCCTTTTTATTTTCTTTTTTTTT

TTTTGGTCTTTTTGTCTTTtGTTGTTGTTGTTGTGCTATTtCTTGGGCCG

CTCCCGCGGCATATGGAGGTTCCCAGGCTAGGAGTCGAATCGGAGCTGTA

GCCACCGGCCTACGCCAGAGCCACAGCAATGCGGGATCCGAGCCGCGTCT

GCAACCTACACCACAGCTCATGGCAACGCCGGATCGTTAACCCACTGAGC

AAGGGCAGGAACCGAACCCGCAACCTCATGGTTCCTAGTCGGATTCGTAA

CCACTGTGCCACAACAGGAACTCCGCCTTTTTATTTTCTATAAAAATTTC

TATGTACATTTTAAGGTTATAGGTTTCCTTCTATGTACCCCATTGGCTGT

ATCCTCAGGGTTCTGTGGAGTGATTTCATTATTGTTCAAGTTCAATATGT

CTTCTGATTTTCCAATTTGAATACCTCTCTAAATCAGTAGGTGAATATTT

CTTTTTCTTTTTCTTTTCTTTTCTTCTTTTTTTTTTTCTTTCAGCCAGGT

CCATGGCATGCAGAAATTCCCAGGCCAGGAATCAAACTCTCACCATGGCA

GTGACAATGTCGGATCCTTTACCCACTAGGCCACCAGGGAACTCTGGGAG

CATATGTTTTTATTTCCCGACATCTGAGGATGCCTAGTATGTCTTCATTA

TTGATTTCTAGTTTGCCACTGATTTCTAGTATTTTGCTCATAGAGTGTAT

GCTCAATGGTTTTGGTCATTTGAAATGTATTTAGTCCTGCTTTATGACCC

AGTATGTGGTCAGTTTTGTCAATGTTCCTTTTCTGCTTGAAGAGAACCTA

CATGCTGTAACTCTGGGTGCATGTTCTGTATATAAGTCTATAGGCTGAGC

CGGGGGAGCCTTCTAATCTGCCGTTATCTTCTTCGAGTTATTCTAGGTAC

TATTTCTTAGCCATAAACCTTTAAATTCTGATATCAATATAATGACCCCA

GCCCGCTTAGGGTCGGCACTTCATGTTATCTTTTTCCATCCATTTAATCC

CTCCCCACTGTTTTGGCCACACCCGTGGGATATGGGAGTTCCTGGGCCAA

GGATCaGATCTGAGCCGCAGCTGCCACCTATGCCACAGCAgcagcaatga

tggatctttaacccactgcaccacactggggattgaacccaagcctcagc

agcaacccaagctactgcagagacaacaccagatccttaacctgctgtgc

catagcgggaaTTTCCATCCATTTACTTTCAAGCCAGCTGAATAACCTAG

CCCACCATGCCTGGACATGGGTGCTCTGCTTCAAATGATTTTGTTCAGTC

AGCATCCATCTCTGAAATGTGTGCCAAGCATTTATATGCATGCAAGAGTC

ATGTTGGCACTTCTATCATTTCCAACAGTTCAGTAGCCTTTGTATCATGA

CATTTCTTGGCCTTTTCTCTACAATATTTGAGGCTGAGCAGACTGGCCGT

GCCCCTGTCCATGCTTCCAGAGCCTGTGTGCAGACTTCTGCTCTAGACAG

AGACAGCTAACCATCCTGCAGTGCCCAGAAAACCCAACTCAAAGACCCTC

AAGTAAGGAAGGATTTATTGGCTCACGTAATCTGGAATCCAGGCATGGGG

TATTCAGGGCCACCTGAACCAGAGGCCCTGGCCCTGTTCTCTAAGCTTCT

TCCTGCCCTGCCCTCGTTCTGGAAGTGACCCTGAAGGACAGCAATGAAGG

GCAGCTCCCCCAGGGACAGATGACTGAGAGGTCCATTTCAAGTCCAACTT

GGCCTAGATTGAGAGGCAGCAAGAAATATGGACCTACAGTGAGTCACAGG

ATTTACCAGTGGTTTGGCTGGGTTGTCAGTGTTACAGGCTAAACATTTGG

GTCCCTCCAAAATTAACATGTTGCCACTCTAACCACCAAAATCatggtat

ttgggggtggggcccttggaggtaattaggtttagaaAGAATGAAGAGGG

GGCCCTTGTGATGGGACTAGTGCCTTTATAGAGAGAGAAGAGAGAGGG

Seq ID No. 39

CACCTCATCCCCAACCACCTGGATGGTGGCAAGTGGCAGGCTGAGAGGCT

GCATATGAGCTCATCAAGAGGGTCCCCACCCCACAGAGGCTGACCCAGCT

GCCACTGCCACCTAGTGGCTGATCGGCCAAGAGCAGGAGCCCCAGGGGCA

GGTCCATTCCCTGGGGCGGCCAGGGAACCACCTGGTGGTAGGACAATTCC

ATTGCACCTCATCCATCAGGAAAAGGTTTGCCTTCCCTGGCAGTAATGCA

TCTTCCCATAACATGGTCCCTGGCCTCTTGGAATGGCTTGGCCACCGTCA

TGGCCTCACCCACAAAGCCTTGTGTCTCAGCAAGGAACTTATTCCACAGC

AAAGGACTTGCAGCCTGGAATGAACTGGTCTGACTACATACCCCATTGCC

CAGAAGTAGGTGGTCTATTGCAAAGTGGAGTGGCTTACCCAAGACTCAGT

TGTGCCCAAGTTGAGAGATAGCATCCTAAAATATGGGCTTATGTCTCACT

GGCTGAGGTTTATTCTTTGAATCAAAGACAATTATATGGTGTGGTCCCCC

CAGAGATAGAATACATGAGTCTGGGAATCAAGGGATAGAAGTAAGAAGAG

ATTTTGTCACCATTAATCCCAATAACTCGCCCAAAGAATATTTGCTTTCT

GTCCTGGCAGCTCTGCTGCTTTGGCAATAACTTCCTAGAATATAATGTCT

CCACCAGGGGACTCCACAACGGTTCCATTGATTTGAAGCCAATGGGCAGA

GGAGGGGCTGCCTTACTGGTCGGACTGGTCAGCCCTGATTACTAAGGAGA

AATCAGGCAACTTCAACAAAACTAAGGCAGGGGGGACTTTGTCTAGAACC

CAAAGCACTAAGCATCTTAGTACTTTTTAGTTCTCAGAGCCTCCAAGAAC

AAAGATTTAGCCCCTCAGCACCACCAGGTAAAGAACAGGTAAATCCAGCT

GAGGACAAGAGAAATATTGAATGGATAGAGGAAGAAAGAAATTATAGATA

TCAACTATGGCCTCATGACTAGAGTCTCCAGATTAAGCGGAATAAAAATA

CAGATGATTaGATCTGAACATCAGGCCAAACAACGAACAACAGTTTAAGT

GCGACCTAGGCAATATTTGGGACATACTTATACTAAAATTTTTTCGCTAT

TTGAGCATCCTGTATTTTATCTGGCAACTTTATTCATCCCTAGCGAAAAA

GGAACTGTGGTAACTTAGTGTATTTTTACTTTGCTCATTATTGTGTATAT

ACCTACTTGTATTTATCAATCATATTTACTCTGTTCTCAGTATTACTTTA

TATAGCAGTTGGTGGTGATGGTTAGCAACATATTCAGTGGAACTGTGACT

GAATTTGAGGAGAAATTAACAGAGTTGGCTGTGGCTACAATAACCCTTCG

GGACATGTGTCCCCTCATTTTGGGGAGATGGTTagatctCTGGGTAAATG

TTAGGGCATCTGAGCCAGAAACCAAGATTTTGCCAGCTGGTGCAATGTCA

GATTTTACCAGCAGAGGGTGCCAGAGGAATGCGGCAAAACCCGAGTGCCA

GAAAGCACCTCCCTGTTTTCCAGCTTTTCTTCCTTTTTATTTATTTTATT

TACGGCCCAGGAGTCCGTAATAGCGCTGAGGATGGCCCAGGCTCTTCTCA

GCAGCCCTGACTGACTAGTTCAGCAATGCGCTCAGGCCCCATCTGGCCAC

CGGGCAGCCTCTTCTGTGGTAGCTCCAGCCTCAGCCAGTGCAAAAGGCTA

CCCTACACTGGCGCCACTTCTACAATCAGCACTGGCCACACCCTCCACGC

CATCCGGCACGGAGCCAGGTGATCTGCCGGCCAGATTGCAGTTCGTGCTG

CCTGAGTCCAGGTGATTACACTGGCTGCATCTTTTCTTTCTGGACCAtTC

attccattttttt

Bovine Lambda Light Chain

In a further embodiment, nucleic acid sequences are provided that encode bovine lambda light chain locus, which can include at least one joining region-constant region pair and/or at least one variable region, for example, as represented by Seq ID No. 31. In Seq ID No 31, bovine lambda C can be found at residues 993-1333, a J to C pair can be found at the complement of residues 33848-35628 where C is the complement of 33848-34328 and J is the complement of 35599-35628, V regions can be found at (or in the complement of) residues 10676-10728, 11092-11446, 15088-15381, 25239-25528, 29784-30228, and 51718-52357. Seq ID No. 31 can be found in Genbank ACCESSION No. AC117274. Further provided are vectors and/or targeting constructs that contain all or part of Seq ID No. 31, for example at least 100, 250, 500, 1000, 2000, 5000, 10000, 20000, 500000, 75000 or 100000 contiguous nucleotides of Seq ID No. 31, as well as cells and animals that contain a disrupted bovine lambda gene.

Seq ID No 31

     1

tgggttctat gccacccagc ttggtctctg atggtcactt gaggccccca tctcatggca

    61

aagagggaac tggattgcag atgagggacc gtgggcagac atcagaggga cacagaaccc

   121

tcaaggctgg ggaccagagt cagagggcca ggaagggctg gggaccttgg gtctagggat

   181

ccgggtcagg gactcggcaa aggtggaggg ctccccaagg cctccatggg gcggacctgc

   241

agatcctggg ccggccaggg acccagggaa agtgcaaggg gaagacgggg gaggagaagg

   301

tgctgaactc agaactgggg aaagagatag gaggtcagga tgcaggggac acggactcct

   361

gagtctgcag gacacactcc tcagaagcag gagtccctga agaagcagag agacaggtac

   421

cagggcagga aacctccaga cccaagaaga ctcagagagg aacctgagct cagatctgcg

   481

gatgggggga ccgaggacag gcagacaggc tccccctcga ccagcacaga ggctccaagg

   541

gacacagact tggagaccaa cggacgcctt cgggcaaagg ctcgaacaca catgtcagct

   601

caaaatatac ctggactgac tcacaggagg ccagggaggc cacatcatcc actcagggga

   661

cagactgcca gccccaggca gaccccatca accgtcagac gggcaggcaa ggagagtgag

   721

ggtcagatgt ctgtgtggga aaccaagaac cagggagtct caggacagcg ctggcagggg

   781

tccaggctca ggctttccca ggaagatggg gaggtgcctg agaaaacccc acccaccttc

   841

cctggcacag gccctctggc tcacagtggt gcctggactc ggggtcctgc tgggctctca

   901

aaggatcctg tgtccccctg tgacacagac tcaggggctc ccatgacggg caccagacct

   961

ctgattgtgg tcttcttccc ctcgcccact ttgcaggtca gcccaagtcc acaccctcgg

  1021

tcaccctgtt cccgccctcc aaggaggagc tcagcaccaa caaggccacc ctggtgtgtc

  1081

tcatcagcga cttctacccg ggtagcgtga ccgtggtcta gaaggcagac ggcagcacca

  1141

tcacccgcaa cgtggagacc acccgggcct ccaaacagag caacagcaag tacgcggcca

  1201

gcagctacct gagcctgatg ggcagcgact ggaaatcgaa aggcagttac agctgcgagg

  1261

tcacgcacga ggggagcacc gtgacgaaga cagtgaagcc tcagagtgtt cttagggccc

  1321

tgggccccca ccccggaaag ttctaccctc ccaccctggt tccccctagc ccttcctcct

  1381

gcacacaatc agctcttaat aaaatgtcct cattgtcatt cagaaatgaa tgctctctgc

  1441

tcatttttgt tgatacattt ggtgccctga gctcagttat cttcaaagga aacaaatcct

  1501

cttagccttt gggaatcagg agagagggtg gaagcttggg ggtttgggga gggatgattt

  1561

cactgtcatc cagaatcccc cagagaacat tctggaacag gggatggggc cactgcagga

  1621

gtggaagtct gtccaccctc cccatcagcc gccatgcttc ctcctctgtg tggaccgtgt

  1681

ccagctctga tggtcacggc aacacactct ggttgccacg ggcccagggc agtatctcgg

  1741

ctccctccac tgggtgctca gcaatcacat ctggaagctg ctcctgctca agcggccctc

  1801

tgtccactta gatgatgacc cccctgaagt catgcgtgtt ttggctgaaa ccccaccctg

  1861

gtgattccca gtcgtcacag ccaagactcc ccccgactcg acctttccaa gggcactacc

  1921

ctctgcccct cccccagggc tccccctcac agtcttcagg ggaccggcaa gcccccaacc

  1981

ctggtcactc atctcacagt tcccccaggt cgccctcctc ccacttgcat ggcaggaggg

  2041

tcccagctga cttcgaggtc tctgaccagc ccagctctgc tctgcgaccc cttaaaactc

  2101

agcccaccac ggagcccagc accatctcag gtccaagtgg ccgttttggt tgatgggttc

  2161

cgtgagctca agcccagaat caggttaggg aggtcgtggc gtggtcatct ctgaccttgg

  2221

gtggtttctt aggagctcag aatgggagct gatacacgga taggctgtgc taggcactcc

  2281

cacgggacca cacgtgagca ccgttagaca cacacacaca cacacacaca cacacacaca

  2341

cacacacgag tcactacaaa cacggccatg ttggttggac gcatctctag gaccagaggc

  2401

gcttccagaa tccgccatgg cctcactctg cggagaccac agctccatcc cctccgggct

  2461

gaaaaccgtc tcctcaccct cccaccgggg tgacccccaa agctgctcac gaggagcccc

  2521

cacctcctcc aggagaagtt ccctgggacc cggtgtgaca cccagccgtc cctcctgccc

  2581

ctcccccgcc tggagatggc cggcgcccca tttcccaggg gtgaactcac aggacgggag

  2641

gggtcgctcc cctcacccgc ccggagggtc aaccagcccc tttgaccagg aggggggcgg

  2701

acctggggct ccgagtgcag ctgcaggcgg gcccccgggg gtggcggggc tggcggcagg

  2761

gtttatgctg gaggctgtgt cactgtgcgt gtttgctcgg tggagggacc cagctggcca

  2821

tccggggtga gtctcccctt tccagctttc cggagtcagg agtgacaaat gggtagattc

  2881

ttgtgttttt cttacccatc tggggctgag gtctccgtca ccctaggcct gtaaccctcc

  2941

cccttttagc ctgttccctc tgggcttctt cacgtttcct tgagggacag tttcactgtc

  3001

acccagcaaa gcccagagaa tatccagatg gggcaggcaa tatgggacgg caagctagtc

  3061

caccctctta ccttgggctc cccgcggcct ccggataatg tctgagctgc ctccctggat

  3121

gcttcacctt ctgagactgt gaggcaagaa accccctccc caaaagggag gagacccgac

  3181

cccagtgcag atgaacgtgc tgtgagggga ccctgggagt aagtggggtc tggcggggac

  3241

cgtgatcatt gcagactgat gccccaggca gggtgagagg tcatggccgc cgacaccagc

  3301

agctgcaggg agcacaggcc gggggcaagt catgcagaca ggacaggacg tgtgaccctg

  3361

aagagtcaga gtgacacgcg gggggggggc ccggagctcc cgagattagg gcttgggtcc

  3421

taacgggatc caggagggtc cacgggccca ccccagccct ctccctgcac ccaatcaact

  3481

tgcaataaaa cgtcctctat tgtcttacaa aaaccctgct ctctgctcat gtttttcctt

  3541

gccccgcatt taatcgtcaa cctctccagg attctggaac tggggtgggg nnnnnnnnnn

  3601

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

  3661

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn agcttatgtg gtgggcaggg gggtagtaag

  3721

atcaaaagtg cttaaattaa taaagccggc atgatatacg agtttggata aaaaatagat

  3781

ggaaaagtaa gaaaggacag gaggggggtg aggcggaaga aagggggaag aaggaaaaaa

  3841

aaataagaga gaggaacaaa gaaagggagg ggggccggtg atgggggtgg gatagaatat

  3901

aataattgga gtaaagagta gcgggtggct gttaattccg ggggggaata gagaaaaaaa

  3961

aaaaaaaatg tgcgggtggg cggtaagtat ggagatttta taaatattat gtgtggaata

  4021

atgagcgggg gtggacgggc aaggcgagag taaaaagggg cgagagaaaa aaattaggat

  4081

ggaatatatg gggtaaattt taaatagagg gtgatatatg ttagattgag caagatataa

  4141

atatagatgg tgggggaaaa gagacaaggg tgagcgccaa aacgccctcc cgtatcattt

  4201

gccttccttc ctttaccacc tcgttcaaac tctttttcga gaaccctgaa gcggtcaggc

  4261

ccggggctgg gggtgggata cccggggagg ggctgcgcct cctcctttgc agagggggtc

  4321

gaggagtggg agctgaggca ggagactggc aggctggaga gatggctgtt gacttcctgc

  4381

ctgtttgaac tcacagtcac agtgccagac ccactgaatt gggctaaata ccatattttt

  4441

ctggggagag agtgtagagc gagcgactga ggcgagctca tgtcatctac agggccgcca

  4501

gctgcaggga ctttgtgtgt gtcgtgctcg ttgctcagtt gtgtccgact ctttatgact

  4561

tcatggactg taacctgcca ggctcctctg tccgtggaat tctccaggca agaatactgg

  4621

agtgggtagc cattctcatc tccgggggat cttcctgacc caagaatcaa acctgagtct

  4681

cccgcattgc aggcagcttc tttcttgtct gagccaccag ggaagcccct taagtggagg

  4741

atctaaatag agtgtttagg agtataagag aaaggaagga cgtctataca agatccttcg

  4801

gttcctgtaa ctacgactcg agttaacaag ccctgtgtga gtgagttgcc agtaattatt

  4861

gctaacctgt ttctttcact cactgagcca ggtatcctgt gagacggcat acttacctcc

  4921

tcttctgcat tcctcgggat ggagctgtgc ggtggcctct aggactacca catcgaccag

  4981

gtcagaccca gggacagagg attgctgaga tgcactgaga agtttgtcag cctaggtctt

  5041

cacccacaca gactgtgctg tcgtctacca cgtaattctt cctgtccaaa gaactggtta

  5101

aacgctcctg aagcgtattc tggtctgctt caaaaagtgc ctctttcctt tataagttcc

  5161

gccaatcctg gactttgtcc caggccagtc tactttattt gtgggaaagg tttttttggt

  5221

cttttttgtt ttaaactctg cagaaattgc ttacactttt ggtgtgcaat ggctcactct

  5281

tacggttcta gctgtattca aaggggttgc ttttctttgt ttttaaagct ttttgaacgt

  5341

ggaccatttt taaagtcttt attaaacgtc taacatcgtt tctggtttat tttctggtgg

  5401

tctggccatg aggcctacgg gtcttagctc ccctaccagg gtccaaccca catcccttgc

  5461

actggacggc aaggtcttaa cctttgaacc accagagagc ttctgaaagg ggctgctttt

  5521

ctccaatcct ctttgctccc tgcctgctgg tagggattca gcacccctgc aatagccctg

  5581

tctgttctta ggggctcagt agcctttctg cctgggtgtg gagctggggt tgtaagagag

  5641

cttcatggat ttggacacga cctacgactc agaggtaaga ctccatctta gcgctgtaat

  5701

gacctctttc caacaaccac ccccaccacc ctggaccact gatcaggaga gatgattctc

  5761

tctcttatca tcaacgtggt cagtcccaaa cttgcacccg gcctgtcata gatgtagcag

  5821

gtaagcaata aatatttgtt gaatgttaag tgaattgaaa taacataagt gaaaaagaaa

  5881

acacttaaaa acatgtgttt ttataattac acagtaaaca tataatcatt gtagaaaaaa

  5941

atcgaaagag tggcgggggc caagtgaaaa ccaccatccc tggtatgtcc acccgcccgg

  6001

gtagccccag gtaagaggtg cggacacgga tggccctgta gacacagaga cacacgctca

  6061

tatgctgggt cttgtcttgt gacctcttgg ggatgatgtt attttcacga tgccattcaa

  6121

accttctacc acaccatttt tagagggtcg ttcatcgtaa atcagttcac tgctttgttt

  6181

tctgattttg aaagtgtcac attcttcgag aaatgagaag gaacaggcgc gcataaggaa

  6241

gaaagtaaac acgtggcctt gcttccaggg ggcactcagc gtgttggtgt gcacgctggc

  6301

agtcttttct ctgtgacagt catggccttt tcccaaaggt gggctcagat aagaccgcct

  6361

cccatcccct gtccctgtcc ccgtccccta cggtggaacc cacccacggc acgtctccga

  6421

ggccctttgg ggctgtggac gttaggctgt gtggacatgc tgctggtggg gacccagggc

  6481

tgggcagcac gttgtccctg ggtcccgggc cagtgaggag ctcccaagga gcagggctgc

  6541

tgggccaaag ggcagtgcgt cccgaggcca tggacaaggg gatacatttc ctgctgaagg

  6601

gctggactgc gtctccctgg ggccccttgg agtcatgggc agtggggagg cctctgctca

  6661

ccccgttgcc cacccatggc tcagtctgca gccaggagcg cctggggctg ggacgccgag

  6721

gccggagccc ctccctgctg tgctgacggg ctcggtgacc ctgccgcccc ctccctgggg

  6781

ccctgctgac cgcgggggcc accccggcca gttctgagat tcccctgggg tccagccctc

  6841

caggatccca ggacccagga tggcaaggat gttgaggagg cagctagggg gcagcatcag

  6901

gcccagaccg gggctgggca ggggctgggc gcaggcgggt gggggggtct gcacnccccc

  6961

acctgcnagc tgcncnnncn tttgntnncg tcctccctgn tcctggtctg tcccgcccgg

  7021

ggggcccccc ctggtcttgt ttgttccccc tccccgtccc ttcccccctt tttccgtcct

  7081

cctcccttct tttattcgcc ccttgtggtc gttttttttc cgtccctctt ttgttttttt

  7141

gtctttttct ttttccccct cttctccctt gctctctttt tcattcgtcg gtttttctgc

  7201

tcccttccct ctcccccccg ctttttttcc ctgtctgctt tttgtgttct ccctctctac

  7261

cccccctgca gcctattttt tttatatatc catttccccc tagtatttgg cccccgctta

  7321

cttctcccta atttttattt tcctttcttt aactaaaatc accgtgtggt tataagtttt

  7381

aacctttttt gcaccgccca caatgcaatc ttcacgcacg ccccccccgt cagcctcctt

  7441

aaataccttt gcctactgcc cccctccttg tataataacg cgtcacgtgg tcaaccatta

  7501

tcacctctcc accaccttac cacattttcc ttcnnnnnnn nnnnnnnnnn nnnnnnnnnn

  7561

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

  7621

nnnnnnnnnn nnntgaaaaa agaaaaggct gggcaggttt taatatgggg gggttggagt

  7681

ggaatgaaaa tgcattggag tggttgcaac aaatggaaag gtctcaggag cgctcctccc

  7741

ccatcaggag ctggaaagaa gtggaagcaa agcaaggaat tcgtgtgatg gccagaggtc

  7801

aggggcaggg agctgcaaag actgccggct gtttgtgact gnccgtctcc gggtgcattt

  7861

gttagcaggg aggcattaca ctcatgtctt ggtttgctaa ctaattctta ctattgttta

  7921

gttgcaaggt catgtctgac tctttgcaac ccagggactg cagcccgcca ggctcctctg

  7981

tccatgggat ttcgcaggca agaatactgg aggtggtagc cattttcttc accatgggat

  8041

cttcccgagc cagaaatgga acccgagtcg cctcctgtgc atggggtctg ctgcctaaca

  8101

ggcagatatt tgacgtctga gccaacaggg aggacagacg gtaattatac caaccattga

  8161

aagaggaatt acacactaat ctttatcaaa atctttcaaa cagtagagga gaaaggatac

  8221

tctctagttt attccataaa gttggaatta cgcttatcaa taaagacatt acaagaaaag

  8281

aaagtgaagc cccaaatgcc ttataaatat acaagaaaaa atcttttaag atattagcca

  8341

acttaatcaa caaaaaatgt atcaaaagtc caagtaacat tcaccccagg aatgcaagtg

  8401

tggttcagcc taagacaatc agtcatgagt ataccacgga aacaaattaa agagaaaaga

  8461

cattaaatct cacaaatggt gcagaaaaag atttggcaat atcgaacatc ttttcatgac

  8521

caaaggaaaa aaaagaaaca aaacaccaga aaattctgtg tagaaagaat atatctcaac

  8581

ccaatgaagg gcatttatga aaaacccaca gcatacatca cactccatga gaaagactga

  8641

aagctttccc cactgccatt gaactctgtc ctggaaattc tagtcacagc gacagaacaa

  8701

gagaaagaaa taacggccgt ctaaactggt aggaagaaat caaagcgtct ctattctctg

  8761

ggcgcataat acaatataga caaatttcta aagtccacaa aaattcctag agctcataat

  8821

gaatccagaa atgcgtcagg gctcaagatt cagatgcaaa aatcgtctgg gttttgatgc

  8881

accaacaaac aattccatta acaataatac caaggaatta atttaactta gaagagaaaa

  8941

gacctgttta cagagagtta taaaacattt ggtgatgaaa ttaaataaga gtaaatcata

  9001

tagaaacacc gttcgtgttt tggagaccta atgtcataaa cgtggcaaca cagagacgcc

  9061

tcacggggaa ccctgagcct ccttctccaa acaggcctgc tcatcatttc acaggtaacc

  9121

tgagacccta aagcttgact ctgaggcact ttgagggcat gaagagagca gtagctcctc

  9181

ccatgggacc gacagtcaag gcccagggaa tgaccacctg gacagatgac ttcccggcct

  9241

catcagcagt cggtgcagag tggccaccag ggggcagcag agagtcgctc aacactgcac

  9301

ctggagatga ggcaacctgg gcatcaggtg cccatgcagg ggctggatac ccacacctca

  9361

cacctgagga caggggccgg ctttctgtgg tgtcgccctc tcaggatgca cagactccac

  9421

cctcttcgct tgcattgaca gcctctgtcc ttcctggagg acaagctcca ccttccccat

  9481

ctctccccag ggggctgggg ccaacagtgt tctctcttgt ccactccagg aacacagagc

  9541

caagagattt atttgtctta attagaaaaa ctatttgtat tcctgcattt ccccagtaac

  9601

tgaaggcaac tttaaaaaat gtatttcctg gacttccctg gtgggccagt ggctagactc

  9661

tgagctccca gtgcatgggg cctgggttca atccctgctc aggaaactac atcccacagg

  9721

ctgcaaataa gatcctgcat gccacccgat gcaggcaaag aaacaagtgt tcggtatgca

  9781

tgtatttcac gtgaggtgtt tctataattt acagccagta ttctgtctta cacttagtca

  9841

ttcctttgag cacatgatcg gtcgatggcc cagaccacac acaggaatac tgaggcccag

  9901

cacccaccgg ctgcccagaa cctcatggcc aagggtggac acttacagga cctcagggga

  9961

cctttaagaa cgccccgtgc tcttggcagc ggagcagtgt taagcatggc tctgtccctc

 10021

gggagctgtg tctgggctgc gtgcatcacc tgtggtgtgg gcctggtgag ggtcaccgtc

 10081

caggggccct cgagggtcag aagaaccttc ccttaaaagt tctagaggtg gagctagaac

 10141

cagacccaca tgtgaactgc acccaaaaac agtgaaggat gagacacttc aaagtcctgg

 10201

gtgaaattaa gggccttccc ctgaaccagg atggagcaga ggaaggactt ggcttccagg

 10261

aaaccctgac gtctccaccg tgactctggc cggggtcatg gcagggccca ggatcctttg

 10321

gtgcaaagga ctcagggttc ctggaaaata cagtctccac ctctgagccc tcagtgagaa

 10381

gggcttctct cccaggagtg gggcaaggac ccagattggg gtggagctgt ccccccagac

 10441

cctgagacca gcaggtgcag gagcagcccc gggctgaggg gagtgtgagg gacgttcccc

 10501

ccgctctcaa ccgctgtagc cctgggctga gcctctccga ccacggctgc aggcagcccc

 10561

caccccaccc cccgaccctg gctcggactg atttgtatcc ccagcagcaa ggggataaga

 10621

caggcctggg aggagccctg cccagcctgg gtttggcgag cagactcagg gcgcctccac

 10681

catggcctgg accccctcct cctcggcctc ctggctcact gcacaggtga gccccagggt

 10741

ccacccaccc cagcccagaa ctcggggaca ggcctggccc tgactctgag ctcagtggga

 10801

tctgcccgtg agggcaggag gctcctgggg ctgctgcagg gtgggcagct ggaggggctg

 10861

aaatccccct ctgtgctcac tgctaggtca gccctgaggg ctgtgcctgc cagggaaagg

 10921

ggggtctcct ttactcagag actccatcca ccaggcacat gagccggggg tgctgagact

 10981

gacggggagg gtgtccctgg gggccagaga atctttggca cttaatctgc atcaggcagg

 11041

gggcttctgt tcctaggttc ttcacgtcca gctacctctc ctttcctctc ctgcaggcgc

 11101

tgtgtcctcc tacgagctga ctcagtcacc cccggcatcg atgtccccag gacagacggc

 11161

caggatcacg tgttgggggc ccagcgttgg aggtganaat gttgagtggc accagcagaa

 11221

gccaggccag gcctgtgcgc tggtctccta tggtgacgat aaccgaccca cgggggtccc

 11281

tgaccagttc tctggcgcca actcagggaa catggccacc ctgcccatca gcggggcccg

 11341

ggccaaggat gaggccgact attactgtca gctgtgggac agcagcagta acaatcctca

 11401

cagtgacaca ggcagacggg aagggagatg caaaccccct gcctggcccg cgcggcccag

 11461

cctcctcgga gcagctgcag gtcccgctga ggcccggtgc cctctgtgct cagggcctct

 11521

gttcatcttg ctgagcagcg gcaagtgggc attggttcca agtcctgggg gcatatcagc

 11581

acccttgagc cagagggtta ggggttaggg ttagggttag gctgtcctga gtcctaggac

 11641

agccgtgtcc cctgtccatg ctcagcttct ctcaggactg gtgggaagat tccagaacca

 11701

ggcaggaaac cgtcagtcgc ttgtggccgc tgagtcaggc agccattctg gtcagcctac

 11761

cggatcgtcc agcactgaga cccggggcct ccctggaggg caggaggtgg gactgcagcc

 11821

cggcccccac accgtcaccc caaaccctcg gagaaccgcg ctccccagga cgcctgcccc

 11881

tttgcaacct gacatccgaa cattttcatc agaacttctg caaaatattc acaccgctcc

 11941

tttatgcaca ttcctcagaa gctaaaagtt atcatggctt gctaaccact ctccttaaat

 12001

attcttctct aacgtccatc ttccctgctc cttagacgcg ttttcattcc acatgtctta

 12061

ctgcctttgg tctgctcgtg tattttcttt tttttttttt ttttattgga atatatttgc

 12121

gttacaatgt tgaatttgaa ttggtttctg ttgtacaaca atgtgaatta gttatacatg

 12181

tcctgaggag gggcggctgc gtgggtgcag gagggccgag aggagctact ccacgttcaa

 12241

ggtcaggagg ggcggccgtg aggagatacc cctcgtccaa ggtaagagaa acccaagtaa

 12301

gacggtaggt gttgcgagag ggcatcagag ggcagacaca ctgaaaccat aatcacagaa

 12361

actagccaat gtgatcacac ggaccacagc ctggtctaac tcagtgaaac taagccatgc

 12421

ccatggggcc aaccaagatg ggcgggtcat gtgcccatgg ggccaaccaa gatgggcggg

 12481

tcatggtgaa gaggtctgat ggaatgtggt ccactggaga agggaaaggc aaaccacttc

 12541

agtattcttg ccttgagagc cccatgaaca gtatgaaaag gcaaaatgat aggatactga

 12601

aagaggaact ccccaggtca gtaggtgccc aatatgctac tggagatcag tggagaaata

 12661

actccagaaa gaatgaaggg atggagccaa agcaaaaaca atacccagtt gtggatgtga

 12721

ctggtgatag aagcaagggc caatgatgta aagagcaata ttgcatagga acctggaatg

 12781

ttaagtccaa gannnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

 12841

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnagaatttt

 12901

gagcattact ttactagcgt gtgagacgag tgcaattgtg cggtagtttg agcattcttt

 12961

ggcattgcct ttctttggga ttggaatgaa aactgacctg ttccaggcct gtggccactg

 13021

ctgagttttc caaatttgct ggcgtattga gtgcatcact ttaacagcat catcttttag

 13081

gatttgaaat agctcaactg gaattctatc actttagcta attccattca ttagctttgt

 13141

ttgtagtgat gcttcctaag gcccccctgg ctttatcttc ctggatgtct ggctctggtg

 13201

agtgatcaca ccgctgtgat tatctgggtc atgaaggtct ttttgtatag ttcttcttag

 13261

gaacagatat tatgatctcc atccttgcat ctcgttatat ctagagaagc actgactccc

 13321

ttcatggtga cgtcagatcc tcatgactaa caaatggcct tttgtaagat gagtgcctca

 13381

tggtattgag ctcccccgtc accaagacct tatgactgac ctcccccact gccccaggtg

 13441

cctctcgaag cgtctgagat gccgcctccc aggctgcact cctcattttg cccccaataa

 13501

aacttaactt gcagctctcc agctgtgcat ctgtgtttag ttgacagtac aaatataatg

 13561

gaaaatttaa attaaatata atctatgggg agaaatccaa acatcttatg agggagagag

 13621

agggagagaa aggaaagaag aagaagcagg aggaggagga gagtagagaa acagggggag

 13681

ggcggcaggg agacagaggg gaggacaccg aggggaaagg gaggaaggcg agtgcagtga

 13741

gagagaggcc agagttcatc agagtctgga ctcgcagccc aatcccacgg gtgtgtcccg

 13801

aagcagggga gagcctgagc caggcggaga cagagctgtg tctccagtcc tcgtggccgt

 13861

gacctggagc tgtgtggtca gcccccctga ccccagcctg gccctgctgg tggtcggagg

 13921

cagtgatcct ggacacagtg tctgagcgtc tgtctgaaat ccctgtggag gcgccactca

 13981

ggacggacct cgcctggccc cacctggatc tgcaggtcca ggcccgagtg gggcttcctg

 14041

cctggaactg agcagctgga ggggcgtctg caccccagca gtggagcggc cccaggggcg

 14101

ctcagagctg ccggggggac acagagcttg tctgagaccc agggctcgtc tccgaggggt

 14161

cccctaaggt gtcttctggc cagggtcaga gccgggatga gcacaggtct gagtcagact

 14221

ttcagagctg gtggctgcat ccctggggac agagggctgg gtcctaacct gggggtcaga

 14281

gggcaggacg ggagcccagc tgacccctgg ggactggcct cctctgtggt ctcccctggg

 14341

cagtcacagc ttccccggac gtggactctg aggaggacag ctggggcctg gctgtcagga

 14401

gggggttcga gaggccacac tcagaggagg agaccctggc ctgcttgggt tgtgactgag

 14461

tttttggggt cctctaggag actctggccc tgcaggccct gcaaggtcat ctctagtgga

 14521

gcaggactcc acaagattga tgaactgaat cctctaggag aggtgtggtt gtgagggggc

 14581

agcattctag aaccaacagc gtgtgcaggt agctggcacc gggtctagtg gcggcgggca

 14641

gggcactcag ggccgactag gggtctgggg gattcaatgg tgcccacagc actgggtctt

 14701

ccatcagaat cccagacttc acaaggcagt ttcggggatt aggtcaggac gtgagggcca

 14761

cagagaggtg gtgatggcct agacaagtcc ttcacagaga gagctccagg ggccatgata

 14821

agatggatgg gtctgtattg tcagtttccc cacatcaaca ccgtggtccc gccagcccat

 14881

aatgctctgt ggatgcccct gtgcagagcc tacctggagg cccgggaggc ggggccgcct

 14941

gggggctcag ctccggggta accgggccag gcctgtccct gctgtgtcca cagtcctccc

 15001

ggggttggag gagagtgtga gcaggacagg agggtttgtg tctcacttcc ctggctgtct

 15061

gtgtcactgg gaacattgta actgccactg gcccacgaca gacagtaata gtcggcttca

 15121

tcctcggcac ggaccccact gatggtcaag atggctgttt tgccggagct ggagccagag

 15181

aactggtcag ggatccctga gcgccgctta ctgtctttat aaatgaccag cttaggggcc

 15241

tggcccggct tctgctggta ccactgagta tattgttcat ccagcagctc ccccgagcag

 15301

gtgatcttgg ccgtctgtcc caaggccact gacactgaag tcaactgtgt cagttcatag

 15361

gagaccacgg agcctggaag agaggaggga gaggggatga gaaggaagga ctccttcccc

 15421

aagtgagaag ggcgcctccc ctgaggttgt gtctgggctg agctctgggt ttgaggcagg

 15481

ctcagtcctg agtgctgggg gaccagggcc ggggtgcagt gctggggggc cgcacctgtg

 15541

cagagagtga ggaggggcag caggagaggg gtccaggcca tggtggacgt gccccgagct

 15601

ctgcctctga gcccccagca gtgctgggct ctctgagacc ctttattccc tctcagagct

 15661

ttgcaggggc cagtgagggt ttgggtttat gcaaattcac cccccggggg cccctcactc

 15721

agaggcgggg tcaccacacc atcagccctg tctgtcccca gcttcctcct cggcttctca

 15781

cgtctgcaca tcagacttgt cctcagggac tgaggtcact gtcaccttcc ctgtgtctga

 15841

ccacatgacc actgtcccaa gcccccctgc ctgtggtcct gggctcccca gtggggcggt

 15901

cagcttggca gcgtcctggc cgtggactgc ggcatggtgt cctggggttc actgtgtatg

 15961

tgaccctcag aggtggtcac tagttctgag gggatggcct gtccagtcct gacttcctgc

 16021

caagcgctgc tccctggaca cctgtggacg cacagggctg gttcccctga agccccgctt

 16081

gggcagccca gcctctgacc tgctgctcct ggccgcgctc tgctgccccc tgctggctac

 16141

cccatgtgct gcctctagca gagctgtgat ttctcagcat aactgattac tgtctccagt

 16201

actttcatgt ccctgtgacg ggctgagtta gcatttctca cactagagaa ccacagtcct

 16261

cctgtgtaaa gtgatcacac tcctctctgt gggacttttg taaaagattc tgcagccagg

 16321

agtcatgggt ggtcttagct gagaaatgct ggatcagaga gacctgataa ccgatgtgaa

 16381

gaggggaacc tggaagatct tcagttcagt tcatttcagt cattcagttg tgtccgactg

 16441

tttgggatcc catggactgc cacacgccag tcctccctgt ccatcaccaa cttctgaagc

 16501

ttgttcaaac tcatgtccat caagttggag atgcctttca accatctcat cctctgtcat

 16561

ccccttctcc tcccgccttc aatcttccct agcattaggg tcttttccgt gagtcagttc

 16621

ttcgcatcag gtggccaagt tttggagttt cagtttcagc atcagtcctt tcaatgaata

 16681

gtaaggactg atttccttta ggatggactg gtttgatatc cttgcagttc aagggactct

 16741

caagagtctt ctccaacact gcagttaaaa gccatcaatt cttcggtgct cagctttctt

 16801

tttggtacaa ctctcacatt catacatgac taccgaaaat acattagtcg tgtagaacca

 16861

gtttggggct tcccacgtgg ctctagtggt aaagaatatg cctgccaact cagaagatgt

 16921

aagagatgcg gttcaatctc tgggtcggga agatcccctg gagaagggca tgacaaccca

 16981

ctccagtatt tttgcctgga gaatcccatg gacagagaag cctggtggac tgcagtccat

 17041

ggagtctcac agagtcagac acgactgaag caacttagct acttggaaaa gagcatgcac

 17101

gaagctgtct aaaaaacagg tcaagaagtc ttgtgttttg aaggtttact gagaaagttg

 17161

atgcactgct ccaacacttc ctctcagttg aaaagatcag aagcgttaga tcaaatggtg

 17221

gtcaatacct tggatgcgct ccaacaggtt atatctgcag atggaaatga aggcagttta

 17281

tggggtaact ggaggacaag atgagatcat acacttggaa cactgtctgg catcaaaggc

 17341

gtgtacagta aacattagct gttattagca aaataaattc agcttgaatc acccaaatca

 17401

gatggcattc ttaaagccac tgagtggtaa aatcaggggt gtgcagccaa aacgtccatt

 17461

ttgactcatt atgatttcca tgtcacaaga ctagaaagtc actttctcct cagcagaaga

 17521

gaaggtagaa cattttaacc tttttttgga gtgtcaaggg aattttgttt acactgtaaa

 17581

gtcagtgaaa atattgaagc ttttcatttg tggaaaatat taaatatgta aaattgaaat

 17641

tttaaaattt attcctgggt agttttgttt ttccagtagt catgcatgga tgtgagagtt

 17701

ggactataaa gaaagctgag cgctgaagaa ttaatgcttt tgaactgtgg cactggagaa

 17761

gactcttgag agtcccttgg tctgcaagga gatcaaacca gtccatccta aaggaaatca

 17821

gtcctgaata ttcactggaa ggactgatgc tgaagctgaa actccaatac tttggccacc

 17881

tgatgtgaag aactgactca tatgaaaaga ctcagatgct gggaaagatt gaaggtggga

 17941

ggagaagggg acgacagagg atgagatggc tgaatggcat caccgactcg atggacatga

 18001

gtctgaataa gctctgggag ttgttgatgg acagggaggc cctggagtgc tgcagtccat

 18061

gggattgcaa agagttggac atgactgagt gactgaactg aactgagttt ggtaacagat

 18121

atgagaatta tataatttaa atctaaactc ttggtatttc tttctttggc ggttccaaaa

 18181

gagctgtccc ttctgttaac tatataaatc ctttttgaga attactaaat tgataatgtt

 18241

cacaagttat ccaatttctc attactctta gttgtcagta taagaaatcc catttgattt

 18301

atcatgttat agtatctgca actctaatag ttcagttctg acaaattttt attttattta

 18361

aaaatattgg catacagtaa aatttcaaac aatatacaat tctccctttc agtttaaaaa

 18421

acaaaacaaa acaaaagtaa tattagttaa aaaaatccgg gaagaatcca agcatttaaa

 18481

attgcatcac atttctatgc tagacaagct gatataaagt tataattaat aaaggattgg

 18541

actattaaac tctttacata tgaggtaaca tggctctcta gcaaaacatt taaaaatatg

 18601

ttgtgggtaa attattgttg tccttaaaga aataaaaaga cataagcgta agcaattggn

 18661

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

 18721

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnna aaatggataa ggggggagga

 18781

catgggtagg ggagcgcgat ggaggaagta aggtggtcga gggagttggg gggggaataa

 18841

gtgggtaaaa gggaagcggg cggaaggagg gggaagcagg agagaggggt gggcgtcaga

 18901

tcggggggag gggtatgagg gagagggaat ggtagacggg gggtgggaag cataaaggaa

 18961

aagatagggg ggggaaaagt tagaagaaga atgaggggat aggcggaaag ggaagagaaa

 19021

tgggagaaga acagaaaaat agggggaggg ggggcgtaaa gagggggggg gagggcaggt

 19081

gtggagatga cagatacggg gaatgccccg gtataaaaga gtatatggcg tggggcgaga

 19141

aggctgtcat cctgtgggag gggggacgcg gagaaccctt cgggctatag ggaggattcg

 19201

gggggatcgt tcgggaaggc agtcagcaca gcacccacca agggtgcagg gatggatctg

 19261

gggtcccaaa gaagaggccc aatcccgcgt cttggcagca aggagccctg gagactggga

 19321

agtgtccagg acactgaccc aggggttcga ggaacccaga agtgtgtctg tgaagatgtg

 19381

ttttgtgggg ggacaggtcc agagctttga gcagaaaagc ggccatggcc tgtggagggc

 19441

caaccacgct gatctttttt aaaaggtttt tgttttgatg tggaccattt ttaaagtctt

 19501

cattgaattt gctacaatat tgtttctggt ttatgctctg gtttcttcgg ctgcaaggtt

 19561

tgtgtgatcg tatctcctca accaggactg aacccacagc ccctgcactg gaaggcgaag

 19621

tcttaaccca gatcgccagg aacgtccctc ccctcactga tctaatccaa gaccctcatt

 19681

aaggaaaaac cgagattcaa agctccccca ggaggactcg gtggggagga gagagccaag

 19741

cactcagcac tcagtccagc acggcgccct ccctgtccag ggcgagggct cggccgaagg

 19801

accaccggag accctgtcgg attcaccagt aggattgtga ggaatttcaa cttacttttt

 19861

aaatctgtct ctcaaggctg ttacaagcgg actttaccag taacttaaaa gttgaaaggg

 19921

acttcccagg cggcacttgc ggtgaagaac ccgccggctg gttttaggag acataagaga

 19981

tgtgggttag atccctggtt caggaggatt cccctggaga aggaaatggc aacccactcc

 20041

agtattcttg cctggaaagc ctcacggaca gaggaggctg gcgggctaca gtccacgggg

 20101

tcgcacacga ctgaatcgac ttagcttcaa gttgagacag gaagaggcag tgactggtgg

 20161

caaaacaccg cacccatgct cccaggggac ctgcagcgct ctggttcatg agctgtgcta

 20221

acaaaaatca acccaacgag aggcccagac agagggaagc tgagttcatc aaacacgggc

 20281

atgatgtgga ggagataatc caggaaggga cctgccaagc ccatgacaga ccggtgtcct

 20341

gtctgagggc cgtcctggca gagcagtgca gggccctccg agaccgcccg agctccagac

 20401

ccggctgggg gctacagggt ggggctgagc tgcaaggact ctgctgtgag ccccacgtca

 20461

gggaggatca ccttgtttgt tttctgagtt tctcttaaaa tagcctttat gggtcctggt

 20521

ctttggtttt aaaataacaa ctgttctccg taaacaacgt gaaaaaaaac aaacaggagg

 20581

aaaacaacgc agcccgggca tttcacccgg aagagccgcc tctaacactt tgacgggttg

 20641

ccttctattt taaccctgtt ttcattgtaa actgtaaaaa ccacatcata aataaattaa

 20701

aggtctctgt gaagtttaaa aagtaagcat ggcggtggcg atggctgtgc cacaccgtga

 20761

acgctcgttt caaaacggta aattctaggg accccctggt ggtccagtgg gtgagatttt

 20821

gcttccattg caggagccgt gggtttgatc cctggttggg gaactaagat cccacatgct

 20881

gtatggagtg gccaaaaaga attttttgta aatggtgagt tttaggtgac gtgaatttcc

 20941

cattgatgca cttcacaggc tcagatgcag ccaggccctc aggaagcccg agtccaccgg

 21001

tcctttactt ttccttagag ttttatggct tctgtttctg cccttaaacc caccatgttt

 21061

caacctcatc tgattttgga ctttataata aagttaggct gtgtttcagg aaactttgct

 21121

cagtattctg taataatcta aatggaaaga atttgaaaaa agagcagaca cttgtacatg

 21181

cataactgaa tcactttggt gtacacctga aactcgagtg cagccgctca gtcgtgtccg

 21241

accctgcgac cccacggact gcagcacgcg ggcttccctg cccatcacca actcccggag

 21301

ttcactcaaa cacatgtccg tcgactcggt gatgccgtcc aaccgtctca tcctctgtcg

 21361

tccccttctc ctcccgcctt caatcttttc cagcatcagg gtcttttcaa atgagtcagt

 21421

tcttcacacc aggtggccag agtattggag tttcagcttc agcatcagcc cttccaacga

 21481

ccccccatac ctgaagctaa cacagtgcta atccactgtg ctgcaacatg aaagaaaaac

 21541

acatttttta agtttaggct gtgtgtgtct tccttctctc aacactgcgt ctgaccccac

 21601

ccacactgcc cagcactgca ttccccgtgg acaggaggcc ccctgcccca cagctgcgtg

 21661

ccggccggtc actgccgagc agacctgccc gcccagagtg gggcccctgg cactggggac

 21721

aaggcagggg cctctccagg gccggtcact gtccactgtt cctactggtt ttgttttcaa

 21781

aagtggaggc agcgtaatat ttccctgatt ataaaaagaa gtacacaggt tctccacaaa

 21841

taaaacaggg gaaaagtata aagaatggaa gttcccagca cagcctggag atcacgccgg

 21901

gtgcacctgg ggtgtccttc caggctggac ctcacatttc acgcagacat cagaaggctg

 21961

cgagatctac ccagaaggct gggtagatgg gggataggtc agtgacaaac agtagacaga

 22021

gagatataca gacagatgat ggatagacag acgctaagac accgagcgag gggacagacg

 22081

gatggaagac accatccttt gtcactgacc acacacccac atgggtgtgg tgagccggct

 22141

gtcatacttg tgaacctgct gctctcacaa caccagctgg gtccctccag ccccagcgtc

 22201

ccacacagca gactcccggc tccatcccca ggcaggaatc ccaccaccaa ctggggtgga

 22261

ccctccccgc aggaaggtcg tgctgtctaa ggccttgaga gcaagttaca gacctacttc

 22321

tgggaagaca gcgcacaacc gcctaccccg cagagcccag gaggacccct gagtcctagg

 22381

gaagggacca cgcggcctgg acggggagcg gccccaggac gctgccccca acctgtccca

 22441

cctcactcct gctctgctct gaggcggggc gcagagaggg gccctgaggc ctcttcccag

 22501

ttcttgggag cacccactgg gcctgaacca ggccagaagc cccctcctca aggtgtcccc

 22561

agaccactcc cctccacctc cggttgctct gtctcctggc agcagggagc cccagtgaga

 22621

agagacagct ccaggctgtg atcttggccc ctggctgctc tggcagtgtg gggggtgggg

 22681

gtcgctggga ggccatgagt gctgggggtc ggggctgtga aagcacctcg aggtcagtgg

 22741

gctgttggtc gggctctgcg aggtccgcac gggtagagct gtgccaggac acaggaggcc

 22801

tggtcagtgg tcccaagagt cagggccaaa ggaaggggtt cgggcccctc tggttcctca

 22861

gcttctgagg ccggggaccc cagtctggcc ttggtagggg ggcgattgga gggtacaacg

 22921

atccaaaaga aaacacacat ctacgaggga agagtcctga ggaggagaga gctacacaga

 22981

gggtctgcac actgcggaca ctgcttggag tctgagagct cgagtgcggg gcacagtgag

 23041

cgaagggagg acggaacctc caaggacacc ggacgccgat ggccagagac acacgcacgt

 23101

cccatgaggg ccggctgctc agacgcaggg gagctcctca ttaaggcctc tcgctgaata

 23161

gtgaggagaa ctggccccgt gtgtggggaa acttagccca gaagaaacgc tgccctggcc

 23221

ccaaggatca nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

 23281

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn tgccctttgc

 23341

ctccagggag ggaggaagcg tggatcttgg gtttgccttg ggtttaaagg atccacccac

 23401

tcccttttta gccactccct gtgctggcaa tttcttaaga ctggaggtcg caaagagttg

 23461

gacacactga gcgagtgaac tgcactgagc ctaagaaaag tctttgaatt cctccaaaca

 23521

aaacacactt gtcttgggta ctttccttgg ttttgttaca aatgtctggt ccctctgttc

 23581

tcctggccag ctcctgggtg tcattttgac ctgacgaagt caaagggagc ctggaccctc

 23641

aaaatctgta ggacccagca cccctccatt acacctctgt tcccccgcga acgggcacgt

 23701

gtttcgccgt ctggcgtaat gtgtaagcga cggtgtgata ctcgggagtc ttactctgtt

 23761

tctttttctt ctggggtgac accaccatcc gcacgactct gtctgaatgt gaacatttgg

 23821

gtgatttgat gtggcccaga ctcccccaac gaatgtacct tcaggttggt tttcttcttt

 23881

tatattttgc ttttgtgaat agacacagga tcccatcagt tgtatgtagt gagaaagtaa

 23941

aaacccactc agccttagct ggatggagat ctagtagtaa gatagcacgt tagccggaaa

 24001

tggaaatttc agccagaatc tgaaaagcgt gtcctggaag gagaagaggg actcaggccc

 24061

gagcacactg ctccacgctg gagcctcagg ctctgacagc tgtacctgcc ggggtcttca

 24121

tgggacaggc catgcaggcc acgatcccgt tgagaagttt cttgcctttc catcacattg

 24181

gcaattgcac gctttgctct tgcttctaca tggagtttta cttttatccc agacagtttg

 24241

gtttcttctc tgattttcgc caattgtaca gatcgttaca gtatttctta accacataga

 24301

attcggcagg gggggtgggg ggacagggta gggtggggtg agagtgaggg gagggggctg

 24361

caccgagcag catctggggt cgtagctccc tgacggggat agacctcgtg cccctgcagt

 24421

gacagcacag agtcctcctc tctgaactgc cagggacgct cctgcaattg acttaatgaa

 24481

aggcatctaa ttaggaattt tggggtgaca ttttacattt aagtgtgtga gcagtgatta

 24541

tagttcatat cattttatag tttcgtgatt ttactagctt aaagggtttt tggggtttct

 24601

ttttgtttta aaagctaaaa tctgtttttt aattccatgg aatacaaaaa aaaaaagtct

 24661

gtagaatatt ttaaagagtg aaggctttgt tcggaatgtg agcgctttgc tccactgaac

 24721

cgaacggtaa taacatttgt agaagagacg cagagtgaaa ggtacctctt tttattgagt

 24781

gacatgacag cacccatcgc gtgagttatt ggctggagtt tagagacagg ccatgttggg

 24841

ctaaactcct tattgctgtt ctcagccttt gagtaataat cagaagcttt ctctgaagag

 24901

agtggggtca gctgtcagac tcctaggtgt ctacctgcag cagggctggg attaaatgca

 24961

gcagccagta gatacgggat ggggcaagag gtcaccttgt ccctttgttg ctgctgggag

 25021

agaggcttgt cctggtgcca gtggggccaa agctgtgact ttgtgaccac aggatgtctc

 25081

tgaccctgcc ttgggttccc tgagggtgga gggacagcag ggtctccccg gttccttggc

 25141

cggagaagga ccccccaccc cttgctctct gacatccccc caggacttgc cccggagtag

 25201

gttcttcagg atgggcatcc gggccccacc ctgactcctg gagctggccg gctagagctt

 25261

gctgcagaat gaggccttgg ccattgcggc cctgaaggag ctgcccgtca agctcttccc

 25321

gaggctgttt acggcggcct ttgccaggag gcacacccat gccgtgaagg cgatggtgca

 25381

ggcctggccc ttcccctacc tcccgatggg ggccctgatg aaggactacc agcctcatct

 25441

ggagaccttc caggctgtac ttgatggcct ggacctcctg cttgctgagg aggtccgccg

 25501

taggtaaggt cgacctggca gactggtggg gcctggggtg tgagcaagat gcagccaggc

 25561

caggaagatg aggggtcacc tgggaacagg cgttgggtgt acaggactgg ttgaggctca

 25621

gaggggacaa aaggcacgtg ggcctccccc ccagtgtccc ttaaagtggg aaccaagggg

 25681

gccccggaag ccggaggagc tgtggtgtgt ggagtgcaga gccctcgcgg ggtcctgatg

 25741

cccgtcggac tctgcacagc tcagcgtgtg ccccgcggcc cggtaggcgg tggaagctgc

 25801

aggtgctgga cttgcgccgg aacgcccacc agggacttct ggaccttgtg gtccggcatc

 25861

aaggccagcg tgtgctcact gctggagccc gagtcagccc agcccatgca gaagaggagc

 25921

agggtagagg gttccagggg tgggggctga agcctgtgcc gggccctttg gaggtgctgg

 25981

tcgacctgtg cctcaaggag gacacgctgg acgagaccct ctgctacctg ctgaagaagg

 26041

ccaagcagag gaggagcctg ctgcacctgc gctgccagaa gctgaggatc ttcgccatgc

 26101

ccatgcagag catcaggagg atcctgaggc tggtgcagct ggactccatc caggacctgg

 26161

aggtgaactg cacctggaag ctggctgggc cggatgggca acctgcgcgg ctgctgctgt

 26221

cgtgcatgcg cctgttgccg cgcaccgccc ccgaccggga ggagcactgc gttggccagc

 26281

tcaccgccca gttcctgagc ctgccccacc tgcaggagct ctacctggac tccatctcct

 26341

tcctcaaggg cccgctgcac caggtgctca ggtgaggcgt ggcgccagct ccaaagacca

 26401

gagcaggcct ctcttgtttc gtgcccgctg gggacattgc cagggtgccc ggccactcgg

 26461

aagtcctcac gatgccaccg ctctgaccct gggcatcttg tcaggtcact tccctggtta

 26521

gggtcagagg cgtggcctag gttaaatgct gtcaaagggg actcctttct gggagtccgc

 26581

atagtggggg cttggtgtga tgcccttggg aattctttcc gagagagtga tgtcttagct

 26641

gagataatga cagataacta agcgagaagg acggtccatc aggtgtgagg tttgaagtcc

 26701

aaagctctgt ctctccctcc cacctgcccc ttctgtcctg agctgtttta ggctccaggt

 26761

gagctgtggg aagtgggtga ttctggagat gacaagaagg gatcaggagg ggaaaattgt

 26821

ggctcctaag cagtccagag aagagaaaaa gtcaaataag cattattgtt aaagtggctc

 26881

cagtctcttt aagtccaaat tataattata attttcctct aagacttctg aatacatagg

 26941

aaatcctcag taacaggtta ttgctctgcc ttgaacacag tgataaaagc tgggaggatg

 27001

cagcctaatc tgtctgtgtg aatgagttgt attgattccc tttttggcag ctgcaaactc

 27061

caagcattag gaataaatat gttcactgag aaccccgaag aaagaaagaa agaaaaaaaa

 27121

aaagaattgt aggtgttgat ggacggtttg tggcccctga atatctgggg gatgttcacc

 27181

cagggatcac gtgtaactgc tgggaccccc agccccatgt ccactgcatc cagcctgctg

 27241

ttgaattccg cggatcnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

 27301

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnncaat

 27361

tcgagctcgg taccccaaag gtccgtctag tcaaggctat ggtttttcca gtggtcatgt

 27421

atggatgtga gagttggact gtgaagaaag ctgagtgcca aagaattatt cttttgtact

 27481

gggtgttgga gaagactctt gagagtccct tgaactgcaa ggagatccaa ccagtccgtt

 27541

ctaaaggaga tcagtcctga atgttcattg gaaggactga tgctgaagct gaaactccaa

 27601

tactttggcc acctgacgtg aagagttgac tcattggaaa agaccatgat gctgagagga

 27661

attgggggca ggaggagaag gggacgacag aggatgagat ggctggatgg catcaccaac

 27721

tcgatgngac atgagtttgg ttaaactcca ggagttggtg atggacttgg aggcctggtg

 27781

tgctgggatt catggggtcg cagagtcgga catgactgag cgactgaact gaactgaact

 27841

gagctgaaga gctcacctgt accagagctc ctcaggtcct cctgcaggcc tggctgtaat

 27901

ggcccccagg tcaccgtcct gcctccttca tcccatcctt tcacgacagg ctgggagtgg

 27961

ggtgaggtga gttgtcttgt atctagaatt tctgcatgcg accctcagag tgcaatttag

 28021

ctccagagaa ctgagctcca agagttcatt ttttcctttt cttctttatg atactaccct

 28081

cttctgagca gagacctcat gtcagggaga aggggactct gccttcctca gccttttgtt

 28141

cctccaagac ccacacgggg agggtcgcct gcttcactga gccggaaggt tcaattgctc

 28201

atgtcctcca gaaacacccc cccccccaga gacccccaga aataagtgga acagcacctt

 28261

gtttcccaga caagtgggac acacgttatg aaccacctca gtgattaaaa tagtaacctc

 28321

tgtgtatgtg tatttactgg agaaggaaac ggcaacctac tccactattc ctgcctagaa

 28381

aattccatgg gagagaagcc aggcaggcta cagtccacgg ggtcacagag actgaacata

 28441

cacaagcaca tggaagtgta ttttgcagta tttttaaatt tgttcagttc aacatggagt

 28501

acaagaattc aaatcgtgaa gtcaattgac caagaaacca gaagaaatca ctgtgttgtg

 28561

atctctgtgg aggtaacatg ggtacctgtg ctctgaccct cacagcctct ggctctctct

 28621

ctacatgtac atacacatat atttccatgt atgtatgtat tcggaagatt tcacatacgt

 28681

ctcaccagtc cacagccccc gcgttccctg atgcccagaa catctgtgat agctgtgagt

 28741

attgtcacca gataagatct tccaggttcc tgcactcaca ttggttatca ggtctctctg

 28801

atccagcatt tctcagctaa gattccttgt gactcctggc tgcagaatct tctgcaaaag

 28861

tcccacagag aggagtgtga tcactgtaca caggagggcc gtggttctct agtgtgagaa

 28921

aagctaactc agcccgtcac agggacgtga atgtacctga gacagtaatc agttatgctg

 28981

agaaatcaca gctctgctag aggcagcaca tggggtagcc agcagggggc agcagagcac

 29041

ggccaggagc cgcaggtcag aggctgggct gcccaagcgg ggcttcaggg gaaccagccc

 29101

tgcgggtcca caggtgtcca gggagcagcg cttggcagga agtcaggacc ggacaggcca

 29161

tcccctcagg actagtgacc acctctgagg gtcacatcca cagtgaaccc cagagcacca

 29221

tgcctcagtc cacggccagg acgctgccag gctgaccgcc ccactgggga gtccagggga

 29281

gaccacaggc cggggggctt gggacagtga tcatgtggtc agacacagag aaggtgacag

 29341

tgacctcagt ccctgaggac aagtctgatg tgcagacgtg agaagccgag gaggaagctg

 29401

gggacagaca gggctgatgg tgtggtgacc ccgcctctca gtgaggggcc cccgggggtg

 29461

aatttgcata aacccaagcc ctcactgccc ccacaaagct ctgagaggga ataaaggggc

 29521

tcggagagcc cagcactgct gcgggctcag aggcagagct cggggcgcgt ccaccatggc

 29581

ctgggcccct ctcgtactgc ccctcctcac tctctgcgca ggtgcggccc cccagcctcg

 29641

gtccccaagt gaccaggcct caggctggcc tgtcagctca gcacaggggc tgctgcaggg

 29701

aatcggggcc gctgggagga gacgctcttc ccacactccc cttcctctcc tctcttctag

 29761

gtcacctggc ttcttctcag ctgactcagc cgcctgcggt gtccgtgtcc ttgggacaga

 29821

cggccagcat cacctgccag ggagacgact tagaaagcta ttatgctcac tggtaccagc

 29881

agaagccaag ccaggccccc tgtgctggtc atttatgagt ctagtgagag accctcaggg

 29941

atccctgacc ggttctctgg ctccagctca gggaacacgg ccaccctgac catcagcggg

 30001

gcccagactg aggacgaggc cgactattac tgtcagtcat atgacagcag cggtgatcct

 30061

cacagtgaca cagacagacg gggaagtgag acacaaacct tccagtcctg ctcacgctct

 30121

cctccagccc cgggaggact gtgggcacag cagggacagg cctggcccgg ttcccccgga

 30181

gctgagcccc caggcggccc cgcctcccgg ccctccaggc aggctctgca caggggcgtt

 30241

agcagtggac gatgggctgg caggccctgc tgtgtcgggg tctgggctgt ggagtgacct

 30301

ggagaacgga ggcctggatg aggactaaca gagggacaga gactcagtgc taatggcccc

 30361

tgggtgtcca tgtgatgctg gctggaccct cagcagccaa aatctcctgg attgacccca

 30421

gaacttccca gatccagatc cacgtggctt tagaaaggct taggaggtga acaagtgggg

 30481

tgagggctac catggtgacc tggaccagaa ctcctgagac ccatggcacc ccactccagt

 30541

actcttccct ggaaaatccc atggacggag gagcctggaa ggcttcagcc catggggtcg

 30601

ctaagagtca gacacgactg agcgacgtca ctttcccttt tcactttcat gcattggaga

 30661

aggaaatggc aacccagtcc agtgttcctg cctggaaaat cccagggaca ggggagcctg

 30721

gtgggctgcc atccatgggg ccacacagag tcagacacga ctgaagcaac ttagcagcag

 30781

cagcagcagc ccaataaaac tcagcttaag taatggcatc taaatggacc ctattgccaa

 30841

ataaggtcca ctcgcgtgca ctctgtttag gacttcagtt cctgattgtg gagggttccc

 30901

acaagacgtg tgtgtatatt ggtgttgccg gaaaacagtg tcaatgtgag catcccagac

 30961

tcatcaccct cctactccca ctattccatt gtctctgcag gtattaagca taaaggttaa

 31021

gggtcttatt agatggaaga ggagtgaata ctcgtctgtg cttaacacat accaagtacc

 31081

atcaaggtcc ttcctattta ttaacgtgtg ttttaatcag aaatatgcta tgtagaagca

 31141

tccggacgat agcccatgtt acagacgggg aagctgaggc atgaagttct cagcaccttg

 31201

tttcacgtca gacctgaaac ggggcagagc cggcagcaaa caaggttcct cttcccaagc

 31261

gcccgctctt cacccgcttc ctatggcttc tcactgtgct tcctaaacta agctctcccc

 31321

aaccctgtgg agacaggatt agagacttta ggagaaaaga ccaggaacat cccacacccg

 31381

acccgagtga gccactaaga caaggctttg taaggacaga accagcaggt gtcctcagcg

 31441

agccagggag agacctcgca ccaaaaacaa tattgtagca tcctgaccct ggacttctga

 31501

cctccagaaa tgtgaaaaag aaacgtgtgg ggtttaatca actcaccggt gttatttggt

 31561

tatgactgcc tgagttaaga aggagttggg aacacttgag tgtaggtgtt tatggaacat

 31621

aagtcttgtt tctctgaaat aaattcccaa gggtataatt cctaggttgt agggtaactg

 31681

ccacaaatct aggcagctta ttaaaaaaca aagatatcac tttgccagca aaggttcata

 31741

tagtcaaatt atggttttta tagtagtcat gtatggatgt aaaagttgga tcataaagaa

 31801

ggctgagcac cagagaattg atcccttcaa atcgtggtgc tggagaagac tcttgagagt

 31861

cccttggaca gcaaggagat ccaaccagtc aatcctaaag gaaatgaact gtgaatattc

 31921

actggaagga ctgatgctga agctgaagat ccaatacttt ggccacctga tgcgaagagt

 31981

tgactcattg gaaaagaccc tgatgctgga aagcttgagg gcaggaggag aagagggcgg

 32041

cagaggatga gacggttgga tggcatcact gactcaatgg acatgagttt gagccaactc

 32101

tgggagacag tgaaggatag ggaaggctgg cgtggtacag tgcatgcggt cacaaagagt

 32161

ctgacacatc ttagtgactc aacaacgaca gcaacacagg catcacacgc ttagtgtgat

 32221

aagcggcaga actgttttcc aggggtccgn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

 32281

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

 32341

nnnnnnnnng tacgattcga gctcggaccc tgacattgtg agtcacgtca tgagcagctg

 32401

ttttccggtc ttcagggatt gtggacgatt tctgtttggg tttgctcatg ataatttagt

 32461

tacagcttag gttctttctt tccaggccac gagcgacatg ttttcaggtg agatgacgtg

 32521

gtgggggatg ggcggccaag cccccactgg ggggggaggg attctgttgt gggcaggagt

 32581

tggcagcatc cctgaactga tgacctgcga tccaggtgac aagaaccggg ggatattatt

 32641

cctctgcctt ctcatgtcat gtcctcggtt cttcatgatg aaaacatatg acaatacagg

 32701

ggagttagat ttgggcgggc acaactctgg gtgggggacc cggtggcatt gtgcccagca

 32761

gggccatcaa gatgagggcg acctgggtgg tccccttctc ccctggggtc ttagttttcc

 32821

cctcatggaa atgggatcag gcagcagcca tggaacaccg cgaccgtggc ttctctcacc

 32881

tcctcgtctg tgattttggg tcgggatacc aggcatgaag acctggggcg gggggacatc

 32941

actcctctgc agcagggagg ccgcagagtc ctccgtccat gaggacttcg tccctgggct

 33001

gaccctgcgg actgctggag gctgaagctg gaggcacagg cgggctgcga ggccagggtc

 33061

ctgaggacga cagagccagt ggggctgcag ctctgagcag atggcccctc gccccgggcc

 33121

ctgagcttgt gtgtccagct gcaggttcgc tcaggtgagc cactacgtta tgggggaggc

 33181

gccctgggca gggatcgggg gtgctgactc ctccgagatt ccgaccttct gggagcactc

 33241

tggccacact ctaagcctgg caagagctgg gttcatcagt ctaactctcc tcctgaagtc

 33301

caatggactc tctccatgcg gcagtcactg gatggcctct ttatccccga tggtgtcctt

 33361

ttccgctgac ctggctctcc tgaccacctc ccagcccccc accatacagg aagatggcac

 33421

ctggtccctg cagagctaag tccacccctg gcctggcttc agatgcctac agtcctcctg

 33481

cgggaggccc cgctccccac taggccccaa gcctgccgtg tgagtctcag tctcacctgg

 33541

aaccctcctc atttctcccc agtcctcagc tcccaacccc agaggtatcc cctgcccctt

 33601

tcaaggccct tgtcccttcc tggggggatg gggtgtatgg gagggcaagc ctgatccccc

 33661

gagcctgtgc cgctgacaat gtccgtctct ggatcatcgc tcccctggct ctcagagctc

 33721

cctggtccct ggggatgggt tgcggtgatg acaagtggat ggactctcag gtcacacctg

 33781

tcccttccct aaggaactga cccttaaccc cgacactcgg ccagacccag aaagcacttc

 33841

agacatgtcg gctgataaat gagaaggtct ttattcagga gaaacaggaa cagggaggga

 33901

ggagaggccc ctggtgtgag gcgacctggg taggggctca ggggtccatg gagaggtggg

 33961

ggagggggtg tgggccagag ggcccccgag ggtgggggtc cagggcccta agaacacgct

 34021

gaggtcttca ctgtcttcgt cacggtgctc ccctcgtgcg tgacctcgca gctgtaactg

 34081

cctttcgatt tccagtcgct gcccgtcagg ctcagtagct gctggccgcg tatttgctgt

 34141

tgctctgttt ggaggcccgg gtggtctcca cgttgcgggt gatggtgctg ccgtctgcct

 34201

tccaggccac ggtcacgcta cccgggtaga agtcgctgat gagacacacc agggtggcct

 34261

tgttggcgct gagctcctcg gtggggggcg ggaacagggt gaccgagggt gcggacttgg

 34321

gctgacccgt gtggacagag gagagggtgt aagacgccgg ggaggttctg accttgtccc

 34381

cacggtagcc ctgtttgcct tctctgtgcc ctccgaccct tgccctcagc ccctgggcgg

 34441

cagacagccc ctcagaagcc attgcaatcc actctccaag tgaccagcca aacgtggcct

 34501

cagagtcccc ggctgcgacc agggctgctc tcctccgtcc tcctggcccc gggagtctgt

 34561

gtctgctctt ggcactgacc ccttgagccc tcagcccctg ccagacccct ccgtgacctt

 34621

ccgctcatgc agcccaggtg cctcctccgt gaacccgggt ccccccgccc acctgccagg

 34681

acggtcctga tgggagatgt ggggacaagc gtgctagggt catgtgcgga gccgggcccg

 34741

ggcctccctc tcctcgccca gcccagcctc agctctcctg gccaaagccc ggggctcctc

 34801

tgaggtcctg cctgtctacc gtccgccctg cctgagtgca gggcccctcg cctcacctgc

 34861

cttcagggga cggtgccccc acacagcacc tccaaagacc ccgattctgt gggagtcaga

 34921

gccctgttca tatctcctaa gtccaatgct cgcttcgagg ccagcggagg ccgaccctcg

 34981

gacaggtgtg acccctgggt cccaggggat caggtctccc agactgacga gtttctgccc

 35041

catgggaccc gctcctttct gaccgctgtc ctgagatcct ctggtcagct tgccccgtct

 35101

cagctgtgtc cacccggccc ctcagcccag agcgggcgag acccctctct ctctgccctc

 35161

cagggccttc cctcaggctg ccctctgtgt tcctggggcc tggtcatagc ccccgccgag

 35221

cccccaagct cctgtctggc ctcccggctg gggcatggag ctcacagcac agagcccggg

 35281

gcttggagat gcccctagtc agcaccagcc tctggcccgc accccagcgt ctgccctgca

 35341

agaggggaac aagtccctgc attcctggac caaacaccag ccccggcgcc ccgactggcc

 35401

ccattggacg gtcggccact ggatgctcct gctggttacc ccaagaccaa cccgcctccc

 35461

ctcccggccc cacggagaaa ggtggggatc ggcccttaag gccgggggga cagagaggaa

 35521

gctgccccca gagcaagaga agtgactttc ccgagagagc agagggtgag agaggctggg

 35581

gtagggtgag agccacttac ccaggacggt gacccaggtc ccgccgccta agacaaaata

 35641

cagagactaa gtctcggacc aaaacccgcc gggacagcgc ctggggcctg tcccccgggg

 35701

gggctgggcc gagcgggaac ctgctgggcg tgacgggcgc agggctgcag ccggtggggc

 35761

tgtgtcctcc gctgaggggt gttgtggagc cagccttcca gaggccaggg gaccttgtgt

 35821

cctggaggtg ccctgtgccc agccccctgg ccgaggcagc agccacacac gcccttgggg

 35881

tcacccagtg ccccctcact cggaggctgt cctggccacc actgacgcct tagcgctgag

 35941

ggagacgtgg agcgccgcgt ctgtgcgggg cggcagagga gtaccggcct ggcttggacc

 36001

tgcccagccg ctcctggcct cactgtaagg cctctgggtg ttccttcccc acagtcctca

 36061

cagtccagcc aggcagcttc cttcctgggg ctgtggacac cgggctattc ctcaggcccc

 36121

aagtggggaa ccctgccctt tttctccacc cacggagatg cagttcagtt tgttctcttc

 36181

aatgaacatt ctctgctgtc agatcactgt ctttctgtac atctgtttgt ccatccatcg

 36241

atccaacatc catccatcca tccatcaccc agccatccat ctgtcatcca acatccatcc

 36301

ttccatccat tgtccatcca tctgtccatc ttgcatctgt ctgtccaaca gtggccatca

 36361

agcacccgtc tgccaagccc tgtgtcacac gctgggactt ggtgggggga gccctcgccc

 36421

tcccaccctc ccatctctcc tgaaacttct ggggtcaagt ctaacaaggt cccatcccgt

 36481

ctagtctgag gtccccccgc agcctcctct tccactctct ctgcttctga cccacactgt

 36541

gcactcggac gaccacccag ggcccttgca tccctgtttc cttcctgacc tctttttttt

 36601

ggctctggat ttatacacat tctgcctcct ggaggcgtct cagcttgagt gtcccacaga

 36661

cgcctcagac tcagcatctt ccatcgaaac tgctcccagg tccttgcaga cctggtcccc

 36721

cacattgttc tcaattcggt agatttctcc acaagccaga ggcctggact catcccataa

 36781

tgcctgcccc tcattgagtc agcctctgtg tcctaccata accaaacatc cccttaaaaa

 36841

tctcagaaga acaaaaaaag cacccagatg gcactgtcag agtttatgat gacaagaatc

 36901

ctcagttcag ttcagtcact cagtcgtgtc cgactctttg cgaccccatg aatcgcagca

 36961

cgccaggcct ccctgtccat caccaactcc cggagttcac tcagactcac gtccattgag

 37021

tcagtgatgc catccagcca tctcatcctc tctcgtcccc ttctcctcct gcccccaatc

 37081

cctcccagca tcagagtttt ttccaatgag tcaactcttc gcgtgaggtg accaaagtac

 37141

tggagtttca gcttcagcat cattccttcc aaagaaatcc cagggctgat ctccttcaga

 37201

atggactggt tggatctcct tacagtccaa gggactctca agagtcttct ccaacaccac

 37261

agttcaaaag cctcaattct ttggcgctca gccttcttca cagtccaact ctcacatcca

 37321

tacatgacca caggaaaaac cataaccttg actagatgga cctttgttgg caaagtaatg

 37381

tctctgcttt ttaatatgct atctaggttg ctcataactt tccttccaag aagtaagtgt

 37441

cttttaattt catggctgca atcaacatct gcagtgattt tggagcccca aaaaataaag

 37501

tctgccactg tttccactgt ttccccatct atttcccatg aagtgatggg accagatgcc

 37561

atgatctttg ttttctgaat gttgagcttt aagccaactt ttcactctcc actttcactt

 37621

tcatcaagag gctttttagt tcctcttcac tttctgccat aagggtggtg tcatctgcat

 37681

atctgaggtt attgatattt ctcctggcaa tcttgattcc agtttgtgtt tcttccagtc

 37741

cagtgtttct catgatgtac tctgcatata agttaaataa gcagggtgat aatatacagc

 37801

cttgacgtac tccttttcct atttggaacc agtctgttgt tccatgtcca gttctaactg

 37861

ttgcttcctg acctgcatac agatttctca agaggcaggt caggtggtct ggtattccca

 37921

tctctttcag aattttccac agttgattgt gatccacaca gtcaaaggct ttggcatagt

 37981

caataaagca gaaatagatg tttttctgaa actctcttgc tttttccatg atccagcaga

 38041

tgttggcaat ttgatctctg gttcctctgc cttttctaaa accagcttga acatcaggaa

 38101

gttcacggtt catgtattgc tgaagcctgg cttggagaat tttgagcatt cctttgctag

 38161

cgtgtgagat gagtgcaatt gtgcggcagt ttgagcattc tttggcattg cctttctttg

 38221

ggattggaat gaaaactgac ctgttccagg cctgtggcca ctgttgagtt ttcccaattt

 38281

gctggcatat tgagtgcagc actttcacag catcatcttt caggatttga aatcgctcca

 38341

ctggaattcc atcacctcca ctagctttgt ttgtagtgat gctctctaag gcccacttga

 38401

cttcacattc caggatgtct ggctctagat gagtgatcac accatcgtga ttatctgggt

 38461

cgtgaagatc ttttttgtac agttcttctg tgtattcttg ccacctcttc ttaatatctt

 38521

ctgcttctgt taggcccata ccgtttctgt cctcgcctat cgagccctcg cctccctacg

 38581

tagagactct aagcaggaag gtgacccgtg ctgcactggg tccagcatgc ttttaattca

 38641

gcagtggaac ttctgggtca tgattgtgtt taagggatgc gcatacgatt tttgaagcaa

 38701

aatttaacag gacagcagtg taaagtcagt acttatttct gattaaagaa agcaaatatc

 38761

cagcctgtta ctaagttaat taactaaaga aacatcttca acttaataaa cagtatctcc

 38821

tgaaacttac agcatgcttc acatttaaag gcaaaaccat tttagaggcc agggttccca

 38881

cgcttacgtt tattatttaa tatatgctac agattcaagc ccatgacaca aaatgggggg

 38941

aagagtgtga gtgttaggaa aaatgagata aaattggttt ttgcaggtga tgggctagtt

 39001

tactttaaaa aaaaaaacaa aacaagctca agatgaactg aaggactatt agaactggta

 39061

caagagttaa cctgtgatcg aatacaagca ggctgggcaa aactcagcag gttttcttct

 39121

atacaggcag taatgattga gaatacgaaa cggcggaagc gcttacaacc tcgataacag

 39181

ttctattaaa agccctagga atgaacttaa cacggnnnnn nnnnnnnnnn nnnnnnnnnn

 39241

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

 39301

nnnnnnnnnn nnnnngctcc ccccaccctc ccctcctccc cccccaccac cagtgcccca

 39361

ggtctcgtgc ccagagagct gaagatgcca gcaggcccgc tgcctgcctc gctcgcgtgg

 39421

cccgggctcg ctgccggtct gcctgcccag cacacagatg cagccccagc tctcgctgcc

 39481

acccgcctcc cccaggcagg actctcccac aacaccaagg gcgtctctgg gttcaggatg

 39541

gccctcgttg aggtgtaaag tgcttcccgg ggctgagacg aatgggccgg agatccaaac

 39601

gaggccaagg ccgccacggc gcctggcgca gggcacccat ggtgcagagc ggcccagctc

 39661

cctccctccc tccctccctc cctgcttctt tatgctcccg gctatgtcta tttttactct

 39721

gcaatttaga aatgataccg aaggacaaac accgttcccc ctgtgtgtct gctctaaacc

 39781

ctttatctac ttatctatta gcgtgtccaa gttttgctgc taagtgaatg aaggaacact

 39841

acccacaagc agcaacgtcc ccacgaccct cgcctgttca actgggaatg taaatgtgct

 39901

ttcaaaggac ctaagtttct atgttcaaaa ccgttgtgtg tttcttttgg gagtgaacct

 39961

aggccactcg ttgttctgcc tttcaaagca ttcttaacaa ctctccagaa cccagggctt

 40021

ggcttacgtt tccagaaatt ccaaagacag acacttggaa acctgatgaa gaaggcctgt

 40081

gagcacagca ggggccgggg tacctgaggt aggtgggggg ctcggtgctg atggacacgg

 40141

ccttgtactt ctcatcgttg ccgtccagga tctcctccac ctcggaggct ttcagcaggg

 40201

tcacgctggt ggccagggtc gtgtatccat gatctgcaac cagagacggg gctgcggtca

 40261

gcccgcgggc gggcagcagg caggagcagc caggagacgc agcacaccga ggtcctcaca

 40321

tgcaggaggt gggggaagcg gctgtggacc tcacgactgc ccgatgtggg cctcttccaa

 40381

agggccggcc tggaccctgg ctttctccag aggccctgct gggccgtccg cacaggctcc

 40441

agccacaggg cctcttggga caggagggct ccagagtgag ccggccggcg ggaagaggtc

 40501

tgacaccgct gcagtccaca acacgaagcg aggtggagat gggatgaggg atgagaaaca

 40561

cttttctttt aaaacaagag cccagagagt tggaaagagc tgctgcacac gcaacatgaa

 40621

ctcctggccc cggtgccagc ggcgctggga gcccgagttc tcggcaatcc gaccacagct

 40681

tgcctaggga gccgggtgga gacggagggt taggggaagg cggctcccca gggagcgcga

 40741

ggcccggggt cgccaaggct cgccaggggc aagcgcagct aggggcgcag ggttagtgac

 40801

cggcactgca cccggcgcag gagggccagg gaggggctga aaggtcacag cagtgtgtgg

 40861

acaagaggct ccggctcctg cgttaaaaga acgcggtgga cagaccacga cagcgccacg

 40921

gacacactca taccggacgg actgcggagt gcacgcgcgc gcacacacac acacacacca

 40981

cacacacaca cacacggccc gggacacact cataccggac ggactgcgga gtgcacgcgc

 41041

acacacacac ccaccacaca cacacccacc acacacacac ccaccacaca cacacacaca

 41101

cacacacacc cccacacaca cccacacaca cccacacaca cccacacaca cacacccaca

 41161

cacacacaca cacacacaca cacacacacg gcccggtggc cccaggcgca cacagcacgg

 41221

agcaaacatg cacagagcac agagcgagcg ctagcggacc ggctgccaga ccaggcgcca

 41281

cgcgatggat tgggggcggg gacggggagg ggcgggagca aacggnnnnn nnnnnnnnnn

 41341

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

 41401

nnnnnnnnnn nnnnnnnnnn nnnnngtatt aaagaagccg ggagcgagaa tatgacggca

 41461

agaggatgta ggtgggggcg gggcaagagt aaagagagcg gacggtagag gggatgcgat

 41521

tgtgatgcgg aagcgagacg aggagtgatg ccgtattaga ttgatagcaa gaggaacagt

 41581

aggagggggg ggggagagga gggggaggtg gggggtggtg ggtgggaagg gaactttaaa

 41641

aaaaagaggg gagagttgga ggggggaata aacgggcggt aaaaaagaac aatttgaaat

 41701

taccagggtg gggcggccag gggggtgatt cattcttgga gggggcaaca tatggggggt

 41761

ggctgtcgcg gattaggaga aaataaatat caggggtgat taagtgtttg gcgttgggga

 41821

ataatgaagt aagaatcaaa tatgaatcgc gttggcatcg ttagccatcg ggggaaacat

 41881

ttcccatgca aggaacaagg atgtgagaat gcgtccgtct gaaccaccgt cccggggtcc

 41941

cagtaggact cgccgagctg atagttgccg gagcaacagt taagggagca gaagctgcta

 42001

caaaaccacc acctgccaaa gtagggtctc caattacgga gtgcgcctcc tgggtgtcgg

 42061

tccaaacctt tggaaaggac ctggaaataa gtgctaccca ccagatatta atataaaccc

 42121

acctggccag gagaggcagg cgctgctggc acaggaagtg tccccagact cagtcatcaa

 42181

ggtaaataat attttgggac ctccctggaa atccagtggt taggactctg cggttcaatc

 42241

cctggtcggg gaactaagat cccacaagtc acaagacatg gccaaattta aaaaagaaaa

 42301

aaagagagag aaatatttag tgcaataggt tttagaattg aaattaagct cctgcccacc

 42361

cccacccccc aatctggatg aataaagcat tgaaatagta agtgaagtca ggctctgaca

 42421

tgcactgatg tgactcacct taagcaaccc ccaccctagg actggtcggg gttccaggag

 42481

tttcaggggt gccaggaaga tggagtccag cccctgccct ctccccccac cacgtcctcc

 42541

actggagccg cctaccccac ctcccacccc tccgcaccct gctacccccc acccctgccc

 42601

ccaggtctcc cctgtcctgt gtctgagctc cacactttct gggcagtgtc tccctctaca

 42661

gctggtttct gctgcccgct accgggcccg tcccctctgt tcagttcagt tcagtcgctc

 42721

agtcatgtct gactctttgt gaccccatgg actgcagcac accaggcctc cctggccatc

 42781

accaaccccc agaacttact caaactcatg tccatcgagc cagtgatgcc atccaaccat

 42841

ctcatcctct gtcgacccct tctcctggcc tcaatctttc ccagcatcag ggtcttttcc

 42901

aatgagtcag ttctttgcat caggtagcca aagtattgga gtttcagctt cagcatcatt

 42961

tcttccaatg aatattcagg actcatttcc tttgggatga actggttgga tctccttgca

 43021

gtccaaggga ctctcaagag tcttctccaa caccacagtt caaaagcatc aattcttcag

 43081

tgctcagctc tctttatagt ccaactctca catccatacg tgaccactgg aaaaaccata

 43141

gcctcgacta gatggaactt tgtgggcaaa gtaatgtctc tgcttttgaa tatgctgtct

 43201

aggttggtca taacttttct tccaaggagc aagcgtcttt taatttcatg gctgcagtca

 43261

ccatctgcag tgatttttgg agcccaagaa aataaagtct gtcactgttt ccactgtttc

 43321

cccgtctatt taacggaggg aaatttccca gagcccccag gttccaggct gggccccacc

 43381

ccactcccat gtcccagaga gcctggtcct cccaggctcc cggctggcgc tggtaagtcc

 43441

caggatatag tctttacatc aagttgctgt gtgtcttagg aaagaaactc tccctctctg

 43501

tgcctctgtt ccctcatccg cagaagtgac tgccaggtcg gggagtctgt gacgtctcca

 43561

gaagccggag gattttctcc ccatttgctg aaagagagct cggggtgggg gaagcttctg

 43621

cacccctagg atcaccagag gagccagggt cttcagggtt cccggggacc cctcagtggg

 43681

ggctcaggaa ccacagagcc agaccctgat tccaaaaacc tggtcacacc tccagatgac

 43741

cctttgtccc ttggctccgc ctcaaatgct ccaagcccca acagtgaagc gcttaagaga

 43801

aggatccacc aggcttgagt ttggggagga gggaagtggg gagctggggg agggcctggg

 43861

cctgggagac aggaatccac catggcttca ggcagggtct ctggggcctg cggggtggag

 43921

agcgggcagg agcagacaga ggtgactgga cacgacacac ccctccactc caagggaggt

 43981

gggcaggggc ggggcacaga ggaacaagag accctgagaa ggggtccacc gagcagactg

 44041

ctggacccag acatctctga gccagctgga atccagctct aagccatgct cagcccaggc

 44101

agggtatagg gcaggactga gtggagtggc cagagctgca gctgcatggg ctgggaaggc

 44161

cctgcccgtc ccctgagggt cccccagggt ctagccagac tccaatttcc gaccgcagca

 44221

cacacaggag gaagtggtcg gggtggagtt ggcccagagg tctgggcagg tgcagggtgg

 44281

gggaaggggg gcagctggag tcacccgctg aattcaggga cagtcccttt ttctccctga

 44341

aacctggggc tgtcccgggg gccaccgcag cctccaggca gcggggggac ccagccccca

 44401

atatgtgaga agagcaggtc ccaggctgga gagagcgaag caccatggtg gggagaagtt

 44461

agactggatc ggggccccta ggggctcccc cggacctgca cggcagccgt cagggcaccc

 44521

gcaccccatt gctgttcagt gctggccagt gtccaaggcc agggatgtgt gtgtgtgtgt

 44581

gtgcgtgcgt gcgtgcgtgt gtgtgtgcgt gtgtgcgcgt gcgtgcgtgt gtgtgtgtgt

 44641

gcgtgcgtgt gcgtgcgtag acgtgtgcgt gcgtgcgtgc gtgcgtgcgt gtgtgtgcgc

 44701

acgcgcgcag cccagcctca gcactggacc aggcagcctg ggattcctcc aaaactgcct

 44761

tgtgagtttg gtcaaaccgt gaggctctga tcaccgccat ccattcgccc cctcctgccc

 44821

ccctcatcac cgtggttgtt gtcattatcg agagctgtgg agggtctggg aggtcatccc

 44881

acctgccagc taaaccgtga ggctgccgca atcgcactga tgcgggcaga cccgagacgc

 44941

tgtgccggag acgaaggcca gcttgtcacc ccgccagagc ggcagtcggg ccacaagcat

 45001

catccaagca gtggttctct gagcccgacg gggtgatgca aaggagccag gagacacctg

 45061

cgcgtccaag ctgggggacc ccaggtctgt tatgccggac agtaaacacg ttcagctccg

 45121

gagggagagg gttcccctac cttccagggt ttctcattcc acaaacatcc aaagacaatc

 45181

cataccgaag gcgatccgtg cctttgctcc tgagacgtgc ggaagcacag agatccacag

 45241

acactgtctc ccaggatcct atgtatgtaa aggaaccgaa gtcccaggct gtgtgtctgg

 45301

taccacatcc cacggaacag gctggactga ttttcaccaa atgtagcaga aacgttaagg

 45361

agtatcagct tcaaaatatg agggccagac atgtctgaga agtcccttcc agaaaagtcc

 45421

ctttggggtc cttccccaga gttgctgaaa cagagaaccg gaagggctgc agagctgaac

 45481

ttaaacaact ggatcgcaaa ggtccgtctc atcagagcga tggtttttcc agtggtcatg

 45541

tatggatgag agagttggac cataaagaaa gctgagcgcc gaagaatcga tgcttttgaa

 45601

ctctggtgtt ggagaagact cttgagagtc ccttggactg caaggagatc caaccagtca

 45661

atcctaaagg aaatcaatcc tgaatattca tgggaaggac tgatgctgaa gctgaaactc

 45721

caatactttg gccacttgat gcaaagaact gactcactgg aaaaaccctg atgctgggaa

 45781

aggttgaagg caggaggaga aggggtcgac agaggatgag atggttgggt ggcatcaccc

 45841

acccatggac tcaatggaca tgggtttgag taaactctgg gagttggtga tggacagaga

 45901

atcctggcat gctgcggtcc atggggtcat agagagtcag acacaactga gcgactgaca

 45961

gaactgaagc aactggcaag ccggagggta ggtgccggct gcgatgagcg ggaacgtgca

 46021

acctgccacg tggagctctt cctacaccca gagtcctgac ggcactggga ccctagccct

 46081

ccacggcctc tccagggcca cgagacaccc tcacagagca gagaagcgga acagagctgg

 46141

tgtgcagaac caggccccgg gggtggggcg gggctggtgg gcaggcttta gtgagaagcc

 46201

cttgagccct ggaaccagag cagagcagaa cagttggcag aggcccccct gggagaggcc

 46261

ccccgcccag agtaccggcc ctgggccctg ggggagaggg cggtgctggg ggcagggaca

 46321

gaaggcccag gcagaggatg ggccccgtgg gacggggcgc accaaaacag cccctgccag

 46381

caaggggaag ctggggcact ttcgaccccc tccaaggagg agcccacacc agcgcatctg

 46441

cccaaggtgc ccttggccct gggggcacat gaggcccagg ccaggccagg gggcccatga

 46501

ggcccccagg ggtcagtgca gtgtccccag gcagccctgg cctctcatcc tgctgggcct

 46561

ggcctcttat cccgtgggcg cccacggcct gctgcccccg acagcggcgc ctcagagcac

 46621

agccccccgc atggaagccc cgtcaggaaa gagcccttgg agcctgcagg acaggtaagg

 46681

gccgagggag tcatggtgca gggaagtggg gcttcccttc gatgggaccc aggggtgaat

 46741

gaccgcaggg gcggggaacg agaagggaaa ccagctggag agaaggagcc tgggcagacg

 46801

tggctgcacg cacagcgctg accctgggcc cagtgtgcct ttgtgttggg ttttattttt

 46861

aattttgtat tgagatgcta tttatctcgt ggagcttttg ccgccctgag attttgtacc

 46921

cgtggctggt gtccctcttg cctcaccccg gcctctgtag cagggcagac acggcgcaac

 46981

ggggcagggc gtgcccagga ggcactgtca ttttgggggc agcggcccca caaggcaggt

 47041

ctgccttcct cccctcttac aggcagcgac agaggtccag agaggtgagg caagctgccc

 47101

aatgtcacac agcacacggg cgcagtccca ggactgtaga aatcccggga ctagacaggc

 47161

accagagtgt cctgtgtttt taaaaaaacg gcccaagaga agaggcaagt ctgcaaggcg

 47221

tcccgggaag gcagcagggg cttggctcgg tctcccccaa ggaggccagc tcctcagcga

 47281

ggttcctaag tgtctaacgg agccaagcct gaaccaaggg ggtcacgtgc agctatggga

 47341

cactgacctg ggatggggga gctccaggca aagggagtag ggaggccaag gaggagagag

 47401

gggtgcacag gcctgcaggg agcttccaga gctggggaaa acggggttca gaccacgggg

 47461

tcatgtccac ccctccttta tcctgggatc cggggcaggt attgagggat ttatgtgcgg

 47521

ggctgtcagg gtccagttcg tgctgtggaa aaattgtttc agatcagaga ccagcgtgag

 47581

gtcaggttag aggatggaga agaagctgtg aaaaggtgat ggagagcggg gggacggtcc

 47641

tcggtgatca ggcaccgaga tcgcccatgg aatccgcagg cgaatttaca gtgacgtcgt

 47701

cagagggctg tcggggagga acaggcactg tcatgaactg gctacaaaaa tctaaaatgt

 47761

gcaccctttt cggcaatatg cagcaagtca taaaagaaaa cgcatttctt taaaattgcg

 47821

taattccgct tttaggaatt catctggggg cgggggaaca atcaaaaaga tgtgaccaaa

 47881

ggtttacaag ccaggaagtc aactcgttaa tgatgggaga aaaccggaaa taacctgaat

 47941

atccaacaga aagggtgtga tgaagcgcag catggcacat ccaccgcaag gaatcctaac

 48001

acaaacttcc aaaacaatat ttctgacgtt gggtttttaa agcatgcgtg cactttcaaa

 48061

agcttgtcag aaaacataga aatatgccaa taatgtgtct ctagccaaat tttttaattt

 48121

ttgctttata attttataaa gttataattg tatgaaatat aatgataaaa ttataaacta

 48181

taaaaaagtt atgaaaatgt tcacaagaag atatacatgt aattttatct tctacaatac

 48241

tttttaatac cagaataacg tgcttttaaa aaagattgag cacagaagcg tataaagtaa

 48301

aaattgagag tttctgctca ccaaccacac gtcttacctt aaaacccatt ctccagcgag

 48361

agacagtgtc atgtgggtct gtacacttct ggcctttctc ctaggcatgt atgtccctga

 48421

aaactcacac acacggctaa tggtgctggg attttagttt tcaaaacgga ctcatactct

 48481

gcctatgagc ctgcaactat ttattcagtc tgttgagatt ttctatatca gcccacatgg

 48541

atcccgcatg ttctctgaat ggctctgtat gaattcaaag tttggaagaa gcagcgtgtc

 48601

tttaatcatt cgcctattaa tggacgtttg gggtgtttcc actacaaaan nnnnnnnnnn

 48661

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

 48721

nnnnnnnnnn nnnnnnnnnn nnnnnnnnng atacaattcg agctcggtac cctggcttga

 48781

actatatgaa cagagaacga tgagaacagt ttctcaaact tggaacagtt aacattttgg

 48841

gctaaatgat tcttttttgt gtggagttgg cctatgaata gaggatatta gcagcatcat

 48901

ttaaccttta ctcactacat acctgtagca actacatcct ctccatttgt gtcaatcaaa

 48961

actgtctccg gacatggaca agtgtgcccc tgggatgggt ggaatgacct tttgttaaga

 49021

accactgggt cagagattca tagatttttg tcttgttgac tttttaaaaa tacatcttgg

 49081

tttttatttt attggtttct gctcttatct ttatgattac cttcctttta cttggggctt

 49141

ccctgataga ttttcccttc tggctcagct ggtaaagaat ctgcctgcaa tgcaggagac

 49201

ctgggttcag tccctgggtt gggaggatcc cctggagagg agaagggcta cccaccccag

 49261

tattctggcc tggaggattc catggagtgt atagtccatg gggtcgcaga gtcggacatg

 49321

actgagtgac tttcacacac acatatgtcc ctggtagctc agctagtaaa gaatcccacc

 49381

cgcaatgcag gagaccccgg tccaattcct gggtccggaa gattcccttt tgtttactcc

 49441

ataagatctt atctggggac aaaactaaca gctatgccag accttctgga catcagggaa

 49501

cgtgaggggt gtggactgga cagatgtgtg tgttctccca aacacaaaca tacatctgta

 49561

tacatgtaca tggagagagg gggagggagg ctgtgagtct ccaggggacc gtgcaaccat

 49621

gtgacattca tggaggcgtt tgcgggtgat cactacacag tttcttcttc tggtttcttg

 49681

gtcaattgac ttcacaattc caattcctat acttcatttt agactgaggg aattttacac

 49741

tattgtaaga catatgtata catgagttat gttcagcgcc atgagggctc attttgtgtg

 49801

tccactttgc ctggaaacaa agttggactg atttacttct aggggtgcct gggggtgttt

 49861

ctggaggaca ggagcatttg aacccaaggg ctcggtgaag catgagcctc tctgcaggtg

 49921

gacccaggag gaacgcaagg ccgaggaagg cagactctcc tcctccctaa cccgaggtct

 49981

ctgctcagaa aagggacaat ataatgacta gaagaaaaga aagaacatca gctgtgggag

 50041

gtttgttctc tggagcagat tcacacgttg aggctcatgt gcaggaattc taggtgaaac

 50101

agagcagtca cccatgtgtg ttggaaaatt ttaaattaca tttgcagtta cgactttgtt

 50161

taagccagac agggtagcac agcaaagtca ccatgtggtc acctgtgttt tgtaaaggag

 50221

agagaacttg ctggcacatt caggaaaggc cgtgtctcag ctttggaggc acactgagag

 50281

gccacaagca gatggtgagg accagggtct cgggcagagg gatcaattca ctgctcttca

 50341

cttttgccac atctgtgtgc tgtccatcct ggccagagta gttcagtctt cagatgctgg

 50401

agttcccatt ggtagaaatc caatctgggt catttttaaa cctctcttgg ttctacttaa

 50461

tggttttaaa atctctttgg ctcaagaaaa aaaataaaca taattttaaa gggtggtttg

 50521

gggccttgac tataaagtac attatctggg ccatttcaga gcatggttga attaatacat

 50581

ttcgtgctta ctatagctcc tattttcttg attctttaca ggtaattttt gttaggaatc

 50641

gggtactgtg aatattttct tgttgaatac gggatctttg tattttttcc taattttttt

 50701

ttttttttca tttttggttt taccttcagg aaagtcacta ggactcagga aagtcctttg

 50761

tccgcctgtt atttcagtct cttacctggg gccagggcag cgtttcctct gggctaagtt

 50821

tccccacaac cggggccagt tctcctcact cttcaccctg aggccttaat gaggagctcc

 50881

cctgcgtctg agcagccggc cctcctgtga cgtgcgtgtg tctctggcca tcggcgtccg

 50941

gtgtccttgg aggttccgtc ctcccttcgc tcactgtgcc ccgcactcga gctctcaggc

 51001

tccaagcagt gtccgcagtg tgcagaccct ctgtgtagct ctctcctcct caggactctt

 51061

ccctctagat gtgtgttttc ttttggctcc ttggacctcc gctctgaacg caggcctggt

 51121

gctgagtgtg atctctggag ggaagcctgg gaggctggac gggtccgccc tgcggtgtgg

 51181

tgacaggtgt gggctcgggg cggggcctgc acgtcgtcct gacccgagcc gggactgggc

 51241

tccgggcctc aggcatcact gactgaatct ccctcacaga ggggtcaggg cctgggcggg

 51301

ggaaccgtct ctgcaatgac agcccctccc agggagggca cagcggggag ctgccgaggc

 51361

tccagcccta gtgggaggtc ggggagccca ggggagcggc ctgacggccc cacaccggcc

 51421

cagggctggt tcgttctgtt tctcgagctc aacagaagct ccgaggagct gggcagttct

 51481

ctgaattcgt cccggagttt tggctgctga gtgtcctgtc agcaccgtat ggacatccag

 51541

agtccattag cagtggtctc tgtccctctg tctgtccttc atcaggctct ttgtccaggt

 51601

caccacacgg ccaacaccag gacagtctgg tcccgccagc ccatcgtccc tgcggacgcc

 51661

cctgtgcagc ctgccgaagg gccgggaggc cgggggaacc gggccaggcc tgtccctgct

 51721

gtgtccacag tcctcccggg gctggaggag agcgtgagca ggacgggagg gtttgtgtct

 51781

cacttccccg tctgtctgtg tcactgtgag gattatcact gctgtcagct gactgacagt

 51841

aatagtcggc ctcgtcctcg gtctgggccc cgctgatggt cagcgtggct gttttgcctg

 51901

agctggagcc agagaaccgg tcagagatcc ctgagggccg ctcactatct ttataaatga

 51961

ccctcacagg gccctggccc ggcttctgct ggtaccactg agtatattgt tcatccagca

 52021

ggtcccccga gcaggtgatc ttggccgtct gtcccaaggc cactgacact gaagtcggct

 52081

gggtcagttc ataggagacc acggagccgg aagagaggag ggagagggga tgagaaagaa

 52141

ggaccccttc cccgggcatc ccaccctgag gcggtgcctg gagtgcactc tgggttcggg

 52201

gcaggcccca gcccagggtc ctgtgtggcc ggagcctgcg ggcagggccg gggggccgca

 52261

cctgtgcaga gagtgaggag gggcagcagg agaggggtcc aggccatggt ggatgcgccc

 52321

cgagctctgc ctctgagccc gcagcagcac tgggctctct gagacccttt attccctctc

 52381

agagctttgc aggggccagt gagggtttgg gtttatgcaa attcaccccc gggggcccct

 52441

cactgagagg cggggtcacc acaccatcag ccctgtctgt ccccagcttc ctcctcggct

 52501

tctcacgtct gcacatcaga cttgtcctca gggactgagg tcactgtcac cttccccgtc

 52561

tctgaccaca tgaccactgt cccaagcccc ccggcctgtg gtctcccctg gactccccag

 52621

tggggcggtc agcctggcag catcctggcc gtggactgag gcatggtgct ctggggttca

 52681

ctgtggatgt gaccctcaga ggtggtcact agtcctgagg ggatggcctg tccagtcctg

 52741

acttcctgcc aagcgctgct ccttggacag ctgtggaccc gcagggctgc ttcccctgaa

 52801

gctccccttg ggcagcccag cctctgacct gctgctcctg gccacgctct gctgccccct

 52861

gctggtggag gacgatcagg gcagcggctc ccctcccgca ggtcacccca aggcccctgt

 52921

cagcagagag ggtgtggacc tgggagtcca gccctgcctg gcccagcact agaggccgcc

 52981

tgcaccggga agttgctgtg ctgtgaccct gtctcagggc ggagatgacc gcgccgtccc

 53041

tttggtttgt tagtggagtg gagggtccgg gatgactcta gccgtaaact gccaggctcc

 53101

gtagcaacct gtgcgatgcc cccggggacc cagggctcct tgtgctggtg taccaaggtt

 53161

ggcactagtc ccaccccagg agggcacttc gctgatggtg ttcctggcag ttgagtgcat

 53221

ttgagaactt acatcatttt catcatcaca tcttcatcac cagtatcatc accaccatca

 53281

ccattccatc atctcttctc tctttttctt ttatgtcatc tcacaatctc acacccctca

 53341

agagtttgca ttggtagcat atttacttta gcacagtgtg cctcttttta ggaaactggg

 53401

ggtctcctgc tgatacccct gggaacccat ccagaaattg tactgatggc tgaacccctg

 53461

cgtttggatt cttgccgagg agaccctagg gcctcaaagt tctctgaatc actcccatag

 53521

ttaacaacac tcattgggcc tttttatact ttaatttgga aaaatatcct tgaagttagt

 53581

acctacctcc acattttaca gcaggtaaag ctgcttcgca tttgagagca agtccccaga

 53641

tcaataaaga gaatgggatg aacccaggat ggggcccagg ggtcctggat tcagactcca

 53701

gccgtttagg acagaacttg actaggtacg aagtgagcgg ggtggggggg caatctgggg

 53761

ggaactgtgg cacccccagg gctcggggcc atccccacca catcctggct ttcatcagta

 53821

gccccctcag cctgcgtgtg gaggaggcca gggaagctat ggtccaggtc atgctggaga

 53881

atatgtgggg ctggggtgct gctgggtcct aggggtctgg ccaggtcctg ctgcctctgc

 53941

tgggcagtga taattggtcc tcatcctcct gagaagtcac gagtgacagg tgtctcatgg

 54001

ccaagctatt ggaggaggca gtgagcactc ccacccctgc agacatctct ggaggcatca

 54061

gtggtcctgt aggtggtcct ggggcttggg ccgggggacc tgagattcag ccattgactc

 54121

tcagaggggc cagctgtggg tgcagcggca gggctgggcg gtggaggata cctcaccaga

 54181

gccaaaataa gagatcaccc aacggataga aattgactca caccctttgg tctggcacat

 54241

tctgtcttga aatttcttgt ggacaggaca cagtccctgg ataaagggat ttctatcttg

 54301

cgtgtgcaat agagctgtcg acacgcttgg ctgggacatg taatcctttg aacatggtat

 54361

taaattctgt tcactaacat ctgaaaggat ttttgcatca ataaacctaa ggtatattgc

 54421

cctgtcattt ccttgtcttg tagtgtctct gagtaggctg gaaggggtaa ccagcttcac

 54481

aaatcgagtt aggaaattcc cttattcttc cactgtctaa tagactttca taagattagt

 54541

gttaattcct ctttaaatcg ctgctataat catcactgtg gccaccggta ctgaattttt

 54601

tgttaggatg atttttaaac aagcatttta atgatttttc cttttatttt cggctgtgct

 54661

gggtctcgtt gctgtgtgcc ggcgttctct cgctgtggcc agtgggggcg ctgctctcgc

 54721

gttgcgaagc tcgggcttct gactgcagtg gcttctctcg ttgcagagcg cgggctccag

 54781

ggcgctcagg ctcgcgtggc tgcggcacgt gggctcagta gtcctggggc acaggtgcag

 54841

cagcctctca ggacgttttg ttcccagatg gtgggtcggt cgaaccggtg tcccctgcgt

 54901

tgcaaggtgg attcttcacc gctggaccac cagcgacgtt ccctggaggt ttttaattat

 54961

ggatttaagc tctcattaga tgtctcctca catttcctat ttctttttga gtcagtttga

 55021

tactttgttt gtgtctgtaa gtttgtccat tttatccaag tcatctaatg tgttgataga

 55081

caattattgg ttagtcatct aattgttggt ttacaatttt gagagcattg tcctgcaatt

 55141

ccttctatct gcaagattgg taataatatc tcccaagagg agtcacaaac tgaaatgaga

 55201

ttanatacag gctttttttt taaaagaatg aacttatgtt gttgcctttc tcatagatct

 55261

tacttcttag catgactgta cttactgact ggggcgtttt catgtctgtg tggagagcta

 55321

ccattagtac ttcttatcgc ccaaagacat cgggctcctg ggcacagtga aaacactcct

 55381

ttctgtggct attttgcaaa atatggccta gcctagcgtc ataagggatc acagctgaca

 55441

actgctggaa cagagggaca tgcgaagcaa cgtgagggct ggaacctgga gggtcctctc

 55501

tggggacagt ttaaccagct ataatggaca ttccagcatc tgggacatgg agctgtgaac

 55561

tggaccaatg actgtcattt ttggaagaga aatcccagga gagaagggtc caggggaatc

 55621

tgaggccgca tgcagtgcct caggacaggg gacaccttct ccagcagagc aggggggccc

 55681

gcccaggccg cctgcagtga ttccaccagg aggagatgca tccctgcaga cctctgacag

 55741

cacggccctc tcctgagaca cagggtcaca cccggggccc tggaaccctt tgagacccta

 55801

aacctttcct ttcctgacca ccctgacagc agtctagctc agaacagaca tcttcatttt

 55861

cagcaggaaa atccttttcc tcgtttgagg gagcgactgg caccggagga gctgagtctt

 55921

ttaaacacag gctgcctgaa cctcagggat gacctgcagc tgctcagagg aggctggagt

 55981

gtgatagctc actctaatgt tactaaaagg aacatattgg acaccccctc tctgaaaaat

 56041

ttccctcctg cctctcatct cttagtccac tttatcgccg ttttactgct tttctattta

 56101

ctactcttaa cgccaaccta tcttatttcc cctcccagtt taacacggtt ttccctccac

 56161

ccgctctctt taatctcaga agattctgcc tattcctcta ttatcacacg cccctacttt

 56221

ttattttttt tcttacccgc cttttattcc ctcccctcct cactctctat ttaattacat

 56281

cttaactaca ccgcctgcgc tatcttcgaa tgtatccaaa tatttttccc ttatataaca

 56341

ctccaggccg agcggctaac ttattataat ttctttatag cgcctaccta atttcccttt

 56401

atttctaatt atctatatat acccatgcaa tttcgnnnnn nnnnnnnnnn nnnnnnnnnn

 56461

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

 56521

nnnnnnnnnn nnnnntgggt gtacgttata gagtaaacgc gcatgaagaa gtgggtcaat

 56581

ctatggctgt gagaggcaga aaataatatt atcatatata atttatgtta taacacactg

 56641

aggtggtggg ctcgtagaat agtgcggacg gggagaaagg tgggaaggag aagacacaag

 56701

agagagatgt tcgcctcgcg ggatggatgg gcggagggat agaagaataa aaagaggaga

 56761

ggtatagagg ggggcggggg gcataacgtg tggtggggta aatagtaggc ggtaattatg

 56821

aaaaaaagaa agacgggggg ggcggtaaca tagaatacgc aaaaaagtca tatactgaac

 56881

ggggattagg gagaagaggt ggggggcgtg gggtgcgggg gaaagaggtg tgtgtataat

 56941

tggtatggag tgttatttga atatatatta atgtaatagg gagtgtaatt agtgaaattg

 57001

tgggagtatt atattggggt gtgggggaca tggcaaagtg atgatcggga taaaaaaagt

 57061

aaagcaagag gggaggggaa aataaggggg gggagaaggt cgaagaaaat aagaggaaga

 57121

agaaagaacg ggggtggcgg gcgggggggg cgccgctctt gtatctggct tttttgttgt

 57181

gtcggtggtt gttcgcgtct tgttgggtcc ggggcgggtg tgcggaaaaa aaaaaaggcg

 57241

ggaggcccgg ggcccggtca cgcggcaccc ccgcgggtcc ctggcttctc cttcggcagc

 57301

tccgggggtc ggtgagcctg cgccctccgg gccgccggcc cgagctgtgt gcgccctgga

 57361

gaatcggagc cgctgtggca gcacgcggag ggcgcgcgca agggccacgg gacggacctt

 57421

caaaggccgc ggcggagcgc ggcaagccga accgagggcg gtctggcgat cggccgagcc

 57481

ctgctccccc ctcccgcgtg gccccagggt cgcgggtgga ctggggcggg tacaaagcac

 57541

tcacccccgt cccgccccca gaaagcctcc caggactctc acagagcacc cgccaggagg

 57601

catccggttc ccccctcggc tcagttcagt tgctcagtcg tgtccaactc tttgcgaccc

 57661

catggactgc agcaccccaa gcttccctgt ccatcaccaa ctcccggagt ttactcaaac

 57721

tcatctattg agtcagtgat gccatccaac cgtctcatcc tctgttgtcc ccttctcctc

 57781

ccactttcaa tctttcccag catcagggtc ttttcttatg agccagttct tcacatcagg

 57841

tggtcagagt attggagttt cagcttcagc atcagtcctt ccaatgaaca ctcaggactg

 57901

atttccttta ggatggactg gctggatgca gcgccagaca ccgaccgcgt ttaccccgtg

 57961

tgtcctttcc aatggctgtc ccctgcgggc ctaggggcat tggtgcgggt ttgaatcctg

 58021

tggccttgaa ttttacgcct tagttccagg tccagggcag ggccatccgg attcaggatg

 58081

cttcccagcc cttcaggaat ggcaggtttt catggtcctt tctgagtgag ttctgagtgg

 58141

tcatattggt gcccttggca gggagggctc ctgactttcc tatcttcaca tcactgtccc

 58201

caacccccaa gagaggcctc ttggcccagg gactgcaggg aggatgaagt caggagcaga

 58261

agcatggggt agggggctca ggtgggcaga ggaggcccct ctgtgaggag gaacggcaag

 58321

cgaggaggga acaggggcac cggcagtgcc tggcaagctg ggtgatgtca cgactacgtc

 58381

ccgaccacac agtcctctca gccagcccga gaagcagggc cctcccctga cccccatctg

 58441

ggcctgggct tcagttttct cctccctgca atggggtgac tgtttgcctc caggagaggg

 58501

gagcatgtaa aggtggccac tctcttctgg cagacatgcc aggcctgggc cagcctccac

 58561

ccctttgctc ctgcagcccc tgctgacctg ctcctgtttg ccacaccggc ccctcctggg

 58621

ctgatcaggg cccccctcct gcaggaagcc ctctgggaca agcccagctt gctgtaactg

 58681

tggctttcca ctgtgacctg caacgtggga ggctgttact taaaactccc atgactggtg

 58741

gattgccggt ccccagaaca aggccacgca tccctggagg ccctcgagac catttaaggt

 58801

agttaaacat ttttacttta tgcattttca tgtgtatcag aaagaaaaaa aatgtatcat

 58861

cagttcatca aatccatgat ttcttgacca atattgctaa gatgaggctg aaataggcat

 58921

ttccattttt aaaaaactga atcactctga agaaacagat ggcaggcttc cctggtggtc

 58981

cggtggttaa cagtccatgc ttccagtgct gggggcatgg gttcgatccc tgaaaatttt

 59041

aaaaaggaag aaaaagatgg ctcccccgtc cctgggattc tccaggcaag aacactggag

 59101

tgggttgcca tttccttctc cagtgcatga aagggaaaag ggaaagtgaa gtcgctcagt

 59161

cgtgtgcgac tcttagcaac cccatggact gcagcctacc agactcctcc gtccatggga

 59221

ttttccaggc aagagtactg gagtggggtg ccattgcctt ctccaggcaa acggcctgct

 59281

actgctactg ctgctaaatc gcttcagtcg tgtccaactc tgtgcgaccc catagacggc

 59341

agcccaccag gctcccccgt ccctgggatt ctccaggcaa gaacactgga gtggggtgcc

 59401

attgccttca gcctgctgct gctgctgcta agtcgcttca gtcgtgtccg actctgtgtg

 59461

accgcataga cggcagccca ccaggctccc ccgtccctgg gattctccag gcaagaacac

 59521

tggagtgggt tgccatttcc ttctccaatg catgaaagtg aaaagttaaa gtgaaattgc

 59581

tcagtcgtgt ccgactctta gtgacccaat ggactgcagc ctaccagggt cctccatcca

 59641

tgggattttc caggcaagag tactggagtg gggtgccatt cggcctaggg agtgagaaat

 59701

cacggctgtc ttccctcttc tcgccctcta ggggtctctg tggagcctcc ctggagaggc

 59761

cgcggcggct ccggggactg gagggggagg gggggttgag tcagccggtg gccctcccct

 59821

cgctgcccgt ctcctccctt tttaggcaca agctgggcgc cctttttagg cgcagcctca

 59881

ccctgcgggc cactgcccgt gtttcggctc cccggagata aaacagattg cctgcacccc

 59941

gggtcatcac aaggattgta tgaccgtttc ccagtgtgct caccaccctc cctctgattc

 60001

tcagagacgc gccctcgcct caggaggctg ctcatcccag gccaaggggc ggcgtggggt

 60061

ccccagcgcc ccgcacagac actgccttct gaccacctcc tcccaacagc ttacctgcca

 60121

agaaggcctc ctgacccctc atcctgcccg gtggtttgga gaaagcctca tctggcccct

 60181

ccttctcggg gcctcagttt ccccctctgt gaactggcgg attctgccaa gctgacgtcc

 60241

tggccagccg cctccccgtg gccagtgtcc cccgggacac agctgaatgt ccctgctcgg

 60301

gatgcacctt cccaagttgg cctgtcagga ggcgggggcg agcagggaaa cccgactcct

 60361

ctcagacggc ccatcgcatt ggggacgctg aggcccggag cagcggcacc ctcctggcca

 60421

gggtcattct cccgccccgc cccgtccctc cgggcctccg agaccgcagc ccggcccgcc

 60481

ccgggaagga ccggatccgc gggccgggcc accccccttc cctggccgcg ggcgcggggc

 60541

gagtgcagaa caaaagcggg gggcggggcc ggggcggggg cggggcggag gatataaggg

 60601

gcggcggccg gcggcacccc agcaggccct gcacccccgg gggggatggc tcgggccgcc

 60661

ggcctccgcg gggcggcctc gcgcgccttt ttgtttttgg tgagggtgat gggggcggtc

 60721

gcggggtact attttttcat ttataattgg gtattagcta gcgagtggaa ccacaccctt

 60781

attccactat agccaatttt tgcgggggca tcttacatta cagactcgcc cgcctcttat

 60841

ttcggtacag catatcagat cgtctcttta ctcagacact agtgattatt gtctatagta

 60901

cacaaaaaga acggttgtgt cggcgtaatg gttgcatttt ccctcctcgt ttctcctgac

 60961

cacctcaatt acaccaacac tctactattt aaatcacgta ttgtacgcca ccctccgccc

 61021

gcgaactaaa agaatgtgca gatattctga agataaaatc gttcattgtt acgccccgcg

 61081

cgcttcgcgt atattactct tagaacttct tattcgcccg agcagttatt caccccccgc

 61141

aactagatgt cgccttaata tttgttctaa ccgttttgga ttctaacgat aggcgggaaa

 61201

ggtagacatt cgaccgctac gacaactaaa atcgacgagc acaggctatt tatatcgcga

 61261

ccacacgcgc gcggtataca naccgtaaaa ttatctaaca tcgagagtaa gggcacagag

 61321

cgaaatacaa gcggcgtggt gggaggtgtg tctgtagtga attcgcacct cgcgccgccg

 61381

cctctgtgcg tcgnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

 61441

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnngatataa

 61501

tattaataaa cagcggatag atgtgtgtaa gggaggaggt gcataagaga ttaaagagag

 61561

gcgggcggag agaaatagag tagaggagga tgagagaaaa aagaaagcaa gcgtaggtac

 61621

aacggcgggt gggtagtatg ataaagtgag tgtatatatt tgagtaaagg aagggtagat

 61681

ggagtataaa gaagtaagga gaggagaggg cggcggagag agagagtgca aagaaaataa

 61741

gtgggcaaag gcggggtggg tgagaagcag tagaagagaa gatagagaag ggggaaaaag

 61801

aggaaaatga ggattagaac aagtaggaca ggatagatgt gaaaaatgag atcaggtcaa

 61861

ggtggagaaa aagtagaaac tggggcgtga ttgtaaaaaa gggaggccgc gatggggcag

 61921

caccataagc gaagagatga attaatgaaa gcaaggcagg gagaatcaaa tgagttgggt

 61981

ggaggaagga ggctgtgact tccttcgctg ccggaaagag aactagaata gcctcgggct

 62041

gtggggggag gtaaagataa agtgacttct gggccctggg ggaggcccag gagtttctac

 62101

cgagctgagc tgggtgcctc tcccaaatgc ccaaccccct gagagtcgac gggagagcac

 62161

agcctggcca aacctgggca gggcacacgt gtccttcacc ccacagtggt cacgagccca

 62221

gcgtggtccc tgcgtctggc gggaaacaca gaccctcaca ccccacacaa gggtccggcc

 62281

gctttcaaat aacagcagcc gtgccctctg ggccggtgac ccggacacag agagatgaag

 62341

tccgcatctc tcagagtgcg ctgtcctccg cccggtcagg cccgggtccc ctgcttctct

 62401

gaggtcacca ggagggattg catgtgggtc tcagggacac aggttcagtg atgtgacaga

 62461

gggtagtggg tcccagcagg gccggtcttt ggacccgttt ttctgaaaag ccagttggcg

 62521

acctggggtc acagcaaagc tgatcctgtt tggccaggag tctcccagtg acggcctccc

 62581

ccagaacatc gggcccagtg ggggctccag ggggtagact tgcctcccag ctcacgcccg

 62641

tgtcttgaca agtccatgat ttggtaaaat taatttgtgt tggatggagt tgatttagtg

 62701

gtgtgtgagt ttctgtggcg cagcaaagtc aatcagttac gcatacacat gtatccagct

 62761

cttcctacga ttctgttccc atataggtca ttatggggtg tcaggtagag cttcctgtgc

 62821

tacgcagtac ggccttattc agttcagctc agtcgtgtcc gactccttgt gaccccatgg

 62881

actgcagcac gccaggctcc cctgtccatc accaactcct ggagcttatt caaactcatg

 62941

tccatcgagc cggtgatgcc atccaaccat ctcatcctct gtcgttccct ctcctcctgc

 63001

cttcagtctt tcccagcacc ccctagagaa gggaatggca aaccacttcg gtattcttgc

 63061

cctgagaacc ccatgaacag tacggaaagt ccttattagt tttctatttt atatatagca

 63121

gtgcacacgt gtcagcccca atctcgcaat ttatcacccc cctccgccgc cgattggtag

 63181

tcatgtttgt tttctacatc tgcgactcta tttctgtttt gtaaacaagt tcatttacac

 63241

cactttttta gattctgcac atacgtggca agcccacagc aaacatgctc aatggtgaaa

 63301

gactgaaagc atttcctcta agatcaaaaa caagacgagg atgtccactc actccgtttt

 63361

tactcaacac agccctgaac gtcctagcca tggcaatcag agaagagaaa gaaattaagg

 63421

aatccaaatt ggaaaagaag aagtaaaact cactctttgc aaatgacatg acacttatac

 63481

ccagaaaatc ctagagatgc taccagataa ctattagagc tcatcagtga atttgttgca

 63541

ggatacaaaa ttaatacaca gaaatctcct gcattcctat agactgacaa caaaagatct

 63601

gagagagaaa ttaaggaaac catcccacgg catgaaaaag agtaaaatac ctaggaataa

 63661

agctacctaa agaggcaaaa gacctgtact cagaaaacta taaaatactg acaaaggaaa

 63721

tcagacgaca cagagagaga gagataccac gctcttggat gagaagaatc gatagtgtga

 63781

caatgactat actacccaga gaaacataca gattcagtac aacccctatc aaattcccaa

 63841

tggcattttt cacagaatca gaattagaac aaaaagtttt acaagtttca gggaaacaag

 63901

aaagatccta aagagccaga gcaatcttga gaaagaaaaa tggagctgga agagtcaggc

 63961

tccctgagtt ctgactgtgt atacaaagct ggcatgattt ttaacagcag gggtgtaaat

 64021

gaacttgttc acaaaacaga tggtggggtg ggcttccctg gtggctcagc tggtaaagaa

 64081

tcctcctgca acgcaggaga cctgggttcg atccctaggc tgggaagatc ccctggagaa

 64141

gggaaaggct acccactcca gtattctggc ctggaaaatt ccaaggacca tatagtccat

 64201

gggtttgcaa agagtcggac acgactgagc gacttccaat cctggaaacg tcccattgtg

 64261

gacggtgaac tggggttgtc caagctcagg gtaaccgttt gctgagtgac tgacactcct

 64321

tctcatgggt taaaatgtgg ggcccaaggc caggaccaga ccccgcagtc agccaggcag

 64381

accctgtgca gccccagcga gtgtgtggcc gccgtggagt tcctggcccc catgggcctc

 64441

gactggagcc cctggagtga gcccattccc tcccagcccg tgagaggctg ggtgcagccc

 64501

taaccatttc ccacccagtg acagatccgc ctgtgtggaa acctgctctt gtccccaggg

 64561

aacctggcag gactcaggga gaatgtctca gggcggccac agatcagggg ctgggggggc

 64621

agggctgggt ccagcagagg ccctgtgccc actccccgga aagagcagct gatggtcagc

 64681

atgacccacc agggcaccga cgcgtgcttg cacacaggcc gccccctcat ggtgacactc

 64741

ttttcctgtg gccacatctc gccccctcag gtccctcctg ctccccagct cctggcctgg

 64801

gaacctcttc cccgccccgg ggacgtcagg gctggtgtcc actgagcatc ccatgcccgg

 64861

gactgtgctg atcaccagca cctgcacccc ctctcgggtc tcaccaggat gggcaactcc

 64921

tgcccatcca gcacccagcc tcctgggtac acatcggggg aggagggaga agcctgggcc

 64981

agacccccag tgggctccct aaggaggaca gaaaggctgc cgtgggccag ccgagagcag

 65041

ctctctgaga gacgtgggac cccagaccac ctgtgagcca cccgcagtgt ctctgctcac

 65101

acgggccacc agcccagcac tagtgtggac gagggtgagt gggtgaggcc caggtgcacc

 65161

agggcaagtg ggtgaggccc gagtggacag ggtgagtggg tgaggcccag gtagaccagg

 65221

gcccatgtgg gtgaggcccg ggtggaccag agtgagcggg tgaggcccag gtggacaggg

 65281

cgagcgggtg aggcccaggt ggacagggcg agcgggtgag gcccgggtgg acagggcgag

 65341

cgggtgaggc ccgggtggac agggcgagcg ggtgaggccc gggtggacag ggcgagtggg

 65401

tgaggcccgg gtggaccagg gcgagtgggt gaggcccggg tggacagggc gagtgggtga

 65461

ggcccgggtg gaccagggcg agtgggtgag gcccaggtgg acagggtgag tgggtgaggc

 65521

ccaggtagac cagggcccag agcaaagccc cggctcagca gtgatttcct gagcgcccac

 65581

tgcttgcagg gacctcagcg atggtaaggc agccctgttg ggggctcccg actggggaca

 65641

gcatgcagag agcgagtggt cccctggaga aacagccagg gcatggccgg gcgccctgcc

 65701

aggctgcccc aggggccaca gctgagcccc gaggcggcca ggggccggga cagccctgat

 65761

tctgggttgg gggctggggg ccagagtgcc ctctgtgcag ctgggccggt gacagtggcg

 65821

cctcgctccc tgggggcccg ggagggacgg tcaggtggaa aatggacgtt tgcgggtctc

 65881

tggggttgac agttgtcgcc attggcactg ggctgttggg gcccagcagc ctcaggccag

 65941

cacccccggg gctccccacg ggccccgcac cctcacccca cgcagctggc ctggcgaaac

 66001

caagaggccc tgacgcccga aatagccagg aaaccccgac cgaccgccca gccctggcag

 66061

caggtgcctc cctctccccg gggtgggggg aggggttgct ccagttctgg aagcttccac

 66121

cagcccagct ggagaaaggc ccacatccca gcacccaggc cgcccaggcc cctgtgtcca

 66181

ggcctggccg cctgagacca cgtccgtcag aagcggcatc tcttatccca cgatcctgtg

 66241

tctgggatcc tggaggtcat ggcccctctc ggggccccag gagcccatct aagtgccagg

 66301

ctcagagctg aggctgccgc gggacacaga ggagctgggg ctggcctagg gcaccgcggt

 66361

cacacttccc ctgccgcccc tcacttggga ctctttgcgg ggagggactg agccaagtat

 66421

ggggatgggg agaaaaatgg ggaccctcac gatcactgcc ctgggagccc tggtgcgtct

 66481

ggagtaacaa tgcggtgact cgaagcacag ctgttcccca cgaggcctca cagggtcctt

 66541

ctccagggga cgggacctca gatggccagt cactcatcca ttccccacga ggcctcacag

 66601

ggtccttctc caggggacgg gacctcagat ggccagtcac tcatccattc cccatgaggt

 66661

ctcacagggt ccttctccag gggacgggac ctcagatggc cagtcactca tccattcccc

 66721

acgaggcctc acagggtcct tctccagggg acgggacccc agatgggcca gtcactcatc

 66781

catccgtctg tgcacccatc cgtccaacca tcacccttcc ctccatccat ctgaaagctt

 66841

ccctgaggcc tccccgggga cccagcctgc atgcggccct cagctgctca tcccaggcca

 66901

gtcaggcccg gcacagtcaa ggccaaagtc agacctggaa ggtgcctgct tcaccacggg

 66961

aggagggggg ctgtggacac agggcgcccc atgccctgcc cagcctgccc cccgtgctcg

 67021

gccgagatgc tgagggcaac gggggggcag gaggtgggac agacaggcca gcgtgggggg

 67081

ccagctgccg cctggctgcg ggtgagcaga ctgcccccct caccccaggt acaggtctcc

 67141

ctgatgtccc ctgccctccc tgcctccctg tccggctcca atcagagagg tcccggcatt

 67201

ccagggctcc gtggtcctca tgggaataaa aggtggggaa caagtacccg gcacgctctc

 67261

ctgagcccac ccccaaacac acacaaaaaa atccctccac cggtgggact tcaccagctc

 67321

gttctcaggg gagctgccag ggggtccccc agccccagga agccaggggc caggcctgca

 67381

agtccacagc cataacacca tgtcagctga cacagagaga cagtgtctgg tggacaggtg

 67441

cccccacctg cgagcctgga gagtgtggcc ctcgcctgcc ccagccgcgg tcagtcggct

 67501

cagcaaccgc tgtccactcc cagcgccctg gcctcccctg tgggcccagg tcaagtcctg

 67561

ggggtgaagc taagtcaggg agcctcatcc atgcccagcc cggagcccac agcgccatca

 67621

agaaatgctt cttccctcca tcaggaaaca ttagtgggaa agacaagagc tggggggttc

 67681

tggggtcctg ggggatcaga tgaaggggtc tgggagcagc agcagcctca ggcaccccaa

 67741

aacaaggccc aggagctgga ctcccagggc tgaggggcag agggaaggaa ggcctcctgg

 67801

ggggttggca tgagcaaagg cacccaggtg ggggctgagc acccctcggc tggcacacac

 67861

aggcccccac tgcagtacct tccccctcgg agaccctggg ctcccgtctc ccgcctggcc

 67921

tgccatcctg ctcaccaccc agaaatccct gagtgcggtg ccatgtgact gggccctgcc

 67981

ctggggagga aggagattca gacagacagg atgccagggc agagaggggc gagcagagga

 68041

tgctgggagg gggcccgggg aggcctgggg ggcagggggg caggagttct ccagggtgga

 68101

cggcgctgtg ctatgctcgg tgagcacaga ggccccgggt gtcccaggcc tgggaaccca

 68161

gcagaggggc agggacgggg ctcaaaggac ccaaaggccg agccctgacc agacctgtgg

 68221

gtccagaagg cagctgcgcc ctgaggccac tgagtggccc cgtgtcccga accaccgctg

 68281

aaacatggga cacacgttcc caggcggagc cactcctgcc ttccgggagg ctcccagcgg

 68341

gctcatcgct ccatcccaca gggagggaaa ccgaggccca gatgacgaac atcccggcga

 68401

gcaggtcaaa gccagcccct ggggtcccct ctcccggcct ggggcctccc ctctgcaggg

 68461

tgggaaaccg aggccacaca ggggctccat ggggctgccc tctgccaggc cctggacacc

 68521

ccgcgggtga cccccgcctc tatcatccca gccctgccag gccctggaca ccccgtggat

 68581

gacccccgcc tctatcatcc cagccctggg ggacagatgg gaggcccaag cgtggacccc

 68641

ctggccaccc cctaccccac agccgggagg agccgggagc tggtggccaa gggcctagag

 68701

gagccagann nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

 68761

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnca atatagaggg

 68821

ggtgggataa agggtaatat gatgtttagg tagttagagt taaattagaa gggtttggat

 68881

aaagattaat aaaattacaa gcgtacatat cgtgtgagtg tgggtgataa tatttgtgta

 68941

tgtggggaat agaagtgagt gtgagtagta ttcaagatgt aagtgtgcga atacaggtct

 69001

gagcgatttg aatggaagtg aaaaaaagcg tgtgtgtgga ggaggcggga gaggaagata

 69061

gtgtggggga agaaaagaag gctagtgggt aaagaaatat cagtaggcgg ttgacgaaag

 69121

aagaactagg aagaattaat ataaaaataa agggaggatt aaaaaataaa gagggaggag

 69181

gtaacggaaa tagttagtta agaaaagaat ggagagtgga ggtaagataa ataagggagt

 69241

aatgggagtg aggaggaata aataaaaaaa tggtgaggga aaatagagta gaatgagaac

 69301

aagaatgaaa aagggagtga agggggtgaa aaaaagtgaa gttgaaaaaa gaggaaaaaa

 69361

aaggagaaga taaaaaaata aaataaaaaa aggaaaaaaa agaaaaaaag aaagaagggt

 69421

taaaggacga aaagaaggga agagaaaaaa aatagtttaa gtgggggagg gtaaaaaaga

 69481

attaataaag taaatatggt tgtggtcgaa aaaaaaaaaa aaattgttgt gttgatgaga

 69541

agaaaagaaa aaagaagaaa gggaaaagca aaaagaaagg agagaaaaag acaaccccac

 69601

cgcccgggcg catggagggt gaggatggcg cacgcccgcg gatggcacag catcacagca

 69661

atcctaaaac gttttcagac cggtgcatct tcaccgcgcg cgcgccccgc ccggccctcc

 69721

tcccgccctg accgcggacc cccacccgca ccggggagcc tacccccacc ccggggacgc

 69781

tccgccacgc taaggtcagg actgccgtga agacgcgccg gggtgaaaac gttttatctt

 69841

catgacataa gcgagtggtt ttgaaacagg tttacaaacc ctcgtgaaga cgcaccctta

 69901

gcgttaggtt ttgttttttt accatgtgac gatgcaacta ttttcttcct ctcttccaca

 69961

gtggctagtc gcctccagag cgaggggtat ctcttgtaca gagaccctcg gaacatccgg

 70021

aggtagtttc ccacctaggg gtaaagcgag aaggctcatt acgagggccg gggctcctcg

 70081

gggaagggca gggccctggc gcagaggctc tgccacctca gtgacacgca gaccacgcgc

 70141

ggcctgcagg cgccgggctc tgaaagcagg caaagcccga tctgctgaca tcaggggttc

 70201

cgcagcagcg aaggtctggc ccgcacctgg cccactggca gggggtaagc tctgcctccc

 70261

gacgacagca ccaagttcag gaagggccac gcagacactg gtgagacacg gcccccccgg

 70321

agctgcccga gaagctctga ctttgcacta aagatctctg gcgcggtcca aaaatgtaag

 70381

gcctctcttc cttttatctt aagactttga tatttttacg atgtaataaa taccaagaag

 70441

ggcttttaat ttcagacaga tgtaggataa tttcccccgt agcccttgct gctttgttta

 70501

gtaacgaaac tcaaaccaga aataccaaag gaattttcca aagagtttca aaagcgctta

 70561

tcagcaatca ctagactgct gcatacatca tcactgcccc aaacaatagc ctgcctgtgc

 70621

cagttactca aagtactact tacttgacga aaacaaatct agtcctaacg tttttacaaa

 70681

gaaactccac tcttccgcca acttttcaga aacaaccact cgatcacgtg gcaggggacc

 70741

gtggctggac tgggtgctgg ctccttctgt gaccaggcaa cactgccccc ttctcggcct

 70801

ccctacgcct cttgacaaat gttcatcagc tgtaaagttc accccacgag ggacccactt

 70861

ctgctatttc ccacgtacct accccattat aggagttttc tttgtgacag tttctgcatt

 70921

tttcatggat ttagaggttt acataatcag ggctgctgaa cagcatgaga gacgtggcca

 70981

caaggtccct cctgcacctt gccgcagggg cagggcgagt tatctggctt gagcgtggtt

 71041

accatcaggg ggtaaacaca gtttccagga cgtttttgac aagacactga cccggatgcc

 71101

cccactacca ccgtgcaggt cctgcaggcc tcccagcctc ccaggccctt cccgaggtcc

 71161

cttcggaact taggggactc ggtctgcccc cctgggtttt ccctgcacca gcttttgccc

 71221

cctctggacc caggtttccc aaatggaaaa cgaaggtgtg ggtatggaag ctccctgggc

 71281

tcctctcagc tgtgcctctg catggtgatg acggctgccc atcggggggg gcaggactgg

 71341

ggcagctgcg gacaccctcc caaggctgct acccccgagt ggtgtggggc gctgtgggca

 71401

cgctctgctc agcgcacctc ctggaaacca gcgcctgccg tctgcccggg gcaaccggcc

 71461

cgggagccaa gcaccactgc cgtcagagga gctgctggct gtgagtggac gccagtctag

 71521

ctctgaaccc tgcccaggcc tcctgaggtc tgaacattgt aaaatcaggc cccggacggc

 71581

aactgcctct ccctcctgcc gtctggtctc cataaactgc atctcaggac aaatcttctc

 71641

actcaccagg gctgaaacag aagactgcag ctatctttct caaatctaag gtgtgctaca

 71701

gggcaagtcg cagaaactgt ctggcctaag catctcatca gatgcctgag acaagagctg

 71761

tggacgccaa gctggagcca gagctcctcg cgttctgccc acctggcacc gcgttccacc

 71821

cagtaaacgc aggcttgatt ttcaaaagta ccaccgactc agagccaatg ctaaaccgac

 71881

cacttttcct gcccattaga ttgggtgaag gtttctttaa tcaatctgcc agtcaccaca

 71941

tgccgcctct gtgcccacag gctggcgaag acctttctga gctacggcat gtggcaggca

 72001

gcggcacctc tcttcagtac ggccagctgt caaggggagc gtttctgtga tgatgtgaaa

 72061

atacattgca tccggccccg tgtttcatga acacgggtga ggaaaggaaa cacacaaagt

 72121

tctgatgcga ctgacagcac gggtctcata actcaataca agtcagacaa accacaggga

 72181

gtcacaggga atcccaatag cctcatctag tgtgaccatc atgaggctta atttattcag

 72241

tgtattcaat cataaagagg gggaaaaatt gtaaaaaaaa aaaaaaagaa agagtgaaat

 72301

gtgtaatact gaaaactgtt gctaggagaa gcaagcattg gcgtttgtaa ctgctttgac

 72361

tccccaagac ccacactcgc ctcgctacaa aagggaggca ctgctgctca gtacttgcac

 72421

acccgaactg cggatttgta atttaaaaat gtgtgtgtgg acacagcaca agccagagac

 72481

tgccaaaggt tgagggacac tggaagaact taatatactt ggtgcatgct gccagtgaca

 72541

gtcagtcacc agctgattca atagagtgcc gaaaggtcac cttttaggta aggatgaagg

 72601

ggttctgggc tcgtttactt gcactaactc agagttagtc cgagatatcc gaagtgccag

 72661

gtgcctccca tttgctgatg gatctagctc agggacggct gggccctagc catccaaaaa

 72721

tcaagcattg ttctcccaac ctgtcttctc gctgataatg gaaggtcaga acgcccaccc

 72781

gcccacctca aagtcaaaga acaccaagcg ggtgagtccc cactaagctc ggtgtttcca

 72841

atcagcggtt tcaggattcc agctggggca atgagggagg gagcgtgcga gggatccaac

 72901

acctcgcccc gtgcgcagca agggataacc caacaccccg tttctgtacg tccggctgga

 72961

gttgtggaac tcagcgcgga cccggggcca ccgcgacccc cgggaccctg gccgcgcggc

 73021

gcatccccgc tgccgggaca cgggtaagcg tccccaaact gccggacgcg gggcggggcc

 73081

ttctccgcca cgccccgata ggccacgccc aaggacaagg atggtcgtgc ccagacggcc

 73141

ggggcgggnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

 73201

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnncg gagggggggg

 73261

ggcggggcgg gggctgccgc cgcgcgtata ggacggtggt cgcccggcct ggggtccggc

 73321

cgggaatgac cccgcctctc cccgcatccc gcagccgccc cgccgcgccc tctgccgcgc

 73381

acccgcctgc gcacccgccg ccctcggccg cggccccggc ccccgccccg tcgggccagc

 73441

ccggcctgat ggcgcagatg gcgaccaccg ccgccggagt ggccgtgggc tcggctgtgg

 73501

gccacgtcgt gggcagcgct ctgaccggag ccttcagtgg ggggagctca gagcccgccc

 73561

agcctgcggc ccagcaggtg agcaagggct caggggaaac tgaggcccga cacagagccg

 73621

cagcaagaag gatcctactg gtcactcggc tgttggcctg gggtcatcac aggcgggctc

 73681

tcccaaccca tcccctgagg ccaaggtccc tagaaccccg tgggcagaca ccaaccagcc

 73741

ctttaaatat ggggaaacca aggtgcttag gggtcagaga tagccctagg tcgcccaacc

 73801

ctagtagaag ggagggctgt tggagttcct gagtgcccgc tctcccaccc cccgggaggc

 73861

cccttcctga gcccaagggt gactggtagt cagtgacttt gggcctgccg acctgtaccc

 73921

cactgggcac cccaccagtc ctgagccaca tttgggctta gtgacggggt cagggatcat

 73981

gaggatcaat gtggctgagc caggaaggtg ttagaacctg tcggcctgga gttcatacca

 74041

gcactgccct gggcttttct agacccatgt cccgcctcct gccccacctg cccctgttcc

 74101

cgcaccccac cagcagcggc aggggcttcg agagggctgt gggctcaccc tatttcaggg

 74161

atggagccgc taagacctgg ggcacactgc ccgctaggga cccctgaggc accagggccg

 74221

ggggctctgc ggaggggcag ccgccacccc cagctttgga gtcctctccc gggtgcccag

 74281

cccgagctga tccggctgcc tcccacgctg tgccccaggg cccggagcgc gccgccccgc

 74341

agcccctgca gatggggccc tgtgcctatg agatcaggca gttcctggac tgctccacca

 74401

cccagagcga cctgaccctg tgtgagggct tcagcgaggc cctgaagcag tgcaagtaca

 74461

accacggtga gcggctgctg cccgactggc gccagggtgg gaagggcggt ccacggctcc

 74521

cactccttcg gggtgctccc gctattccca ggtgctcctg cacttcccat gtgctcccga

 74581

ttctccctgg tgctccctct cctcctggct gctcctttgc ctcccaggtg ctcccacttc

 74641

tccctggtgc tcctgctcct cccggcggct cctgtacctt cggcctgacc tcctccctct

 74701

acaggtctga gctccctgcc ctaagagacc agagcagatt gggtggccag ccctgcaccc

 74761

acctgcaccc ccctcccacc gacagccgga ccatgacgtc agattgtacc caccgagctg

 74821

ggacccagag tgaggagggg gtccctcacc ccacagatga cctgagatga aaacgtgcaa

 74881

ttaaaagcct ttattttagc cgaacctgct gtgtctcctc ttgttggact gtctgcgggg

 74941

ggcggggggg agggagatgg aagtcccact gcggggtggg gtgccacccc ttcagctgct

 75001

gccccctgtg gggagggtga ccttgtcatc ctgcgtaatc cgacgggcag cgcagaccgg

 75061

atggtgaggc actaactgct gacctcaagc ctcaagggcg tccgactccg gccagctgga

 75121

gaccctggag gagcgtgccg cctccttctc gtctctgggg gcccctcggt ggcctcacgc

 75181

tctgtcggtc accttgcccc tcttgctgat gcaatttccc cgtaattgca gattcagcag

 75241

gaggaatgct tcgggccttt gcacctgacc gcatgagcag aggtcacggc cagccccctt

 75301

ggatctcagt ccagctcggc cgcttggccg tgacgttcca ggtcacaggg cctgccggca

 75361

cagaggagca ggcccttcag tgccgtcgag cactcggagc tgctgcctcc gctgagttca

 75421

ctcagtgtct acgcacagag cgcccactgt gtaccaggcc ctattccacg ttccccagtc

 75481

accgagcccc cagggctggt ggggacctgc cctcgggtac actgtgtccc gtcacgtggc

 75541

tttacgtgtg tctctgaggg aggctggcat tgcggtccac ctctcagcac aaacatctgt

 75601

cccctgggaa gggggtccca tttctgggtg cgagcagccc cctggggtcc gtgtctcctc

 75661

cttacctggc tcaaggcccc ggctcctggg tcctggacag cagggagccc acccctcggg

 75721

gctgtggagg gggaccttgc ttctggaggc cacgccgagg gcccaggcgc cgcctccggc

 75781

cgtcgccctg agggagcagg cccgacgcca gcgcggctcc tctgtgaggc ccgggaaacc

 75841

ctgcctgagg gtgcgggtgg gcaggtgccc ctgcccccag gctctcctgt gtgagtgaca

 75901

ctcaccagcc agctctggat gccacccatc cgggttctcc aggaggcact catagcgggt

 75961

ggggtcccct ccctcccccc tctgtggagg gagggagtct gatcactggg aggctggtgg

 76021

tccgtacccg cccccccgac tctggacgtg tttactaccc ccgcctgggc tcaggacagg

 76081

gcattggatg ggaaggacag ggctgggtcc tggccaggct gggggctctg cagggcatgg

 76141

gtgcccctgt ctcttcttat attccaacgt cactgcaggg gggcgcaaat cttggacccc

 76201

acttactgat gatctgcatc aggacatagg tcccccctcc tgcagcgggg ggctggccac

 76261

ggagggcgct ggggaaggcc cctcctccag cccctcggcg aggctcacca ggtgcccatc

 76321

ctcagccagc agggcgacgc tcgctgggag ggcggagagg gaggcagggc agggctggta

 76381

cgacccccgc tggggcgggg gggccctcag ccggtcctcc agcacccttg ctgccccccc

 76441

tcaccgtcag ggggcacctg gccgctctgc ctcaggtggg cggtgagggt cccaaggcca

 76501

caccaggtgt tcaccagctc ccagcagctg gctgtgggag aggggcagag gtgggcgcat

 76561

ggcacccgcc ttccccccag accaggatgc tctgccttcc tcccgcccat ctccccagac

 76621

atctgaagga ctcttgcctc caccatgcag ccccgcctcc accagaagct caggttcccc

 76681

gccccccctc cccgaagctg caggacccct gaccagcgaa gagatgggac agttggaaca

 76741

cacgctcccc cagcagcggc acagcagctg tgtggcccag aagagcccgc ctgtttccct

 76801

caagcaactc cccatggatg tcatcccatg gacaccccct tccccacacc gcctcctcgt

 76861

tctccccctc caaggcagag ggaacgcacc cccacctgtc tgctaggaca ggggacccca

 76921

cttacctccg aacatcacct tgataaacat ggccgtggtg gggacagatc cctccgaccc

 76981

ccaacttccg acctggggaa ggagctgggg tggagctcga ctgcagggtg gggccctgtg

 77041

ggaggtgtac gggtggagag ggtgatgggt gggtgggctc aagcggagct ccttgctcag

 77101

tccaggcggt ccctgcagct agtccaggat cctcagcctt ctccccctca ctggatcagg

 77161

gaagactgag gttccctccc ctgccccccc acccagcttc caagctggtc tctgtggcag

 77221

tgggagctgc caagaggtct gagcggccag tatccgggta acggggtttg tggagggtcc

 77281

gggcattccc ggtgcagggc tctagtgggg gctggagcct cgggcccaga gctgtccaga

 77341

gaccagtgcc ctcccaccgc cgccgcccgc aaggagagac agagctccca ggcggggagt

 77401

cggaggttcc tggaggggga gcatcctcaa ctctgcaggc ccccttccca ggcgcactcc

 77461

cggcctcccc gtcttctgtc ccctgctctt gttgaagtat gattggcata cagttcacag

 77521

ccactcttcg gagtgttctc cacactaagg atacagaaca tgtccctcgt ccccccaaac

 77581

tcccagccag gctgtcacga agagggaggc ggccgacggg gcagggcctt gcactcctgc

 77641

gtgtggggtc cacaggggtc gtccccgtgt cggtggcccc ttcctctcac gccaggaggg

 77701

tccccttgcc tggaggtgcc gtggatccgc tcgctgcctg ctctttgggt tgtttcccgc

 77761

atggggtgat gatgaagagg ccagtacaga cactcgccag caggtctctg ggtgaacagg

 77821

catttatttc tctttcctga gggcagatcc tgggagtggg gtgccggacc gtccggggag

 77881

agtatgcttc tgtttctaag aagctgccgt gttctccagt gtgctgcacc atgtcacggc

 77941

ccctctgtgc gtctggactc aggagacctc cttctcagcg gccctccccc ccaggtggtc

 78001

aggccatctg tgcccttctg ggggcagagc tcagcgccgg aggcgggagg aggcccagat

 78061

cccagcgcag cccaccagcg ttgctctgct tccctcggca ttcatagctg gagaaagggc

 78121

aaggagcacc ggctgaagcc ccacctggag gacgcacttc gatggcagca ggtgctcaga

 78181

ggtggccccg ggcagcattc cccagacgca caggccagtg ctttcttccc aggacaccac

 78241

tgtgtctggg gacccgagtc ctgcagcacg gtcgggagcg gctgtgccca gattccggcc

 78301

tgcacccttg gctccagcca ccacccctgt ttgtcaaggg gtttttgtct ttcgagccgc

 78361

cgaggaggga gtcttttgtc tgcagtgtca cagaagtgcc ataaagaggg gcccacagtg

 78421

ggagctttat aacattggtg cggagggctg taacaggtca gggaggcact tgagggagcc

 78481

ttctagggcg atggagatgt tctaaaattt ggtctgggta caggctacag agatgtgtgg

 78541

gtgtgtgtgt gtgtgtgtgt aaaaccctcg agccacacgt gtgaggtctg tgcatgtgac

 78601

cgtacacagg agacctcggt ggaaagcagc cacctgctct gactgcacct gtggatttcc

 78661

agctcctgcc ctcaggcggc cctgcggggc ccactggctg acggggagac ggcaccgccc

 78721

tcccccgctg tcagggtggg ggggctgacg atttgcatgt cgtgtcaggg tccagcggcc

 78781

tcccttgcgt ggaggtcccg aagcacctgg agcgccgccc gcagaacagc ggactcctgc

 78841

ctgcctccct gcctctggcc atggcctgcc cgcctctggc cctctttctg ctcggggccc

 78901

tcctggcagg tgagccctcc caaggcctgg ctcacctagg ggtgtgtaag acagcacggg

 78961

gctctagaag taaatcgcgg ggaagtaaat cgtagtgggc aggggggatg gtttccgaag

 79021

gggccctgag ggggacagga gacctggcct cagtttcccc actggtgagt gaccagatag

 79081

ccagggtacc tttggactct gactctgggg ggctctcaga gactggtctc ctactcagtt

 79141

tttcagaggg gaagctggtg tggccttgtc actgccctgc agggcctcag ggacaagcta

 79201

tccctgagga ggtctccagc agtcagtggc cggaggctga gccgatggat atagtaacag

 79261

cccaggcggc ctcttggggg tggtcagcct gtagccaggt tttggacgag ccgaagtgac

 79321

ctaagtgatg ggggtctgca gagcaaggga tgagggtggg cagcaggagg acccagagcc

 79381

caccagccca ccctctgaat tctggaccct tagctgcatg tggctccttg ggaagacggg

 79441

gcttaagggt tgcccgctct gtggcccaca cagtgctgat tccacagcac tggctgtgag

 79501

cttttgggag cagattctcc cggggagtct gacccaggct ttgtggggca ggggctggag

 79561

ggaaggggcc caggccagac ctgagtgtgt gtctctcagc ctcccagcca gccctgacca

 79621

agccagaagc actgctggtc ttcccaggac aagtggccca actgtcctgc acgatcagcc

 79681

cccattacgc catcgtcggg gacctcggcg tgtcctggta tcagcagcga gcaggcagcg

 79741

ccccccgcct gctcctctac taccgctcag aggagcacca acaccgggcc cccggcattc

 79801

cggaccgctt ctctgcagct gcggatgcag cccacaacac ctgcatcctg accatcagcc

 79861

ccgtgcagcc cgaagatgac gccgattatt actgctttgt gggtgactta ttctaggggt

 79921

gtgggatgag tgtcttccgt ctgcctgcca cttctactcc tgaccttggg accctctctc

 79981

tgagcctcag ttttcctcct ctgtgaaatg ggttaataac actcaccatg tcaacaataa

 80041

ctgctctgag ggttatgaga tccctgtggc tcggggtgtg ggggtaggga tggtcctggg

 80101

gattactgca gaagaggaag cacctgagac ccttggcgtg gggcccagcc tccccaccag

 80161

cccccagggg cccagactgg tggctcttgc cttcctgtga cgggaggagc tggagtgaga

 80221

gaaaaaggaa ccagcctttg ctggtcccgg ctctgcatgg ctggttgggt tccaacactc

 80281

aacgagggga ctggaccggg tcttcgggag cccctgccta ctcctgggtg gggcaagggg

 80341

gcaggtgtga gtgtgtgtgt ggggtgcaga cactcagagg cacctgaagg caggtgggca

 80401

gagggcaggg gaggcatggg cagcagccct cctggggtag agaggcaggc ttgccaccag

 80461

aagcagaact tagccctggg aggggggtgg gggggttgaa gaacacagct ctcttctctc

 80521

ccggttcctc taagaggcgc cacatgaaca gggggactac ccatcagatg nnnnnnnnnn

 80581

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

 80641

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn agagggtggg tgggtggaat ttaatatagt

 80701

ggtgcgcgtg gagcgtgggc ggcgcattta aggcggtcat ctaaaatagt ggataggggg

 80761

tggtgtgaca ataacgggtg gtggatgtgg tttacggggg gtgcaatagt tctgagtttg

 80821

ttagtgtctt cttgatgggg ttgcggcgtg tggacctacg ccttgagtat gtgggggggg

 80881

aaaagcagtg agggtagtag ggatgggaaa tattggtgga ggttctttgt tggtgtattt

 80941

tttggtatta tgttgggtgg tggagtggtg ggttgggtgt aatttcgctt gcgttatgtg

 81001

ttttttttct ttttcgtgtc gtgggttggg ttggttggtg ctttgtggtg gtggtgggtt

 81061

gtggtataaa aaaaaatgtg tggttgtgct cagcttagcc ctataacggt cggctttgtt

 81121

tcttgtttgt tctgtgggcg tgagcggatg gctcgggcct ccgtgctccg cggcgcggcc

 81181

tcgcgcgccc tcctgctccc gctgctgctg ctgctgctgc tcccgccgcc gccgctgctg

 81241

ctggcccggg ccccgcggcc gccggtgagt gcccgccgtc ctccagcccc cccgccccgc

 81301

cccgccctcc acgccgaggg gcgccggctc gcagagctgg atccaagggg gtgcccggga

 81361

gtggcccggc gcggcccgtt accccgaaac gctgtctggg tgccccgggg gtgtggtgga

 81421

tagtgagctt cccgtccctg gaagtatgca agtgaagccg gcgccgggat cgctcgggct

 81481

ggctggtgag cgggcgggac tcggtcgggc gctagacgca cgccgccagc cccccagctc

 81541

ccagacctgc ccactccgcg cccgcccggc cgcgatcccg ggtgtgtgtg tgtgttgcag

 81601

gggagggaca gcgggagtgg ctacagggct cccgactcac cgcagggaca aagacccgcg

 81661

ggtccccagc tggcgtcagc cgccaggtgt gtggcctcgg tgagcacacc tccaggcggg

 81721

agggttgagg gaagcgctgt ggggagggca tgcggggtct gagcctggaa gagacggatg

 81781

ctaccgcctg ggacctgtga gtggcgggat tgggaggcta tggaatcagg aggcagccta

 81841

agcgtgagag ctccggtgtg gcctggcggg ggtggtaggg gggggacgcc cctgtgtgtg

 81901

ccagcctgcg tgtgccctaa aggctgcgcc ctcccccact gctggggctt cgggggacca

 81961

gtcacagcct aggctactgc aggcgcacag ctccccggga gcccggccca cgcgggtgtg

 82021

ccgctgagcc tccagcctgt cggggcaggg gtggggggca gggatggggt cgttagcggg

 82081

gttgggggca gacgcccagg cagactctct gggcacagct ccggtgacaa gggaggtctg

 82141

gcaagcctgg gccccttctg tccagccacg ccagctctgc cctggccagt cttgccccct

 82201

ggcagtgctg gggatggaag ggggagcggg tacctcagtc tgggggccct gcctcctccc

 82261

cagccccgcc cggcccccta ggcctagggg cagagtctag gggtcaccct ggggagctgc

 82321

tgaatccgcg ggtttaggaa ccggagggac ctgggctttt gaaccacgtg gccctaggtg

 82381

agccctccgg cgcctcggta gccctcaccc ccagccttgt ccaggtgggc gggtgggagg

 82441

cgacagtgcc cactgctggg ctgaacagcg tctgcaggga ggccaggaga gctgggcaca

 82501

cggacacgtt ccatcacctg gagctgccac tgtgccactt gtgcggggtc aggcggggtc

 82561

tgagccgggc tgtcatctgt cacgccacag atatgcaggg ggcactcggg gtcgcctcgg

 82621

acatgcttat ccctggacgg ctgttggcag ggccgggaag gctctgtaaa tatttatcca

 82681

tcccagctca cagctttcag ggttgatgaa agccccgccg cccgcccact gtgggggacc

 82741

ccgccttccc ttctggagcc agcggggtga gggggtgggg gagatggacc tgcctgccca

 82801

ggagcaggcg gtgtgactct ggcaggtcac ttgacctctc tgagcctcag ggagggcccg

 82861

ggatggtgtg cggatgctct ctgccttcct cccagcctga ccagtgtcct cccctcgggg

 82921

tcgcctcctg cccaccgcag agggggtggc tatggggacc tgggccgatg gcaggcaggc

 82981

cggagagggc atgcccggct cagccgtgcc cagcacttcc cagtccaggg gcccccgcca

 83041

ctcccagccg ctggctgcct cccattttcc cgattgcagg ttggccccga ggctgaccgg

 83101

agcctctggc tcagctggga gactgaattc cccaagcaat tcctcaagga tgtgtgaggc

 83161

tgtggtgtgg tgcctatccg ggagaggtgg ggtgagcgga ctgggcacct ccgcccaggg

 83221

caggcccagg gagacgctgg ctgacgagca ggcaggcctg caaggaggac gagcagccat

 83281

ctcaggaatg tgggttttgg agacaagcca cagctggggg ggtggggggg ccatgggtgg

 83341

ggaggcctga tccccaggtc taggtccagc tctgggctcc ctcgccgtgt gaccctgggc

 83401

caagacctgg acctctctgg gccccgtctc ttcccctggg aggtggggcg atgcctgctc

 83461

cccaatcccc cagggctgtg gatgaggcag acgaggtgtg tgctcatccc cacctcactg

 83521

ccttccagca gccccgggcg gggggggtgg tggggactgg cgcacccagg tgaggatcag

 83581

gccttggagc tagggagggc cccccagccc caggccagaa aggacacggg gagacagaat

 83641

gcaggagggc ggcagagcag gggccagcgg tggggaaact gaggccaaga gcctgtggac

 83701

gatgtgctcc aggaaaggac ctcgctgcct ggggcctgga tcctagagcc tccaggagcg

 83761

gtgaccatga cgtgggcagg gaaccggagg ccccggcttg caggtggacc cggcgcgagt

 83821

cactcttcct ctctggccct gagagcttcc ttccagctgc cgctcctgtg ttctaatgtc

 83881

aagtctggag gcctgggggg caggtggggg ctgactgcca ggtgggggag ggcaggaatt

 83941

tggcagagca gcgtcccaga gtgggagaag ccagcccatg gaggggactc tctccatgcc

 84001

tgctgcccca aagggcgtta tagagagagg tcggttaccc cttcgccatg gccccgttcc

 84061

cattgaacag atgggaaagt ggaggctgag agaaggctgt gacttgccca gggtctccgt

 84121

ggcatggaac tgggcctgct gagtctcagg ccggggatct cgctgctgca ctgagcacgc

 84181

caggatgcag gggtctgggc ctggacctag cgcctcgtgg gggcaagaga ggaaggcacg

 84241

ctgggcctgc ctgtcaccct ccaccccacc gtggcttgtt gctcaggcct tcctgggggc

 84301

agaggagagg ggagatttca ctcgctggca ggctaggccc tgggctctct ggggctccgg

 84361

gggaacaatg cagccctggt ctttctgagg agggtccttg gacctccacc agggttgagg

 84421

aaaggatttc tgttcctcct ggaggtcacg gagccgacat ggggaggagc aggggcaggc

 84481

ccggggccca catcctcagt gtgagacctg gacgtgtgtc ctcccacctg acgctggggg

 84541

tggggggtgg gggccggggg ggatccagtg aaccctgccc ccaaattgtc tggaagacag

 84601

cgggtacttg gtcatttccc cttcctcctc ttcgtttgcc ctggtgggga cagtccctcc

 84661

cctggggaag ggggacccca gcctgaagaa cagagcagag ctggggtcag gggtgtgctg

 84721

ggagcgcaga gagcctcctg ctctgcctgc tggtcattcc tggtggctct ggagtcggca

 84781

gctggtgggg agcggctggg gtgctcgtct gagctctggg gtgcccaggg cctgggagag

 84841

ttgccagagg ctgaggccga gggtggggcc ctggcggccc ggctcctgcc ccaaatatgg

 84901

ctcgggaagg ccacagcggc actgagcaga caggccgggc cagacgggcg ctgaggctcc

 84961

cggcctctcc cccagctccg ctgtgaccct cacctgcggc ccggggtgcc agggcccccg

 85021

cttggttctg ccgtgtcttt gcaggctgat cccacgggct ctccctgcct ctctgagctt

 85081

ccgccttttc caggcagggg aaccgcgacc tccaggctgg gacgcgggga gggtgtatgc

 85141

gccaggtcag aatcacccct ccaccgggag agcgtggtcc aggggccctg gcagggtggg

 85201

gaccgagcat ctgggaactg ccagccaccc ccacccatgc agaggggaca tacagaccac

 85261

acggaggctg tgcctccgct gcagcaactg gagaacaccc agccgcggcc aaacataaat

 85321

aactaaataa taaaagtttt aaagatcgtt acttaaaaaa acaagtgtgc cccagtgatc

 85381

ggaccccagt tcccggtgcc ctgagtggtg ccggccctgt gctgagcatg gcctggttgg

 85441

ttcaccccca gatccacact aaagggtggg atcaccccta ctagtcaggt gagcagatgc

 85501

agggggggag ggcggcagcc cctccatgct ggtgggtggc cgtggtgggt gtcctgggca

 85561

ggagccagct cacggagctg gagaggacag acctgggggg ttgggggcgc ccaggaagaa

 85621

acgcaggggg agaggtgtct gccgggggtg ggggtccctt cgaggctgtg cgtgaagagg

 85681

gcaggcgggc ctgcagcccc acctacccgt ccccggccca aacggcggga gtaagtgacc

 85741

ctgggcacct ggggccctcc aggagggggc gggaggcctt gggatcagca tctggacgcc

 85801

agtcagcccg cgccagagcg ccatgctccc cgacggcctc cgctggagtg aggctgcgct

 85861

gacacccaca ccgctgaccc gggcctctct cccgctcagg atgccccccg ccgccacccc

 85921

gtgagcagag ggccacagcc ctggcccgac gcccctcccg acagtgacgc ccccgccctg

 85981

gccacccagg aggccctccc gcttgctggc cgccccagac ctccccgctg cggcgtgcct

 86041

gacctgcccg atgggccgag tgcccgcaac cgacagaagc ggttcgtgct gtcgggcggg

 86101

cgctgggaga agacggacct cacctacagg tagggccagt ggccacgagc tggcctttga

 86161

tctccacctg ctgtctgaga cacgctggag ctggggggag ggcagatccc tatggccaac

 86221

aggctggagt gtcccccaac tcccgtgccc actgctcaac accccaaacc cacacttaga

 86281

tgcactccca tgccctccct tgggagcacg gtctccacac ccacctggcc accccacaca

 86341

cccgtggggc acggccgtta gtcacccacg caacctctgc gggcaccgtg ctgcgggcca

 86401

ggccctggga ctctcagtga gggaggcaga cacggcccct cctccggggg agcgaggtgc

 86461

tccccacgcc cggttcagct ctagcaccgc actcgggacc ctcacaggga gggacccact

 86521

ggggcaggcc aggtgacggc tcgggtgacc tcggcccctg gcgctgagac tacacttcct

 86581

gcagtgggcg gcgaagatgg gtgtggtgtc ccacgtcgtt gcagcgggga ctcctggggc

 86641

ctcggaagtg tcctgggcgg ggagcctggg gagcaggaag ggcaggtctt ggggtccaag

 86701

gcctccccac ggtcaggtct gggagggggc ctcggggctc ttgggtcctt tccgcccagt

 86761

gcagaccctc gcggccacct aagggcacac agaccacaca aagctgtgcc catgcagtgt

 86821

ggggagtggt gcgcaccctc agagcacact gggcccacat cacgcacgcc tgccccctca

 86881

ctgtgcatcc ggggaaactc ctggccccga cagccagcgg ggctgacgct accccgtgag

 86941

ccagacccag gcccccctca ccgcccctgt cctccccagg atcctccggt tcccatggca

 87001

gctgctgcgg gaacaggtgc ggcagacggt ggcggaggcc ctccaggtgt ggagcgatgt

 87061

cacaccgctc accttcaccg aggtgcacga gggccgcgcc gacatcgtga tcgacttcac

 87121

caggtgagcg ggggcctgag ggcaccccca ccctgggaag gaaacccatc tgccggcagc

 87181

cactgactct gcccctaccc accccccgac aggtactggc acggggacaa tctgcccttt

 87241

gatggacctg ggggcatcct ggcccacgcc ttcttcccca agacccaccg agaaggggat

 87301

gtccacttcg actatgatga gacctggacc atcggggaca accagggtag gggctggggc

 87361

cccactttcc ggaggggccc tgtcgaggcc ccggagccgg gcccgggctc tgcgtccgct

 87421

ggggagctcg cgcattgccg ggctgtctcc ctcttccagg cacggatctc ctgcaggtgg

 87481

cggcacacga gtttggccac gtgctcgggc tgcagcacac gacagctgcg aaggccctga

 87541

tgtccccctt ctacaccttc cgctacccac tgagcctcag cccagacgac cgcaggggca

 87601

tccagcagct gtacggccgg cctcagctag ctcccacgtc caggcctccg gacctgggcc

 87661

ctggcaccgg ggcggacacc aacgagatcg cgccgctgga ggtgaggccc tgctccccct

 87721

gcccacggct gcctctgcag ctccaacatg ggctcctcct aacccttcgc tctcacccca

 87781

gccggacgcc ccaccggatg cctgccaggt ctcctttgac gcagccgcca ccatccgtgg

 87841

cgagctcttc ttcttcaagg caggctttgt gtggcggctg cgcgggggcc ggctgcagcc

 87901

tggctaccct gcgctggcct ctcgccactg gcaggggctg cccagccctg tggatgcagc

 87961

cttcgaggac gcccagggcc acatctggtt cttccaaggt gagtgggagc cgggtcacac

 88021

tcaggagact gcagggagcc aggaacgtca tggccaaggg tagggacaga cagacgtgat

 88081

gagcagatgg acagacggag ggggtcccgg agttttgggg cccaggaaga gcgtgactca

 88141

ctcctctggg cacagctggg aggcttcctg gaggaggcgg ttctcgaagc gggagtagga

 88201

taaaaggtat tgcaccccat gaagcacgtg tgatccttgc ccctagagac aaggctctgg

 88261

ggctcagagg tggtgaagtg acccacatga gggcacagct tggagaatgt cgggagggat

 88321

gtgagctcag tgtgccagag atgggagcct ggagcatgcc aaggggcagg gcctgctgcc

 88381

tgagagctgg cactggggtg ggcagccaag tgcagggatg gagcgggcgc ccaggtggcc

 88441

tctttgctgc tcagaacgac ctttcccatg tatacctccc agcgccgctg gcattgccca

 88501

gtgtccttct tgggggcagg agtaccaagc aggcattatt actggccttt tgtgttttat

 88561

ggacaacgaa actgaggctg ggaaggtccg aggtggtgtt ggtggcggaa ggtggccgct

 88621

gggcagccct gttgcagcac acacccccca cccaccgttt ctccaacagg agctcagtac

 88681

tgggtgtatg acggtgagaa gccggtcctg ggccccgcgc ccctctccga gctgggcctg

 88741

caggggtccc cgatccatgc cgccctggtg tggggctccg agaagaacaa gatctacttc

 88801

ttccgaagtg gggactactg gcgcttccag cccagcgccc gccgcgtgga cagccctgtg

 88861

ccgcgccggg tcaccgactg gcgaggggtg ccctcggaga tcgacgcggc cttccaggat

 88921

gctgaaggtg tgcagggggc aggccctctg cccagccccc tcccattccg cccctcctcc

 88981

tgccaaggac tgtgctaact ccctgtgctc catctttgtg gctgtgggca ccaggcacgg

 89041

catggagact gaggcccgtg cccaggtccc ttggatgtgg ctagtgaaat cagtccgagg

 89101

ctccagcctc tgtcaggctg ggtggcagct cagaccagac cctgagggca ggcagaaggg

 89161

ctcgcccaag ggtagaaaga ccctggggct tccttggtgg ctcagacagt aaagcgtctg

 89221

cctgcaatgc gggagacctg gattcgatcc ctgggtcagg gagatcccct ggagaaggaa

 89281

atggcaatgc cctccggtac tgttgcctgg aaaattccat ggacagagca gcctggaagc

 89341

tccatggggt cgcgaagagt cagacacaat ggagcgactt cactgtctta agggccacct

 89401

gaggtcctca ggtttcaagg aacccagcag tggccaaggc ctgtgcccat ccctctgtcc

 89461

acttaccagg ccctgaccct cctgtctcct caggcttcgc ctacttcctg cgtggccgcc

 89521

tctactggaa gtttgacccc gtgaaggtga aagccctgga gggcttcccc cggctcgtgg

 89581

gccccgactt cttcagctgt actgaggctg ccaacacttt ccgctgatca ccgcctggct

 89641

gtcctcaggc cctgacacct ccacacagga gaccgtggcc gtgcctgtgg ctgtaggtac

 89701

caggcagggc acggagtcgc ggctgctatg ggggcaaggc agggcgctgc caccaggact

 89761

gcagggaggg ccacgcgggt cgtggccact gccagcgact gtctgagact gggcaggggg

 89821

gctctggcat ggaggctgag ggtggtcttg ggctggctcc acgcagcctg tgcaggtcac

 89881

atggaaccca gctgcccatg gtctccatcc acacccctca gggtcgggcc tcagcagggc

 89941

tgggggagct ggagccctca ccgtcctcgc tgtggggtcc catagggggc tggcacgtgg

 90001

gtgtcagggt cctgcgcctc ctgcctccca caggggttgg ctctgcgtag gtgctgcctt

 90061

ccagtttggt ggttctggag acctattccc caagatcctg gccaaaaggc caggtcagct

 90121

ggtgggggtg cttcctgcca gagaccctgc accctggggg ccccagcata cctcagtcct

 90181

atcacgggtc agatcctcca aagccatgta aatgtgtaca gtgtgtataa agctgttttg

 90241

tttttcattt tttaaccgac tgtcattaaa cacggtcgtt ttctacctgc ctgctggggt

 90301

gtctctgtga gtgcaaggcc agtatagggt ggaactggac cagggagttg ggaggcttgg

 90361

ctggggaccc gctcagtccc ctggtcctca gggctgggtg ttggttcagg gctccccctg

 90421

ctccatctca tcctgcttga atgcctacag tggcttcaca gtctgctccc catctcccca

 90481

gcggcctctc agaccgtcgt ccaccaagtg ctgctcacgt tttccgatcc agccactgtc

 90541

aggacacaga accgaactca aggttactgt ggctgactcc tcactctctg gggtctactt

 90601

gcctgccacc ctcagagagc caaggatccg cctgtgatgc aggagtgagt gaagtcgctc

 90661

agccgagtcc gactctttgc aaccccatag gactgtagcc taccaggctc ctctgtctat

 90721

gggatttttc aggcaagagt gctggagtgg gttgccattt ccttctccag gggatcttcc

 90781

caaccctggt ctcccgcata gcaggcagac tctttactgt ctgagccacc aggcaatgca

 90841

ggagacctag gttcagtctc tgggtgggga agatcccctg gagaagggaa tgacaacctg

 90901

cttcagtatt cttgattggg gaatcccatg gacaaaggag cctggaggcc tacagcccat

 90961

agggtgcaaa gagacacgac tgagcaagtc acacacacag agccctacgt ggatgctcat

 91021

agcggcacct catagctgcc atgtatcagg tgttggcatg ggcagccatc agcagggggc

 91081

catttctgac ccactgcctt gttccaccgg atacacgggt gccttcctgt gtgtcgggcc

 91141

cactcggctg tcagcgccca agggcagggc tgtcgggagg cacagggcac agagttaagg

 91201

aggggatggg gacgttagct cctccccagc tctcagcgga tgcagcaggc aaaacaaacg

 91261

ctaggaatcc tgccaaaccc ggtagtctct gcccatgctc gccccatccc cagagccaca

 91321

agaacgggag ctggggggtg gcccggagct gggatactgg tccctgggcc cgcccatgtg

 91381

ctcggccgca cagcgtcctc cgggcgggga aactgaggca cgggcgcctc cggcttcctc

 91441

cccgccttcc gggcctcgcc tcgttcctcc tcaccagggc agtattccag ccccggctgt

 91501

gagacggaga agggcgccgt tcgagtcagg gccgcggctg ttatttctgc cggtgagcgg

 91561

ccttccctgg tacctccact tgagaggcgg ccgggaaggc cgagaaacgg gccgaggctc

 91621

ctttaagggg cccgtggggg cgcgcccggc ccttttgtcc gggtggcggc ggcggcgacg

 91681

cgcgcgtcag cgtcaacgcc cgcgcctgcg cactgagggc ggcctgcttg tcgtctgcgg

 91741

cggcggcggc ggcggcggcg gaggaggcga accccatctg gcttggcaag agactgagnn

 91801

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

 91861

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnct gcaggtgccg gcggtgacgc

 91921

ggacgtacac cgcggcctgc gtcctcacca ccgccgccgt ggtaaccgcc cccgggggtt

 91981

gccaaggtta cgattggacc ctccccgccc cgaccctgct cccctagggt gggtgggtcg

 92041

gggggcagtt tctaagatct cctggttccg cagcagctgg aactcctcag tcccttccag

 92101

ctctacttca acccgcacct cgtgttccgg aagttccagg tgaggccgcc ccgccccttg

 92161

cacttgctgg cccaacccct cccgcccagc gctggcctga ccgcccccca ccccgcccac

 92221

cccacgcagg tttggaggct catcaccaac ttcctcttct tcgggcccct gggattcagc

 92281

ttcttcttca acatgctctt cgtgtatcct gcgccgtggt ggaagcggga ggagggcggg

 92341

gcgggggacc gggcgggagg cagcgggccc cgggaagctg agaccctcca aggggcacgc

 92401

ttcctatacc aaagccgcag gttccgctac tgccgcatgc tggaggaggg ctccttccgc

 92461

ggccgcacgg ccgacttcgt cttcatgttt ctcttcgggg gcgtcctgat gactgtatcc

 92521

ttcccgggct cggggaccta tgggtccggg cctctgctgg ccctgaggcc ctgcttgagc

 92581

gcatgccaca gagggagagt tgcgaccccg agctgagggt gtttttgagc gtacatcacg

 92641

tgctcagctg caggtgcccc tgtcgaactc cagggctaca cccaaaatac cacagggcag

 92701

ggtgcccagg ggctgagtcc tgaatgcagg tagccaggag gatctagggc tgggcccggg

 92761

ggctggggtg aagtggagag gcagggccga tcagggggcc cctggaggcc accgtttggt

 92821

cttagagtgg gaagcgaaac caacctgctt gagggtttca ggggtttagg aagtcagagg

 92881

ggccctgggc agggcacaag accttgactc tggcccagct actggggctc ctgggtagcc

 92941

tcttcttcct gggccaggcc ctcacggcca tgctggtgta cgtgtggagc cgccgcagcc

 93001

ctggggtgag ggtcaacttc tttggcctcc tcaccttcca ggcgccgttc ctgccctggg

 93061

cgctcatggg cttttcaatg ctgctgggca actccatcct ggtggacctg ctgggtgagc

 93121

ctgctgtcca gggagcctgc cccaagctgg gtgtgctggg ccagagccct ggtcctctcc

 93181

ccgcccccac ccctcttccc cactcctggc gcccccatcc ttccagcccc tccaacaagt

 93241

cagcctatag gttttactta ttcgagcctg acccatttgc tgacgcttgt gtggggcccg

 93301

acccggtagg gatgggtggc tcagggtgcc tgctcacagc tccacttctt ctgacgtcct

 93361

caggcctgac ctcctcccag gttctgccta ctctgggcca agcctggccc cacgctgggc

 93421

tggctggccg tgcagggcat cagaccccca tgctttgggg gcttcagggc tgtggagggt

 93481

ggcctcggca ttggcgcctc tcccacaggg attgcggtgg gccacgtcta ctacttcctg

 93541

gaggacgtct tccccaacca gcctggaggc aagaggctgc tgctgacccc cagcttcctg

 93601

tgagtgctga cagccttccc cacccccttc cccagatggc tctctacccc atgagggggg

 93661

gggaccctgc cagctgccgc tcagcgtggg ctcctcccca caggaaactg ctactggatg

 93721

ccccagagga ggaccccaat tacctgcccc tccccgagga gcagccagga cccctgcagc

 93781

agtgaggacg acctcaccca gagccgggtc ccccaccccc acccctggcc tgcaacgcag

 93841

ctccctgtcc tggaggccgg gcctgggccc agggcccccg ccctgaataa acaagtgacc

 93901

tgcagcctgt tcgccacagc actggctctc ctgccgcggc cagcctctcc acgcggggca

 93961

ggtgctgctg gccgagagcc agggccacca agcctgacgt gctctccgac ccagaacatt

 94021

ggcacagctg gaggcccaga gagggtccag aacctgccca ctcgccagca gaactctgag

 94081

cacagagggc agccctgctg gggttctcat ccctgccctg cctgtgccgt aattcagctt

 94141

ccactgatgg ggctcacatc tcaggggcgg ggctgggact gggatgctgg gttgtgctga

 94201

gctttggccg tgggggccct cctgtcccga actagcaacc cccaagggga cctctgcttc

 94261

atttcccagc caggccactg aaggacgggc caggtgcaga agagggccag gccctttctg

 94321

tgactccgaa gcctcaagtg tcagtgtttg cagagtccag tggctgaggc agaggcctct

 94381

gggaagctct gcccctgccg tttgcagctg aggccggcag gagcctcacc tggtccccag

 94441

ctcacgggca ttggaggacc agtccgcacg gtggtttact cctgggtcgg caccagccgc

 94501

cgccggctgt ccctttcaca gaggataaaa gtactcgctc tggagttgga ctttaatgtt

 94561

gtcatgaaac ctctggccca gcagcgggct ccgcagtggg tggcaggtga aggcccctcc

 94621

ccgggcctct ccaggcaggt gccgcctggc cagcagggaa ggcaggcagt gtcatccccc

 94681

actggctctg gggctcaggc tacctcctgc tgtggccgga acatctcccc cagtggtgga

 94741

gcccagtgtc cgtgaggcca gctgggcctg aaaccttcct ctctgaagcc ccgctgtccc

 94801

cttgccctgt atggagggca gaggctggag cgcaagttcc taggatgtgc ttgcgagacc

 94861

cccgagccca ggggcgaggc ccatctcagc ccacccccga actggaaacc cttggagctc

 94921

tgcccctcgt ggtgtgaggc ccctgctatg cgaccctcag ccctgccagc aacggaaggt

 94981

gcagggcccg ggcccacggg cttaacgcaa ctgggcctgg gtcacctgcg gggcctggtc

 95041

ccaggaggaa gacccaggtg ccaccctcct gggtgccacg tccaggtcac gtggggaccc

 95101

gtccatgtca cagaagatgc agggtcaccc ggtgagctgg cgccgggccc tgccagagca

 95161

ccagccgcgg gtggaggtgg gccccagctc tcctgtcagg cacgtggtgc tgggaggtgc

 95221

ggccggagca gtgcccacca gctgcagcag gacaggtggg cacaggccca ccagcagtgc

 95281

ccgcacggga tgggcccctg caagggccag agaagccacg ctcctggctg ggggctgggc

 95341

tgggactgac aggtggccct gccctctgcg ccccactact tcccagccac ccgggactcc

 95401

aaggacttgc tgagctgggc aggtgggacg ccgaggggag tcaaactgct cgtgggggca

 95461

ggaggggcgg tccacagggc tgagccctga gctgaaccct ggccctgctc gtggttgtgg

 95521

gggtgggggg gtccagtggc gccctagccc tgctgaggcc cagctgggac gtgcgcgccg

 95581

gagggcgagg ggccagccca tgccatgctg tcccccgttc tcagctccat gctaccactt

 95641

tgaagaaaca gaacctgttg cctttttatt tagaaagtgt tgcttgccct gcctggggct

 95701

tctatacaaa aaacaaacac agctcaacgt ggcctctcct gaccagagac gggcggtggg

 95761

gactggggct cagcagacgg aatgtgtccc cggcggcggg agaccaggag gcccctggcc

 95821

cgctcctcag gacggctggg ctgtccccac ctggtcccct ccgagccaga agatggagga

 95881

gaggtgggct gatctccaga tgctccctgg gagccaagcg ccacggggtg gtcaccaggc

 95941

cggggccgtg ttggccagac gcctcatccg cctgtgggag ggggagggca gcaacccccg

 96001

gatctctcag gcaaccgagt gaggaggcag gagcccccag cccctccctc ggccgctctg

 96061

ctgcgtgggg ccctgaagtc gtcctctgtc tcgcccccct ccccagggag agtgagcctg

 96121

ttctgggctg tggtcagacc tgcccgaggg ccagcctcgc ccggggccct gtcctgcctg

 96181

gaaggggctg gggcagcacc ttgtgttccg gtcctggtcc cggatcttct tctccatctc

 96241

tgcatccgtc agggtctcca gcagcgggca ccactggtca gcgtcgcctg tgttccggat

 96301

ggcaatctcc accgtgggca gggggttctc actgtggagg acgagagagg tagacggctc

 96361

acagagcagc tgcaggagag gcccctagaa agcagtgtcc accccgctgc gggcagacag

 96421

gacatggagc ctggtttctg cacccggctc ccgacacagg gcggccgggc acgctgccaa

 96481

catggcatct ccgggtctgc atgtggggag gggtccacag gacagtgctg caggtccagc

 96541

cattcccagt ggacttgctg ggaggaggag ggccgtccgc cccgctcagt gtccaggaga

 96601

aaggagagca aaggagtcca tccacccagg agtggagtcc cagggcccct gccctgacca

 96661

gcctgcaggg ggcccctcgg cccacatcac aggggcccag aatccataag ccctgactgc

 96721

tccaccccgg ggcccctcaa agacgcgcct agactccgtc cgagggccac ctgcacaccc

 96781

tctggcgaag tggactcagg gctgggggtc agcctcggtg aggccgcaaa ggctggggac

 96841

tcctggccga gctgctgcct ctgccaggag ccaggcccag cctgccggcg agcctcagcc

 96901

acgccctcac ccaccctgcc cgcggcgcca cgctggcctc cgggtcctct cctctggcct

 96961

cctgctgggc cactggtgct cagccccagc agtcggcctg ccaggagccc tgcagagtca

 97021

gcccccagag ggaggagggg gcccggggga acagcacagg aacaaacaga cccctggcct

 97081

tagttttagc tcctcatctg gaaaatgggg acagtgtcct tgctgcgagg ggtttcagag

 97141

gaccactgcc atgcaacacc cagcacacac ccactgcgtg ggggctcggg cccgagccgg

 97201

tgcccccgag tcccaggctg gtggctgggc cgccccagcc accctgccga cagctgcttc

 97261

ccagccgggc ggtgctgcgg cagtccagaa gccagcactg cagacccaaa tgtcactcct

 97321

cacgttgcgg gctcccagct gccttccttg ggggcagcag acacgaaagt caccaagccc

 97381

acgccgacgg gagcaaacac gtcttcctct taaacaagtg cgggtcccgg aggccctgtg

 97441

tttacctccc tgtggctccg ggaagattgc atcccagggg gttgttctaa accaagggct

 97501

gctcgggcca ggcctggaag gaggggcctg gagccaggag cccaccctta cgggcattcg

 97561

gcttcctggg tctcaaggcc ggctgggacc ctgcattccc accacccgcc aggtgcaagc

 97621

agggaggccg tgtcggagga ggcagagggc ctggagggtc gtcttcgacg tgacctcact

 97681

tttacaacct cacaggtgcg gcaggccagc tgggaggcat ggctgtgccc tcctggtaga

 97741

tgagaacaag actgcaggga gtgatccccc tgaacttccc caaccaggag gagacaaaac

 97801

tcggtgtcgc cctcctgctt aagatcaact gactctggac aaggggccca gcccacccga

 97861

tggggaaagg gcagtccttc caacaagcgg tgctgggacg ggacccggca ggccatggtt

 97921

tctcagctat gacaccagca gcacaagcac cccgagaaaa acagctaagc tgggcactgt

 97981

cacacaagtg aactccaaac ccaagaaaac cacaaaaagc ctgcggatct tcagatatgt

 98041

gggaagggac ctgtatctgg aatgtataac gaactcctga aaagtgaaag tgttagtcac

 98101

tcagtctgtt cagctctttg caaccccatg gacggtagcc tgccaggctc ctctgcccat

 98161

gggattctct aggcaagaat actggagtgg gttgccatgc cttcctccag gggatcttcc

 98221

caacccaggg attgaacctg tgtctctctt gcactggcag gcgggttctt taccagtagc

 98281

gccacctgag tagaaacact ccaggtgccc tgagtgtcag agcaggaggg actcggccca

 98341

ggcctgtgag gggaccctct ccgagtcccc tgctgcacag cagtgagagg tgcgttctga

 98401

gtcagcctcc agggatgagg gacttggtgt cgacatcact cccaggacct caggatctgc

 98461

tctgggaagc gaggctcccc aggctggccc caggcccgct ggcctcagct cgtgagccgt

 98521

gcgtggacag gtgccatgag caggcctccc acgggactcg gggcgcggcc tggaccccgg

 98581

ggctgccagt ggtcgcgggg ggccccgtgt ggcggctgtt ccctctcttg ctccgagtcc

 98641

taggaacatg gtgggcgctg cctcctgggg tttctggaga agcagctgag atgcaaacag

 98701

ccccacgcgc tccctcagct gttccctgtc acgggtggcc ccttggtgac ggcctccatg

 98761

cagggacggt gacagctcga gcagccgcgt aaaaccacac ggggacggtg gcagctcgag

 98821

cagccgcgta aagcctgaca tccaatttgg aagcctcccg cagtggaaga ggggcccggg

 98881

gacggggctg cccggggcga gctccaccgg gtcgggggtc acgaggagcc cacccgcgtc

 98941

cccgccacca gcacctggga ccagataccc tccccgctct gagggcggcc tgaacgccgc

 99001

cccctcccac gggggcgccc accgcctgct cgtggactga acaagaggcg gcagtggcct

 99061

ccagaccccc tcgggggagg gcagacctgt ccgagactga gcacaagtcc agggaatgag

 99121

caagggtctc agtaatgtcc ccaccgggac gggacgggag gaggcgacag aggccgctga

 99181

ggtgcggggc agccctcagt agctggcatc aaggccccag gcagtcccgg ggcatccccg

 99241

cagggggcgg gggcgaccac cggcccgagc ccaggcagtc ccggggcatc cctgcagcgg

 99301

gcgggggcga ccaccggccc gagccctacc tgaaggcgta ggtcttctga tgccagctca

 99361

gctgtccccg gatgctgtag gcgatggtgg tgacgaactc cccgcccagc cccagctcgg

 99421

agcacagctt cagagcgaac ttctcgggcg agttctcctt ctccgacatg tcccactcga

 99481

actggtccac caaggagatg ttccccacgt ggatgttcag ctggcccggg agcacagaca

 99541

tgagccagag cggccccctc tggggccagg ccgcaccctc accacccctt ctccccggaa

 99601

catccccgcc tcgttcttgg ccgcgcccct gtgctgctac ttggggtaag gaaaacaacc

 99661

cccatctctc tgaaaagggt taactagcga ggaagatgcg ctggtaactg gaaaactccc

 99721

tacaaagaaa gcttggatct gatggcttca ctggtgaatt ccaccaaaca tttcaagcac

 99781

taacaccaat ccttatcaaa tcctgccaaa aaactgaaaa ggaaggaaca catcataact

 99841

ccctgccttg ataccaaagc cagacaaaga tactacgaga aaggaaaggt gcagaccggc

 99901

acttactgtg gacattgatg tgaaacctca gcagacacga gcaaaactac attcaccagc

 99961

acgtcagaag aatcacacac cgttataaat gatgggatga tgacacaacc acattataaa

100021

cggtggggct tactctggtg atgtaaggac ggctcagtaa gaaaaccggt caatgccatg

100081

aaccacttga acagagtgaa ggacaaaaac cacacagtca tcttgataat tggaggaaaa

100141

tcattagaca aacttcaacg tgctttcacg ataaaagcac tcagtaaact aagatcagat

100201

ggaaaccaca tcaacaagat taattcagtc aaaaaattca ctgcaagtat cacccacaat

100261

ggcagaagac tggtaacttt tcctctaaga tcaggaacga gccaaagata cccagtcttg

100321

ccacttttgt tcaatatagc gttggaattt ctactcagtg cagtgcagtc gctcagtcgt

100381

gtccgactct tttcgacccc atggatcaca gcacgccagg cctccctgtc catcaccaac

100441

tcccggagtt cacccaaact catgtgcact gagtcagtga tgccatccag ccatctcatc

100501

ctctgtcgtc cccttctcct cctgcctcca atcccttcca gcagttaggc aagaaaaata

100561

aatcaaaggt atccacctgg aatggaagaa gtaaaactat ctctggtccg agatgttaca

100621

atcttatatg cagagtttaa gatgctaaca aaatactatt agaactaatg aatgaattca

100681

gcaaggtacc aggatacaaa gtcaacgtgc aaaaatcagc cgcatttcta catgctaaca

100741

ctgcacaatc tgaagaagaa aggatgaaca aattacaata acataaaaaa gaataaaatc

100801

cttagaaatt aacttgatca aagagatgta caatgaacaa tataaaacat actgaaagaa

100861

attgaagata taaataaatg gaaaaacatc ctatgtccat ggattggaag acttaaaatt

100921

attaagctgt caaggctatg gtttttccag tggtcatgta tggatgtgag agttggacta

100981

taaagaaagc tgagcaccga agaagtgatg cttttgaact gtggtgttgg agaagactct

101041

tgagaggtcc ttggactgca aggagatcca accagtccat cctaaaggag atcagtcctg

101101

ggtgttcatt ggaaggactg atgttaaagc tgaaactcca atactttggc cacctgatgc

101161

gaagagctga ctcatttgaa aagaccctga tgctgggtaa gattgagggc gggaggggaa

101221

ggggacaaca gaggatgaga tggttggatg gcatcaccga ctcaatggac atgggtttgg

101281

gtggactctg gaagttggtg atggacaggg aggcctggcg tgctgcggtt catggggttg

101341

tgaggagtcg gacacgactg agcgactgaa ctgaactgaa catgaatacc caaagcaatc

101401

tacaaagcca aatgtaatcc ctatcaaaat cccaatagca tttctgcaga aacaggaaaa

101461

aaaatcttaa aattcatatg gaatctaagg aaaagcaaag gatgtctggt caaaacaatg

101521

acgaaaagaa caacaaagct ggaagactca cacttcctga tttcagaact tactgcaaag

101581

atacaataat gaaaacactg tgggactaac gtaaaagcag acacgtgggc caacgggaca

101641

gcccagaaat aaactctcaa ataagcagtc aaatgatttt caacagagat gccaagacca

101701

ctcagtgaag gaaagtgttt gcaaccaacg gttttgggaa aaaagaaccc acatgcgaaa

101761

gaatgaagtg ggacccttac ccagccccat ctacagaaat caactcaaaa cagacagaac

101821

atatggctca agccataaaa cgctcagaaa aacagagcaa agctttatga tgttggattt

101881

ggcggtgatt tctcagatat gacgtcaaag gcataggtga taagcgaaaa aataaactgg

101941

acttcaccaa aatacaacac ttctatgcat ccaaggacac taccgacagc ataacaaggc

102001

agcccaggga aaggaggaaa catccgcaaa tcacagcatc tgggaacaga ccgctgcctg

102061

tgagatacag ggaaccgata aaaacaagaa aacagcaaaa cccggactca aaaatgggaa

102121

ggactccagc agacacagga gacagacaag ccgccagcag gtcactaatc agcaagcaag

102181

gcccgcaaag gcccgtatcc aaggctgtgg tttttccagt ggtcatgtag gaaagagagc

102241

tggatcgtaa gaaagctgag cgctgaagaa ttgattgaac tgtggtgttg gagaagactc

102301

ttgagagtcc cttggactgc aagatcaaac cagtccattc tgaaggagat cagtcccgaa

102361

tagtcactga aggactgatg ctgtagctcc aatactttgg ccacctgatt cgaagaactg

102421

actcattggc aaagaccctg atgctgggaa agattgaagg caggaggaga aggggacgac

102481

agaggatgag atggttggat ggcatcactg actccatgga catgagcttg ggcaagctcc

102541

gggagagagt gaaggacagg gaagcctggc gtgctgcagc ccgtgggtcc caaatctttg

102601

gaccaagcga ctgaacaata acaaatcaac agggaaatgc aaatcaaaac cacagtgaga

102661

tactgtccac caccaggcag gcgttcttca gcggggttcg gggcaggtgg tgccctcttc

102721

tctcgtaacg cccccaggac cgcgggggct gctgagacag catggggtgt gcttggccta

102781

gcctgcccat gacaagagtg gcagtgtgct cgcctcactg cgcccttccc tgctctgccc

102841

accagctggg ccacccctgg gaccacccag cttccgctcc gtggacggca aggccgcagc

102901

agcgcccgga cacgcccaga acgtggtgcc ctcctcagaa gtcggcctgt gcccttcctg

102961

ggacaagccg cccaagagac agtcttccag agccctgccc cacaacacgg accccagaca

103021

ggctcctgtg gaggcctcca cgcacctccg cacctcgcaa gccccgagga caaggcaggc

103081

ccgctgcggg tgaggagccg cctaccttga taatgacgcg ctggtctgac tggtcttcca

103141

ggatgctgtc cgtggggtag gactcgatct gctgtctgat ggcagaggca atggctggca

103201

cgaatgtcag tgggttcaga tccaggtcgt cacagagaat ctctgagaac atctccgggg

103261

tcatcagctt ctctgaaacg atgacggagc gggggaaccc ccagtggacc acagggccta

103321

cggtcagcgt gctcagcccc ggcctccccc agccttgcct cctctgccac cgcccccccg

103381

ggtgacgaca ggaccccctg gcagcacgca gacagagctg agtgcacgcc agccagggcg

103441

gcggacggac cattcatgtt ccaggtaaag gcatcccgca gcttctgccc gtcaatctcc

103501

atgtccagtc ggatggggac cagcacctcg ggctgggacg cgttctcgtg gatcacggct

103561

gggtcgtggt cgtcgaagct ggaaggggag cggccgcgtg ctcagcaaag cgggctgggc

103621

ccctgtgccc agggcctccc tctctgcacc actggtcgct gagacctgcc cagagaggac

103681

ctgtccacta cgggccgggc cggcagaaac agggctggcg ggggtccacg cggggcggga

103741

ggggagctgc cgactcggca gcgggacaag ctcagaggtt ccctgcagga agagaggttt

103801

aagccccaga gcaggcagga ttctcccagc agctgtgggg aagaaagggt atgtccagaa

103861

gaagaaaccc tggaacaaag gccgaggggc aggagggttg aggagctgct tggagagcag

103921

tgaagggggg ctgggcggct ggggggtgct ggggagcctc ggtggccaag cacccagggc

103981

tccccacctg cagcctggac cccgagggag ccccagagga cggagagcaa ggcagctccg

104041

cactcacacc tgccctttag gatggggaag agggaagaga cgggggctgc ggggggcaag

104101

gaaaccaggc acgccccgct tagacccggg ggcgagaacc actttccaag aacgcagggg

104161

cgccaatgat gaacaatggg tagcagcccg caggcgggag gcccggtggc cgaggcccct

104221

caccagagcg ggaaggtccg cttcttgtcg cggcccatgc ggttcctgtt gatggtggtg

104281

gagcagggca cggcgtccag gtggtgcgag ctgttgggca gggtgggcac ccactggctg

104341

ttcctcttgg ccttctgttc cctgggagac acagacgccc gtccgctcag cctatgggcc

104401

aaaagccgcc ccccagccgc caggttgtgg ccagtggacg cccgccatgc ccctctgggc

104461

ccaggccccc atggggacct ctgtgcgccc agctccgcgg tggttattcc ccaggctcca

104521

agcggcacct gctcggggtc accagtttta ggggaggagg agagggcagg ggccccagcc

104581

cagtctgtga gctgtcaccc ccaggctcca agcggcacct gctcggggtc accagtttta

104641

ggggaggagg agagggcagg ggccccagcc cagtctgtga gctgtcaccc ccaggctcca

104701

agcggcacct gctcggggtc accagtttta ggggaggagg agagggcagg ggccccagcc

104761

cagtctgtga gctgtcaccc ccaggctcca agcggcacct gctcggggtc accagtttta

104821

ggggaggagg agagggcagg ggccccagcc cagtctgtga gctgtcaccc gtgctatgtg

104881

ctgggctggg cactcaggaa agagggtcag ggttcacggg ggggtggcgc gcagatttcc

104941

aggagagccc cgagggcagc agagaggagg ctcaggtcaa tggttgggca gggggccagg

105001

gctggagaca cagagagggt cccgattcgg gggggtgccc tcagcaggtg gctgggagtc

105061

cctgggggtt tgcacacttt cgatcaggct gttatttcag acgcttggtc cagcctgaga

105121

caggtaatgc ctctggcctc cgggccttca gggatggaaa gatactctag aaagcgggac

105181

tcaaagtaac tcaaggaact cgcgtcccac agtggggagc ccttctctcc aatttacatg

105241

gggcgtttac tacgaggaaa ataccgaagg ccgttttgag ctgaggctcc cgggccgggc

105301

tgtccgtttg tgagactgct cgtcacccct gggccacatc cctggtggcc aagggggcaa

105361

tcagtgcggt gactgcacga cacacctctg cagccctgcc ccacagctgt caccatcggt

105421

gacgtccacc ccctggagaa cctgaccact gcccggtttc ccgctaaaac agcgcccttc

105481

caggatgggg ggcagaggga gaggccttgg ccttttcact cctcttctgc agcgggggcc

105541

cctcgcaccc cagtgcccgg gcccaggagc gccccttggg gtggggcagg gagggatcca

105601

cacaccaagg ggagccagga cccccccaaa tctgctgccc tgccctgata cccgagacct

105661

ggggaaacgg gggactgggg ctgatgcggg caggaccaag aactgaggcg gtgagacggg

105721

gtccccacca caggccatct ggctggcagt ttctactccg ggcctgcagg ccaagaggga

105781

aaaggtgccc cactcagatc aggcgcctcc cgtccccagg gagggcctac aaggtcagat

105841

cctttgtaac ttccacgggc aaaactggct tgctgggcct gtgcgggccg catgggcgtg

105901

gaccaccaca cctttcccca ctgagtctcc agccggagct gtcacccagg tccccccagg

105961

ccagccccac cccgccacct tgcagtagcc tctcgtatcc aggccgaggc tgcccggtcg

106021

acccctcctg cctgatggcc tcaagtggac aatgcgagtc acgttgcagc acgtgagtgg

106081

gacgggcagc gccacgcggg gtccgggcat ccgagtccca ccactcagcc tcccttccgc

106141

tgcagagagg tctgtccaag agccctgggg gccatccagc ccctgtccga cctggccggt

106201

gtggaagagg gggtgtgcca cccctcctgg ggggctggct gggcgctggg caggcccctc

106261

ctaagagtgg agcccactgg tggttttcct gcagccccac ctccacacag cagttctcac

106321

tgcccagtaa caggaggcta ctggcctagc tctctccctc gtgtgatgga ctcaaccagg

106381

agcgttcacg gccccacaca gggttctcgg ctgctgcatg aggatctcaa agccccatcc

106441

acgtgcatgt aatctcctcc ggtaacttct ctagggaagc ccggctatcc tgccatcctc

106501

accgcaccac cagggcgaga aaagccatct ccagcgctca catccacaat gggccaggcc

106561

gtgagcacac caccttcttc gggaggttgt gggggcgggn nnnnnnnnnn nnnnnnnnnn

106621

nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn

106681

nnnnnnnnnn nnnnnnnnng cgcgcccccc ccccccgcgg cgccggcacc ccgggcggcg

106741

gcccccggcg ctgggagcag gtgcggggcc gcggccgctc gtgagcctcc agcccggagg

106801

acgggccccg ggggccggcc cggtgcccag gccctgggag ccccggaggc cagagtgcca

106861

gagggccgga ggacccggga aggcccgaga gaggtgggaa gcacggggtt ccagccctag

106921

gccatttcag ccccaaagcc atcggtgaaa ccattgctgg ccccagataa aagcgtcgcc

106981

aactttttca ccccggcgga gactttagcg ggtagctgcc ccctaggggg aatggaaaaa

107041

ccaggattta ccaggtgggt ggaggtcaca actgcccaga tcctgagaaa gaggggtcag

107101

tggggcggga agattagtgg ggagaggagc tttcagaacc caagggaatg aaacgaggct

107161

tgaggttggt tatccagcag ccgccccctg ccccgtgagt gagcgaaggc tgggcccctt

107221

attgtcacat cttccagctc ttcgctagaa aacctagagt tttaaatact gtggcagctg

107281

agtcaaacaa taaggaaaag cccgactctt tgagagccag gcacaaggcg tctgtgacag

107341

ggtctccagg ctgcccattt gcagtctctg aaacggaggg tttttcgaga aggaggtctt

107401

ggggtgcctg ccagaattgg aggggggggc gcgggaagtg aggacccaga agagagggct

107461

tggcccgctg caaggaggtc actggacact ggagctgaag cgccagccga aactggaaac

107521

tcgaaatctg tctccgtgcc agccacaagg cctatgattt tccttggcga cgttcagcat

107581

cttaggagga gctggcgggg gaggcgggta gttcgtgggc ggttgcagca gggcaggaag

107641

gtgaggaacc tgaggctggt cagagagctg gttggagtga tgcccatcgg tggacccgct

107701

ggagaaggcc tgagtagaga aggtctaagc ttaacgggga aggggtgggc cagggtggaa

107761

atggggtggg aagtttgagg agggggagca gtggagatgg gggttgtgag gaatgggagt

107821

gagcttagac gtcttgagga tactgcagtt ctgtgctttt tttcacacct ggctgaaaat

107881

tcactgaaaa caaaacaacc cttgctctgt gacagcctag aggggtggga gggaggctta

107941

agagggaggg gacgtgcgtg tgcctatggg cgattcatgt gggtgtacgg cagaaagcaa

108001

cacagtatgt aattaccctc caattaaaga tcaagtacaa cttaaaaacc ccaaacacaa

108061

cattgtaagt cagctagact ccagtaaaca tttcagtaag aagattcaac tgggaatgag

108121

ttccgccgtg actatcctga tgaatttccc gtgtcttctt gaggccattc ctctttgaac

108181

ttccgtgttt ggggaagcgt gcctttgtat ggagtcctga ggagtaaatg agacgggctt

108241

gtagaaggcc tagtagtgcc ttgcacgcgg cagatgctca ataacctcga gttgtcacca

108301

ttatggtacc tcaagagtct ccttggagct tgcacggttt ctgaatgggg tcctgcgggg

108361

ctcccttggg gctcccacat ggggttgggg ggctgagtgg ggtgtccccg ctccttgctt

108421

gtcccctgtg gaacaccccc ttccacccga gcagctctgc ttttgtctct tgtgtttgtt

108481

tatatctcct agattgttgt tcagtcgctc agtcgtgtcc aactctccga ccccatggac

108541

tgcagcacac caggccttct gccttcacca tctcccggag cttgctcaaa ctcctgtcca

108601

ttgagttgct gatgccgtcc aaccatctcg tcctctgtcg tccccttctc cttttgacct

108661

cagtctttcc cagcatcagg gtcttttcca atgagtcagc tctttgactc aggtggccaa

108721

gtattggagc ttcagcttca ttatcagtcc ttccaatgaa tattcagggt tgatttcttt

108781

taggattgag tgacttgatc tccttgcagt ccaagggact ctcaagagtc ttcaacacca

108841

cagttcaaaa gcatcagttc ttcggcactc agccttcttt atgatccaac gcccacatcg

108901

gtacatgact actggaaaaa ctttggctca gagataattg acttgattga atacaaagtt

108961

ctttggcaaa aaataaaagt gtggcaagca gtactgacac aaaagcaagt ggcttttcct

109021

ccgttgagtc atttatttat tcagtgggtg tgtgcgtgta gagacggagc ggctgtgctg

109081

ggagctgggg cttccacttc agaggagccc cggacctgcc ctcggggagt tcacaggcag

109141

tgctgcgggg ggtcctgcca ggacgcctgc cctgcgagtg cccagtgctg tgatggatgc

109201

gtgtcccgca tctgcggcca ctggggccac gtgcccgaga ttgtccgggt ctgagggtgc

109261

agagaagagg aggcatttgg actgagtctg gaaaaatgag catgtggcca cgtgagaagc

109321

cagtggtgag gggaccagtc aggcggagga aagagcggct catacgagtt gtggagctgg

109381

aagcatgagg gtgtgtggaa gcagaggccg gggacagggc cgcagggccg gccatggagg

109441

gcgtgggctg ctgcaggctc ctgagaaggg ggacgctgcc atcatgaccg ggtttaggtg

109501

tttgaccctg gtgtccacgt agaggacaga tgtgtggggg gggagctgga gatgggcatc

109561

catcgggagt cagcctggag agaggcagag accccgtcag tgggccctca ggacgtggat

109621

ggggcggatg ttgggaagat ctgactcctg ggttccggct ggggctccgg gctggagggg

109681

tgccgcccac cgagcacagg aggcaaacag atgccctctc ccagcaagac cccagcccca

109741

gcaccctccg gggccggact ccgcccctct tccagaatgg ctcccttgct gtcctcgccc

109801

atctttccgg tgccctgagc ctctagagtc tggacaccag cgtccgcctt gcgcttgttt

109861

ctgggaagtc tctggcttgt ctctgactca cccaggaccg tcttcgaggg caaggttgtg

109921

tccttggttc catctgcttt ggggtccggc tcctcgctgc ttgacctgct gatgtgacag

109981

tgtctcttgt tttcttttca gaatccgaga gcagctgtgt gtgtcccaga cagacccagc

110041

cgctgggatg acgggcccct ctgtggagat ccccccggcc gccaagctgg gtgaggcttt

110101

cgtgtttgcc ggcgggctgg acatgcaggc agacctgttc gcggaggagg acctgggggc

110161

cccctttctt caggggaggg ctctggagca gatggccgtc atctacaagg agatccctct

110221

cggggagcaa ggcagggagc aggacgatta ccggggggac ttcgatctgt gctccagccc

110281

tgttccgcct cagagcgtcc ccccgggaga cagggcccag gacgatgagc tgttcggccc

110341

gaccttcctc cagaaaccag acccgactgc gtaccggatc acgggcagcg gggaagccgc

110401

cgatccgcct gccagggagg cggtgggcag gggtgacttg gggctgcagg ggccgcccag

110461

gaccgcgcag cccgccaagc cctacgcgtg tcgggagtgc ggcaaggcct tcagccagag

110521

ctcgcacctg ctccggcacc tggtgattca caccggggag aagccgtatg agtgcggcga

110581

gtgcggcaag gccttcagcc agagctcgca cctgctccgg caccaggcca tccacaccgg

110641

ggagaagccg tacgagtgcg gcgagtgcgg caaggccttc cggcagagct cggccctggc

110701

gcagcacgcg aagacgcaca gcgggaggcg gccgtacgtc tgccgcgagt gcggcaagga

110761

cttcagccgc agctccagcc tgcgcaagca cgagcgcatc cacaccgggg agaagcccta

110821

cgcgtgccag gagtgcggca aggccttcaa ccagagctcg ggcctgagcc agcaccgcaa

110881

gatccactcg ctgcagaggc cgcacgcctg cgagctgtgc gggaaggcct tctgccaccg

110941

ctcgcacctg ctgcggcacc agcgcgtcca cacgggcaag aagccgtacg cctgcgcgga

111001

ctgcggcaag gccttcagcc agagctccaa cctcatcgag caccgcaaga cgcacacggg

111061

cgagaggccc taccggtgcc acaagtgcgg caaggccttc agccagagct cggcgctcat

111121

cgagcaccag cgcacccaca cgggcgagag gccttacgag tgcggccagt gcggcaaggc

111181

cttccgccac agctcggcgc tcatccagca ccagcgcacg cacacgggcc gcaagcccta

111241

cgtgtgcaac gagtgcggca aggccttccg ccaccgctcg gcgctcatcg agcactacaa

111301

gacgcacacg cgcgagcggc cctacgagtg caaccgctgc ggcaaggcct tccggggcag

111361

ctcgcacctc ctccgccacc agaaggtcca cgcggcggac aagctctagg gtccgcccgg

111421

ggcgagggca cgccggccct ggcgcccccg gcccagcggg tggacctggg gggccagccg

111481

gacggcggaa tcccggccgg ctcttctctg ccgtgacccc ggggggttgg ttttgccctc

111541

cattcgcttt ttctaaagtg cagacgaata cacgtcagag ggacgaagtg gggttaagcc

111601

cccgggagac gtccggcgag ctctaacgtc agacacttga agaagtgaag cggactcgca

111661

gcccgtacag cccggggaag atgagtccaa agtcgagggt caccttggcc actgcagggt

111721

cgctcggcgg tggggcggag cgggtgcagg agggctcctc ctgggcttgg ggtggcaggc

111781

gaggaccccg cgcctctcag ccctcggcct gggttggctg agggcgggcc tggctgtagg

111841

ccctccagcg gaggtggagg cgctgcccgg ctcagccagg cacaggaccc tgccacgagg

111901

agtagccctc cgccagaccc ggcgtccagg ctggggcgcc tgcggggcct ccgttctgtg

111961

gctgggcagc ctgcgccctg tccagggatg aaggggttcc ggtctgaagg gctgggttca

112021

gggtccagct ctggcccctc ctgccttggt gtcctggagg aagccccaag gctccgtttc

112081

cctctccagg aggtggggac gttgggaatg ccacattccc ctggggggtg tgtgtgtgtg

112141

ttcaaggctc ccattcagac tgggactggg cactcacgag ctttggcaac tggcaactga

112201

ggacggagac ccagggtgac accccacctc ctgctgcggc ccccccggca ggggagacac

112261

aggcccgtct ggttcccaag atggcagggc ccctccccct ccagcttgtg ccctgggtgt

112321

ggtgcctggg gctacagcga ccctttccgg ttccccgggc cagttcagct gggcatcctc

112381

agggcggggc tctgagggtg ccatgtttcc agagctcctc ctcctcccac cagtagcagg

112441

cgggcggcca gctcccaggc agccccctgg catcgcctag gtgcacacct gcccgctgtg

112501

acccagcaag gcttgaaggt ggccatccca gttaagtccc ctgcccctgg cccaggaatg

112561

ggctcgggca gggccgcatc tggctgcccc agaagcgtct gtccctggcc tctgggagtt

112621

ggcggtggtc tctggtactg tccctcgcag ggccccttag cactgctcgg ggaggaggtg

112681

ggctgaactg attttgaagt tttacatgtc tgcggccgca gtcctacgag cccgtcaggg

112741

tcatgctggt tatttcagca gatggggctt ggctcggcag ctaggatggt cctgaataaa

112801

aatgggaagg ccagagctgt tcctccatca gcaggcttgg cagctgggga cgttgaaagg

112861

acaggtctgc tggtctgggg agaccagctc tgtgcagccc ctgctgtccg tgggggtact

112921

aaaccagccc ctgtgtgcgc ccatctgagt ggcagcccgc ctggaggatc gcccatcact

112981

tgtgagaatt gagagaatgc tgacaccccc gcttggtgca gggggacagg gccccctaag

113041

atctacctcc ttgccccacc cccgggaccc cctcagcctt ggccaggact gtccttactg

113101

ggcagggcag tcatccactt ccaacctttg ccgtctcctc cgcgcgctgt gctcccagcc

113161

aaattgtttt atttttttcc aagcatcact ttgcacacgt caccactctc cttaaaacca

113221

cccttccgga gtctcctgct cgtaaatcgc cggtttcagc caacctgggt cgccccccaa

113281

gcccagcaag cctgctgagc cccgcgcctc ccagctactt cacgctcgcc tcaagcttct

113341

aaacgcggac cttctccccc ccacccccat ccctttcttt tctgatttat gtaacacggc

113401

aggtaagact cctctcctga agggttgaca gactcacaca aaaccgtggt cagaccaggc

113461

aagtgctttt tttcagaagt gtgagcggaa cctagtcttc agctcatgct ctttccttgt

113521

tttcttatgt gttctaagtc ctttgacttg ggctcccaga cagcgacgtt gtaagaggcc

113581

gtcctggtag catttgaatt gtcctcgagt ttcgttgtcg gattttgttt tattgtctta

113641

gttttccctt cttttagcag acgttgttga ctgtcgtaaa gctccagttc ttggttctgt

113701

ttactaatca aattgttttg tcaaagtaca tgtattctgc tcttttcttt atcttttttg

113761

ttgcttaata ttaacacttt acatttctaa gattaattat ttaggtaatt aataattttt

113821

aacatttcta gtaaacgtgg gtacttgggt ctgtgtttgt tttcttgtag ttacagcttt

113881

ttctgctcta tactgttgac gtctgggttt ttttttgctc ttaggaattt ccctttgacc

113941

ccattattat tattttaatt agtatttttt aataattaaa aattagtgtt tttaaattaa

114001

ccctaatcct aaccccagtg atgactgctt cagtcattgc tgttacttat tatgtgctgg

114061

tgtcaggatt tttaagtgtc catagacatt ctctgagcct gaatatatta tcagttttat

114121

acagcatttg tgtactctca agaaacgtgt tttcactctg tcagttcggt ttgttacctc

114181

agtctttatg ttattttgct ccagtccgca cttgctctaa cttgtcttcc cttcgaggtg

114241

tgaggacgcc tggcagccgg tgagcatgcc ggggtccggg gtcgtgggcc caggcgccca

114301

gcaaagccct gtgggtgtgt gcacggctgg gctgctccgg gaggaagcct gtggccccac

114361

ggtagttagg agcgctggtt tacctggtca caccacggtc tggttttgtg tgcttttccc

114421

tgacgtgttt ctgttttgcc ttggtttcta ttctgtttta tgagtgccgt ttacgctttg

114481

ttagtcatgc cgttatctcg atagacaggg tgtacgtgat caagtgatta ccgtatttgg

114541

agcagatgtc tatttaacag agatgaactg agaacctgtg cctttgcatg ccctctttgc

114601

ctcttttaat gcttctagct tcaacttctc ttttccaaac attataatgg aaaccccttg

114661

cttttttttt tttaatttgc atttgcatga gagtttattt agctcggcat tttattttta

114721

aaatttgtgt atatattttt gctatatatc tgtaacttat aaacagcaaa ttattggatt

114781

ttgctttctg attctttctg taattcttct tacataagaa gttctcctat gagtaacatt

114841

gctgtttaga gtgaggcatg atttatttcc agcttagtat gtattgggtc ggttaacccc

114901

caaaggtcat gctcatcccc gccccatctc tgtgagttat tgtccgagtg tggagcgccc

114961

tgtctaggcc gacgagagac ccaccatcgg gcacacctgc ccctcctggt ctggtcagtg

115021

ccgggctctg tcctgagtcc actcctgatg tcacaggctg gtgcttcagc gacctcggct

115081

gtgacacgga gggtgtgatg gcactgccca gccccatggg gcttggagga ctaaaggatg

115141

cacacctgcc tggcagactg agggcacagg tgtttctcac actgtcagcg ttttgaaata

115201

ttcctttgat tttctaccct aactcccaaa ggccgttcaa cataagctag aatgctacgt

115261

ggtgcttgat tacattttag aaaagtttca gcaaatacca cgagatgcag caaagaacta

115321

gacctcacag atcaggccgc ctgcataagg gagcccacac agtcgtggga gacggggacc

115381

ctctcccacg tcctgtctgt cccaggatgg tcccctcacc cgccccctct ctcccctcgc

115441

cctcctgtgg tgggggccgg ccaccatcac agctgcagag cctcaagaag ggggtcgccc

115501

tggccactcc cgtggcagga gggacacgag ggcaggagct taccgcgggt gcagtggtct

115561

cggatcagct cagctggccg ctgcggggtc ggggggacag ttcagtggga ggcaggagcc

115621

cccactacag ctgccaggac ttctcagagg tgacaagggg gttcagtcac ctcagcccag

115681

gtggaaacca aatggcctct tgcgcggctc ctggggccac gcggaggttc gctgggatca

115741

caggtatctg gatgtgtgcg ccatggacat gcaccacctt cggggggtaa ggggtgggga

115801

aaggcagccc ctttcttttg ggggaccccc tcttcagtgt ctgataacca ggaaaccaaa

115861

tcagaaggtg gtctgggggt gctgagcagg gtgtctccta caccacaggc cacacactca

115921

cacagcctcc aggactccag tggggctgag cgctggagac tcacccacgt ttgctacccc

115981

cccacccaag gccatcccag aacagctgcc tgcgtcctca cggctggccc ctcccctctg

116041

gtctaaccca gtgtgggtgg gccggcctgg ggtctccacc tgcctcctgc tgttccctgg

116101

gctgctggct gtctgcagat gcggggccct ggcccggaga agccccatca gagcccagag

116161

gacgggagtg gagcggggag gtgagccccg gagtctcgag gggccagagg caaaatactg

116221

ggctgtgtcc ctggaaggca gtttcccatg aaaccttcaa tataggccgc cccagacgat

116281

cagcctcatc tgctacgtgg attcctcccc gtagcgaatg gtgattgggt tctacatgga

116341

cccgggactt ctgtttgaat tataatcttt cccccactgc ccctccaggg atctggaaaa

116401

tggaggcctg ggctagacgg aagcttcctc caagattctt tattgaaggg attcgaagag

116461

aaacaggtgg tcagtaatct gtgggggatg gaggggtgag cgctacgtgt aacggtttta

116521

ctgttgctac gggaccagtt ttgatgtctt tccccttcaa gaagcagacc caaacaccga

116581

gatgctgagg ttagcagcac agagcgggtt catccacaag gcaaccaggc agggagacca

116641

gagacgctct ggaatctgcc tccctatggg cacgggctgg gtgctcacgg atgaagacca

116701

agcagcaggt ggcgtggggc gtggggagcc tgcggaaagc gatggacaag gtgcgggacc

116761

gcggtccgcg cggtggaccc aagctccgcc tctgcgctgc agcgcgagct gggggcggag

116821

cttccaggga cccgcgaccg cgcccagtgg gagggtccgc ggtccaccca gtcctaacag

116881

ctcagctcca gctagacgcc gctgagtccg gctttctaga gagcaacccc ggcgggtatt

116941

ttatggttct ggcttcctga ttggaggaca cgcgagtctt agaacaccct tgattagtgc

117001

gggcaggcgg aatggatttg actgatcacg atctgcagtt tcaccatctc aggggccgcc

117061

ctcaccccca cctatcctgc caaagggggg gcctcggtgc tgagatcggg gccacacgtg

117121

cactagacgg tcggtcagcg ctgctgctga gcggacccgg ggccatcctc acaccgccac

117181

tggcccctgt gctcaataaa aggaaggaaa gcgggaaaag cgctttctgg ccgcggtggc

117241

ctcgcgcgtt cctccatcgc catctgctgg cagagcccgg catggcaccc gctgcacaga

117301

aacctcggtg tccgtttggg tgccccatcc ttgaccccga gagagcaccc tccgtccaaa

117361

atgaaaaaca gctgctccca agagtcatta taatcacagc caattgtgtt aattcgtcct

117421

cggatccact cacagttcca cggaacattc tgctaacctc tgacaactcc tacataaagc

117481

aatactgaga agaaaagaac gtggttgata aatacaaagg catacaacaa taaggagcaa

117541

agaaaaaaga cagtcctcgc agttctgttt tgttcatctc tcatgagtag gatggcagat

117601

aaaacacaga atgcccagtg aataatttta gtctaagtat gtccccaata ctgcctaatc

117661

ttcaaatcta accttatttt taaaatatat attttttgct ggtcactcat cagttcatgc

117721

accaaagcct ttgtttcttg actcctaact ttttgacccc tctggggtga ggagcacccc

117781

taacctcgag agcccatcac acagtcccct tgggactaga cccttctttg cccatcacag

117841

ctgaccggaa gggccagccc atggccagcg ctcgcgcccc ctggcggaca gactctgcgc

117901

ggcagccccg ggagcccagg tgcgaccccg cggtctctgg cgccctctag tgtggaaaga

117961

tctcctcctg gtgttcccag tcattgggct gtattttatt agagaagatg ctcgcgtgac

118021

gatgatgatg gtcctttacc gggaggcacg tttggggcgc gtcggctcag gggccgagct

118081

attagcctgc atcgcgccca caggcatcgc gtccccctga gccgggtcag ctgtgggctg

118141

tcctgacacg ggtttccccc agtctctggc ccgctgtccc tcccaggtca gtgtccagcg

118201

ttgcccttct ggttgtggac ttgtgcagcg gtctcagcag atggaggggc gaccctaaag

118261

gatgtattga ggcatctcag cactgtcctc cgcccaggtt tgctggtcag cagtgaagtg

118321

accgggaaaa ggggctgtct tggggtcctt tcagaggcct gggttagacc aaagttttct

118381

agaagattca ccattgcagg gagtcaaaga caaaactagg gtggtcagca atctgtgggg

118441

gattcggcgg tgagggaatt ctgaatgcta catgtaatgg ttttactatt gttagggaac

118501

atttttcccc cctacaaaca gcaggccaaa atactgagat gtcaggtttg catcaaagag

118561

cgggttcatc cacaaggcaa ccagagaacg ctctggaatc tgcctccctg cgggcacagg

118621

ctgggtgctc acggatgaag accaagcagc aggtggcgtg gggagtgggg agcctgggga

118681

aagcgatgga caaggtgcga ggacctccgg cgcgagctgg aggcggagct tccagggaca

118741

cgcggccacg cccagtggga gggtcagcgg tccatccagt cctaacagct cagctccaac

118801

tagacgctgc tgagtctggc tttctagaga acactccggg cgggtatttt attgttttgg

118861

cttcgtgact ggaggacgtt caagtcttaa aacacccttg attagtgcgg ggaggcggaa

118921

tggatttgac tgatcacgac ccgcagtttc accatctcag gggccgccct caccccctcc

118981

taccctacca aaggtggggg catcggtgct gagatctggg gtgacacata aaatcaggtg

119041

aagtcttagg acagggggcc gattccaggt cctagggtgc agaaaaaacc tacctggccc

119101

cgggctagac agcgtggagg gcgtggcccg ggctggtgca cagaagtggc ccccaactgg

119161

tcagaaggtg tgggagccca gggctggtct actgcagaag gggtcgcctg gtggacagag

119221

tggggcctga gtgcctgctg aactggtccg tcagggctgc tgagcagaca cgggccatca

119281

tcactggctc ctgtgctcga tagaagggag ggaaaccagg aaagcaaagg cgctttatgg

119341

ccgcttttgt gtttcgcgtt cctctagcac cgtctgccgg cagaacgcgg cattacatcc

119401

gctggccaaa cctcggggtc cggcttggat gtccccatcc ttgtctcgga gatctcacct

119461

ctcagcagtt cccctgggga caatgtcgag aagatgcgac cttgacccgg agctcggtgg

119521

agagggtgcc ctgggttctt tccgcagttg cttggagtgg aggtgcctca tgttgggctg

119581

ggaacgggag gaaggaaaca ggtcatgatt gagatgctct agacagactg tccctgctct

119641

tgccaaattt cagaagattg tctttaataa atattccatt ttttgtatgc ccttaggtct

119701

atttccagac actttaaata tattgaaaga ctttaaatat ttatataaaa atattattta

119761

tagactgtat aaaaggaaca gttagaactg gacttggaac aacagactgg ttccaaatag

119821

gaaaaggagt acgtcaaggc tgtatattgt caccctgctt atttaactta tatgcagagt

119881

acatcatgag aaacgctggg ctggaagaaa cacaagctgg aatcaagatt gccgggagaa

119941

atatcaataa cctcagatat gcagatgaca ccacccttat ggcagaaagt gaagaggaac

120001

tcaaaagcct cttgatgaag gtgaaagagg agagcgaaaa agttggctta aagctcaaca

120061

tttagaaaac gaagatcatg gcatctggtc ccatcacttc atggaaatag atggggaaac

120121

agttgagaca gtgtcagact ttatttttgg gggctccaat gaaattaaaa gacgcttact

120181

tcttggaagg aaagttatga ccaacctaga cagcatatta aaaagcagag acactacttt

120241

gccagcaaag gtccgtctag tcaaggctat ggtttttcca gtggtcatgt atggatgtga

120301

gagttggact gtgaagaagg ctgagcaccg aagaagtgat gcttttgaac tgtggtgttg

120361

gagaagactc ttgagaggcc cttggactgc aaggagatcc aaccagtcca tcgtaaagga

120421

gatcaccccc tgggtggtca ttggaaggac tgatgttgaa gctgaaactc cagtactttg

120481

gctacctaat gcgaagagct gactcattgg aaaagaccct gatgctggga aagattgaag

120541

gtgggaggag aaggggacaa cagaggatga gatggttgga ttgcatcact gactcgatgg

120601

acgtgagtct gagtgaagtc tgggagttgg tgatggccag ggaggccctg gcgtgctggc

120661

ggttcatggg gtcgcaaaga gtcggccatg actgagtgac tgaactgaac tgatccagaa

120721

atttaaaatt aatatataaa ccaaatccat gcagacaatt ataagcatat attataaatg

120781

cataattata agcaagtata tgttatattt ataatagttt ataatgtatt tataagcaag

120841

tatatattat tataagcata attgtaagta gaagtaactt tgggctttcc tggtggctca

120901

gacagtaaag aatctgcctg cagtacagga gaccgggttc gatccctggt ttggggaaat

120961

tccctggaga agggaatggc aaccaactcc aacatgtttg cctggagaat tccatggaca

121021

gaggagcccg gaaggttgca gtccatgggg ttgcaaagag ctggatacaa cagagtgact

121081

aacacatgta tataaataaa tttacctata tattgtatat atatttataa acatattcag

121141

atattataaa taattagaaa catattatac atgtatttaa atactgttat aaacataaat

121201

ttaaaaaata attttcagcc ctttggcttg ggggtgtgtt tgtggacgtc tttgtgctac

121261

tgttcctgaa gtggagctct cccctcccaa accagctttt gaaatgactg ggaaagcaat

121321

ggaatacata agcatcagga agatagcaac agagctgtca ttcttcacag agggtgtgct

121381

tgagtgtgta gcaagtcccg cagaatgtag acagattaat atagtctatt aaaaatagtg

121441

tagcaaattt acgaggtgcg atttcaagta taaagactta ctgggtctct cagttcagtt

121501

cagtcgcttg gttgtgtccg actctttttg accccatgga ccgcagcacg ccaggcctcc

121561

ctgtccatca ccaactcctg gagttcactc aaactcatgt ccatcgagtc ggtgatgcca

121621

tccaaccatc tcatcctctg gcgtcccctt ctcctcccac cttcaatctt tcccagcatc

121681

agggtctttc ccagtgagtc agttctttgc atcaggtggc cagagtagtg gagtttcagc

121741

ttcagcatcg gtccttccaa tgaatattct ggactgattt cctttaggat tgactggttg

121801

gatctccttg cagttcaagg gactctcaag agtcttctcc aacagcacag tctatgaata

121861

gaatagcaaa tgaatagaga ataacattta cgaggatata ttttaccatt gcataaaata

121921

tatcagcttg tagagaacag acttgttccc aggggagagg gtgggtaggg atggagtggg

121981

agtttgngat cancagaagc gagctgttat atagaagatg gataaaaagg atacacaaca

122041

atgtcctact gtgtggcacc gggacctata ttcagtagct tgtgagaaac cataatcgac

122101

aagactgagg aaaagtatat atatatgtat gtacttgagt tgctttgctg tacagaagaa

122161

attaacacaa cattgtaaat cgatatttca atagaatcca cccccccaaa tatataagtt

122221

tcctggagat ggagacggca acccactcca tttcttgcac ccaatattct tgcctggagg

122281

atcccatgga tagaggatcg caaagactcg gacataaccc agcgactaac actttccctt

122341

tcaaatgtgt aggtttacta gcgtgaatct acagagatgc ccaagacatt cgtttatgag

122401

gaaaactcca cacgcagctt cactgagaat tattaaacct attaaaggga gagagcgcca

122461

ggatattcat ggattgaaag attcgatgtg gtcaagttgc cagttttccc caaactgatt

122521

ggtaaattcc ccaggagctg gctcaaggcg caaaattccc tttacctttt tttaagagac

122581

gaagccaagg agccgattct ggttgagaga cgctcaggtc ctcctgcggg agagcagccc

122641

tcttcctccc ggtcgcctgg gcagtttcga ggccacgacc agaaggactt ggctccctgt

122701

gtcgcgcact cagaagtctc cctctccgtc ccaaggactc agaagctggg cgtcctgccc

122761

gcagcagagg aggcagcctg gaggggcccc gcgggcacag cggtccgggt ttcagccgag

122821

ttgcccgccc cgcccctcta cctgggcgct gccgcccggc tccggggccg gccgtgccct

122881

ccgtggccgc aaggcgtcgc tgtccccccg ctggaagtgc tgacccggag gaaggggccc

122941

agacggaggg actcggagcc tccgagtgac accctgggac tccgagcgct ggagcctggc

123001

gtcaccccag gcaggggcag tgggggcccg gggcggggtc aggggcctcc cccggttctc

123061

atttgacacc gcgggggtgc gctgggcaca gtgtccaggg gccacgttcc gagcaggggc

123121

gcgatgcagg cccgggcgcg gcctgtcccg ggcgcgagtc cagctgcttt gcagaggtgg

123181

cggcaggtcg cagtgaccct cacagagacg ccccactctg cggctccagg tgggcctgtg

123241

ccccccagaa gtgctgacct gtgcaccggg aaggcacagg gccccccagc catgtctgcg

123301

atggaagagc cggaaccgcg ccatgcccgt cctcgctgac cggcaggcac ccgccgtgtg

123361

tccacacgct gagccatctg gctccccttg cttgacatac acccaggacc tgagtgtgca

123421

ggaagttaga aggggcaggt gtggtgacac gatgccatcc agcatcacct gagaacctgg

123481

acaaacctca ggggcccagc ctgctctgtg aggccccgag ggccggcccc tccccggacc

123541

cctgccttga atccggccac actgcccgcc ttcctgctcc tgcggcttgt cagacacgcc

123601

tgagcccagg gcctgtgcac tcgctgtccc ttctgccagg actgctcctc cccaggctct

123661

tgctggggct ccccttcttc attcgggggt ggcctctctt gttcagtggc tcagctgtgc

123721

ccagtctttg caaccccatg gactgcagca cgccaggctt ccctgtcctt cactagctcc

123781

tggagtttgc tcaaactcat gtccattgag tcagtgatgc tatccaacca tctcatcctt

123841

tgctgcccac ttcttctcct gctctcaatc tttcccagca tcagggtctt ttccaatgag

123901

ttagctctct gcatcaggag gccaaagtat tggagcttca gcatcagtcc ttccagtgaa

123961

tatgcgaggt tgatttccct tagaattgac tggttggatc tccttcctgt ccagagaact

124021

ctcaagagtc ttctccagca ccacagtcgg agagcatcag ttcttcagtg atcaggtttc

124081

tttatagccc agctctcaca tcggtacatg actattggaa aacccatagc tttgattaga

124141

tggaccttca ttggcaaagt gatgggcctt cattggccct gctttttaat acaccatcta

124201

ggtttgtcgt agctttcctt ccaaagagca aacatctttt aatttcctgg ctgcagtaac

124261

catccatagt gattttggag cccaagaaaa taaaatctgc cactgtttcc actttttccc

124321

cttctatttg ctatgaagtg aggggactgg atgccatgat cttagtttaa accagcagtt

124381

gtcaccccga ccgcttcctt tcctaaagag ctcatcacac ctcccactgg aatgcaatgt

124441

gttgcctgtc cgcctgcttc acctcctggg actttgctgc aggtcttggt ctctgaggcc

124501

cctgccgtat ccccagggcc cagagcagtg ctgggcttcg agtccgatca gggactatgt

124561

gtgtggactg gatggtgctt gcttcttctg gggaacgaga gacctgggcc tggggaacga

124621

ggggacctgg tgtgaccgga tctcctccct cgggagagga gccaagcgag tggacacagg

124681

tcagtgtgtc ttgctcctgt gtggcaggtg tcccgtctgt gtctgtcatc ttggcatttc

124741

ggtgtttctg tgaacccagc ccctcccctc ctgatacccc atcccatcag cacagaggag

124801

actgggcttg gggactctct ggtcctgaga ttcctctccg catgtgactc ccccctcctg

124861

gggggagcag gcaccgtgtg tgaggagggt ggaagctttt caagaccccc agcttttctg

124921

tcccaggggg ctctggcagg gccttgggag ctggaatgag ctggaatctg ggccagtggg

124981

ggtttccctg gtggtaaaga acccgcctgc ccatgcacga ggcataagag acgcgggttc

125041

gatcactggg tcgggaagat cccctacagg agggcatggc aacccactcc agtattcttt

125101

cctgaagaat cccttggaca gaggagcctg gtgggctaca gtctctgggg tggcaaggag

125161

tcggacacga ctgaagcgac ttaccatgca cgcacgcggg gtcaggggtc agggccgcgc

125221

tgcttacctg ctgtgtgacc ttagccaggt cacacccccc aggctgtgaa agagaacagt

125281

cttcccagac tcgggcatcc aggtctttac agacgtgcct gtgagctttg tgactctggc

125341

tctgtggccg ctagagggcg ctgtccgccg ggccctatgt gcgtgcacgc atgtgagcat

125401

gttcgcatac gtgtgtgcat ctgtcggggg cgcacggtgc ggggacacgg gcacgcggtc

125461

aggaacgcag cccggacacc tccacgtggc ccgcgagtac cgtcaggtgg gggctgtggc

125521

tccgctgtgt gggtgacccg ccctcccccc gcgaacgtgg tgcatagtga ccgcctggct

125581

gggctcctga gctcagccat cctgcccccc gggtcagctc ccgacaggcc cagctctagg

125641

ccccaggcgt ggaccgaggc ccccaggccc cggcctgtga gatgggacct ccgtctgggg

125701

ggctcattct gctcccggag gcctggcagg cccctcctct ttggcattgc ataccctcgc

125761

attggggtgg gtaagcacag taccccatgc ctgtggcccc gtgggagcgg cctgctcagg

125821

gaggccggag cctcagctac agggctgtca caccgggctg cagaggaaga agacgggagc

125881

gaggcctaca ggaacctagc caggccctgg cccactgagc cgacaggagc ctggccagag

125941

gcctgcacag gacggggtgg cggggggggt ggggtggggt gctgggcccc gtggccttga

126001

ctgcagaccc cgagggctcc tcagcttaga acggccaagc ctgagtcttg ggggtgcagg

126061

tcaggggg

Primers

In another embodiment, primers are provided to generate 3′ and 5′ sequences of a targeting vector. The oligonucleotide primers can be capable of hybridizing to porcine immunoglobulin genomic sequence, such as Seq ID Nos. 1, 4, 29, 30, 12, 25, 15, 16, 19, 28 or 31, as described above. In a particular embodiment, the primers hybridize under stringent conditions to Seq ID Nos. 1, 4, 29, 30, 12, 25, 15, 16, 19, 28 or 31, as described above. Another embodiment provides oligonucleotide probes capable of hybridizing to porcine heavy chain, kappa light chain or lambda light chain nucleic acid sequences, such as Seq ID Nos. 1, 4, 29, 30, 12, 25, 15, 16, 19, 28 or 31, as described above. The polynucleotide primers or probes can have at least 14 bases, 20 bases, 30 bases, or 50 bases which hybridize to a polynucleotide of the present invention. The probe or primer can be at least 14 nucleotides in length, and in a particular embodiment, are at least 15, 20, 25, 28, or 30 nucleotides in length.

In one embodiment, primers are provided to amplify a fragment of porcine Ig heavy-chain that includes the functional joining region (the J6 region). In one non-limiting embodiment, the amplified fragment of heavy chain can be represented by Seq ID No 4 and the primers used to amplify this fragment can be complementary to a portion of the J-region, such as, but not limited to Seq ID No 2, to produce the 5′ recombination arm and complementary to a portion of Ig heavy-chain mu constant region, such as, but not limited to Seq ID No 3, to produce the 3′ recombination arm. In another embodiment, regions of the porcine Ig heavy chain (such as, but not limited to Seq ID No 4) can be subcloned and assembled into a targeting vector.

In other embodiments, primers are provided to amplify a fragment of porcine Ig kappa light-chain that includes the constant region. In another embodiment, primers are provided to amplify a fragment of porcine Ig kappa light-chain that includes the J region. In one non-limiting embodiment, the primers used to amplify this fragment can be complementary to a portion of the J-region, such as, but not limited to Seq ID No 21 or 10, to produce the 5′ recombination arm and complementary to genomic sequence 3′ of the constant region, such as, but not limited to Seq ID No 14, 24 or 18, to produce the 3′ recombination arm. In another embodiment, regions of the porcine Ig heavy chain (such as, but not limited to Seq ID No 20) can be subcloned and assembled into a targeting vector.

II. Genetic Targeting of the Immunoglobulin Genes

The present invention provides cells that have been genetically modified to inactivate immunoglobulin genes, for example, immunoglobulin genes described above. Animal cells that can be genetically modified can be obtained from a variety of different organs and tissues such as, but not limited to, skin, mesenchyme, lung, pancreas, heart, intestine, stomach, bladder, blood vessels, kidney, urethra, reproductive organs, and a disaggregated preparation of a whole or part of an embryo, fetus, or adult animal. In one embodiment of the invention, cells can be selected from the group consisting of, but not limited to, epithelial cells, fibroblast cells, neural cells, keratinocytes, hematopoietic cells, melanocytes, chondrocytes, lymphocytes (B and T), macrophages, monocytes, mononuclear cells, cardiac muscle cells, other muscle cells, granulosa cells, cumulus cells, epidermal cells, endothelial cells, Islets of Langerhans cells, blood cells, blood precursor cells, bone cells, bone precursor cells, neuronal stem cells, primordial stem cells, hepatocytes, keratinocytes, umbilical vein endothelial cells, aortic endothelial cells, microvascular endothelial cells, fibroblasts, liver stellate cells, aortic smooth muscle cells, cardiac myocytes, neurons, Kupffer cells, smooth muscle cells, Schwann cells, and epithelial cells, erythrocytes, platelets, neutrophils, lymphocytes, monocytes, eosinophils, basophils, adipocytes, chondrocytes, pancreatic islet cells, thyroid cells, parathyroid cells, parotid cells, tumor cells, glial cells, astrocytes, red blood cells, white blood cells, macrophages, epithelial cells, somatic cells, pituitary cells, adrenal cells, hair cells, bladder cells, kidney cells, retinal cells, rod cells, cone cells, heart cells, pacemaker cells, spleen cells, antigen presenting cells, memory cells, T cells, B cells, plasma cells, muscle cells, ovarian cells, uterine cells, prostate cells, vaginal epithelial cells, sperm cells, testicular cells, germ cells, egg cells, leydig cells, peritubular cells, sertoli cells, lutein cells, cervical cells, endometrial cells, mammary cells, follicle cells, mucous cells, ciliated cells, nonkeratinized epithelial cells, keratinized epithelial cells, lung cells, goblet cells, columnar epithelial cells, squamous epithelial cells, osteocytes, osteoblasts, and osteoclasts. In one alternative embodiment, embryonic stem cells can be used. An embryonic stem cell line can be employed or embryonic stem cells can be obtained freshly from a host, such as a porcine animal. The cells can be grown on an appropriate fibroblast-feeder layer or grown in the presence of leukemia inhibiting factor (LIF).

In a particular embodiment, the cells can be fibroblasts; in one specific embodiment, the cells can be fetal fibroblasts. Fibroblast cells are a suitable somatic cell type because they can be obtained from developing fetuses and adult animals in large quantities. These cells can be easily propagated in vitro with a rapid doubling time and can be clonally propagated for use in gene targeting procedures.

Targeting Constructs

Homologous Recombination

In one embodiment, immunoglobulin genes can be genetically targeted in cells through homologous recombination. Homologous recombination permits site-specific modifications in endogenous genes and thus novel alterations can be engineered into the genome. In homologous recombination, the incoming DNA interacts with and integrates into a site in the genome that contains a substantially homologous DNA sequence. In non-homologous (“random” or “illicit”) integration, the incoming DNA is not found at a homologous sequence in the genome but integrates elsewhere, at one of a large number of potential locations. In general, studies with higher eukaryotic cells have revealed that the frequency of homologous recombination is far less than the frequency of random integration. The ratio of these frequencies has direct implications for “gene targeting” which depends on integration via homologous recombination (i.e. recombination between the exogenous “targeting DNA” and the corresponding “target DNA” in the genome).

A number of papers describe the use of homologous recombination in mammalian cells. Illustrative of these papers are Kucherlapati et al., Proc. Natl. Acad. Sci. USA 81:3153-3157, 1984; Kucherlapati et al., Mol. Cell. Bio. 5:714-720, 1985; Smithies et al, Nature 317:230-234, 1985; Wake et al., Mol. Cell. Bio. 8:2080-2089, 1985; Ayares et al., Genetics 111:375-388, 1985; Ayares et al., Mol. Cell. Bio. 7:1656-1662, 1986; Song et al., Proc. Natl. Acad. Sci. USA 84:6820-6824, 1987; Thomas et al. Cell 44:419-428, 1986; Thomas and Capecchi, Cell 51:503-512, 1987; Nandi et al., Proc. Natl. Acad. Sci. USA 85:3845-3849, 1988; and Mansour et al., Nature 336:348-352, 1988. Evans and Kaufman, Nature 294:146-154, 1981; Doetschman et al., Nature 330:576-578, 1987; Thoma and Capecchi, Cell 51:503-512, 4987; Thompson et al., Cell 56:316-321, 1989.

The present invention can use homologous recombination to inactivate an immunoglobulin gene in cells, such as the cells described above. The DNA can comprise at least a portion of the gene(s) at the particular locus with introduction of an alteration into at least one, optionally both copies, of the native gene(s), so as to prevent expression of functional immunoglobulin. The alteration can be an insertion, deletion, replacement or combination thereof. When the alteration is introduce into only one copy of the gene being inactivated, the cells having a single unmutated copy of the target gene are amplified and can be subjected to a second targeting step, where the alteration can be the same or different from the first alteration, usually different, and where a deletion, or replacement is involved, can be overlapping at least a portion of the alteration originally introduced. In this second targeting step, a targeting vector with the same arms of homology, but containing a different mammalian selectable markers can be used. The resulting transformants are screened for the absence of a functional target antigen and the DNA of the cell can be further screened to ensure the absence of a wild-type target gene. Alternatively, homozygosity as to a phenotype can be achieved by breeding hosts heterozygous for the mutation.

Targeting Vectors

In another embodiment, nucleic acid targeting vector constructs are also provided. The targeting vectors can be designed to accomplish homologous recombination in cells. These targeting vectors can be transformed into mammalian cells to target the ungulate heavy chain, kappa light chain or lambda light chain genes via homologous recombination. In one embodiment, the targeting vectors can contain a 3′ recombination arm and a 5′ recombination arm (i.e. flanking sequence) that is homologous to the genomic sequence of ungulate heavy chain, kappa light chain or lambda light chain genomic sequence, for example, sequence represented by Seq ID Nos. 1, 4, 29, 30, 12, 25, 15, 16, 19, 28 or 31, as described above. The homologous DNA sequence can include at least 15 bp, 20 bp, 25 bp, 50 bp, 100 bp, 500 bp, 1 kbp, 2 kbp, 4 kbp, 5 kbp, 10 kbp, 15 kbp, 20 kbp, or 50 kbp of sequence, particularly contiguous sequence, homologous to the genomic sequence. The 3′ and 5′ recombination arms can be designed such that they flank the 3′ and 5′ ends of at least one functional variable, joining, diversity, and/or constant region of the genomic sequence. The targeting of a functional region can render it inactive, which results in the inability of the cell to produce functional immunoglobulin molecules. In another embodiment, the homologous DNA sequence can include one or more intron and/or exon sequences. In addition to the nucleic acid sequences, the expression vector can contain selectable marker sequences, such as, for example, enhanced Green Fluorescent Protein (eGFP) gene sequences, initiation and/or enhancer sequences, poly A-tail sequences, and/or nucleic acid sequences that provide for the expression of the construct in prokaryotic and/or eukaryotic host cells. The selectable marker can be located between the 5′ and 3′ recombination arm sequence.

Modification of a targeted locus of a cell can be produced by introducing DNA into the cells, where the DNA has homology to the target locus and includes a marker gene, allowing for selection of cells comprising the integrated construct. The homologous DNA in the target vector will recombine with the chromosomal DNA at the target locus. The marker gene can be flanked on both sides by homologous DNA sequences, a 3′ recombination arm and a 5′ recombination arm. Methods for the construction of targeting vectors have been described in the art, see, for example, Dai et al., Nature Biotechnology 20: 251-255, 2002; WO 00/51424.

Various constructs can be prepared for homologous recombination at a target locus. The construct can include at least 50 bp, 100 bp, 500 bp, 1 kbp, 2 kbp, 4 kbp, 5 kbp, 10 kbp, 15 kbp, 20 kbp, or 50 kbp of sequence homologous with the target locus. The sequence can include any contiguous sequence of an immunoglobulin gene.

Various considerations can be involved in determining the extent of homology of target DNA sequences, such as, for example, the size of the target locus, availability of sequences, relative efficiency of double cross-over events at the target locus and the similarity of the target sequence with other sequences.

The targeting DNA can include a sequence in which DNA substantially isogenic flanks the desired sequence modifications with a corresponding target sequence in the genome to be modified. The substantially isogenic sequence can be at least about 95%, 97-98%, 99.0-99.5%, 99.6-99.9%, or 100% identical to the corresponding target sequence (except for the desired sequence modifications). In a particular embodiment, the targeting DNA and the target DNA can share stretches of DNA at least about 75, 150 or 500 base pairs that are 100% identical. Accordingly, targeting DNA can be derived from cells closely related to the cell line being targeted; or the targeting DNA can be derived from cells of the same cell line or animal as the cells being targeted.

Porcine Heavy Chain Targeting

In particular embodiments of the present invention, targeting vectors are provided to target the porcine heavy chain locus. In one particular embodiment, the targeting vector can contain 5′ and 3′ recombination arms that contain homologous sequence to the 3′ and 5′ flanking sequence of the J6 region of the porcine immunoglobulin heavy chain locus. Since the J6 region is the only functional joining region of the porcine immunoglobulin heavy chain locus, this will prevent the expression of a functional porcine heavy chain immunoglobulin. In a specific embodiment, the targeting vector can contain a 5′ recombination arm that contains sequence homologous to genomic sequence 5′ of the J6 region, optionally including J1-4 and a 3′ recombination arm that contains sequence homologous to genomic sequence 3′ of the J6 region, including the mu constant region (a “J6 targeting construct”), see for example, FIG. 1. Further, this J6 targeting construct can also contain a selectable marker gene that is located between the 5′ and 3′ recombination arms, see for example, Seq ID No S and FIG. 1. In other particular embodiments, the 5′ targeting arm can contain sequence 5′ of J1, such as depicted in Seq ID No. 1 and/or Seq ID No 4. In another embodiments, the 5′ targeting arm can contain sequence 5′ of J1, J2 and/or J3, for example, as depicted in approximately residues 1-300, 1-500, 1-750, 1-1000 and/or 1-1500 Seq ID No 4. In a further embodiment, the 5′ targeting arm can contain sequence 5′ of the constant region, for example, as depicted in approximately residues 1-300, 1-500, 1-750, 1-1000, 1-1500 and/or 1-2000 or any fragment thereof of Seq ID No 4 and/or any contiguous sequence of Seq ID No. 4 or fragment thereof. In another embodiment, the 3′ targeting arm can contain sequence 3′ of the constant region and/or including the constant region, for example, such as resides 7000-8000 and/or 8000-9000 or fragment thereof of Seq ID No 4. In other embodiments, targeting vector can contain any contiguous sequence or fragment thereof of Seq ID No 4. sequence In other embodiments, the targeting vector can contain a 5′ recombination arm that contains sequence homologous to genomic sequence 5′ of the diversity region, and a 3′ recombination arm that contains sequence homologous to genomic sequence 3′ of the diversity region of the porcine heavy chain locus. In a further embodiment, the targeting vector can contain a 5′ recombination arm that contains sequence homologous to genomic sequence 5′ of the mu constant region and a 3′ recombination arm that contains sequence homologous to genomic sequence 3′ of the mu constant region of the porcine heavy chain locus.

In further embodiments, the targeting vector can include, but is not limited to any of the following sequences: the Diversity region of heavy chain is represented, for example, by residues 1089-1099 of Seq ID No 29 (D(pseudo)), the Joining region of heavy chain is represented, for example, by residues 1887-3352 of Seq ID No 29 (for example: J(psuedo): 1887-1931 of Seq ID No 29, J(pseudo): 2364-2411 of Seq ID No 29, J(pseudo): 2756-2804 of Seq ID No 29, J (functional J): 3296-3352 of Seq ID No 29), the recombination signals are represented, for example, by residues 3001-3261 of Seq ID No 29 (Nonamer), 3292-3298 of Seq ID No 29 (Heptamer), the Constant Region is represented by the following residues: 3353-9070 of Seq ID No 29 (J to C mu intron), 5522-8700 of Seq ID No 29 (Switch region), 9071-9388 of Seq ID No 29 (Mu Exon 1), 9389-9469 of Seq ID No 29 (Mu Intron A), 9470-9802 of Seq ID No 29 (Mu Exon 2), 9830-10069 of Seq ID No 29 (Mu Intron B), 10070-10387 of Seq ID No 29 (Mu Exon 3), 10388-10517 of Seq ID No 29 (Mu Intron C), 10815-11052 of Seq ID No 29 (Mu Exon 4), 11034-11039 of Seq ID No 29 (Poly(A) signal) or any fragment or combination thereof. Still further, any contiguous sequence at least about 17, 20, 30, 40, 50, 100, 150, 200 or 300 nucleotides of Seq ID No 29 or fragment and/or combination thereof can be used as targeting sequence for the heavy chain targeting vector. It is understood that in general when designing a targeting construct one targeting arm will be 5′ of the other targeting arm.

In other embodiments, targeting vectors designed to disrupt the expression of porcine heavy chain genes can contain recombination arms, for example, the 3′ or 5′ recombination arm, that target the constant region of heavy chain. In one embodiment, the recombination arm can target the mu constant region, for example, the C mu sequences described above or as disclosed in Sun & Butler Immunogenetics (1997) 46: 452-460. In another embodiment, the recombination arm can target the delta constant region, such as the sequence disclosed in Zhao et al. (2003) J immunol 171: 1312-1318, or the alpha constant region, such as the sequence disclosed in Brown & Butler (1994) Molec Immunol 31: 633-642.

Seq ID No. 5

GGCCAGACTTCCTCGGAACAGCTCAAAGAGCTCTGTC

AAAGCCAGATCCCATCACACGTGGGCACCAATAGGCC

ATGCCAGCCTGCAAGGGCCGAACTGGGTTCTCCACGG

CGCACATGAAGCCTGCAGCCTGGCTTATCCTCTTCCG

TGGTGAAGAGGCAGGCCCGGGACTGGACGAGGGGCTA

GCAGGGTGTGGTAGGCACCTTGCGCCCCCCACCCCGG

CAGGAACCAGAGACCGTGGGGCTGAGAGTGAGCCTCC

AAACAGGATGCGCCACCCTTCAGGCCACCTTTCAATC

CAGCTACACTCCACCTGCCATTCTGCTCTGGGCACAG

GGCCCAGCCCCTGGATCTTGGCCTTGGCTCGACTTGC

ACCCACGCGCACACACACACTTCCTAACGTGCTGTGC

GCTCACGCCTCCCCAGCGTGGTCCATGGGGAGCACGG

GAGTGCGCGTCCGGCGGTAGTGAGTGCAGAGGTCCCT

TCCCCTCCCCCAGGAGCCCCAGGGGTGTGTGCAGATC

TGGGGGCTCCTGTCCCTTACACCTTCATGCCCCTCCC

CTCATAGGCACCCTCCAGGCGGGAGGGAGCGAGACCT

TTGCGGAGGGACTCAGCCAACGGGGACACGGGAGGCC

AGCCCTGAGGAGCTGGCTCGCAAAGAGGAGGTGGGAG

GTAGGTCCACAGCTGCCACAGAGAGAAACCCTGACGG

ACCCCACAGGGGCCACGGCAGCCGGAACCAGCTCCCT

CGTGGGTGAGCAATGGCCAGGGCCCCGCCGGCCACCA

CGGCTGGCCTTGCGCCAGCTGAGAACTCACGTCCAGT

GCAGGGAGACTCAAGACAGCCTGTGCACACAGCCTCG

GATCTGCTCCCATTTCAAGCAGAAAAAGGAAACCGTG

CAGGCAGCCCTCAGCATTTCAAGGATTGTAGCAGCGG

CCAACTATTCGTCGGCAGTGGCCGATTAGAATGACCG

TGGAGAAGGGCGGAAGGGTGTCTCGTGGGCTCTGCGG

CCAACAGGCCCTGGCTCCACCTGCCCGCTGCCAGCCC

GAGGGGCTTGGGCCGAGCCAGGAACCAGAGTGCTCAC

CGGGAGCACAGTGACTGACCAAACTCCCGGCCAGAGC

AGCCCCAGGCCAGCCGGGCTCTCGCCCTGGAGGACTC

ACCATCAGATGCACAAGGGGGCGAGTGTGGAAGAGAC

GTGTCGCCCGGGCCATTTGGGAAGGCGAAGGGACCTT

CCAGGTGGACAGGAGGTGGGACGCACTCCAGGCAAGG

GACTGGGTCCCCAAGGCCTGGGGAAGGGGTACTGGCT

TGGGGGTTAGCCTGGCCAGGGAACGGGGAGCGGGGCG

GGGGGCTGAGCAGGGAGGACCTGACCTCGTGGGAGCG

AGGCAAGTCAGGCTTCAGGCAGCAGCCGCACATCCCA

GACCAGGAGGCTGAGGCAGGAGGGGCTTGCAGCGGGG

CGGGGGCCTGCCTGGCTCCGGGGGCTCCTGGGGGACG

CTGGCTCTTGTTTCCGTGTCCCGCAGCAGAGGGCGAG

CTCGCTGGGCCTATGCTTACCTTGATGTCTGGGGCCG

GGGCGTCAGGGTCGTCGTCTCCTCAGGGGAGAGTCCC

CTGAGGCTACGCTGGGG*GGGGACTATGGCAGGTCCA

CGAGGGGCCTGGGGACGAGGGGCCTGGACCAGGCTGC

AGCCCGGAGGACGGGGAGGGCTCTGGCTCTCCAGCAT

CTGGCCCTCGGAAATGGCAGAACCCCTGGCGGGTGAG

CGAGCTGAGAGCGGGTCAGACAGACAGGGGCCGGCCG

GAAAGGAGAAGTTGGGGGCAGAGCCCGCCAGGGGCCA

GGCCCAAGGTTCTGTGTGCCAGGGCCTGGGTGGGGAC

ATTGGTGTGGCCATGGCTACTTAGACGCGTGATCAAG

GGCGAATTCCAGCACACTGGCGGCCGTTACTAGTgga

tcccggcgcgccctaccgggtaggggaggcgcttttc

ccaaggcagtctggagcatgcgctttagcagccccgc

tgggcacttggcgctacacaagtggcctctggcctcg

cacacattccacatccaccggtaggcgccaaccggct

ccgttctttggtggccccttcgcgccaccttctactc

ctcccctagtcaggaagttcccccccgccccgcagct

cgcgtcgtgcaggacgtgacaaatggaagtagcacgt

ctcactagtctcgtgcagatggacagcaccgctgagc

aatggaagcgggtaggcctttggggcagcggccaata

gcagctttggctccttcgctttctgggctcagaggct

gggaaggggtgggtccgggggcgggctcaggggcggg

ctcaggggcggggcgggcgcccgaaggtcctccggaa

gcccggcattctgcacgcttcaaaagcgcacgtctgc

cgcgctgttctcctcttcctcatctccgggcctttcg

acctgcagccaatatgggatcggccattgaacaagat

ggattgcacgcaggttctccggccgcttgggtggaga

ggctattcggctatgactgggcacaacagacaatcgg

ctgctctgatgccgccgtgttccggctgtcagcgcag

gggcgcccggttctttttgtcaagaccgacctgtccg

gtgccctgaatgaactgcaggacgaggcagcgcggct

atcgtggctggccacgacgggcgttccttgcgcagct

gtgctcgacgttgtcactgaagcgggaagggactggc

tgctattgggcgaagtgccggggcaggatctcctgtc

atctcaccttgctcctgccgagaaagtatccatcatg

gctgatgcaatgcggcggctgcatacgcttgatccgg

ctacctgcccattcgaccaccaagcgaaacatcgcat

cgagcgagcacgtactcggatggaagccggtcttgtc

aatcaggatgatctggacgaagagcatcaggggctcg

cgccagccgaactgttcgccaggctcaaggcgcgcat

gcccgacggcgaggatctcgtcgtgacccatggcgat

gcctgcttgccgaatatcatggtggaaaatggccgct

tttctggattcatcgactgtggccggctgggtgtggc

ggatcgctatcaggacatagcgttggctacccgtgat

attgctgaagagcttggcggcgaatgggctgaccgct

tcctcgtgctttacggtatcgccgctcccgattcgca

gcgcatcgccttctatcgccttcttgacgagttcttc

tgaggggatcaattcTCTAGATGCATGCTCGAGCGGC

CGCCAGTGTGATGGATATCTGCAGAATTGGCCCTtCC

AGGCGTTGAAGTCGTGGTGTCCTCAGGTAAGAACGGC

CCTCCAGGGCCTTTAATTTCTGCTCTCGTCTGTGGGC

TTTTCTGACTCTGATCCTCGGGAGGCGTCTGTGCCCC

CCCCGGGGATGAGGCCGGCTTGCCAGGAGGGGTCAGG

GACCAGGAGCCTGTGGGAAGTTCTGACGGGGGCTGCA

GGCGGGAAGGGCCCCACCGGGGGGCGAGCCCCAGGGC

GCTGGGCGGCAGGAGACCCGTGAGAGTGCGCCTTGAG

GAGGGTGTCTGCGGAAGCACGAACGCCGGCCGGGAAG

GGCTTGGTGCAATGCGGTCTTCAGACGGGAGGCGTCT

TCTGCCCTCACCGTCTTTCAAGCCCTTGTGGGTCTGA

AAGAGCCATGTCGGAGAGAGAAGGGACAGGCCTGTCC

CGACCTGGCCGAGAGCGGGCAGCCCCGGGGGAGAGGG

GGGCGATCGGGGTGGGCTCTGTGAGGCCAGGTCCAAG

GGAGGACGTGTGGTCCTCGTGACAGGTGCACTTGCGA

AACCTTAGAAGACGGGGTATGTTGGAAGCGGCTCCTG

ATGTTTAAGAAAAGGGAGACTGTAAAGTGAGCAGAGT

CCTCAAGTGTGTTAAGGTTTTAAAGGTCAAAGTGTTT

TAAACCTTTGTGACTGCAGTTAGCAAGCGTGCGGGGA

GTGAATGGGGTGCCAGGGTGGCCGAGAGGCAGTACGA

GGGCCGTGCCGTCCTCTAATTCAGGGCTTAGTTTTGG

AGAATAAAGTCGGCCTGTTTTCTAAAAGCATTGGTGG

TGCTGAGCTGGTGGAGGAGGCCGCGGGCAGCGCTGGC

CACCTGCAGCAGGTGGCAGGAAGCAGGTCGGCCAAGA

GGCTATTTTAGGAAGCCAGAAAACACGGTCGATGAAT

TTATAGCTTCTGGTTTCCAGGAGGTGGTTGGGCATGG

CTTTGCGCAGCGCCACAGAACCGAAAGTGCCCACTGA

GAAAAAACAACTCCTGCTTAATTTGCATTTTTGTAAA

AGAAGAAACAGAGGCTGAGGGAAACTGGAAAGTTCCT

GTTTTAACTACTCGAATTGAGTTTTCGGTCTTAGCTT

ATCAAGTGCTCACTTAGATTCATTTTCAAAGTAAACG

TTTAAGAGCCGAGGCATTCCTATCCTCTTCTAAGGCG

TTATTCCTGGAGGCTCATTCACCGCCAGCACCTCCGC

TGCCTGCAGGCATTGCTGTCACCGTCACCGTGACGGC

GCGCACGATTTTCAGTTGGCCCGCTTCCCCTCGTGAT

TAGGACAGACGCGGGCACTCTGGCCCAGCCGTCTTGG

CTCAGTATGTGCAGGCGTGCGTCTCGGGACGGAGCTC

AGGGGAAGAGCGTGACTCCAGTTGAACGTGATAGTCG

GTGCGTTGAGAGGAGACCCAGTCGGGTGTCGAGTCAG

AAGGGGCCCGGGGCCCGAGGCCCTGGGCAGGACGGCC

CGTGCCCTGCATCACGGGCCCAGCGTCCTAGAGGCAG

GACTCTGGTGGAGAGTGTGAGGGTGCCTGGGGCCCCT

CCGGAGCTGGGGCCGTGCGGTGCAGGTTGGGCTCTCG

GCGCGGTGTTGGCTGTTTCTGCGGGATTTGGAGGAAT

TCTTCCAGTGATGGGAGTCGCCAGTGACCGGGCAGCA

GGCTGGTAAGAGGGAGGCCGGCGTCGTGGCCAGAGCA

GCTGGGAGGGTTCGGTAAAAGGCTCGCCCGTTTCGTT

TAATGAGGACTTTTCCTGGAGGGCATTTAGTCTAGTC

GGGACCGTTTTCGACTCGGGAAGAGGGATGCGGAGGA

GGGCATGTGCCCAGGAGCCGAAGGCGCCGCGGGGAGA

AGCCCAGGGCTCTCCTGTCCCCACAGAGGCGACGCCA

CTGCCGCAGACAGACAGGGGCTTTCCCTCTGATGACG

GGAAAGGCGCCTGGGGTCTTGCGGGGTGCTGGGGGGG

AGTCGCCCCGAAGCCGCTCAGCCAGAGGCCTGAGGGG

TGAGACTGACCGATGCCTCTTGGCCGGGCCTGGGGCC

GGACCGAGGGGGACTCCGTGGAGGCAGGGCGATGGTG

GCTGCGGGAGGGAACCGACCCTGGGCCGAGCCCGGCT

TGGCGATTCCCGGGCGAGGGCCCTCAGCCGAGGCGAG

TGGGTCCGGCGGAACCACCCTTTCTGGCCAGCGGGAG

AGGGCTCTCGGGACTGTCCGGGGCGACGCTGGGCTGC

CCGTGGCAGGCCTGGGCTGACCTGGACTTCACCAGAC

AGAACAGGGCTTTCAGGGCTGAGCTGAGCCAGGTTTA

GCGAGGCCAAGTGGGGCTGAACCAGGCTCAACTGGCC

TGAGCTGGGTTGAGCTGGGCTGACCTGGGCTGAGCTG

AGCTGGGCTGGGCTGGGCTGGGCTGGGGTGGGCTGGG

CTGGACTGGCTGAGCTGAGCTGGGTTGAGCTGAGCTG

AGCTGGCCTGGGTTGAGCTGGGCTGGGTTGAGCTGAG

CTGGGTTGAGCTGGGTTGAGCTGGGTTGATCTGAGCT

GAGCTGGGCTGAGCTGAGCTAGGCTGGGGTGAGCTGG

GCTGAGCTGGTTTGAGTTGGGTTGAGCTGAGCTGAGC

TGGGCTGTGCTGGCTGAGCTAGGCTGAGCTAGGCTAG

GTTGAGCTGGGCTGGGCTGAGCTGAGGTAGGCTGGGC

TGATTTGGGCTGAGCTGAGCTGAGCTAGGCTGCGTTG

AGCTGGCTGGGCTGGATTGAGCTGGCTGAGCTGGCTG

AGCTGGGCTGAGCTGGCCTGGGTTGAGCTGAGCTGGA

CTGGTTTGAGCTGGGTCGATCTGGGTTGAGCTGTCCT

GGGTTGAGCTGGGCTGGGTTGAGCTGAGCTGGGTTGA

GCTGGGCTCAGCAGAGCTGGGTTGGGCTGAGCTGGGT

TGAGCTGAGCTGGGCTGAGCTGGCCTGGGTTGAGCTG

GGCTGAGCTGAGCTGGGCTGAGCTGGCCTGTGTTGAG

CTGGGCTGGGTTGAGCTGGGCTGAGCTGGATTGAGCT

GGGTTGAGCTGAGCTGGGCTGGGCTGTGCTGACTGAG

CTGGGGTGAGCTAGGGTGGGGTGAGCTGGGCTGAGCT

GATCCGAGCTAGGCTGGGCTGGTTTGGGCTGAGCTGA

GCTGAGCTAGGCTGGATTGATCTGGCTGAGCTGGGTT

GAGCTGAGCTGGGCTGAGGTGGTCTGAGCTGGGGTGG

GTCGAGCTGAGGTGGACTGGTTTGAGCTGGGTCGATC

TGGGCTGAGCTGGCGTGGGTTGAGCTGGGCTGGGTTG

AGCTGAGCTGGGTTGAGCTGGGCTGAGCTGAGGGCTG

GGGTGAGCTGGGCTGAACTAGGGTAGCTAGGTTGGGC

TGAGCTGGGCTGGTTTGGGCTGAGCTGAGCTGAGCTA

GGCTGCATTGAGCAGGCTGAGCTGGGCTGAGCAGGCC

TGGGGTGAGCTGGGCTAGGTGGAGCTGAGCTGGGTCG

AGCTGAGTTGGGGTGAGCTGGCCTGGGTTGAGGTAGG

CTGAGCTGAGCTGAGCTAGGCTGGGTTGAGCTGGCTG

GGCTGGTTTGCGCTGGGTCAAGCTGGGCCGAGCTGGC

CTGGGTTGAGCTGGGCTCGGTTGAGCTGGGCTGAGCT

GAGCCGACCTAGGCTGGGATGAGCTGGGCTGATTTGG

GCTGAGCTGAGCTGAGCTAGGCTGCATTGAGCAGGCT

GAGCTGGGCCTGGAGCCTGGCCTGGGGTGAGCTGGGC

TGAGCTGCGCTGAGCTAGGCTGGGTTGAGCTGGCTGG

GCTGGTTTGCGCTGGGTCAAGCTGGGCCGAGCTGGCC

TGGGATGAGCTGGGCCGGTTTGGGCTGAGCTGAGCTG

AGCTAGGCTGCATTGAGCAGGCTGAGCTGGGCTGAGC

TGGCCTGGGGTGAGCTGGGCTGAGCTAAGCTGAGCTG

GGCTGGTTTGGGGTGAGGTGGGTGAGCTGGGTCCTGC

TGAGCTGGGCTGAGCTGACCAGGGGTGAGCTGGGCTG

AGTTAGGCTGGGCTCAGCTAGGCTGGGTTGATCTGGC

AGGGCTGGTTTGCGCTGGGTCAAGCTCCCGGGAGATG

GGCTGGGATGAGCTGGGCTGGTTTGGGCTGAGCTGAG

CTGAGCTGAGCTAGGCTGCATTGAGCAGGCTGAGCTG

GGCTGAGCTGGCCTGGGGTGAGCTGGGCTGGGTGGAG

CTGAGCTGGGCTGAACTGGGGTAAGCTGGCTGAGGTG

GATCGAGCTGAGCTGGGCTGAGCTGGCCTGGGGTTAG

CTGGGCTGAGCTGAGCTGAGCTAGGCTGGGTTGAGCT

GGCTGGGCTGGTTTGCGCTGGGTCAAGCTGGGCCGAG

CTGGCCTGGGTTGAGCTGGGCTGGGCTGAGCTGAGCT

AGGCTGGGTTGAGCTGGGCTGGGCTGAGCTGAGCTAG

GCTGCATTGAGCTGGCTGGGATGGATTGAGCTGGCTG

AGCTGGCTGAGCTGGCTGAGCTGGGCTGAGCTGGCCT

GGGTTGAGCTGGGCTGGGTTGAGCTGAGCTGGGCTGA

GCTGGGCTCAGCAGAGCTGGGTTGAGCTGAGCTGGGT

TGAGCTGGGGTGAGCTGGGCTGAGCAGAGCTGGGTTG

AGCTGAGCTGGGTTGAGCTGGGCTCGAGCAGAGCTGG

GTTGAGCTGAGCTGGGTTGAGCTGGGCTCAGCAGAGC

TGGGTTGAGCTGAGCTGGGTTGAGCTGGGCTGAGCTA

GCTGGGCTCAGCTAGGCTGGGTTGAGCTGAGCTGGGC

TGAACTGGGCTGAGCTGGGCTGAACTGGGCTGAGCTG

GGCTGAGCTGGGCTGAGCAGAGCTGGGCTGAGCAGAG

CTGGGTTGGTCTGAGCTGGGTTGAGCTGGGCTGAGCT

GGGCTGAGCAGAGTTGGGTTGAGCTGAGCTGGGTTCA

GCTGGGCTGAGCTAGGCTGGGTTGAGGTGGGTTGAGT

TGGGCTGAGCTGGGCTGGGTTGAGCGGAGCTGGGCTG

AACTGGGCTGAGCTGGGCTGAGCGGAACTGGGTTGAT

CTGAATTGAGCTGGGCTGAGCCGGGCTGAGCCGGGCT

GAGCTGGGCTAGGTTGAGCTTGGGTGAGCTTGCCTCA

GCTGGTCTGAGCTAGGTTGGGTGGAGCTAGGCTGGAT

TGAGCTGGGCTGAGGTGAGCTGATCTGGCCTCAGCTG

GGCTGAGGTAGGCTGAACTGGGCTGTGCTGGGCTGAG

CTGAGCTGAGCCAGTTTGAGCTGGGTTGAGCTGGGCT

GAGCTGGGCTGTGTTGATCTTTCCTGAACTGGGCTGA

GCTGGGCTGAGCTOGCCTAGCTGGATTGAACGGGGGT

AAGCTGGGCCAGGCTGGACTGGGCTGAGGTGAGCTAG

GCTGAGCTGAGTTGAATTGGGTTAAGCTGGGCTGAGA

TGGGCTGAGCTGGGCTGAGCTGGGTTGAGCCAGGTCG

GACTGGGTTACCCTGGGCCACACTGGGCTGAGCTGGG

GGGAGCTCGATTAACCTGGTCAGGCTGAGTCGGGTCC

AGCAGACATGCGCTGGGCAGGCTGGCTTGACCTGGAC

ACGTTGGATGAGCTGCCTTGGGATGGTTCACCTCAGC

TGAGCCAGGTGGCTCCAGCTGGGCTGAGCTGGTGACC

CTGGGTGACCTCGGTGACCAGGTTGTCCTGAGTCCGG

GCCAAGGGGAGGCTGCATCAGACTCGCCAGACCCAAG

GCCTGGGCCCCGGCTGGCAAGCCAGGGGCGGTGAAGG

CTGGGCTGGCAGGACTGTCCCGGAAGGAGGTGCACGT

GGAGCCGCCCGGACCCCGACCGGCAGGACCTGGAAAG

ACGCCTCTCACTCCCCTTTCTCTTCTGTCCCCTCTGG

GGTCCTCAGAGAGCCAGTCTGCCCCGAATCTCTACCC

CCTCGTCTCCTGCGTGAGCCCCCCGTGCGATGAGAGC

CTGGTGGCCCTGGGCTGCCTGGCCCGGGACTTCCTGC

CCAGCTCCGTCACCTTCTCCTGGAA

Porcine Kappa Chain Targeting

In particular embodiments of the present invention, targeting vectors are provided to target the porcine kappa chain locus. In one particular embodiment, the targeting vector can contain 5′ and 3′ recombination arms that contain homologous sequence to the 3′ and 5′ flanking sequence of the constant region of the porcine immunoglobulin kappa chain locus. Since the present invention discovered that there is only one constant region of the porcine immunoglobulin kappa light chain locus, this will prevent the expression of a functional porcine kappa light chain immunoglobulin. In a specific embodiment, the targeting vector can contain a 5′ recombination arm that contains sequence homologous to genomic sequence 5′ of the constant region, optionally including the joining region, and a 3′ recombination arm that contains sequence homologous to genomic sequence 3′ of the constant region, optionally including at least part of the enhancer region (a “Kappa constant targeting construct”), see for example, FIG. 2. Further, this kappa constant targeting construct can also contain a selectable marker gene that is located between the 5′ and 3′ recombination arms, see for example, Seq ID No 20 and FIG. 2. In other embodiments, the targeting vector can contain a 5′ recombination arm that contains sequence homologous to genomic sequence 5′ of the joining region, and a 3′ recombination arm that contains sequence homologous to genomic sequence 3′ of the joining region of the porcine kappa light chain locus. In other embodiments, the 5′ arm of the targeting vector can include Seq ID No 12 and/or Seq ID No 25 or any contiguous sequence or fragment thereof. In another embodiment, the 3′ arm of the targeting vector can include Seq ID No 15, 16 and/or 19 or any contiguous sequence or fragment thereof.

In further embodiments, the targeting vector can include, but is not limited to any of the following sequences: the coding region of kappa light chain is represented, for example by residues 1-549 of Seq ID No 30 and 10026-10549 of Seq ID No 30, whereas the intronic sequence is represented, for example, by residues 550-10025 of Seq ID No 30, the Joining region of kappa light chain is represented, for example, by residues 5822-7207 of Seq ID No 30 (for example, J1:5822-5859 of Seq ID No 30, J2:6180-6218 of Seq ID No 30, J3:6486-6523 of Seq ID No 30, J4:6826-6863 of Seq ID No 30, J5:7170-7207 of Seq ID No 30), the Constant Region is represented by the following residues: 10026-10549 of Seq ID No 30 (C exon) and 10026-10354 of Seq ID No 30 (C coding), 10524-10529 of Seq ID No 30 (Poly(A) signal) and 11160-11264 of Seq ID No 30 (SINE element) or any fragment or combination thereof. Still further, any contiguous sequence at least about 17, 20, 30, 40, 50, 100, 150, 200 or 300 nucleotides of Seq ID No 30 or fragment and/or combination thereof can be used as targeting sequence for the heavy chain targeting vector. It is understood that in general when designing a targeting construct one targeting arm will be 5′ of the other targeting arm.

Seq ID No. 20

ctcaaacgtaagtggctttttccgactgattctttgc

tgtttctaattgttggttggctttttgtccatttttc

agtgttttcatcgaattagttgtcagggaccaaacaa

attgccttcccagattaggtaccagggaggggacatt

gctgcatgggagaccagagggtggctaatttttaacg

tttccaagccaaaataactggggaagggggcttgctg

tcctgtgagggtaggtttttatagaagtggaagttaa

ggggaaatcgctatggttcacttttggctcggggacc

aaagtggagcccaaaattgagtacattttccatcaat

tatttgtgagatttttgtcctgttgtgtcatttgtgc

aagtttttgacattttggttgaatgagccattcccag

ggacccaaaaggatgagaccgaaaagtagaaaagagc

caacttttaagctgagcagacagaccgaattgttgag

tttgtgaggagagtagggtttgtagggagaaagggga

acagatcgctggctttttctctgaattagcctttctc

atgggactggcttcagagggggtttttgatgagggaa

gtgttctagagccttaactgtgggttgtgttcggtag

cgggaccaagctggaaatcaaacgtaagtgcactttt

ctactcctttttctttcttatacgggtgtgaaattgg

ggacttttcatgtttggagtatgagttgaggtcagtt

ctgaagagagtgggactcatccaaaaatctgaggagt

aagggtcagaacagagttgtctcatggaagaacaaag

acctagttagttgatgaggcagctaaatgagtcagtt

gacttgggatccaaatggccagacttcgtctgtaacc

aacaatctaatgagatgtagcagcaaaaagagatttc

cattgaggggaaagtaaaattgttaatattgtggatc

acctttggtgaagggacatccgtggagattgaacgta

agtattttttctctactaccttctgaaatttgtctaa

atgccagtgttgacttttagaggcttaagtgtcagtt

ttgtgaaaaatgggtaaacaagagcatttcatattta

ttatcagtttcaaaagttaaactcagctccaaaaatg

aatttgtagacaaaaagattaatttaagccaaattga

atgattcaaaggaaaaaaaaattagtgtagatgaaaa

aggaattcttacagctccaaagagcaaaagcgaatta

attttctttgaactttgccaaatcttgtaaatgattt

ttgttctttacaatttaaaaaggttagagaaatgtat

ttcttagtctgttttctctcttctgtctgataaatta

ttatatgagataaaaatgaaaattaataggatgtgct

aaaaaatcagtaagaagttagaaaaatatatgtttat

gttaaagttgccacttaattgagaatcagaagcaatg

ttatttttaaagtctaaaatgagagataaactgtcaa

tacttaaattctgcagagattctatatcttgacagat

atctcctttttcaaaaatccaatttctatggtagact

aaatttgaaatgatcttcctcataatggagggaaaag

atggactgaccccaaaagctcagattt*aagaaaacc

tgtttaag*gaaagaaaataaaagaactgcatttttt

aaaggcccatgaatttgtagaaaaataggaaatattt

taataagtgtattcttttattttcctgttattacttg

atggtgtttttataccgccaaggaggccgtggcaccg

tcagtgtgatctgtagaccccatggcggccttttttc

gcgattgaatgaccttggcggtgggtccccagggctc

tggtggcagcgcaccagccgctaaaagccgctaaaaa

ctgccgctaaaggccacagcaaccccgcgaccgcccg

ttcaactgtgctgacacagtgatacagataatgtcgc

taacagaggagaatagaaatatgacgggcacacgcta

atgtggggaaaagagggagaagcctgatttttatttt

ttagagattctagagataaaattcccagtattatatc

cttttaataaaaaatttctattaggagattataaaga

atttaaagctatttttttaagtggggtgtaattcttt

cagtagtctcttgtcaaatggatttaagtaatagagg

cttaatccaaatgagagaaatagacgcataacccttt

caaggcaaaagctacaagagcaaaaattgaacacagc

agccagccatctagccactcagattttgatcagtttt

actgagtttgaagtaaatatcatgaaggtataattgc

tgataaaaaaataagatacaggtgtgacacatcttta

agtttcagaaatttaatggcttcagtaggattatatt

tcacgtatacaaagtatctaagcagataaaaatgcca

ttaatggaaacttaatagaaatatatttttaaattcc

ttcattctgtgacagaaattttctaatctgggtcttt

taatcacctaccctttgaaagagtttagtaatttgct

atttgccatcgctgtttactccagctaatttcaaaag

tgatacttgagaaagattatttttggtttgcaaccac

ctggcaggactattttagggccattttaaaactcttt

tcaaactaagtattttaaactgttctaaaccatttag

ggccttttaaaaatcttttcatgaatttcaaacttcg

ttaaaagttattaaggtgtctggcaagaacttcctta

tcaaatatgctaatagtttaatctgttaatgcaggat

ataaaattaaagtgatcaaggcttgacccaaacagga

gtatcttcatagcatatttcccctcctttttttctag

aattcatatgattttgctgccaaggctattttatata

atctctggaaaaaaaatagtaatgaaggttaaaagag

aagaaaatatcagaacattaagaattcggtattttac

taactgcttggttaacatgaaggtttttattttatta

aggtttctatctttataaaaatctgttcccttttctg

ctgatttctccaagcaaaagattcttgatttgttttt

taactcttactctcccacccaagggcctgaatgccca

caaaggggacttccaggaggccatctggcagctgctc

accgtcagaagtgaagccagccagttcctcctgggca

ggtggccaaaattacagttgacccctcctggtctggc

tgaaccttgccccatatggtgacagccatctggccag

ggcccaggtctccctctgaagcctttgggaggagagg

gagagtggctggcccgatcacagatgcggaaggggct

gactcctcaaccggggtgcagactctgcagggtgggt

ctgggcccaacacacccaaagcacgcccaggaaggaa

aggcagcttggtatcactgcccagagctaggagaggc

accgggaaaatgatctgtccaagacccgttcttgctt

ctaaactccgagggggtcagatgaagtggttttgttt

cttggcctgaagcatcgtgttccctgcaagaagcggg

gaacacagaggaaggagagaaaagatgaactgaacaa

agcatgcaaggcaaaaaaggGGGTCTAGCCGCGGTCT

AGGAAGCTTTCTAGGGTACCTCTAGGGATCCCGGCGC

GCCCTACCGGGTAGGGGAGGCGCTTTTCCCAAGGCAG

TCTGGAGCATGCGCTTTAGCAGCCCCGCTGGGCACTT

GGCGCTACACAAGTGGCCTCTGGCCTCGCACACATTC

CACATCCACCGGTAGGCGCCAACCGGCTCCGTTCTTT

GGTGGCCCCTTCGCGCCACCTTCTACTCCTCCCCTAG

TCAGGAAGTTCCCCCCCGCCCCGCAGCTCGCGTCGTG

CAGGACGTGACAAATGGAAGTAGCACGTGTCACTAGT

CTCGTGCAGATGGACAGCACCGCTGAGCAATGGAAGC

GGGTAGGCCTTTGGGGCAGCGGCCAATAGCAGCTTTG

GCTCCTTCGCTTTCTGGGCTCAGAGGCTGGGAAGGGG

TGGGTCCGGGGGCGGGGTCAGGGGCGGGCTCAGGGGC

GGGGCGGGCGCCCGAAGGTCCTCCGGAAGCCCGGCAT

TCTGCACGCTTCAAAAGCGCACGTCTGCCGCGCTGTT

CTCCTCTTCCTCATCTCCGGGCCTTTCGACCTGCAGC

CAATATGGGATCGGCCATTGAACAAGATGGATTGCAC

GCAGGTTCTCCGGCCGCTTGGGTGGAGAGGGTATTCG

GCTATGACTGGGCAGAACAGACAATCGGCTGCTCTGA

TGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCG

GTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGA

ATGAACTGCAGGACGAGGCAGCGCGGCTATGGTGGCT

GGCCAGGAGGGGCGTTCGTTGGGCAGCTGTGCTCGAC

GTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGG

GCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCT

TGCTCCTGCCGAGAAAGTATCCATGATGGCTGATGCA

ATGGGGCGGCTGCATACGGTTGATGGGGCTACCTGCC

CATTCGACCACCAAGCGAAACATCGCATCGAGCGAGC

ACGTACTCGGATGGAAGCCGGTCTTGTCAATCAGGAT

GATCTGGACGAAGAGCATCAGGGGCTCGCGCGAGCCG

AACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGG

CGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTG

CCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGAT

TCATCGACTGTGGCCGGCTGGGTGTGGGGGATCGCTA

TGAGGACATAGCGTTGGCTACCGGTGATATTGCTGAA

GAGCTTGGCGGCGAATGGGCTGACCGGTTCCTCGTGC

TTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGC

CTTCTATCGCCTTCTTGACGAGTTCTTCTGAGGGGAT

CAATTCTCTAGAGCTCGCTGATCAGCCTCGACTGTGC

CTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCC

CGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACT

GTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATT

GTGTGAGTAGGTGTCATTCTATTGTGGGGGGTGGGGT

GGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAAT

AGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTT

CTGAGGCGGAAAGAACCAGCTGGGGGCGCGGCCctcg

agcggccgccagtgtgatggatatctgcagaattcgc

ccttggatcaaacacgcatcctcatggacaatatgtt

gggttcttagcctgctgagacacaacaggaactcccc

tggcaccactttagaggccagagaaacagcacagata

aaattccctgccctcatgaagcttatagtctagctgg

ggagatatcataggcaagataaacacatacaaataca

tcatcttaggtaataatatatactaaggagaaaatta

caggggagaaagaggacaggaattgctagggtaggat

tataagttcagatagttcatcaggaacactgttgctg

agaagataacatttaggtaaagaccgaagtagtaagg

aaatggaccgtgtgcctaagtgggtaagaccattcta

ggcagcaggaacagcgatgaaagcactgaggtgggtg

ttcactgcacagagttgttcactgcacagagttgtgt

ggggaggggtaggtcttgcaggctcttatggtcacag

gaagaattgttttactcccaccgagatgaaggttggt

ggattttgagcagaagaataattctgcctggtttata

tataacaggatttccctgggtgctctgatgagaataa

tctgtcaggggtgggatagggagagatatggcaatag

gagccttggctaggagcccacgacaataattccaagt

gagaggtggtgctgcattgaaagcaggactaacaaga

cctgctgacagtgtggatgtagaaaaagatagaggag

acgaaggtgcatctagggttttctgcctgaggaatta

gaaagataaagctaaagcttatagaagatgcagcgct

ctggggagaaagaccagcagctcagttttgatccatc

tggaattaattttggcataaagtatgaggtatgtggg

ttaacattatttgttttttttttttccatgtagctat

ccaactgtcccagcatcatttattttaaaagactttc

ctttcccctattggattgttttggcaccttcactgaa

gatcaactgagcataaaattgggtctatttctaagct

cttgattccattccatgacctatttgttcatctttac

cccagtagacactgccttgatgattaaagcccctgtt

accatgtctgttttggacatggtaaatctgagatgcc

tattagccaaccaagcaagcacggcccttagagagct

agatatgagagcctggaattcagacgagaaaggtcag

tcctagagacatacatgtagtgccatcaccatgcgga

tggtgttaaaagccatcagactgcaacagactgtgag

agggtaccaagctagagagcatggatagagaaaccca

agcactgagctgggaggtgctcctacattaagagatt

agtgagatgaaggactgagaagattgatcagagaaga

aggaaaatcaggaaaatggtgctgtcctgaaaatcca

agggaagagatgttccaaagaggagaaaactgatcag

ttgtcagctagcgtcaattgggatgaaaatggaccat

tggacagagggatgtagtgggtcatgggtgaatagat

aagagcagcttctatagaatggcaggggcaaaattct

catctgatcggcatgggttctaaagaaaacgggaaga

aaaaattgagtgcatgaccagtcccttcaagtagaga

ggtggaaaagggaaggaggaaaatgaggccacgacaa

catgagagaaatgacagcatttttaaaaattttttat

tttattttatttatttatttttgctttttagggctgc

ccctgcaacatatggaggttcccaggttaggggtcta

atcagagctatagctgccagcctacaccacagccata

gcaatgccagatctacatgacctacaccacagctcac

agcaacgccggatccttaacccactgagtgaggccag

agatcaaacccatatccttatggatactagtcaggtt

cattaccactgagccaaaatgggaaatcctgagtaat

gacagcattttttaatgtgccaggaagcaaaacttgc

caccccgaaatgtctctcaggcatgtggattattttg

agctgaaaacgattaaggcccaaaaaacacaagaaga

aatgtggaccttcccccaacagcctaaaaaatttaga

ttgagggcctgttcccagaatagagctattgccagac

ttgtctacagaggctaagggctaggtgtggtggggaa

accctcagagatcagagggacgtttatgtaccaagca

ttgacatttccatctccatgcgaatggccttcttccc

ctctgtagccccaaaccaccacccccaaaatcttctt

ctgtctttagctgaagatggtgttgaaggtgatagtt

tcagccactttggcgagttcctcagttgttctgggtc

tttcctccTgatccacattattcgactgtgtttgatt

ttctcctgtttatctgtctcattggcacccatttcat

tcttagaccagcccaaagaacctagaagagtgaagga

aaatttcttccaccctgacaaatgctaaatgagaatc

accgcagtagaggaaaatgatctggtgctgcgggaga

tagaagagaaaatcgctggagagatgtcactgagtag

gtgagatgggaaaggggtgacacaggtggaggtgttg

ccctcagctaggaagacagacagttcacagaagagaa

gcgggtgtccgtggacatcttgcctcatggatgagga

aaccgaggctaagaaagactgcaaaagaaaggtaagg

attgcagagaggtcgatccatgactaaaatcacagta

accaaccccaaaccaccatgttttctcctagtctggc

acgtggcaggtactgtgtaggttttcaatattattgg

tttgtaacagtacctattaggcctccatcccctcctc

taatactaacaaaagtgtgagactggtcagtgaaaaa

tggtcttctttctctatgaatctttctcaagaagata

cataactttttattttatcataggcttgaagagcaaa

tgagaaacagcctccaacctatgacaccgtaacaaaa

tgtttatgatcagtgaagggcaagaaacaaaacatac

acagtaaagaccctccataatattgtgggtggcccaa

cacaggccaggttgtaaaagctttttattctttgata

gaggaatggatagtaatgtttcaacctggacagagat

catgttcactgaatccttccaaaaattcatgggtagt

ttgaattataaggaaaataagacttaggataaatact

ttgtccaagatcccagagttaatgccaaaatcagttt

tcagactccaggcagcctgatcaagagcctaaacttt

aaagacacagtcccttaataactactattcacagttg

cactttcagggcgcaaagactcattgaatcctacaat

agaatgagtttagatatcaaatctctcagtaatagat

gaggagactaaatagcgggcatgacctggtcacttaa

agacagaattgagattcaaggctagtgttctttctac

ctgttttgtttctacaagatgtagcaatgcgctaatt

acagacctctcagggaaggaa

Porcine Lambda Chain Targeting

In particular embodiments of the present invention, targeting vectors are provided to target the porcine lambda chain locus. In one embodiment, lambda can be targeted by designing a targeting construct that contains a 5′ arm containing sequence located 5′ to the first JC unit and a 3′ arm containing sequence 3′ to the last JC unit of the J/C cluster region, thus preventing functional expression of the lambda locus (see, FIGS. 3-4). In one embodiment, the targeting vector can contain any contiguous sequence (such as about 17, 20, 30, 40, 50, 75, 100, 200, 300 or 5000 nucleotides of contiguous sequence) or fragment thereof. Seq ID No 28. In one embodiment, the 5′ targeting arm can contain Seq ID No. 32, which includes 5′ flanking sequence to the first lambda J/C region of the porcine lambda light chain genomic sequence or any contiguous sequence (such as about 17, 20, 30, 40, 50, 75, 100, 200, 300 or 5000 nucleotides of contiguous sequence) or fragment thereof (see also, for example FIG. 5). In another embodiment, the 3′ targeting arm can contain, but is not limited to one or more of the following: Seq ID No. 33, which includes 3′ flanking sequence to the J/C cluster region of the porcine lambda light chain genomic sequence, from approximately 200 base pairs downstream of lambda J/C; Seq ID No. 34, which includes 3′ flanking sequence to the J/C cluster region of the porcine lambda light chain genomic sequence, approximately 11.8 Kb downstream of the J/C cluster, near the enhancer; Seq ID No. 35, which includes approximately 12 Kb downstream of lambda, including the enhancer region; Seq ID No. 36, which includes approximately 17.6 Kb downstream of lambda; Seq ID No. 37, which includes approximately 19.1 Kb downstream of lambda; Seq ID No. 38, which includes approximately 21.3 Kb downstream of lambda; and Seq ID No. 39, which includes approximately 27 Kb downstream of lambda, or any contiguous sequence (such as about 17, 20, 30, 40, 50, 75, 100, 200, 300 or 5000 nucleotides of contiguous sequence) or fragment thereof of Seq ID Nos 32-39 (see also, for example FIG. 6). It is understood that in general when designing a targeting construct one targeting arm will be 5′ of the other targeting arm.

Seq ID No. 48 (as shown in Example 4) provides a representative, non-limiting example of a targeting construct that contains a 5′ arm containing sequence located 5′ to the first JC unit and a 3′ arm containing sequence 3′ to the last JC unit of the J/C cluster region. Representative 5′ and 3′ arms are shown in Seq ID No. 49 and 50 (also in Example 4).

In another embodiment, lambda is targeted using two targeting vectors. The two lambda targeting vectors, i.e., a vector pair, are utilized in a two step strategy to delete the entire J/C region of porcine lambda. In the first step, a first targeting vector is inserted upstream of the J/C region (or alternatively downstream of the J/C region). If the first targeting vector is inserted upstream of the J/C region, the 5′ and 3′ recombination arms of the first targeted vector contain homologous sequence to the 5′ flanking sequence of the first J/C unit of the J/C cluster region. See FIG. 5, which shows 7 JC units in the J/C cluster region. If the first targeting vector is inserted downstream of the J/C cluster region, the 5′ and 3′ recombination arms of the first targeting vector contain homologous sequence to the 3′ region of the last J/C unit in the JC region.

The first-step vectors are designed with lox sites that flank a fusion gene which can provide both positive and negative selection. Selection of the targeting event utilizes the Tn5 APHII gene commonly described as Neo resistance. Once targeting events are isolated, Cre is provided transiently to facilitate deletion of the selectable marker located between two lox sites. Negative selection is then provided by the Herpes simplex thymidine kinase coding region. This step selects for targeted cells that have deleted the selectable marker and retains a single lox site upstream (alternatively downstream) of the J/C region.

The second step is performed in the same lineage as the first step. The second targeting step also inserts a marker that provides both positive and negative selection. However, the second step inserts the marker on the opposite site of the J/C region in comparison to the first step. That is, if the first vector was inserted upstream of the J/C region, the second targeting vector is inserted downstream, and vice versa. FIG. 6 shows a second targeting vector inserted downstream of the J/C region. In addition, the second targeting vector has a single lox site that is located distally compared to the first vector. In other words, for the first strategy, the second vector has a single lox site located downstream of the marker gene (the alternative vector has the lox site upstream of the marker). After Cre mediated deletion, the region between the first targeting event (which left a lox remnant) and the second targeting event (which has a lox site outside of the marker) is deleted. Cells that have deleted the entire J/C cluster region are thus obtained.

In a representative, non-limiting example, the vector pair is Seq. ID No. 44 (step 1) and Seq. ID No. 45 (step 2).

In a further, non-limiting example, the vector pair is Seq. ID No. 46 (step 1) and Seq. ID No. 47 (step 2).

SEQ ID 44

taaacaaataggggttccgcgcacatttccccgaaaagtgc

cacctgacgtcgctgagcaggccctggcctccctggccgag

ggcggtttgcgtattagaggcctaaatggccgaattcagcg

gataacaatttcacacaggaaacagctatgaccatgattat

ctagtaactataacggtcctaaggtagcgagcgatcgctta

attaacctgcagggatatcccatgggggccgccagtgtgat

ggatatctgcagaattcgcccttgatattaagagaagggca

agtcagcttaagtttgggggtagaggggaacagggagtgag

gagatctggcctgagagataggagccctggtggccacagga

ggactctttgggtcctgtcggatggacacagggcggcccgg

gggcatgttggagcccggctggttcttaccagaggcagggg

gcaccctctgacacgggagcagggcatgttccatacatgac

acacccctctgctccagggcaggtgggtggcggcacagagg

agccagggactctgagcaaggggtccaccagtggggcagtt

ggatccagacttctctgggccagcgagagtctagccctcag

ccgttctctgtccaggaggggggtggggcaggcctgggcgg

ccagagctcatccctcaagggttcccagggtcctgccagac

ccagatttccgaccgcagccaccacaagaggatgtggtctg

ctgtggcagctgccaagaccttgcagcaggtgcagggtggg

ggggtgggggcacctgggggcagctggggtcactgagttca

gggaaaaccccttttttcccctaaacctggggccatcccta

ggggaaaccacaacttctgagccctgggcagtggctgctgg

gagggaagagcttcatcctggaccctgggggggaacccagc

tccaaaggtgcaaggggcccaggtccaaggctagagtgggc

caagcaccgcaatggccagggagtgggggaggtggagctgg

actggatcagggcctccttgggactccctacaccctgtgtg

acatgttagggtacccacaccccatcaccagtcagggcctg

gcccatctccagggccagggatgtgcatgtaagtgtgtgtg

agtgtgtgtgtgtggtgtagtacaccccttggcatccggtt

ccgaggccttgggttcctccaaagttgctctctgaattagg

tcaaactgtgaggtcctgatcgccatcatcaacttcgttct

ccccacctcccatcattatcaagagctggggagggtctggg

atttcttcccacccacaagccaaaagataagcctgctggtg

atggcagaagacacaggatcctgggtcagagacaaaggcca

gtgtgtcacagcgagagaggcagccggactatcagctgtca

cagagaggccttagtccgctgaactcaggccccagtgactc

ctgttccactgggcactggcccccctccacagcgcccccag

gccccagggagaggcgtcacagcttagagatggccctgctg

aacagggaacaagaacaggtgtgccccatccagcgccccag

gggtgggacaggtgggctggatttggtgtgaagcccttgag

ccctggaacccaaccacagcagggcagttggtagatgccat

ttggggagaggccccaggagtaagggccatgggcccttgag

ggggccaggagctgaggacagggacagagacggcccaggca

gaggacagggccatgaggggtgcactgagatggccactgcc

agcaggggcagctgccaacccgtccagggaacttattcagc

agtcagctggaggtgccattgaccctgagggcagatgaagc

ccaggccaggctaggtgggctgtgaagaccccaggggacag

agctctgtccctgggcagcactggcctctcattctgcaggg

cttgacgggatcccaaggcctgctgcccctgatggtagtgg

cagtaccgcccagagcaggaccccagcatggaaaccccaac

gggacgcagcctgcggagcccacaaaaccagtaaggagccg

aagcagtcatggcacggggagtgtggacttccctttgatgg

ggcccaggcatgaaggacagaatgggacagcggccatgagc

agaaaatcagccggaggggatgggcctaggcagacgctggc

tttatttgaagtgttggcattttgtctggtgtgtattgttg

gtattgattttattttagtatgtcagtgacatactgacata

ttatgtaacgacatattattatgtgttttaagaagcactcc

aagggaacaggctgtctgtaatgtgtccagagaagagagca

agagcttggctcagtctcccccaaggaggtcagttcctcaa

caggggtcctaaatgtttcctggagccaggcctgaatcaag

ggggtcatatctacacgtggggcagacccatggaccatttt

cggagcaataagatggcagggaggataccaagctggtctta

cagatccagggctttgacctgtgacgcgggcgctcctccag

gcaaagggagaagccagcaggaagctttcagaactggggag

aacagggtgcagacctccagggtcttgtacaacgcaccctt

tatcctggggtccaggaggggtcactgagggatttaagtgg

gggaccatcagaaccaggtttgtgttttggaaaaatggctc

caaagcagagaccagtgtgaggccagattagatgatgaaga

agaggcagtggaaagtcgatgggtggccaggtagcaagagg

gcctatggagttggcaagtgaatttaaagtggtggcaccag

agggcagatggggaggagcaggcactgtcatggactgtcta

tagaaatctaaaatgtataccctttttagcaatatgcagtg

agtcataaaagaacacatatatatttcctttggccggccgg

cgcgccacgcgtataacttcgtatagcatacattatacgaa

gttatcttaagggctatggcagggcctgccgccccgacgtt

ggctgcgagccctgggccttcacccgaacttggggggtggg

gtggggaaaaggaagaaacgcgggcgtattggccccaatgg

ggtctcggtggggtatcgacagagtgccagccctgggaccg

aaccccgcgtttatgaacaaacgacccaacaccgtgcgttt

tattctgtctttttattgccgtcatagcgcgggttccttcc

ggtattgtctccttccgtgtttcactcgagttagaagaact

cgtcaagaaggcgatagaaggcgatgcgctgcgaatcggga

gcggcgataccgtaaagcacgaggaagcggtcagcccattc

gccgccaagctcttcagcaatatcacgggtagccaacgcta

tgtcctgatagcggtccgccacacccagccggccacagtcg

atgaatccagaaaagcggccattttccaccatgatattcgg

caagcaggcatcgccatgggtcacgacgagatcctcgccgt

cgggcatgcgcgccttgagcctggcgaacagttcggctggc

gcgagcccctgatgctcttcgtccagatcatcctgatcgac

aagaccggcttccatccgagtacgtgctcgctcgatgcgat

gtttcgcttggtggtcgaatgggcaggtagccggatcaagc

gtatgcagccgccgcattgcatcagccatgatggatacttt

ctcggcaggagcaaggtgagatgacaggagatcctgccccg

gcacttcgcccaatagcagccagtcccttcccgcttcagtg

acaacgtcgagcacagctgcgcaaggaacgcccgtcgtggc

cagccacgatagccgcgctgcctcgtcctgcagttcattca

gggcaccggacaggtcggtcttgacaaaaagaaccgggcgc

ccctgcgctgacagccggaacacggcggcatcagagcagcc

gattgtctgttgtgcccagtcatagccgaatagcctctcca

cccaagcggccggagaacctgcgtgcaatccatcttgttca

atggccgatcccattccagatctgttagcctcccccatctc

ccgtgcaaacgtgcgcgccaggtcgcagatcgtcggtatgg

agcctggggtggtgacgtgggtctggatcatcccggaggta

agttgcagcagggcgtcccggcagccggcgggcgattggtc

gtaatccaggataaagacgtgcatgggacggaggcgtttgg

tcaagacgtccaaggcccaggcaaacacgttgtacaggtcg

ccgttgggggccagcaactcgggggcccgaaacagggtaaa

taacgtgtccccgatatggggtcgtgggcccgcgttgctct

ggggctcggcaccctggggcggcacggccgtccccgaaagc

tgtccccaatcctcccgccacgacccgccgccctgcagata

ccgcaccgtattggcaagcagcccgtaaacgcggcgaatcg

cggccagcatagccaggtcaagccgctcgccggggcgctgg

cgtttggccaggcggtcgatgtgtctgtcctccggaagggc

ccccaacacgatgtttgtgccgggcaaggtcggcgggatga

gggccacgaacgccagcacggcctggggggtcatgctgccc

ataaggtatcgcgcggccgggtagcacaggagggcggcgat

gggatggcggtcgaagatgagggtgagggccgggggcgggg

catgtgagctcccagcctcccccccgatatgaggagccaga

acggcgtcggtcacggcataaggcatgcccattgttatctg

ggcgcttgtcattaccaccgccgcgtccccggccgatatct

caccctggtcaaggcggtgttgtgtggtgtagatgttcgcg

attgtctcggaagcccccagcacccgccagtaagtcatcgg

ctcgggtacgtagacgatatcgtcgcgcgaacccagggcca

ccagcagttgcgtggtggtggttttccccatcccgtgggga

ccgtctatataaacccgcagtagcgtgggcattttctgctc

cgggcggacttccgtggcttcttgctgccggcgagggcgca

acgccgtacgtcggttgctatggccgcgagaacgcgcagcc

tggtcgaacgcagacgcgtgctgatggccggggtacgaagc

catggtggctctagaggtcgaaaggcccggagatgaggaag

aggagaacagcgcggcagacgtgcgcttttgaagcgtgcag

aatgccgggcttccggaggaccttcgggcgcccgccccgcc

cctgagcccgcccctgagcccgcccccggacccaccccttc

ccagcctctgagcccagaaagcgaaggagccaaagctgcta

ttggccgctgccccaaaggcctacccgcttccattgctcag

cggtgctgtccatctgcacgagactagtgagacgtgctact

tccatttgtcacgtcctgcacgacgcgagctgcggggcggg

ggggaacttcctgactaggggaggagtagaaggtggcgcga

aggggccaccaaagaacggagccggttggcgcctaccggtg

gatgtggaatgtgtgcgaggccagaggccacttgtgtagcg

ccaagtgcccagcggggctgctaaagcgcatgctccagact

gccttgggaaaagcgcctcccctacccggtagggatccgcg

ttacataacttacggtaaatggcccgcctggctgaccgccc

aacgacccccgcccattgacgtcaataatgacgtatgttcc

catagtaacgccaatagggactttccattgacgtcaatggg

tggagtatttacggtaaactgcccacttggcagtacatcaa

gtgtatcatatgccaagtacgccccctattgacgtcaatga

cggtaaatggcccgcctggcattatgcccagtacatgacct

tatgggactttcctacttggcagtacatctacgtattagtc

atcgctattaccatggtgatgcggttttggcagtacatcaa

tgggcgtggatagcggtttgactcacggggatttccaagtc

tccaccccattgacgtcaatgggagtttgttttggcaccaa

aatcaacggttaacaagcttataacttcgtatagcatacat

tatacgaagttattacgtagcggccgcgtcgacgataaatt

gtgtaattccacttctaaggattcatcccaaggggggaaaa

taatcaaagatgtaaccaaaggtttacaaacaagaactcat

cattaatcttccttgttgttatttcaacgatattattatta

ttactattattattattattattttgtctttttgcattttc

tagggccactcccacggcatagagaggttcccaggctaggg

gtcaaatcggagctacagctgccggcctacgccagagccac

agcaacgcaggatctgagccacagcaatgcaggatctacac

cacagctcatggtaacgctggatccttaacccaatgagtga

ggccagggatcgaacctgtaacttcatggttcctagtcgga

ttcattaaccactgagccacgacaggaactccaacattatt

aatgatgggagaaaactggaagtaacctaaatatccagcag

aaagggtgtggccaaatacagcatggagtagccatcataag

gaatcttacacaagcctccaaaattgtgtttctgaaattgg

gtttaaagtacgtttgcattttaaaaagcctgccagaaaat

acagaaaaatgtctgtgatatgtctctggctgataggattt

tgcttagttttaattttggctttataattttctatagttat

gaaaatgttcacaagaagatatatttcattttagcttctaa

aataattataacacagaagtaatttgtgctttaaaaaaata

ttcaacacagaagtatataaagtaaaaattgaggagttccc

atcgtggctcagtgattaacaaacccaactagtatccatga

ggatatggatttgatccctggccttgctcagtgggttgagg

atccagtgttgctgtgagctgtggtgtaggttgcagacaca

gcactctggcgttgctgtgactctggcgtaggccggcagct

acagctccatttggacccttagcctgggaacctccatatgc

ctgagatacggccctaaaaagtcaaaagccaaaaaaatagt

aaaaattgagtgtttctacttaccacccctgcccacatctt

atgctaaaacccgttctccagagacaaacatcgtcaggtgg

gtctatatatttccagccctcctcctgtgtgtgtatgtccg

taaaacacacacacacacacacacacgcacacacacacaca

cgtatctaattagcattggtattagtttttcaaaagggagg

tcatgctctaccttttaggcggcaaatagattatttaaaca

aatctgttgacattttctatatcaacccataagatctccca

tgttcttggaaaggctttgtaagacatcaacatctgggtaa

accagcatggtttttagggggttgtgtggatttttttcata

ttttttagggcacacctgcagcatatggaggttcccaggct

aggggttgaatcagagctgtagctgccggcctacaccacag

ccacagcaacgccagatccttaacccactgagaaaggccag

ggattgaacctgcatcctcatggatgctggtcagatttatt

tctgctgagccacaacaggaactccctgaaccagaatgctt

ttaaccattccactttgcatggacatttagattgtttccat

ttaaaaatacaaattacaaggagttcccgtcgtggctcagt

ggtaacgaattggactaggaaccatgaggtttcgggttcga

tccctggccttgctcggtgggttaaggatccagcattgatg

tgagatatggtgtaggtcgcagacgtggctcggatcccacg

ttgctgtggctctggcgtaggccggcaacaacagctccgat

tcgacccctagcctgggaacctccatgtgccacaggagcag

ccctagaaaaggcaaaaagacaaaaaaataaaaaattaaaa

tgaaaaaataaaataaaaatacaaattacaagagacggcta

caaggaaatccccaagtgtgtgcaaatgccatatatgtata

aaatgtactagtgtctcctcgcgggaaagttgcctaaaagt

gggttggctggacagagaggacaggctttgacattctcata

ggtagtagcaatgggcttctcaaaatgctgttccagtttac

actcaccatagcaaatgacagtgcctcttcctctccaccct

tgccaataatgtgacaggtggatctttttctattttgtgta

tctgacaagcaaaaaatgagaacaggagttcctgtcgtggt

gcagtggagacaaatctgactaggaaccatgaaatttcggg

ttcaatccctggcctcactcagtaggtaaaggatccagggt

tgcagtgagctgtggggtaggtcgcagacacagtgcaaatt

tggccctgttgtggctgtggtgtaggccggcagctatagct

ccaattggacccctagcctgggaacctccttatgccgtggg

tgaggccctaaaaaaaagagtgcaaaaaaaaaaaataagaa

caaaaatgatcatcgtttaattctttatttgatcattggtg

aaacttattttccttttatatttttattgactgattttatt

tctcctatgaatttaccggtcatagttttgcctgggtgttt

ttactccggttttagttttggttggttgtattttcttagag

agctatagaaactcttcatctatttggaatagtaattcctc

attaagtatttgtgctgcaaaaaattttccctgatctgttt

tatgcttttgtttgtggggtctttcacgagaaagccttttt

agtttttacacctcagcttggttgtttttcttgattgtgtc

tgtaatctgcggccaacataggaaacacatttttactttag

tgtttttttcctattttcttcaagtacgtccattgttttgg

tgtctgattttactttgcctggggtttgtttttgtgtggca

ggaatataaacttatgtattttccaaatggagagccaatgg

ttgtatatttgttgaattcaaatgcaactttatcaaacacc

aaatcatcgatttatcacaactcttctctggtttattgatc

taatgatcaattcctgttccacgctgttttaattattttag

ctttgtggattttggtgcctggtagagaacaaagcctccat

tattttcattcaaaatagtcccgtctattatctgccattgt

tgtagtattagactttaaaatcaatttactgattttcaaaa

gttattcctttggtgatgtggaatactttatacttcataag

gtacatggattcatttgtggggaattgatgtctttgctatt

gtggccatttgtcaagttgtgtaatattttacccatgccaa

ctttgcatattgtatgtgagtttattcccagggtttttaat

aggatgtttattgaagttgtcagtgtttccacaatttcatc

gcctcagtgcttactgtttgcataaaaggaaacctactcac

ttttgcctattgctcttgtattcaatcattttagttaactc

ttgtgttaattttgagagtttttcagctgactgtctggggt

tttctttaatagactagccctttgtctgtaaagaataattt

tatcgaatttttcttaacactcacactctccccacccccac

ccccgctcatctcctttcattgggtcaaatctgtagaatac

aataaaagtaagagtgggaaccttagcctttaagtcgattt

tgcctttaaatgtgaatgttgctatgtttcgggacattctc

tttatcaagttgcggatgtttccttagataattaacttaat

aaaagactggatgtttgctttcttcaaatcagaattgtgtt

gaatttatattgctattctgtttaattttgtttcaaaaaat

ttacatgcacaccttaaagataaccatgaccaaatagtcct

cctgctgagagaaaatgttggccccaatgccacaggttacc

tcccgactcagataaactacaatgggagataaaatcagatt

tggcaaagcctgtggattcttgccataactctcagagcatg

acttgggtgttttttccttttctaagtattttaatggtatt

tttgtgttacaataggaaatctaggacacagagagtgattc

aatgaggggaacgcattctgggatgactctaggcctctggt

ttggggagagctctattgaagtaaagacaatgagaggaagc

aagtttgcagggaactgtgaggaatttagatggggaatgtt

gggtttgaggtttctatagggcacgcaagcagagatgcact

caggaggaagaaggagcataaatctagtggcgctgccggca

agcttgctggaggaggccaattgggagctgctggaatgcat

ggaggcggcgctctcgaggctggaggaggccagctgattta

aatcggtccgcgtacgatgcatattaccctgttatccctac

cgcggttactggccgtcgttttacaacgtcgtgactgggaa

aaccctggcgatgctcttctcccggtgaaaacctctgacac

atggctcttctaaatccggagtttaaacgcttccttcatgt

gagcaaaaggccagcaaaaggccaggaaccgtaaaaaggcc

gcgttgctggcgtttttccataggctccgcccccctgacga

gcatcacaaaaatcgacgctcaagtcagaggtggcgaaacc

cgacaggactataaagataccaggcgtttccccctggaagc

tccctcgtgcgctctcctgttccgaccctgccgcttaccgg

atacctgtccgcctttctcccttcgggaagcgtggcgcttt

ctcatagctcacgctgtaggtatctcagttcggtgtaggtc

gttcgctccaagctgggctgtgtgcacgaaccccccgttca

gcccgaccgctgcgccttatccggtaactatcgtcttgagt

ccaacccggtaagacacgacttatcgccactggcagcagcc

actggtaacaggattagcagagcgaggtatgtaggcggtgc

tacagagttcttgaagtggtggcctaactacggctacacta

gaaggacagtatttggtatctgcgctctgctgaagccagtt

accttcggaaaaagagttggtagctcttgatccggcaaaca

aaccaccgctggtagcggtggtttttttgtttgcaagcagc

agattacgcgcagaaaaaaaggatctcaagaagatcctttg

atcttttctacggggtctgacgctcagtggaacgaaaactc

acgttaagggattttggtcatgcctaggtggcaaacagcta

ttatgggtattatgggtctaccggtgcatgagattatcaaa

aaggatcttcacctagatccttttaaattaaaaatgaagtt

ttaaatcaatctaaagtatatatgagtaaacttggtctgac

agttaccaatgcttaatcagtgaggcacctatctcagcgat

ctgtctatttcgttcatccatagttgcctgactccccgtcg

tgtagataactacgatacgggagggcttaccatctggcccc

agtgctgcaatgataccgcgagacccacgctcaccggctcc

agatttatcagcaataaaccagccagccggaagggccgagc

gcagaagtggtcctgcaactttatccgcctccatccagtct

attaattgttgccgggaagctagagtaagtagttcgccagt

taatagtttgcgcaacgttgttgccattgctacaggcatcg

tggtgtcacgctcgtcgtttggtatggcttcattcagctcc

ggttcccaacgatcaaggcgagttacatgatcccccatgtt

gtgcaaaaaagcggttagctccttcggtcctccgatcgttg

tcagaagtaagttggccgcagtgttatcactcatggttatg

gcagcactgcataattctcttactgtcatgccatccgtaag

atgcttttctgtgactggtgagtactcaaccaagtcattct

gagaatagtgtatgcggcgaccgagttgctcttgcccggcg

tcaatacgggataataccgcgccacatagcagaactttaaa

agtgctcatcattggaaaacgttcttcggggcgaaaactct

caaggatcttaccgctgttgagatccagttcgatgtaaccc

actcgtgcacccaactgatcttcagcatcttttactttcac

cagcgtttctgggtgagcaaaaacaggaaggcaaaatgccg

caaaaaagggaataagggcgacacggaaatgttgaatactc

atactcttcctttttcaatattattgaagcatttatcaggg

ttattgtctcgggagcggatacatatttgaatgtatttaga

aaaa

SEQ ID 45

taaacaaataggggttccgcgcacatttccccgaaaagtgc

cacctgacgtcgctgagcaggccctggcctccctggccgag

ggcggtttgcgtattagaggcctaaatggccgaattcagcg

gataacaatttcacacaggaaacagctatgaccatgattat

ctagtaactataacggtcctaaggtagcgagcgatcgctta

attaacctgcagggataaccactgacccatgacgggaactc

ccagggctcagctcttgactccaggttcgcagctgccctca

aagcaatgcaaccctggctggccccgcctcatgcatccggc

ctcctccccaaagagctctgagcccacctgggcctaggtcc

tcctccctgggactcatggcctaagggtacagagttactgg

ggctgatgaagggaccaatggggacaggggcctcaaatcaa

agtggctgtctctctcatgtcccttcctctcctcagggtcc

aaaatcagggtcagggccccagggcaggggctgagagggcc

tctttctgaaggccctgtctcagtgcaggttatgggggtct

gggggagggtcaatgcagggctcacccttcagtgccccaaa

gcctagagagtgagtgcctgccagtggcttcccaggcccaa

tcccttgactgcctgggaatgctcaaatgcaggaactgtca

caacaccttcagtcaggggctgctctgggaggaaaaacact

cagaattgggggttcagggaaggcccagtgccaagcatagc

aggagctcaggtggctgcagatggtgtgaaccccaggagca

ggatggccggcactccccccagaccctccagagccccaggt

tggctgccctcttcactgccgacacccctgggtccacttct

gccctttcccacctaaaacctttagggctcccactttctcc

caaatgtgagacatcaccacggctcccagggagtgtccaga

agggcatctggctgagaggtcctgacatctgggagcctcag

gccccacaatggacagacgccctgccaggatgctgctgcag

ggctgttagctaggcggggtggagatggggtactttgcctc

tcagaggccccggccccaccatgaaacctcagtgacacccc

atttccctgagttcacatacctgtatcctactccagtcacc

ttccccacgaacccctgggagcccaggatgatgctggggct

ggagccacgaccagcccacgagtgatccagctctgccaatc

agcagtcatttcccaagtgttccagccctgccaggtcccac

tacagcagtaatggaggccccagacaccagtccagcagtta

gagggctggactagcaccagctttcaagcctcagcatctca

aggtgaatggccagtgcccctccccgtggccatcacaggat

cgcagatatgaccctaggggaagaaatatcctgggagtaag

gaagtgcccatactcaaggatggcccctctgtgacctaacc

tgtccctgaggattgtacttccaggcgttaaaacagtagaa

cgcctgcctgtgaacccccgccaagggactgcttggggagg

ccccctaaaccagaacacaggcactccagcaggacctctga

actctgaccaccctcagcaagtgggcaccccccgcagcttc

caaggcaccccagggctcaccacagcggcccctcctggcag

cccctcacccaggcccagaccctctaagatggcacatctaa

gccaatccacctccttgtcattcctcctgtccccacccagg

acccttctcagatgaaaccttcgctccagccgctgggccct

ctctcctgcccctctggcagttctccagggactccgcctcc

cactctctgtctctccctgcactcctaggaacaagcgacct

ccaggaagcccagtccaattatcccctctgtgtcctcccca

atctctgcctctgggtggatttgagcaccacatcctgttct

cttcgacctgaaactccttggccccggtgtccgctctcctg

ggccctcttttctctcctcccctcttccgtgccccgtttgt

ttggtgttacaggcaggccccggggagccgtccctccagct

gctcttccttgtctgtctcaggagccagaaactggcagcat

ctaaaaagggctcctgtttcttcatctgcccagcctcctag

cccaaccagggctctggcctcactccagagggtgggctcca

gagggcaggggttgcaccctcttagtgcctcagaggctcag

ctgggtgcaggatgggggggccctcagggagcccctcagtg

actgctgatcacttactgcaggactgttcccagctcttccc

aatcattggaatgacaatacctagttctgctccatcatagt

gatgcaggaaaaatgttactgaaatcctggttcttgtttag

caatcgaagaatgaattccgcgaacacacaggcagcaagca

agcgaagcctttattaaaggaaagcagatagctcccagggc

tgcagggagcggggagaagagctccccactctctattgtcc

tatagggctttttaccccttaaagttggggggatacaaaaa

aaatagaagaaaaagggagttcccgtcagggcacagcagaa

acaaatccaactaggaaccatgaggttgggggttcgattcc

tggcctctctcagtgggttaaggatgcagcgttgccgtgag

ctatgatacaggtcacagatgcagctcagatctactagtca

attgacaggcgccggagcaggagctaggcctttggccggcc

ggcgcgccagatctcttaagggctatggcagggcctgccgc

cccgacgttggctgcgagccctgggccttcacccgaacttg

gggggtggggtggggaaaaggaagaaacgcgggcgtattgg

ccccaatggggtctcggtggggtatcgacagagtgccagcc

ctgggaccgaaccccgcgtttatgaacaaacgacccaacac

cgtgcgttttattctgtctttttattgccgtcatagcgcgg

gttccttccggtattgtctccttccgtgtttcactcgagtt

agaagaactcgtcaagaaggcgatagaaggcgatgcgctgc

gaatcgggagcggcgataccgtaaagcacgaggaagcggtc

agcccattcgccgccaagctcttcagcaatatcacgggtag

ccaacgctatgtcctgatagcggtccgccacacccagccgg

ccacagtcgatgaatccagaaaagcggccattttccaccat

gatattcggcaagcaggcatcgccatgggtcacgacgagat

cctcgccgtcgggcatgcgcgccttgagcctggcgaacagt

tcggctggcgcgagcccctgatgctcttcgtccagatcatc

ctgatcgacaagaccggcttccatccgagtacgtgctcgct

cgatgcgatgtttcgcttggtggtcgaatgggcaggtagcc

ggatcaagcgtatgcagccgccgcattgcatcagccatgat

ggatactttctcggcaggagcaaggtgagatgacaggagat

cctgccccggcacttcgcccaatagcagccagtcccttccc

gcttcagtgacaacgtcgagcacagctgcgcaaggaacgcc

cgtcgtggccagccacgatagccgcgctgcctcgtcctgca

gttcattcagggcaccggacaggtcggtcttgacaaaaaga

accgggcgcccctgcgctgacagccggaacacggcggcatc

agagcagccgattgtctgttgtgcccagtcatagccgaata

gcctctccacccaagcggccggagaacctgcgtgcaatcca

tcttgttcaatggccgatcccattccagatctgttagcctc

ccccatctcccgtgcaaacgtgcgcgccaggtcgcagatcg

tcggtatggagcctggggtggtgacgtgggtctggatcatc

ccggaggtaagttgcagcagggcgtcccggcagccggcggg

cgattggtcgtaatccaggataaagacgtgcatgggacgga

ggcgtttggtcaagacgtccaaggcccaggcaaacacgttg

tacaggtcgccgttgggggccagcaactcgggggcccgaaa

cagggtaaataacgtgtccccgatatggggtcgtgggcccg

cgttgctctggggctcggcaccctggggcggcacggccgtc

cccgaaagctgtccccaatcctcccgccacgacccgccgcc

ctgcagataccgcaccgtattggcaagcagcccgtaaacgc

ggcgaatcgcggccagcatagccaggtcaagccgctcgccg

gggcgctggcgtttggccaggcggtcgatgtgtctgtcctc

cggaagggcccccaacacgatgtttgtgccgggcaaggtcg

gcgggatgagggccacgaacgccagcacggcctggggggtc

atgctgcccataaggtatcgcgcggccgggtagcacaggag

ggcggcgatgggatggcggtcgaagatgagggtgagggccg

ggggcggggcatgtgagctcccagcctcccccccgatatga

ggagccagaacggcgtcggtcacggcataaggcatgcccat

tgttatctgggcgcttgtcattaccaccgccgcgtccccgg

ccgatatctcaccctggtcaaggcggtgttgtgtggtgtag

atgttcgcgattgtctcggaagcccccagcacccgccagta

agtcatcggctcgggtacgtagacgatatcgtcgcgcgaac

ccagggccaccagcagttgcgtggtggtggttttccccatc

ccgtggggaccgtctatataaacccgcagtagcgtgggcat

tttctgctccgggcggacttccgtggcttcttgctgccggc

gagggcgcaacgccgtacgtcggttgctatggccgcgagaa

cgcgcagcctggtcgaacgcagacgcgtgctgatggccggg

gtacgaagccatggtggctctagaggtcgaaaggcccggag

atgaggaagaggagaacagcgcggcagacgtgcgcttttga

agcgtgcagaatgccgggcttccggaggaccttcgggcgcc

cgccccgcccctgagcccgcccctgagcccgcccccggacc

caccccttcccagcctctgagcccagaaagcgaaggagcca

aagctgctattggccgctgccccaaaggcctacccgcttcc

attgctcagcggtgctgtccatctgcacgagactagtgaga

cgtgctacttccatttgtcacgtcctgcacgacgcgagctg

cggggcgggggggaacttcctgactaggggaggagtagaag

gtggcgcgaaggggccaccaaagaacggagccggttggcgc

ctaccggtggatgtggaatgtgtgcgaggccagaggccact

tgtgtagcgccaagtgcccagcggggctgctaaagcgcatg

ctccagactgccttgggaaaagcgcctcccctacccggtag

ggatccgcgttacataacttacggtaaatggcccgcctggc

tgaccgcccaacgacccccgcccattgacgtcaataatgac

gtatgttcccatagtaacgccaatagggactttccattgac

gtcaatgggtggagtatttacggtaaactgcccacttggca

gtacatcaagtgtatcatatgccaagtacgccccctattga

cgtcaatgacggtaaatggcccgcctggcattatgcccagt

acatgaccttatgggactttcctacttggcagtacatctac

gtattagtcatcgctattaccatggtgatgcggttttggca

gtacatcaatgggcgtggatagcggtttgactcacggggat

ttccaagtctccaccccattgacgtcaatgggagtttgttt

tggcaccaaaatcaacggttaacaagcttataacttcgtat

agcatacattatacgaagttattacgtagcggccgcgtcga

cgatatcgctgccggagcccccggggccgctgccggaagat

ctggcattgctgtgactgtggtgtaggccggcagctggagc

tctgattagacccctcacctgggaatctccatatgctgcac

gtgcggccctaaaaagacaaaagacaaaaaaaaaaaaaaaa

aaaaaaaatcaaaaaaaaacatagggggttaccaacgtggg

gtccagaaagatgtggttttctcccattggccttgcccagt

tacctatatcagtccttgtccaacaggggttttaggggtgg

aaatgccccataaattttacggtttctttgcccttctcttc

ctttagactgagtcaccattgctctcattccttttctatca

gttgaggagtgggttagagattaaggtccatgtggtggagg

tacacttcttatagtaaacaaggcctatggggaattactct

ctggagcccttaaaccacaaatgataatccatgccacatca

aagatgcatcgaagcccatgctcctacactgactacctgag

ttagcattctgcctcaacaggactgaccatccccagctctg

gggcagatatcctctctctgccacaagggcagtgaccccca

tgctgtctgagggtcacgctttaccccccccccacccctgc

cgtgaccccccagaccaccccaggaggtgggcactaatatc

cctcattaccccatagatgaggaaacagaggttcccccggg

gtcccacaggtgctcagggtcacatgcaccgtgggcaccca

ggccccatcccaaggccaccctccctcctcaggaagctgtg

ctgcgctgggccagaaggtactgcacacgactcctcagcct

ccggtggtgggaggcagcctcaagcctctgagtgggggggc

acccgggctcctcaatctatactgactcctgggggtgggag

aaggggagggggagctgtggcctctgagtccactaagcaaa

tcagggtgggcaatgcgggcccatttcaaggaggagagaac

cgaggctctgacagcaggccgggggtccagggacctgccca

gggtcataggctgaactgctggctgacctgccttgggttct

ttccttggctcctcagccctgtgtgatgtgacaggtcattc

attcactcactcgctcattcattcagcaaaccctcagtgag

ccctgctgggagcaggtgctaggggcaaggagacaggacct

cttgccctggaacagctgaagcactgggggacaggcagtgg

cagggaggtgcgtgatcaccgctgaccccattccatcctcc

agcccccaggtcagtttccacccaccattgaccccaccatg

tcctccatccccaaggtcagtttcccgcccaaggagcatct

ccttacacactagggacaaaatttcacggctgtcactgggc

atctctccacgctcatcacagccctctagcagccttgaagt

cctgtagagcccttcccatttcacagaagggacaagactat

gagggccacaccgtgagccatgagccttaggctgtgagccg

ggacagcccctgcaggactggtggcctcagggcactgggtg

gggagggtgcacagtgggtgggccccttgtggaatagagag

gagtgtcaggtcaggggagggggcttggcctggccctggcc

tgcctggtgtgcaaccctaggcagcccctccttcccaggcc

tcctacttcctggaggccaagcctcagggaggtaattgagt

caggtgggggagggggggttgtggctttcttcacagcagaa

aaacagagcccacaatagtgtccactgagacagaggggtcc

tgggggaggggaggggtgggaggtgactgctgagccctgtg

ggagggagggagcaactactgagctgagctgggtgactctc

ccatctgccccgccccctgtggggccagcagagtcaccgag

agaacatgacccagccaggcctggacagggggacacccatg

tcctttaccccacagggttcactgagcctatctgccccaag

cctgtgtctccctgggacggagaccctcactcccaaccaca

aaggtctaaactcaagttcccaacagccttgaaaatacagc

ttccgggggcctccaaggagcagtcagccgtccactgccag

gctcgctggctcagtgacacaggacacatcctgatgacggt

ccacctgtctccaagcaggttctcctctgccgatggggcaa

cgagctcctcctgtggctccctggctggatgcgtgggaggc

ggggtgggggggcaggcggtgttcctggccgcacacaagga

gcacccccaccagcatccgaagacgggggcccggtctttcc

ccaaaacactgcttgcgggagactttgtgacgtttccaggg

gccatgctcccttcgggcagcttgggggacttctgctccta

tgtggtcacctgcagggactccccccaggccttggggacaa

acaaagtgatgagagggagggttagtgggtcggggcagggc

cagtctttggaccggtttatctgaaaagccagttggtcacc

gggaaccacagcaaacctaaacccatttggccaggcatctc

ccagggacagtctcccccaggatgcggggcccaggggggct

ccaggggtgacctgcgtcctggatttccctgatgctcccag

ttcgtgcctctgtccaagcatgatttttaatagtgcccctt

ccactcccagaaatgtccaagtgtgggcaataaattctggt

cacctgagctcagtgtaactgtttgctgaatgacacttact

gtaacaggttaaaatgggaggcccaaggccacgcagagcca

tcgaaggctctgtgtgtcccagccctgatagaagcatcagg

atggggactgtggcctcaccaggggccacatccaggcggtc

accatggggttcctggtctccgtgggccttgactggagccc

ctggtgtgagctcaccccatcccagcctgtgagaggcctgg

atgtgggcctgacatcatttcccacccagtgacagcactgc

atgtgatggggcctctgggcagcctttttcccgggggaaac

tggcaggaatcaggaccaccaggacaggggtcaggggagag

gcgatgctgggcaccagagcctggaccaccctcgggttctc

agcgatgggcaacccctgccacccagggccccgccttcctg

gggagacatcggggtttccaggccatcctgggaggagggtg

ggagcctcagctagaccccagctggcttgcccccccatgcc

ccggccaagagagggtcttggagggaagggggaccccagac

cagcctggcgagcccatcctcagggtctctggtcagacagg

ggctcagctgagctccagggtagaccaaggccctgcgtgga

tgaggccagtgtggtcactgcccagagcaaagccacctctc

agcagccctttcctgagcaccttctgtgtgcggggacatca

gcagtggcaacacagccatgctggggactcagggctagaga

caggggaccagcctatggagagtgggtagtgtcctgcaggg

caggcttgtgccctggagaaaacaaaccagggtgaggccag

ggacgctggccgggttcacagggtgatggctgagcacagag

tgccaggggctggactgtcctgactctgggttggtggctga

gggcctgtgtccctctatgcctctgggttggtgataatgga

aacttgctccctggagagacaggacgaatggttgatgggaa

atgaatgtttgcttgtcacttggttgactgttgttgccgtt

agcattgggcttcttgggccaggcagcctcaggccagcact

gctgggctccccacaggcccgacaccctcagccctgtgcag

ctggcctggcgaaaccaagaggccctgatgcccaaaatagc

cgggaaaccccaaccagcccagccctggcagcaggtgcctc

ccatttgcctgggctgggggaggggtggctctggttctgga

agtttctgccagtccagctggagaagggacctgtatcccag

cacccaggccgcccaagcccctgcaccagggcctgggccag

gcagagttgacatcaatcaattgggagctgctggaatgcat

ggaggcggcgctctcgaggctggaggaggccagctgattta

aatcggtccgcgtacgatgcatattaccctgttatccctac

cgcggttactggccgtcgttttacaacgtcgtgactgggaa

aaccctggcgatgctcttctcccggtgaaaacctctgacac

atggctcttctaaatccggagtttaaacgcttccttcatgt

gagcaaaaggccagcaaaaggccaggaaccgtaaaaaggcc

gcgttgctggcgtttttccataggctccgcccccctgacga

gcatcacaaaaatcgacgctcaagtcagaggtggcgaaacc

cgacaggactataaagataccaggcgtttccccctggaagc

tccctcgtgcgctctcctgttccgaccctgccgcttaccgg

atacctgtccgcctttctcccttcgggaagcgtggcgcttt

ctcatagctcacgctgtaggtatctcagttcggtgtaggtc

gttcgctccaagctgggctgtgtgcacgaaccccccgttca

gcccgaccgctgcgccttatccggtaactatcgtcttgagt

ccaacccggtaagacacgacttatcgccactggcagcagcc

actggtaacaggattagcagagcgaggtatgtaggcggtgc

tacagagttcttgaagtggtggcctaactacggctacacta

gaaggacagtatttggtatctgcgctctgctgaagccagtt

accttcggaaaaagagttggtagctcttgatccggcaaaca

aaccaccgctggtagcggtggtttttttgtttgcaagcagc

agattacgcgcagaaaaaaaggatctcaagaagatcctttg

atcttttctacggggtctgacgctcagtggaacgaaaactc

acgttaagggattttggtcatgcctaggtggcaaacagcta

ttatgggtattatgggtctaccggtgcatgagattatcaaa

aaggatcttcacctagatccttttaaattaaaaatgaagtt

ttaaatcaatctaaagtatatatgagtaaacttggtctgac

agttaccaatgcttaatcagtgaggcacctatctcagcgat

ctgtctatttcgttcatccatagttgcctgactccccgtcg

tgtagataactacgatacgggagggcttaccatctggcccc

agtgctgcaatgataccgcgagacccacgctcaccggctcc

agatttatcagcaataaaccagccagccggaagggccgagc

gcagaagtggtcctgcaactttatccgcctccatccagtct

attaattgttgccgggaagctagagtaagtagttcgccagt

taatagtttgcgcaacgttgttgccattgctacaggcatcg

tggtgtcacgctcgtcgtttggtatggcttcattcagctcc

ggttcccaacgatcaaggcgagttacatgatcccccatgtt

gtgcaaaaaagcggttagctccttcggtcctccgatcgttg

tcagaagtaagttggccgcagtgttatcactcatggttatg

gcagcactgcataattctcttactgtcatgccatccgtaag

atgcttttctgtgactggtgagtactcaaccaagtcattct

gagaatagtgtatgcggcgaccgagttgctcttgcccggcg

tcaatacgggataataccgcgccacatagcagaactttaaa

agtgctcatcattggaaaacgttcttcggggcgaaaactct

caaggatcttaccgctgttgagatccagttcgatgtaaccc

actcgtgcacccaactgatcttcagcatcttttactttcac

cagcgtttctgggtgagcaaaaacaggaaggcaaaatgccg

caaaaaagggaataagggcgacacggaaatgttgaatactc

atactcttcctttttcaatattattgaagcatttatcaggg

ttattgtctcgggagcggatacatatttgaatgtatttaga

aaaa

SEQ ID 46

taaacaaataggggttccgcgcacatttccccgaaaagtgc

cacctgacgtcgctgagcaggccctggcctccctggccgag

ggcggtttgcgtattagaggcctaaatggccgaattcagcg

gataacaatttcacacaggaaacagctatgaccatgattat

ctagtaactataacggtcctaaggtagcgagcgatcgctta

attaacctgcagggatatcccatgggggccgccagtgtgat

ggatatctgcagaattcgcccttgatattaagagaagggca

agtcagcttaagtttgggggtagaggggaacagggagtgag

gagatctggcctgagagataggagccctggtggccacagga

ggactctttgggtcctgtcggatggacacagggcggcccgg

gggcatgttggagcccggctggttcttaccagaggcagggg

gcaccctctgacacgggagcagggcatgttccatacatgac

acacccctctgctccagggcaggtgggtggcggcacagagg

agccagggactctgagcaaggggtccaccagtggggcagtt

ggatccagacttctctgggccagcgagagtctagccctcag

ccgttctctgtccaggaggggggtggggcaggcctgggcgg

ccagagctcatccctcaagggttcccagggtcctgccagac

ccagatttccgaccgcagccaccacaagaggatgtggctgc

tgtggcagctgccaagaccttgcagcaggtgcagggtgggg

gggtgggggcacctgggggcagctggggtcactgagttcag

ggaaaaccccttttttcccctaaacctggggccatccctag

gggaaaccacaacttctgagccctgggcagtggctgctggg

agggaagagcttcatcctggaccctgggggggaacccagct

ccaaaggtgcaaggggcccaggtccaaggctagagtgggcc

aagcaccgcaatggccagggagtgggggaggtggagctgga

ctggatcagggcctccttgggactccctacaccctgtgtga

catgttagggtacccacaccccatcaccagtcagggcctgg

cccatctccagggccagggatgtgcatgtaagtgtgtgtga

gtgtgtgtgtgtggtgtagtacaccccttggcatccggttc

cgaggccttgggttcctccaaagttgctctctgaattaggt

caaactgtgaggtcctgatcgccatcatcaacttcgttctc

cccacctcccatcattatcaagagctggggagggtctggga

tttcttcccacccacaagccaaaagataagcctgctggtga

tggcagaagacacaggatcctgggtcagagacaaaggccag

tgtgtcacagcgagagaggcagccggactatcagctgtcac

agagaggccttagtccgctgaactcaggccccagtgactcc

tgttccactgggcactggcccccctccacagcgcccccagg

ccccagggagaggcgtcacagcttagagatggccctgctga

acagggaacaagaacaggtgtgccccatccagcgccccagg

ggtgggacaggtgggctggatttggtgtgaagcccttgagc

cctggaacccaaccacagcagggcagttggtagatgccatt

tggggagaggccccaggagtaagggccatgggcccttgagg

gggccaggagctgaggacagggacagagacggcccaggcag

aggacagggccatgaggggtgcactgagatggccactgcca

gcaggggcagctgccaacccgtccagggaacttattcagca

gtcagctggaggtgccattgaccctgagggcagatgaagcc

caggccaggctaggtgggctgtgaagaccccaggggacaga

gctctgtccctgggcagcactggcctctcattctgcagggc

ttgacgggatcccaaggcctgctgcccctgatggtagtggc

agtaccgcccagagcaggaccccagcatggaaaccccaacg

ggacgcagcctgcggagcccacaaaaccagtaaggagccga

agcagtcatggcacggggagtgtggacttccctttgatggg

gcccaggcatgaaggacagaatgggacagcggccatgagca

gaaaatcagccggaggggatgggcctaggcagacgctggct

ttatttgaagtgttggcattttgtctggtgtgtattgttgg

tattgattttattttagtatgtcagtgacatactgacatat

tatgtaacgacatattattatgtgttttaagaagcactcca

agggaacaggctgtctgtaatgtgtccagagaagagagcaa

gagcttggctcagtctcccccaaggaggtcagttcctcaac

aggggtcctaaatgtttcctggagccaggcctgaatcaagg

gggtcatatctacacgtggggcagacccatggaccattttc

ggagcaataagatggcagggaggataccaagctggtcttac

agatccagggctttgacctgtgacgcgggcgctcctccagg

caaagggagaagccagcaggaagctttcagaactggggaga

acagggtgcagacctccagggtcttgtacaacgcacccttt

atcctggggtccaggaggggtcactgagggatttaagtggg

ggaccatcagaaccaggtttgtgttttggaaaaatggctcc

aaagcagagaccagtgtgaggccagattagatgatgaagaa

gaggcagtggaaagtcgatgggtggccaggtagcaagaggg

cctatggagttggcaagtgaatttaaagtggtggcaccaga

gggcagatggggaggagcaggcactgtcatggactgtctat

agaaatctaaaatgtataccctttttagcaatatgcagtga

gtcataaaagaacacatatatatttcctttggccggccggc

gcgccacgcgtataacttcgtatagcatacattatacgaag

ttatcttaagggctatggcagggcctgccgccccgacgttg

gctgcgagccctgggccttcacccgaacttggggggtgggg

tggggaaaaggaagaaacgcgggcgtattggccccaatggg

gtctcggtggggtatcgacagagtgccagccctgggaccga

accccgcgtttatgaacaaacgacccaacaccgtgcgtttt

attctgtctttttattgccgtcatagcgcgggttccttccg

gtattgtctccttccgtgtttcactcgagttagaagaactc

gtcaagaaggcgatagaaggcgatgcgctgcgaatcgggag

cggcgataccgtaaagcacgaggaagcggtcagcccattcg

ccgccaagctcttcagcaatatcacgggtagccaacgctat

gtcctgatagcggtccgccacacccagccggccacagtcga

tgaatccagaaaagcggccattttccaccatgatattcggc

aagcaggcatcgccatgggtcacgacgagatcctcgccgtc

gggcatgcgcgccttgagcctggcgaacagttcggctggcg

cgagcccctgatgctcttcgtccagatcatcctgatcgaca

agaccggcttccatccgagtacgtgctcgctcgatgcgatg

tttcgcttggtggtcgaatgggcaggtagccggatcaagcg

tatgcagccgccgcattgcatcagccatgatggatactttc

tcggcaggagcaaggtgagatgacaggagatcctgccccgg

cacttcgcccaatagcagccagtcccttcccgcttcagtga

caacgtcgagcacagctgcgcaaggaacgcccgtcgtggcc

agccacgatagccgcgctgcctcgtcctgcagttcattcag

ggcaccggacaggtcggtcttgacaaaaagaaccgggcgcc

cctgcgctgacagccggaacacggcggcatcagagcagccg

attgtctgttgtgcccagtcatagccgaatagcctctccac

ccaagcggccggagaacctgcgtgcaatccatcttgttcaa

tggccgatcccattccagatctgttagcctcccccatctcc

cgtgcaaacgtgcgcgccaggtcgcagatcgtcggtatgga

gcctggggtggtgacgtgggtctggatcatcccggaggtaa

gttgcagcagggcgtcccggcagccggcgggcgattggtcg

taatccaggataaagacgtgcatgggacggaggcgtttggt

caagacgtccaaggcccaggcaaacacgttgtacaggtcgc

cgttgggggccagcaactcgggggcccgaaacagggtaaat

aacgtgtccccgatatggggtcgtgggcccgcgttgctctg

gggctcggcaccctggggcggcacggccgtccccgaaagct

gtccccaatcctcccgccacgacccgccgccctgcagatac

cgcaccgtattggcaagcagcccgtaaacgcggcgaatcgc

ggccagcatagccaggtcaagccgctcgccggggcgctggc

gtttggccaggcggtcgatgtgtctgtcctccggaagggcc

cccaacacgatgtttgtgccgggcaaggtcggcgggatgag

ggccacgaacgccagcacggcctggggggtcatgctgccca

taaggtatcgcgcggccgggtagcacaggagggcggcgatg

ggatggcggtcgaagatgagggtgagggccgggggcggggc

atgtgagctcccagcctcccccccgatatgaggagccagaa

cggcgtcggtcacggcataaggcatgcccattgttatctgg

gcgcttgtcattaccaccgccgcgtccccggccgatatctc

accctggtcaaggcggtgttgtgtggtgtagatgttcgcga

ttgtctcggaagcccccagcacccgccagtaagtcatcggc

tcgggtacgtagacgatatcgtcgcgcgaacccagggccac

cagcagttgcgtggtggtggttttccccatcccgtggggac

cgtctatataaacccgcagtagcgtgggcattttctgctcc

gggcggacttccgtggcttcttgctgccggcgagggcgcaa

cgccgtacgtcggttgctatggccgcgagaacgcgcagcct

ggtcgaacgcagacgcgtgctgatggccggggtacgaagcc

atggtggctctagaggtcgaaaggcccggagatgaggaaga

ggagaacagcgcggcagacgtgcgcttttgaagcgtgcaga

atgccgggcttccggaggaccttcgggcgcccgccccgccc

ctgagcccgcccctgagcccgcccccggacccaccccttcc

cagcctctgagcccagaaagcgaaggagccaaagctgctat

tggccgctgccccaaaggcctacccgcttccattgctcagc

ggtgctgtccatctgcacgagactagtgagacgtgctactt

ccatttgtcacgtcctgcacgacgcgagctgcggggcgggg

gggaacttcctgactaggggaggagtagaaggtggcgcgaa

ggggccaccaaagaacggagccggttggcgcctaccggtgg

atgtggaatgtgtgcgaggccagaggccacttgtgtagcgc

caagtgcccagcggggctgctaaagcgcatgctccagactg

ccttgggaaaagcgcctcccctacccggtagggatccgcgt

tacataacttacggtaaatggcccgcctggctgaccgccca

acgacccccgcccattgacgtcaataatgacgtatgttccc

atagtaacgccaatagggactttccattgacgtcaatgggt

ggagtatttacggtaaactgcccacttggcagtacatcaag

tgtatcatatgccaagtacgccccctattgacgtcaatgac

ggtaaatggcccgcctggcattatgcccagtacatgacctt

atgggactttcctacttggcagtacatctacgtattagtca

tcgctattaccatggtgatgcggttttggcagtacatcaat

gggcgtggatagcggtttgactcacggggatttccaagtct

ccaccccattgacgtcaatgggagtttgttttggcaccaaa

atcaacggttaacaagcttagatctgcggccgcgtcgacga

taaattgtgtaattccacttctaaggattcatcccaagggg

ggaaaataatcaaagatgtaaccaaaggtttacaaacaaga

actcatcattaatcttccttgttgttatttcaacgatatta

ttattattactattattattattattattttgtctttttgc

attttctagggccactcccacggcatagagaggttcccagg

ctaggggtcaaatcggagctacagctgccggcctacgccag

agccacagcaacgcaggatctgagccacagcaatgcaggat

ctacaccacagctcatggtaacgctggatccttaacccaat

gagtgaggccagggatcgaacctgtaacttcatggttccta

gtcggattcattaaccactgagccacgacaggaactccaac

attattaatgatgggagaaaactggaagtaacctaaatatc

cagcagaaagggtgtggccaaatacagcatggagtagccat

cataaggaatcttacacaagcctccaaaattgtgtttctga

aattgggtttaaagtacgtttgcattttaaaaagcctgcca

gaaaatacagaaaaatgtctgtgatatgtctctggctgata

ggattttgcttagttttaattttggctttataattttctat

agttatgaaaatgttcacaagaagatatatttcattttagc

ttctaaaataattataacacagaagtaatttgtgctttaaa

aaatattcaacacagaagtatataaaaaaattgaggagttc

ccatcgtggctcagtgattaacaaacccaactagtatccat

gaggatatggatttgatccctggccttgctcagtgggttga

ggatccagtgttgctgtgagctgtggtgtaggttgcagaca

cagcactctggcgttgctgtgactctggcgtaggccggcag

ctacagctccatttggacccttagcctgggaacctccatat

gcctgagatacggccctaaaaagtcaaaagccaaaaaaata

gtaaaaattgagtgtttctacttaccacccctgcccacatc

ttatgctaaaacccgttctccagagacaaacatcgtcaggt

gggtctatatatttccagccctcctcctgtgtgtgtatgtc

cgtaaaacacacacacacacacacacacgcacacacacaca

cacgtatctaattagcattggtattagtttttcaaaaggga

ggtcatgctctaccttttaggcggcaaatagattatttaaa

caaatctgttgacattttctatatcaacccataagatctcc

catgttcttggaaaggctttgtaagacatcaacatctgggt

aaaccagcatggtttttagggggttgtgtggatttttttca

tattttttagggcacacctgcagcatatggaggttcccagg

ctaggggttgaatcagagctgtagctgccggcctacaccac

agccacagcaacgccagatccttaacccactgagaaaggcc

agggattgaacctgcatcctcatggatgctggtcagattta

tttctgctgagccacaacaggaactccctgaaccagaatgc

ttttaaccattccactttgcatggacatttagattgtttcc

atttaaaaatacaaattacaaggagttcccgtcgtggctca

gtggtaacgaattggactaggaaccatgaggtttcgggttc

gatccctggccttgctcggtgggttaaggatccagcattga

tgtgagatatggtgtaggtcgcagacgtggctcggatccca

cgttgctgtggctctggcgtaggccggcaacaacagctccg

attcgacccctagcctgggaacctccatgtgccacaggagc

agccctagaaaaggcaaaaagacaaaaaaataaaaaattaa

aatgaaaaaataaaataaaaatacaaattacaagagacggc

tacaaggaaatccccaagtgtgtgcaaatgccatatatgta

taaaatgtactagtgtctcctcgcgggaaagttgcctaaaa

gtgggttggctggacagagaggacaggctttgacattctca

taggtagtagcaatgggcttctcaaaatgctgttccagttt

acactcaccatagcaaatgacagtgcctcttcctctccacc

cttgccaataatgtgacaggtggatctttttctattttgtg

tatctgacaagcaaaaaatgagaacaggagttcctgtcgtg

gtgcagtggagacaaatctgactaggaaccatgaaatttcg

ggttcaatccctggcctcactcagtaggtaaaggatccagg

gttgcagtgagctgtggggtaggtcgcagacacagtgcaaa

tttggccctgttgtggctgtggtgtaggccggcagctatag

ctccaattggacccctagcctgggaacctccttatgccgtg

ggtgaggccctaaaaaaaagagtgcaaaaaaaaaaaataag

aacaaaaatgatcatcgtttaattctttatttgatcattgg

tgaaacttattttccttttatatttttattgactgatttta

tttctcctatgaatttaccggtcatagttttgcctgggtgt

ttttactccggttttagttttggttggttgtattttcttag

agagctatagaaactcttcatctatttggaatagtaattcc

tcattaagtatttgtgctgcaaaaaattttccctgatctgt

tttatgcttttgtttgtggggtctttcacgagaaagccttt

ttagtttttacacctcagcttggttgtttttcttgattgtg

tctgtaatctgcggccaacataggaaacacatttttacttt

agtgtttttttcctattttcttcaagtacgtccattgtttt

ggtgtctgattttactttgcctggggtttgtttttgtgtgg

caggaatataaacttatgtattttccaaatggagagccaat

ggttgtatatttgttgaattcaaatgcaactttatcaaaca

ccaaatcatcgatttatcacaactcttctctggtttattga

tctaatgatcaattcctgttccacgctgttttaattatttt

agctttgtggattttggtgcctggtagagaacaaagcctcc

attattttcattcaaaatagtcccgtctattatctgccatt

gttgtagtattagactttaaaatcaatttactgattttcaa

aagttattcctttggtgatgtggaatactttatacttcata

aggtacatggattcatttgtggggaattgatgtctttgcta

ttgtggccatttgtcaagttgtgtaatattttacccatgcc

aactttgcatattgtatgtgagtttattcccagggttttta

ataggatgtttattgaagttgtcagtgtttccacaatttca

tcgcctcagtgcttactgtttgcataaaaggaaacctactc

acttttgcctattgctcttgtattcaatcattttagttaac

tcttgtgttaattttgagagtttttcagctgactgtctggg

gttttctttaatagactagccctttgtctgtaaagaataat

tttatcgaatttttcttaacactcacactctccccaccccc

acccccgctcatctcctttcattgggtcaaatctgtagaat

acaataaaagtaagagtgggaaccttagcctttaagtcgat

tttgcctttaaatgtgaatgttgctatgtttcgggacattc

tctttatcaagttgcggatgtttccttagataattaactta

ataaaagactggatgtttgctttcttcaaatcagaattgtg

ttgaatttatattgctattctgtttaattttgtttcaaaaa

atttacatgcacaccttaaagataaccatgaccaaatagtc

ctcctgctgagagaaaatgttggccccaatgccacaggtta

cctcccgactcagataaactacaatgggagataaaatcaga

tttggcaaagcctgtggattcttgccataactctcagagca

tgacttgggtgttttttccttttctaagtattttaatggta

tttttgtgttacaataggaaatctaggacacagagagtgat

tcaatgaggggaacgcattctgggatgactctaggcctctg

gtttggggagagctctattgaagtaaagacaatgagaggaa

gcaagtttgcagggaactgtgaggaatttagatggggaatg

ttgggtttgaggtttctatagggcacgcaagcagagatgca

ctcaggaggaagaaggagcataaatctagtggcgctgccgg

caagcttgctggaggaggccaattgggagctgctggaatgc

atggaggcggcgctctcgaggctggaggaggccagctgatt

taaatcggtccgcgtacgatgcatattaccctgttatccct

accgcggttactggccgtcgttttacaacgtcgtgactggg

aaaaccctggcgatgctcttctcccggtgaaaacctctgac

acatggctcttctaaatccggagtttaaacgcttccttcat

gtgagcaaaaggccagcaaaaggccaggaaccgtaaaaagg

ccgcgttgctggcgtttttccataggctccgcccccctgac

gagcatcacaaaaatcgacgctcaagtcagaggtggcgaaa

cccgacaggactataaagataccaggcgtttccccctggaa

gctccctcgtgcgctctcctgttccgaccctgccgcttacc

ggatacctgtccgcctttctcccttcgggaagcgtggcgct

ttctcatagctcacgctgtaggtatctcagttcggtgtagg

tcgttcgctccaagctgggctgtgtgcacgaaccccccgtt

cagcccgaccgctgcgccttatccggtaactatcgtcttga

gtccaacccggtaagacacgacttatcgccactggcagcag

ccactggtaacaggattagcagagcgaggtatgtaggcggt

gctacagagttcttgaagtggtggcctaactacggctacac

tagaaggacagtatttggtatctgcgctctgctgaagccag

ttaccttcggaaaaagagttggtagctcttgatccggcaaa

caaaccaccgctggtagcggtggtttttttgtttgcaagca

gcagattacgcgcagaaaaaaaggatctcaagaagatcctt

tgatcttttctacggggtctgacgctcagtggaacgaaaac

tcacgttaagggattttggtcatgcctaggtggcaaacagc

tattatgggtattatgggtctaccggtgcatgagattatca

aaaaggatcttcacctagatccttttaaattaaaaatgaag

ttttaaatcaatctaaagtatatatgagtaaacttggtctg

acagttaccaatgcttaatcagtgaggcacctatctcagcg

atctgtctatttcgttcatccatagttgcctgactccccgt

cgtgtagataactacgatacgggagggcttaccatctggcc

ccagtgctgcaatgataccgcgagacccacgctcaccggct

ccagatttatcagcaataaaccagccagccggaagggccga

gcgcagaagtggtcctgcaactttatccgcctccatccagt

ctattaattgttgccgggaagctagagtaagtagttcgcca

gttaatagtttgcgcaacgttgttgccattgctacaggcat

cgtggtgtcacgctcgtcgtttggtatggcttcattcagct

ccggttcccaacgatcaaggcgagttacatgatcccccatg

ttgtgcaaaaaagcggttagctccttcggtcctccgatcgt

tgtcagaagtaagttggccgcagtgttatcactcatggtta

tggcagcactgcataattctcttactgtcatgccatccgta

agatgcttttctgtgactggtgagtactcaaccaagtcatt

ctgagaatagtgtatgcggcgaccgagttgctcttgcccgg

cgtcaatacgggataataccgcgccacatagcagaacttta

aaagtgctcatcattggaaaacgttcttcggggcgaaaact

ctcaaggatcttaccgctgttgagatccagttcgatgtaac

ccactcgtgcacccaactgatcttcagcatcttttactttc

accagcgtttctgggtgagcaaaaacaggaaggcaaaatgc

cgcaaaaaagggaataagggcgacacggaaatgttgaatac

tcatactcttcctttttcaatattattgaagcatttatcag

ggttattgtctcgggagcggatacatatttgaatgtattta

gaaaaa

SEQ ID 47

taaacaaataggggttccgcgcacatttccccgaaaagtgc

cacctgacgtcgctgagcaggccctggcctccctggccgag

ggcggtttgcgtattagaggcctaaatggccgaattcagcg

gataacaatttcacacaggaaacagctatgaccatgattat

ctagtaactataacggtcctaaggtagcgagcgatcgctta

attaacctgcagggataaccactgacccatgacgggaactc

ccagggctcagctcttgactccaggttcgcagctgccctca

aagcaatgcaaccctggctggccccgcctcatgcatccggc

ctcctccccaaagagctctgagcccacctgggcctaggtcc

tcctccctgggactcatggcctaagggtacagagttactgg

ggctgatgaagggaccaatggggacaggggcctcaaatcaa

agtggctgtctctctcatgtcccttcctctcctcagggtcc

aaaatcagggtcagggccccagggcaggggctgagagggcc

tctttctgaaggccctgtctcagtgcaggttatgggggtct

gggggagggtcaatgcagggctcacccttcagtgccccaaa

gcctagagagtgagtgcctgccagtggcttcccaggcccaa

tcccttgactgcctgggaatgctcaaatgcaggaactgtca

caacaccttcagtcaggggctgctctgggaggaaaaacact

cagaattgggggttcagggaaggcccagtgccaagcatagc

aggagctcaggtggctgcagatggtgtgaaccccaggagca

ggatggccggcactccccccagaccctccagagccccaggt

tggctgccctcttcactgccgacacccctgggtccacttct

gccctttcccacctaaaacctttagggctcccactttctcc

caaatgtgagacatcaccacggctcccagggagtgtccaga

agggcatctggctgagaggtcctgacatctgggagcctcag

gccccacaatggacagacgccctgccaggatgctgctgcag

ggctgttagctaggcggggtggagatggggtactttgcctc

tcagaggccccggccccaccatgaaacctcagtgacacccc

atttccctgagttcacatacctgtatcctactccagtcacc

ttccccacgaacccctgggagcccaggatgatgctggggct

ggagccacgaccagcccacgagtgatccagctctgccaatc

agcagtcatttcccaagtgttccagccctgccaggtcccac

tacagcagtaatggaggccccagacaccagtccagcagtta

gagggctggactagcaccagctttcaagcctcagcatctca

aggtgaatggccagtgcccctccccgtggccatcacaggat

cgcagatatgaccctaggggaagaaatatcctgggagtaag

gaagtgcccatactcaaggatggcccctctgtgacctaacc

tgtccctgaggattgtacttccaggcgttaaaacagtagaa

cgcctgcctgtgaacccccgccaagggactgcttggggagg

ccccctaaaccagaacacaggcactccagcaggacctctga

actctgaccaccctcagcaagtgggcaccccccgcagcttc

caaggcaccccagggctcaccacagcggcccctcctggcag

cccctcacccaggcccagaccctctaagatggcacatctaa

gccaatccacctccttgtcattcctcctgtccccacccagg

acccttctcagatgaaaccttcgctccagccgctgggccct

ctctcctgcccctctggcagttctccagggactccgcctcc

cactctctgtctctccctgcactcctaggaacaagcgacct

ccaggaagcccagtccaattatcccctctgtgtcctcccca

atctctgcctctgggtggatttgagcaccacatcctgttct

cttcgacctgaaactccttggccccggtgtccgctctcctg

ggccctcttttctctcctcccctcttccgtgccccgtttgt

ttggtgttacaggcaggccccggggagccgtccctccagct

gctcttccttgtctgtctcaggagccagaaactggcagcat

ctaaaaagggctcctgtttcttcatctgcccagcctcctag

cccaaccagggctctggcctcactccagagggtgggctcca

gagggcaggggttgcaccctcttagtgcctcagaggctcag

ctgggtgcaggatgggggggccctcagggagcccctcagtg

actgctgatcacttactgcaggactgttcccagctcttccc

aatcattggaatgacaatacctagttctgctccatcatagt

gatgcaggaaaaatgttactgaaatcctggttcttgtttag

caatcgaagaatgaattccgcgaacacacaggcagcaagca

agcgaagcctttattaaaggaaagcagatagctcccagggc

tgcagggagcggggagaagagctccccactctctattgtcc

tatagggctttttaccccttaaagttggggggatacaaaaa

aaatagaagaaaaagggagttcccgtcagggcacagcagaa

acaaatccaactaggaaccatgaggttgggggttcgattcc

tggcctctctcagtgggttaaggatgcagcgttgccgtgag

ctatgatacaggtcacagatgcagctcagatctactagtca

attgacaggcgccggagcaggagctaggcctttggccggcc

ggcgcgccacgcgtataacttcgtatagcatacattatacg

aagttatcttaagggctatggcagggcctgccgccccgacg

ttggctgcgagccctgggccttcacccgaacttggggggtg

gggtggggaaaaggaagaaacgcgggcgtattggccccaat

ggggtctcggtggggtatcgacagagtgccagccctgggac

cgaaccccgcgtttatgaacaaacgacccaacaccgtgcgt

tttattctgtctttttattgccgtcatagcgcgggttcctt

ccggtattgtctccttccgtgtttcactcgagttagaagaa

ctcgtcaagaaggcgatagaaggcgatgcgctgcgaatcgg

gagcggcgataccgtaaagcacgaggaagcggtcagcccat

tcgccgccaagctcttcagcaatatcacgggtagccaacgc

tatgtcctgatagcggtccgccacacccagccggccacagt

cgatgaatccagaaaagcggccattttccaccatgatattc

ggcaagcaggcatcgccatgggtcacgacgagatcctcgcc

gtcgggcatgcgcgccttgagcctggcgaacagttcggctg

gcgcgagcccctgatgctcttcgtccagatcatcctgatcg

acaagaccggcttccatccgagtacgtgctcgctcgatgcg

atgtttcgcttggtggtcgaatgggcaggtagccggatcaa

gcgtatgcagccgccgcattgcatcagccatgatggatact

ttctcggcaggagcaaggtgagatgacaggagatcctgccc

cggcacttcgcccaatagcagccagtcccttcccgcttcag

tgacaacgtcgagcacagctgcgcaaggaacgcccgtcgtg

gccagccacgatagccgcgctgcctcgtcctgcagttcatt

cagggcaccggacaggtcggtcttgacaaaaagaaccgggc

gcccctgcgctgacagccggaacacggcggcatcagagcag

ccgattgtctgttgtgcccagtcatagccgaatagcctctc

cacccaagcggccggagaacctgcgtgcaatccatcttgtt

caatggccgatcccattccagatctgttagcctcccccatc

tcccgtgcaaacgtgcgcgccaggtcgcagatcgtcggtat

ggagcctggggtggtgacgtgggtctggatcatcccggagg

taagttgcagcagggcgtcccggcagccggcgggcgattgg

tcgtaatccaggataaagacgtgcatgggacggaggcgttt

ggtcaagacgtccaaggcccaggcaaacacgttgtacaggt

cgccgttgggggccagcaactcgggggcccgaaacagggta

aataacgtgtccccgatatggggtcgtgggcccgcgttgct

ctggggctcggcaccctggggcggcacggccgtccccgaaa

gctgtccccaatcctcccgccacgacccgccgccctgcaga

taccgcaccgtattggcaagcagcccgtaaacgcggcgaat

cgcggccagcatagccaggtcaagccgctcgccggggcgct

ggcgtttggccaggcggtcgatgtgtctgtcctccggaagg

gcccccaacacgatgtttgtgccgggcaaggtcggcgggat

gagggccacgaacgccagcacggcctggggggtcatgctgc

ccataaggtatcgcgcggccgggtagcacaggagggcggcg

atgggatggcggtcgaagatgagggtgagggccgggggcgg

ggcatgtgagctcccagcctcccccccgatatgaggagcca

gaacggcgtcggtcacggcataaggcatgcccattgttatc

tgggcgcttgtcattaccaccgccgcgtccccggccgatat

ctcaccctggtcaaggcggtgttgtgtggtgtagatgttcg

cgattgtctcggaagcccccagcacccgccagtaagtcatc

ggctcgggtacgtagacgatatcgtcgcgcgaacccagggc

caccagcagttgcgtggtggtggttttccccatcccgtggg

gaccgtctatataaacccgcagtagcgtgggcattttctgc

tccgggcggacttccgtggcttcttgctgccggcgagggcg

caacgccgtacgtcggttgctatggccgcgagaacgcgcag

cctggtcgaacgcagacgcgtgctgatggccggggtacgaa

gccatggtggctctagaggtcgaaaggcccggagatgagga

agaggagaacagcgcggcagacgtgcgcttttgaagcgtgc

agaatgccgggcttccggaggaccttcgggcgcccgccccg

cccctgagcccgcccctgagcccgcccccggacccacccct

tcccagcctctgagcccagaaagcgaaggagccaaagctgc

tattggccgctgccccaaaggcctacccgcttccattgctc

agcggtgctgtccatctgcacgagactagtgagacgtgcta

cttccatttgtcacgtcctgcacgacgcgagctgcggggcg

ggggggaacttcctgactaggggaggagtagaaggtggcgc

gaaggggccaccaaagaacggagccggttggcgcctaccgg

tggatgtggaatgtgtgcgaggccagaggccacttgtgtag

cgccaagtgcccagcggggctgctaaagcgcatgctccaga

ctgccttgggaaaagcgcctcccctacccggtagggatccg

cgttacataacttacggtaaatggcccgcctggctgaccgc

ccaacgacccccgcccattgacgtcaataatgacgtatgtt

cccatagtaacgccaatagggactttccattgacgtcaatg

ggtggagtatttacggtaaactgcccacttggcagtacatc

aagtgtatcatatgccaagtacgccccctattgacgtcaat

gacggtaaatggcccgcctggcattatgcccagtacatgac

cttatgggactttcctacttggcagtacatctacgtattag

tcatcgctattaccatggtgatgcggttttggcagtacatc

aatgggcgtggatagcggtttgactcacggggatttccaag

tctccaccccattgacgtcaatgggagtttgttttggcacc

aaaatcaacggttaacaagcttataacttcgtatagcatac

attatacgaagttattacgtagcggccgcgtcgacgatatc

gctgccggagcccccggggccgctgccggaagatctggcat

tgctgtgactgtggtgtaggccggcagctggagctctgatt

agacccctcacctgggaatctccatatgctgcacgtgcggc

cctaaaaagacaaaagacaaaaaaaaaaaaaaaaaaaaaaa

atcaaaaaaaaacatagggggttaccaacgtggggtccaga

aagatgtggttttctcccattggccttgcccagttacctat

atcagtccttgtccaacaggggttttaggggtggaaatgcc

ccataaattttacggtttctttgcccttctcttcctttaga

ctgagtcaccattgctctcattccttttctatcagttgagg

agtgggttagagattaaggtccatgtggtggaggtacactt

cttatagtaaacaaggcctatggggaattactctctggagc

ccttaaaccacaaatgataatccatgccacatcaaagatgc

atcgaagcccatgctcctacactgactacctgagttagcat

tctgcctcaacaggactgaccatccccagctctggggcaga

tatcctctctctgccacaagggcagtgacccccatgctgtc

tgagggtcacgctttaccccccccccacccctgccgtgacc

ccccagaccaccccaggaggtgggcactaatatccctcatt

accccatagatgaggaaacagaggttcccccggggtcccac

aggtgctcagggtcacatgcaccgtgggcacccaggcccca

tcccaaggccaccctccctcctcaggaagctgtgctgcgct

gggccagaaggtactgcacacgactcctcagcctccggtgg

tgggaggcagcctcaagcctctgagtgggggggcacccggg

ctcctcaatctatactgactcctgggggtgggagaagggga

gggggagctgtggcctctgagtccactaagcaaatcagggt

gggcaatgcgggcccatttcaaggaggagagaaccgaggct

ctgacagcaggccgggggtccagggacctgcccagggtcat

aggctgaactgctggctgacctgccttgggttctttccttg

gctcctcagccctgtgtgatgtgacaggtcattcattcact

cactcgctcattcattcagcaaaccctcagtgagccctgct

gggagcaggtgctaggggcaaggagacaggacctcttgccc

tggaacagctgaagcactgggggacaggcagtggcagggag

gtgcgtgatcaccgctgaccccattccatcctccagccccc

aggtcagtttccacccaccattgaccccaccatgtcctcca

tccccaaggtcagtttcccgcccaaggagcatctccttaca

cactagggacaaaatttcacggctgtcactgggcatctctc

cacgctcatcacagccctctagcagccttgaagtcctgtag

agcccttcccatttcacagaagggacaagactatgagggcc

acaccgtgagccatgagccttaggctgtgagccgggacagc

ccctgcaggactggtggcctcagggcactgggtggggaggg

tgcacagtgggtgggccccttgtggaatagagaggagtgtc

aggtcaggggagggggcttggcctggccctggcctgcctgg

tgtgcaaccctaggcagcccctccttcccaggcctcctact

tcctggaggccaagcctcagggaggtaattgagtcaggtgg

gggagggggggttgtggctttcttcacagcagaaaaacaga

gcccacaatagtgtccactgagacagaggggtcctggggga

ggggaggggtgggaggtgactgctgagccctgtgggaggga

gggagcaactactgagctgagctgggtgactctcccatctg

ccccgccccctgtggggccagcagagtcaccgagagaacat

gacccagccaggcctggacagggggacacccatgtccttta

ccccacagggttcactgagcctatctgccccaagcctgtgt

ctccctgggacggagaccctcactcccaaccacaaaggtct

aaactcaagttcccaacagccttgaaaatacagcttccggg

ggcctccaaggagcagtcagccgtccactgccaggctcgct

ggctcagtgacacaggacacatcctgatgacggtccacctg

tctccaagcaggttctcctctgccgatggggcaacgagctc

ctcctgtggctccctggctggatgcgtgggaggcggggtgg

gggggcaggcggtgttcctggccgcacacaaggagcacccc

caccagcatccgaagacgggggcccggtctttccccaaaac

actgcttgcgggagactttgtgacgtttccaggggccatgc

tcccttcgggcagcttgggggacttctgctcctatgtggtc

acctgcagggactccccccaggccttggggacaaacaaagt

gatgagagggagggttagtgggtcggggcagggccagtctt

tggaccggtttatctgaaaagccagttggtcaccgggaacc

acagcaaacctaaacccatttggccaggcatctcccaggga

cagtctcccccaggatgcggggcccaggggggctccagggg

tgacctgcgtcctggatttccctgatgctcccagttcgtgc

ctctgtccaagcatgatttttaatagtgccccttccactcc

cagaaatgtccaagtgtgggcaataaattctggtcacctga

gctcagtgtaactgtttgctgaatgacacttactgtaacag

gttaaaatgggaggcccaaggccacgcagagccatcgaagg

ctctgtgtgtcccagccctgatagaagcatcaggatgggga

ctgtggcctcaccaggggccacatccaggcggtcaccatgg

ggttcctggtctccgtgggccttgactggagcccctggtgt

gagctcaccccatcccagcctgtgagaggcctggatgtggg

cctgacatcatttcccacccagtgacagcactgcatgtgat

ggggcctctgggcagcctttttcccgggggaaactggcagg

aatcaggaccaccaggacaggggtcaggggagaggcgatgc

tgggcaccagagcctggaccaccctcgggttctcagcgatg

ggcaacccctgccacccagggccccgccttcctggggagac

atcggggtttccaggccatcctgggaggagggtgggagcct

cagctagaccccagctggcttgcccccccatgccccggcca

agagagggtcttggagggaagggggaccccagaccagcctg

gcgagcccatcctcagggtctctggtcagacaggggctcag

ctgagctccagggtagaccaaggccctgcgtggatgaggcc

agtgtggtcactgcccagagcaaagccacctctcagcagcc

ctttcctgagcaccttctgtgtgcggggacatcagcagtgg

caacacagccatgctggggactcagggctagagacagggga

ccagcctatggagagtgggtagtgtcctgcagggcaggctt

gtgccctggagaaaacaaaccagggtgaggccagggacgct

ggccgggttcacagggtgatggctgagcacagagtgccagg

ggctggactgtcctgactctgggttggtggctgagggcctg

tgtccctctatgcctctgggttggtgataatggaaacttgc

tccctggagagacaggacgaatggttgatgggaaatgaatg

tttgcttgtcacttggttgactgttgttgccgttagcattg

ggcttcttgggccaggcagcctcaggccagcactgctgggc

tccccacaggcccgacaccctcagccctgtgcagctggcct

ggcgaaaccaagaggccctgatgcccaaaatagccgggaaa

ccccaaccagcccagccctggcagcaggtgcctcccatttg

cctgggctgggggaggggtggctctggttctggaagtttct

gccagtccagctggagaagggacctgtatcccagcacccag

gccgcccaagcccctgcaccagggcctgggccaggcagagt

tgacatcaatcaattgggagctgctggaatgcatggaggcg

gcgctctcgaggctggaggaggccagctgatttaaatcggt

ccgcgtacgatgcatattaccctgttatccctaccgcggtt

actggccgtcgttttacaacgtcgtgactgggaaaaccctg

gcgatgctcttctcccggtgaaaacctctgacacatggctc

ttctaaatccggagtttaaacgcttccttcatgtgagcaaa

aggccagcaaaaggccaggaaccgtaaaaaggccgcgttgc

tggcgtttttccataggctccgcccccctgacgagcatcac

aaaaatcgacgctcaagtcagaggtggcgaaacccgacagg

actataaagataccaggcgtttccccctggaagctccctcg

tgcgctctcctgttccgaccctgccgcttaccggatacctg

tccgcctttctcccttcgggaagcgtggcgctttctcatag

ctcacgctgtaggtatctcagttcggtgtaggtcgttcgct

ccaagctgggctgtgtgcacgaaccccccgttcagcccgac

cgctgcgccttatccggtaactatcgtcttgagtccaaccc

ggtaagacacgacttatcgccactggcagcagccactggta

acaggattagcagagcgaggtatgtaggcggtgctacagag

ttcttgaagtggtggcctaactacggctacactagaaggac

agtatttggtatctgcgctctgctgaagccagttaccttcg

gaaaaagagttggtagctcttgatccggcaaacaaaccacc

gctggtagcggtggtttttttgtttgcaagcagcagattac

gcgcagaaaaaaaggatctcaagaagatcctttgatctttt

ctacggggtctgacgctcagtggaacgaaaactcacgttaa

gggattttggtcatgcctaggtggcaaacagctattatggg

tattatgggtctaccggtgcatgagattatcaaaaaggatc

ttcacctagatccttttaaattaaaaatgaagttttaaatc

aatctaaagtatatatgagtaaacttggtctgacagttacc

aatgcttaatcagtgaggcacctatctcagcgatctgtcta

tttcgttcatccatagttgcctgactccccgtcgtgtagat

aactacgatacgggagggcttaccatctggccccagtgctg

caatgataccgcgagacccacgctcaccggctccagattta

tcagcaataaaccagccagccggaagggccgagcgcagaag

tggtcctgcaactttatccgcctccatccagtctattaatt

gttgccgggaagctagagtaagtagttcgccagttaatagt

ttgcgcaacgttgttgccattgctacaggcatcgtggtgtc

acgctcgtcgtttggtatggcttcattcagctccggttccc

aacgatcaaggcgagttacatgatcccccatgttgtgcaaa

aaagcggttagctccttcggtcctccgatcgttgtcagaag

taagttggccgcagtgttatcactcatggttatggcagcac

tgcataattctcttactgtcatgccatccgtaagatgcttt

tctgtgactggtgagtactcaaccaagtcattctgagaata

gtgtatgcggcgaccgagttgctcttgcccggcgtcaatac

gggataataccgcgccacatagcagaactttaaaagtgctc

atcattggaaaacgttcttcggggcgaaaactctcaaggat

cttaccgctgttgagatccagttcgatgtaacccactcgtg

cacccaactgatcttcagcatcttttactttcaccagcgtt

tctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaa

gggaataagggcgacacggaaatgttgaatactcatactct

tcctttttcaatattattgaagcatttatcagggttattgt

ctcgggagcggatacatatttgaatgtatttagaaaaa

The two-step strategy outline above, utilizing a vector pair, can be used to delete the entire J/C cluster region (i.e., all J/C units), multiple J/C units or an individual J/C unit.

Selectable Marker Genes

The DNA constructs can be designed to modify the endogenous, target immunoglobulin gene. The homologous sequence for targeting the construct can have one or more deletions, insertions, substitutions or combinations thereof. The alteration can be the insertion of a selectable marker gene fused in reading frame with the upstream sequence of the target gene.

Suitable selectable marker genes include, but are not limited to: genes conferring the ability to grow on certain media substrates, such as the tk gene (thymidine kinase) or the hprt gene (hypoxanthine phosphoribosyltransferase) which confer the ability to grow on HAT medium (hypoxanthine, aminopterin and thymidine); the bacterial gpt gene (guanine/xanthine phosphoribosyltransferase) which allows growth on MAX medium (mycophenolic acid, adenine, and xanthine). See, for example, Song, K-Y., et al. Proc. Nat'l Acad. Sci. U.S.A. 84:6820-6824 (1987); Sambrook, J., et al., Molecular Cloning—A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1989), Chapter 16. Other examples of selectable markers include: genes conferring resistance to compounds such as antibiotics, genes conferring the ability to grow on selected substrates, genes encoding proteins that produce detectable signals such as luminescence, such as green fluorescent protein, enhanced green fluorescent protein (eGFP). A wide variety of such markers are known and available, including, for example, antibiotic resistance genes such as the neomycin resistance gene (neo) (Southern, P., and P. Berg, J. Mol. Appl. Genet. 1:327-341 (1982)); and the hygromycin resistance gene (hyg) (Nucleic Acids Research 11:6895-6911 (1983), and Te Riele, H., et al., Nature 348:649-651 (1990)). Other selectable marker genes include: acetohydroxyacid synthase (AHAS), alkaline phosphatase (AP), beta galactosidase (LacZ), beta glucoronidase (GUS), chloramphenicol acetyltransferase (CAT), green fluorescent protein (GFP), red fluorescent protein (RFP), yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), horseradish peroxidase (HRP), luciferase (Luc), nopaline synthase (NOS), octopine synthase (OCS), and derivatives thereof. Multiple selectable markers are available that confer resistance to ampicillin, bleomycin, chloramphenicol, gentamycin, hygromycin, kanamycin, lincomycin, methotrexate, phosphinothricin, puromycin, and tetracycline.

Methods for the incorporation of antibiotic resistance genes and negative selection factors will be familiar to those of ordinary skill in the art (see, e.g., WO 99/15650; U.S. Pat. No. 6,080,576; U.S. Pat. No. 6,136,566; Niwa et al., J. Biochem. 113:343-349 (1993); and Yoshida et al., Transgenic Research 4:277-287 (1995)).

Combinations of selectable markers can also be used. For example, to target an immunoglobulin gene, a neo gene (with or without its own promoter, as discussed above) can be cloned into a DNA sequence which is homologous to the immunoglobulin gene. To use a combination of markers, the HSV-tk gene can be cloned such that it is outside of the targeting DNA (another selectable marker could be placed on the opposite flank, if desired). After introducing the DNA construct into the cells to be targeted, the cells can be selected on the appropriate antibiotics. In this particular example, those cells which are resistant to G418 and gancyclovir are most likely to have arisen by homologous recombination in which the neo gene has been recombined into the immunoglobulin gene but the tk gene has been lost because it was located outside the region of the double crossover.

Deletions can be at least about 50 bp, more usually at least about 100 bp, and generally not more than about 20 kbp, where the deletion can normally include at least a portion of the coding region including a portion of or one or more exons, a portion of or one or more introns, and can or can not include a portion of the flanking non-coding regions, particularly the 5′-non-coding region (transcriptional regulatory region). Thus, the homologous region can extend beyond the coding region into the 5′-non-coding region or alternatively into the 3′-non-coding region. Insertions can generally not exceed 10 kbp, usually not exceed 5 kbp, generally being at least 50 bp, more usually at least 200 bp.

The region(s) of homology can include mutations, where mutations can further inactivate the target gene, in providing for a frame shift, or changing a key amino acid, or the mutation can correct a dysfunctional allele, etc. The mutation can be a subtle change, not exceeding about 5% of the homologous flanking sequences. Where mutation of a gene is desired, the marker gene can be inserted into an intron or an exon.

The construct can be prepared in accordance with methods known in the art, various fragments can be brought together, introduced into appropriate vectors, cloned, analyzed and then manipulated further until the desired construct has been achieved. Various modifications can be made to the sequence, to allow for restriction analysis, excision, identification of probes, etc. Silent mutations can be introduced, as desired. At various stages, restriction analysis, sequencing, amplification with the polymerase chain reaction, primer repair, in vitro mutagenesis, etc. can be employed.

The construct can be prepared using a bacterial vector, including a prokaryotic replication system, e.g. an origin recognizable by E. coli, at each stage the construct can be cloned and analyzed. A marker, the same as or different from the marker to be used for insertion, can be employed, which can be removed prior to introduction into the target cell. Once the vector containing the construct has been completed, it can be further manipulated, such as by deletion of the bacterial sequences, linearization, introducing a short deletion in the homologous sequence. After final manipulation, the construct can be introduced into the cell.

The present invention further includes recombinant constructs containing sequences of immunoglobulin genes. The constructs comprise a vector, such as a plasmid or viral vector, into which a sequence of the invention has been inserted, in a forward or reverse orientation. The construct can also include regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and are commercially available. The following vectors are provided by way of example. Bacterial: pBs, pQE-9 (Qiagen), phagescript, PsiX174, pBluescript SK, pBsKS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLneo, pSv2cat, pOG44, pXT1, pSG (Stratagene) pSVK3, pBPv, pMSG, pSVL (Pharmiacia), viral origin vectors (M13 vectors, bacterial phage 1 vectors, adenovirus vectors, and retrovirus vectors), high, low and adjustable copy number vectors, vectors which have compatible replicons for use in combination in a single host (pACYC184 and pBR322) and eukaryotic episomal replication vectors (pCDM8). Other vectors include prokaryotic expression vectors such as pcDNA II, pSL301, pSE280, pSE380, pSE420, pTrcHisA, B, and C, pRSET A, B, and C (Invitrogen, Corp.), pGEMEX-1, and pGEMEX-2 (Promega, Inc.), the pET vectors (Novagen, Inc.), pTrc99A, pKK223-3, the pGEX vectors, pEZZ18, pRIT2T, and pMC1871 (Pharmacia, Inc.), pKK233-2 and pKK388-1 (Clontech, Inc.), and pProEx-HT (Invitrogen, Corp.) and variants and derivatives thereof. Other vectors include eukaryotic expression vectors such as pFastBac, pFastBacHT, pFastBacDUAL, pSFV, and pTet-Splice (Invitrogen), pEUK-C1, pPUR, pMAM, pMAMneo, pBI101, pBI121, pDR2, pCMVEBNA, and pYACneo (Clontech), pSVK3, pSVL, pMSG, pCH110, and pKK232-8 (Pharmacia, Inc.), p3′SS, pXT1, pSG5, pPbac, pMbac, pMC1neo, and pOG44 (Stratagene, Inc.), and pYES2, pAC360, pBlueBacHis A, B, and C, pVL1392, pBlueBacIII, pCDM8, pcDNA1, pZeoSV, pcDNA3 pREP4, pCEP4, and pEBVHis (Invitrogen, Corp.) and variants or derivatives thereof. Additional vectors that can be used include: pUC18, pUC19, pBlueScript, pSPORT, cosmids, phagemids, YAC's (yeast artificial chromosomes), BAC's (bacterial artificial chromosomes), P1 (Escherichia coli phage), pQE70, pQE60, pQE9 (quagan), pBS vectors, PhageScript vectors, BlueScript vectors, pNH8A, pNH116A, pNH18A, pNH46A (Stratagene), pcDNA3 (Invitrogen), pGEX, pTrsfus, pTrc99A, pET-5, pET-9, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia), pSPORT1, pSPORT2, pCMVSPORT2.0 and pSV-SPORT1 (Invitrogen), pTrxFus, pThioHis, pLEX, pTrcHis, pTrcHis2, pRSET, pBlueBacHis2, pcDNA3.1/His, pcDNA3.1(−)/Myc-His, pSecTag, pEBVHis, pPIC9K, pPIC3.5K, pAO815, pPICZ, pPICZ□, pGAPZ, pGAPZ□, pBlueBac4.5, pBlueBacHis2, pMelBac, pSinRep5, pSinHis, pIND, pIND(SP1), pVgRXR, pcDNA2.1, pYES2, pZErO1.1, pZErO-2.1, pCR-Blunt, pSE280, pSE380, pSE420, pVL1392, pVL1393, pCDM8, pcDNA1.1, pcDNA1.1/Amp, pcDNA3.1, pcDNA3.1/Zeo, pSe, SV2, pRc/CMV2, pRc/RSV, pREP4, pREP7, pREP8, pREP9, pREP 10, pCEP4, pEBVHis, pCR3.1, pCR2.1, pCR3.1-Uni, and pCRBac from Invitrogen; □ ExCell, □ gt11, pTrc99A, pKK223-3, pGEX-1□T, pGEX-2T, pGEX-2TK, pGEX-4T-1, pGEX-4T-2, pGEX-4T-3, pGEX-3X, pGEX-5X-1, pGEX-5X-2, pGEX-5X-3, pEZZ18, pRIT2T, pMC1871, pSVK3, pSVL, pMSG, pCH110, pKK232-8, pSL1180, pNEO, and pUC4K from Pharmacia; pSCREEN-1b(+), pT7Blue(R), pT7Blue-2, pCITE-4abc(+), pOCUS-2, pTAg, pET-32LIC, pET-30LIC, pBAC-2 cp LIC, pBACgus-2 cp LIC, pT7Blue-2 LIC, pT7Blue-2, □SCREEN-1, □BlueSTAR, pET-3abcd, pET-7abc, pET9abcd, pET11abcd, pET12abc, pET-14b, pET-15b, pET-16b, pET-17b-pET-17xb, pET-19b, pET-20b(+), pET-21abcd(+), pET-22b(+), pET-23abcd(+), pET-24abcd(+), pET-25b(+), pET-26b(+), pET-27b(+), pET-28abc(+), pET-29abc(+), pET-30abc(+), pET-31b(+), pET-32abc(+), pET-33b(+), pBAC-1, pBACgus-1, pBAC4x-1, pBACgus4x-1, pBAC-3 cp, pBACgus-2 cp, pBACsurf-1, plg, Signal plg, pYX, Selecta Vecta-Neo, Selecta Vecta-Hyg, and Selecta Vecta-Gpt from Novagen; pLexA, pB42AD, pGBT9, pAS2-1, pGAD424, pACT2, pGAD GL, pGAD GH, pGAD10, pGilda, pEZM3, pEGFP, pEGFP-1, pEGFP-N, pEGFP-C, pEBFP, pGFPuv, pGFP, p6xHis-GFP, pSEAP2-Basic, pSEAP2-Contral, pSEAP2-Promoter, pSEAP2-Enhancer, p□gal-Basic, p□gal-Control, p□gal-Promoter, p□gal-Enhancer, pCMV□, pTet-Off, pTet-On, pTK-Hyg, pRetro-Off, pRetro-On, pIRES1neo, pIRES1hyg, pLXSN, pLNCX, pLAPSN, pMAMneo, pMAMneo-CAT, pMAMneo-LUC, pPUR, pSV2neo, pYEX4T-1/2/3, pYEX-S1, pBacPAK-His, pBacPAK8/9, pAcUW31, BacPAK6, pTrip1Ex, □gt10, □gt11, pWE15, and □Trip1Ex from Clontech; Lambda ZAP II, pBK-CMV, pBK-RSV, pBluescript II KS +/−, pBluescript II SK +/−, pAD-GAL4, pBD-GAL4 Cam, pSurfscript, Lambda FIX II, Lambda DASH, Lambda EMBL3, Lambda EMBL4, SuperCos, pCR-Scrigt Amp, pCR-Script Cam, pCR-Script Direct, pBS +/−, pBC KS +/−, pBC SK +/−, Phagescript, pCAL-n-EK, pCAL-n, pCAL-c, pCAL-kc, pET-3abcd, pET-11abcd, pSPUTK, pESP-1, pCMVLacI, pOPRSVI/MCS, pOPI3 CAT, pXT1, pSG5, pPbac, pMbac, pMC1neo, pMC1neo Poly A, pOG44, pOG45, pFRT□GAL, pNEO□GAL, pRS403, pRS404, pRS405, pRS406, pRS413, pRS414, pRS415, and pRS416 from Stratagene and variants or derivatives thereof. Two-hybrid and reverse two-hybrid vectors can also be used, for example, pPC86, pDBLeu, pDBTrp, pPC97, p2.5, pGAD1-3, pGAD10, pACt, pACT2, pGADGL, pGADGH, pAS2-1, pGAD424, pGBT8, pGBT9, pGAD-GAL4, pLexA, pBD-GAL4, pHISi, pHISi-1, placZi, pB42AD, pDG202, pJK202, pJG4-5, pNLexA, pYESTrp and variants or derivatives thereof. Any other plasmids and vectors may be used as long as they are replicable and viable in the host.

Techniques which can be used to allow the DNA construct entry into the host cell include, for example, calcium phosphate/DNA co precipitation, microinjection of DNA into the nucleus, electroporation, bacterial protoplast fusion with intact cells, transfection, or any other technique known by one skilled in the art. The DNA can be single or double stranded, linear or circular, relaxed or supercoiled DNA. For various techniques for transfecting mammalian cells, see, for example, Keown et al., Methods in Enzymology Vol. 185, pp. 527-537 (1990).

In one specific embodiment, heterozygous or homozygous knockout cells can be produced by transfection of primary fetal fibroblasts with a knockout vector containing immunoglobulin gene sequence isolated from isogenic DNA. In another embodiment, the vector can incorporate a promoter trap strategy, using, for example, IRES (internal ribosome entry site) to initiate translation of the Neor gene.

Site Specific Recombinases

In additional embodiments, the targeting constructs can contain site specific recombinase sites, such as, for example, lox. In one embodiment, the targeting arms can insert the site specific recombinase target sites into the targeted region such that one site specific recombinase target site is located 5′ to the second site specific recombinase target site. Then, the site specific recombinase can be activated and/or applied to the cell such that the intervening nucleotide sequence between the two site specific recombinase sites is excised.

Site-specific recombinases include enzymes or recombinases that recognize and bind to a short nucleic acid site or sequence-specific recombinase target site, i.e., a recombinase recognition site, and catalyze the recombination of nucleic acid in relation to these sites. These enzymes include recombinases, transposases and integrases. Examples of sequence-specific recombinase target sites include, but are not limited to, lox sites, att sites, dif sites and frt sites. Non-limiting examples of site-specific recombinases include, but are not limited to, bacteriophage P1 Cre recombinase, yeast FLP recombinase, Inti integrase, bacteriophage λ, phi 80, P22, P2, 186, and P4 recombinase, Tn3 resolvase, the Hin recombinase, and the Cin recombinase, E. coli xerC and xerD recombinases, Bacillus thuringiensis recombinase, TpnI and the β-lactamase transposons, and the immunoglobulin recombinases.

In one embodiment, the recombination site can be a lox site that is recognized by the Cre recombinase of bacteriophage P1. Lox sites refer to a nucleotide sequence at which the product of the cre gene of bacteriophage P1, the Cre recombinase, can catalyze a site-specific recombination event. A variety of lox sites are known in the art, including the naturally occurring loxP, loxB, loxL and loxR, as well as a number of mutant, or variant, lox sites, such as loxP511, loxP514, lox.DELTA.86, lox.DELTA.117, loxC2, loxP2, loxP3 and lox P23. Additional example of lox sites include, but are not limited to, loxB, loxL, loxR, loxP, loxP3, loxP23, loxΔ86, loxΔ117, loxP511, and loxC2.

In another embodiment, the recombination site is a recombination site that is recognized by a recombinases other than Cre. In one embodiment, the recombinase site can be the FRT sites recognized by FLP recombinase of the 2 pi plasmid of Saccharomyces cerevisiae. FRT sites refer to a nucleotide sequence at which the product of the FLP gene of the yeast 2 micron plasmid, FLP recombinase, can catalyze site-specific recombination. Additional examples of the non-Cre recombinases include, but are not limited to, site-specific recombinases include: att sites recognized by the Int recombinase of bacteriophage λ (e.g. att1, att2, att3, attP, attB, attL, and attR), the recombination sites recognized by the resolvase family, and the recombination site recognized by transposase of Bacillus thruingiensis.

In particular embodiments of the present invention, the targeting constructs can contain: sequence homologous to a porcine immunoglobulin gene as described herein, a selectable marker gene and/or a site specific recombinase target site.

Selection of Homologously Recombined Cells

The cells can then be grown in appropriately-selected medium to identify cells providing the appropriate integration. The presence of the selectable marker gene inserted into the immunoglobulin gene establishes the integration of the target construct into the host genome. Those cells which show the desired phenotype can then be further analyzed by restriction analysis, electrophoresis, Southern analysis, polymerase chain reaction, etc to analyze the DNA in order to establish whether homologous or non-homologous recombination occurred. This can be determined by employing probes for the insert and then sequencing the 5′ and 3′ regions flanking the insert for the presence of the immunoglobulin gene extending beyond the flanking regions of the construct or identifying the presence of a deletion, when such deletion is introduced. Primers can also be used which are complementary to a sequence within the construct and complementary to a sequence outside the construct and at the target locus. In this way, one can only obtain DNA duplexes having both of the primers present in the complementary chains if homologous recombination has occurred. By demonstrating the presence of the primer sequences or the expected size sequence, the occurrence of homologous recombination is supported.

The polymerase chain reaction used for screening homologous recombination events is known in the art, see, for example, Kim and Smithies, Nucleic Acids Res. 16:8887-8903, 1988; and Joyner et al., Nature 338:153-156, 1989. The specific combination of a mutant polyoma enhancer and a thymidine kinase promoter to drive the neomycin gene has been shown to be active in both embryonic stem cells and EC cells by Thomas and Capecchi, supra, 1987; Nicholas and Berg (1983) in Teratocarcinoma Stem Cell, eds. Siver, Martin and Strikland (Cold Spring Harbor Lab., Cold Spring Harbor, N.Y. (pp. 469-497); and Linney and Donerly, Cell 35:693-699, 1983.

The cell lines obtained from the first round of targeting are likely to be heterozygous for the targeted allele. Homozygosity, in which both alleles are modified, can be achieved in a number of ways. One approach is to grow up a number of cells in which one copy has been modified and then to subject these cells to another round of targeting using a different selectable marker. Alternatively, homozygotes can be obtained by breeding animals heterozygous for the modified allele, according to traditional Mendelian genetics. In some situations, it can be desirable to have two different modified alleles. This can be achieved by successive rounds of gene targeting or by breeding heterozygotes, each of which carries one of the desired modified alleles.

Identification of Cells that have Undergone Homologous Recombination

In one embodiment, the selection method can detect the depletion of the immunoglobulin gene directly, whether due to targeted knockout of the immunoglobulin gene by homologous recombination, or a mutation in the gene that results in a nonfunctioning or nonexpressed immunoglobulin. Selection via antibiotic resistance has been used most commonly for screening (see above). This method can detect the presence of the resistance gene on the targeting vector, but does not directly indicate whether integration was a targeted recombination event or a random integration. Certain technology, such as Poly A and promoter trap technology, increase the probability of targeted events, but again, do not give direct evidence that the desired phenotype, a cell deficient in immunoglobulin gene expression, has been achieved. In addition, negative forms of selection can be used to select for targeted integration; in these cases, the gene for a factor lethal to the cells is inserted in such a way that only targeted events allow the cell to avoid death. Cells selected by these methods can then be assayed for gene disruption, vector integration and, finally, immunoglobulin gene depletion. In these cases, since the selection is based on detection of targeting vector integration and not at the altered phenotype, only targeted knockouts, not point mutations, gene rearrangements or truncations or other such modifications can be detected.

Animal cells believed to lacking expression of functional immunoglobulin genes can be further characterized. Such characterization can be accomplished by the following techniques, including, but not limited to: PCR analysis, Southern blot analysis, Northern blot analysis, specific lectin binding assays, and/or sequencing analysis.

PCR analysis as described in the art can be used to determine the integration of targeting vectors. In one embodiment, amplimers can originate in the antibiotic resistance gene and extend into a region outside the vector sequence. Southern analysis can also be used to characterize gross modifications in the locus, such as the integration of a targeting vector into the immunoglobulin locus. Whereas, Northern analysis can be used to characterize the transcript produced from each of the alleles.

Further, sequencing analysis of the cDNA produced from the RNA transcript can also be used to determine the precise location of any mutations in the immunoglobulin allele.

In another aspect of the present invention, ungulate cells lacking at least one allele of a functional region of an ungulate heavy chain, kappa light chain and/or lambda light chain locus produced according to the process, sequences and/or constructs described herein are provided. These cells can be obtained as a result of homologous recombination. Particularly, by inactivating at least one allele of an ungulate heavy chain, kappa light chain or lambda light chain gene, cells can be produced which have reduced capability for expression of porcine antibodies. In other embodiments, mammalian cells lacking both alleles of an ungulate heavy chain, kappa light chain and/or lambda light chain gene can be produced according to the process, sequences and/or constructs described herein. In a further embodiment, porcine animals are provided in which at least one allele of an ungulate heavy chain, kappa light chain and/or lambda light chain gene is inactivated via a genetic targeting event produced according to the process, sequences and/or constructs described herein. In another aspect of the present invention, porcine animals are provided in which both alleles of an ungulate heavy chain, kappa light chain and/or lambda light chain gene are inactivated via a genetic targeting event. The gene can be targeted via homologous recombination. In other embodiments, the gene can be disrupted, i.e. a portion of the genetic code can be altered, thereby affecting transcription and/or translation of that segment of the gene. For example, disruption of a gene can occur through substitution, deletion (“knock-out”) or insertion (“knock-in”) techniques. Additional genes for a desired protein or regulatory sequence that modulate transcription of an existing sequence can be inserted.

In embodiments of the present invention, alleles of ungulate heavy chain, kappa light chain or lambda light chain gene are rendered inactive according to the process, sequences and/or constructs described herein, such that functional ungulate immunoglobulins can no longer be produced. In one embodiment, the targeted immunoglobulin gene can be transcribed into RNA, but not translated into protein. In another embodiment, the targeted immunoglobulin gene can be transcribed in an inactive truncated form. Such a truncated RNA may either not be translated or can be translated into a nonfunctional protein. In an alternative embodiment, the targeted immunoglobulin gene can be inactivated in such a way that no transcription of the gene occurs. In a further embodiment, the targeted immunoglobulin gene can be transcribed and then translated into a nonfunctional protein.

III. Insertion of Artificial Chromosomes Containing Human Immunoglobulin Genes

Artificial Chromosomes

One aspect of the present invention provides ungulates and ungulate cells that lack at least one allele of a functional region of an ungulate heavy chain, kappa light chain and/or lambda light chain locus produced according to the processes, sequences and/or constructs described herein, which are further modified to express at least part of a human antibody (i.e. immunoglobulin (Ig)) locus. This human locus can undergo rearrangement and express a diverse population of human antibody molecules in the ungulate. These cloned, transgenic ungulates provide a replenishable, theoretically infinite supply of human antibodies (such as polyclonal antibodies), which can be used for therapeutic, diagnostic, purification, and other clinically relevant purposes.

In one particular embodiment, artificial chromosome (ACs) can be used to accomplish the transfer of human immunoglobulin genes into ungulate cells and animals. ACs permit targeted integration of megabase size DNA fragments that contain single or multiple genes. The ACs, therefore, can introduce heterologous DNA into selected cells for production of the gene product encoded by the heterologous DNA. In a one embodiment, one or more ACs with integrated human immunoglobulin DNA can be used as a vector for introduction of human Ig genes into ungulates (such as pigs).

First constructed in yeast in 1983, ACs are man-made linear DNA molecules constructed from essential cis-acting DNA sequence elements that are responsible for the proper replication and partitioning of natural chromosomes (Murray et al. (1983), Nature 301:189-193). A chromosome requires at least three elements to function. Specifically, the elements of an artificial chromosome include at least: (1) autonomous replication sequences (ARS) (having properties of replication origins—which are the sites for initiation of DNA replication), (2) centromeres (site of kinetochore assembly that is responsible for proper distribution of replicated chromosomes at mitosis and meiosis), and (3) telomeres (specialized structures at the ends of linear chromosomes that function to both stabilize the ends and facilitate the complete replication of the extreme termini of the DNA molecule).

In one embodiment, the human Ig can be maintained as an independent unit (an episome) apart from the ungulate chromosomal DNA. For example, episomal vectors contain the necessary DNA sequence elements required for DNA replication and maintenance of the vector within the cell. Episomal vectors are available commercially (see, for example, Maniatis, T. et al., Molecular Cloning, A Laboratory Manual (1982) pp. 368-369). The AC can stably replicate and segregate along side endogenous chromosomes. In an alternative embodiment, the human IgG DNA sequences can be integrated into the ungulate cell's chromosomes thereby permitting the new information to be replicated and partitioned to the cell's progeny as a part of the natural chromosomes (see, for example, Wigler et al. (1977), Cell 11:223). The AC can be translocated to, or inserted into, the endogenous chromosome of the ungulate cell. Two or more ACs can be introduced to the host cell simultaneously or sequentially.

ACs, furthermore, can provide an extra-genomic locus for targeted integration of megabase size DNA fragments that contain single or multiple genes, including multiple copies of a single gene operatively linked to one promoter or each copy or several copies linked to separate promoters. ACs can permit the targeted integration of megabase size DNA fragments that contain single or multiple human immunoglobulin genes. The ACs can be generated by culturing the cells with dicentric chromosomes (i.e., chromosomes with two centromeres) under such conditions known to one skilled in the art whereby the chromosome breaks to form a minichromosome and formerly dicentric chromosome.

ACs can be constructed from humans (human artificial chromosomes: “HACs”), yeast (yeast artificial chromosomes: “YACs”), bacteria (bacterial artificial chromosomes: “BACs”), bacteriophage P1-derived artificial chromosomes: “PACs”) and other mammals (mammalian artificial chromosomes: “MACs”). The ACs derive their name (e.g., YAC, BAC, PAC, MAC, HAC) based on the origin of the centromere. A YAC, for example, can derive its centromere from S. cerevisiae. MACs, on the other hand, include an active mammalian centromere while HACs refer to chromosomes that include human centromeres. Furthermore, plant artificial chromosomes (“PLACs”) and insect artificial chromosomes can also be constructed. The ACs can include elements derived from chromosomes that are responsible for both replication and maintenance. ACs, therefore, are capable of stably maintaining large genomic DNA fragments such as human Ig DNA.

In one embodiment, ungulates containing YACs are provided. YACs are genetically engineered circular chromosomes that contain elements from yeast chromosomes, such as S. cerevisiae, and segments of foreign DNAs that can be much larger than those accepted by conventional cloning vectors (e.g., plasmids, cosmids). YACs allow the propagation of very large segments of exogenous DNA (Schlessinger, D. (1990), Trends in Genetics 6:248-253) into mammalian cells and animals (Choi et al. (1993), Nature Gen 4:117-123). YAC transgenic approaches are very powerful and are greatly enhanced by the ability to efficiently manipulate the cloned DNA. A major technical advantage of yeast is the ease with which specific genome modifications can be made via DNA-mediated transformation and homologous recombination (Ramsay, M. (1994), Mol Biotech 1:181-201). In one embodiment, one or more YACs with integrated human Ig DNA can be used as a vector for introduction of human Ig genes into ungulates (such as pigs).

The YAC vectors contain specific structural components for replication in yeast, including: a centromere, telomeres, autonomous replication sequence (ARS), yeast selectable markers (e.g., TRP1, URA3, and SUP4), and a cloning site for insertion of large segments of greater than 50 kb of exogenous DNA. The marker genes can allow selection of the cells carrying the YAC and serve as sites for the synthesis of specific restriction endonucleases. For example, the TRP1 and URA3 genes can be used as dual selectable markers to ensure that only complete artificial chromosomes are maintained. Yeast selectable markers can be carried on both sides of the centromere, and two sequences that seed telomere formation in vivo are separated. Only a fraction of one percent of a yeast cell's total DNA is necessary for replication, however, including the center of the chromosome (the centromere, which serves as the site of attachment between sister chromatids and the sites of spindle fiber attachment during mitosis), the ends of the chromosome (telomeres, which serve as necessary sequences to maintain the ends of eukaryotic chromosomes), and another short stretch of DNA called the ARS which serves as DNA segments where the double helix can unwind and begin to copy itself.

In one embodiment, YACs can be used to clone up to about 1, 2, or 3 Mb of immunoglobulin DNA. In another embodiment, at least 25, 30, 40, 50, 60, 70, 75, 80, 85, 90, or 95 kilobases.

Yeast integrating plasmids, replicating vectors (which are fragments of YACs), can also be used to express human Ig. The yeast integrating plasmid can contain bacterial plasmid sequences that provide a replication origin and a drug-resistance gene for growth in bacteria (e.g., E. coli), a yeast marker gene for selection of transformants in yeast, and restriction sites for inserting Ig sequences. Host cells can stably acquire this plasmid by integrating it directly into a chromosome. Yeast replicating vectors can also be used to express human Ig as free plasmid circles in yeast. Yeast or ARS-containing vectors can be stabilized by the addition of a centromere sequence. YACs have both centromeric and telomeric regions, and can be used for cloning very large pieces of DNA because the recombinant is maintained essentially as a yeast chromosome.

YACs are provided, for example, as disclosed in U.S. Pat. Nos. 6,692,954, 6,495,318, 6,391,642, 6,287,853, 6,221,588, 6,166,288, 6,096,878, 6,015,708, 5,981,175, 5,939,255, 5,843,671, 5,783,385, 5,776,745, 5,578,461, and 4,889,806; European Patent Nos. 1 356 062 and 0 648 265; PCT Publication Nos. WO 03/025222, WO 02/057437, WO 02/101044, WO 02/057437, WO 98/36082, WO 98/12335, WO 98/01573, WO 96/01276, WO 95/14769, WO 95/05847, WO 94/23049, and WO 94/00569.

In another embodiment, ungulates containing BACs are provided. BACs are F-based plasmids found in bacteria, such as E. Coli, that can transfer approximately 300 kb of foreign DNA into a host cell. Once the Ig DNA has been cloned into the host cell, the newly inserted segment can be replicated along with the rest of the plasmid. As a result, billions of copies of the foreign DNA can be made in a very short time. In a particular embodiment, one or more BACs with integrated human Ig DNA are used as a vector for introduction of human Ig genes into ungulates (such as pigs).

The BAC cloning system is based on the E. coli F-factor, whose replication is strictly controlled and thus ensures stable maintenance of large constructs (Willets, N., and R. Skurray (1987), Structure and function of the F-factor and mechanism of conjugation. In Escherichia coli and Salmonella Typhimurium: Cellular and Molecular Biology (F. C. Neidhardt, Ed) Vol. 2 pp 1110-1133, Am. Soc. Microbiol., Washington, D.C.). BACs have been widely used for cloning of DNA from various eukaryotic species (Cai et al. (1995), Genomics 29:413-425; Kim et al. (1996), Genomics 34:213-218; Misumi et al. (1997), Genomics 40:147-150; Woo et al. (1994), Nucleic Acids Res 22:4922-4931; Zimmer, R. and Gibbins, A.M.V. (1997), Genomics 42:217-226). The low occurrence of the F-plasmid can reduce the potential for recombination between DNA fragments and can avoid the lethal overexpression of cloned bacterial genes. BACs can stably maintain the human immunoglobulin genes in a single copy vector in the host cells, even after 100 or more generations of serial growth.

BAC (or pBAC) vectors can accommodate inserts in the range of approximately 30 to 300 kb pairs. One specific type of BAC vector, pBeloBac11, uses a complementation of the lacZ gene to distinguish insert-containing recombinant molecules from colonies carrying the BAC vector, by color. When a DNA fragment is cloned into the lacZ gene of pBeloBac11, insertional activation results in a white colony on X-Gal/IPTG plates after transformation (Kim et al. (1996), Genomics 34:213-218) to easily identify positive clones.

For example, BACs can be provided such as disclosed in U.S. Pat. Nos. 6,713,281, 6,703,198, 6,649,347, 6,638,722, 6,586,184, 6,573,090, 6,548,256, 6,534,262, 6,492,577, 6,492,506, 6,485,912, 6,472,177, 6,455,254, 6,383,756, 6,277,621, 6,183,957, 6,156,574, 6,127,171, 5,874,259, 5,707,811, and 5,597,694; European Patent Nos. 0 805 851; PCT Publication Nos. WO 03/087330, WO 02/00916, WO 01/39797, WO 01/04302, WO 00/79001, WO 99/54487, WO 99/27118, and WO 96/21725.

In another embodiment, ungulates containing bacteriophage PACs are provided. In a particular embodiment, one or more bacteriophage PACs with integrated human Ig DNA are used as a vector for introduction of human Ig genes into ungulates (such as pigs). For example, PACs can be provided such as disclosed in U.S. Pat. Nos. 6,743,906, 6,730,500, 6,689,606, 6,673,909, 6,642,207, 6,632,934, 6,573,090, 6,544,768, 6,489,458, 6,485,912, 6,469,144, 6,462,176, 6,413,776, 6,399,312, 6,340,595, 6,287,854, 6,284,882, 6,277,621, 6,271,008, 6,187,533, 6,156,574, 6,153,740, 6,143,949, 6,017,755, and 5,973,133; European Patent Nos. 0 814 156; PCT Publication Nos. WO 03/091426, WO 03/076573, WO 03/020898, WO 02/101022, WO 02/070696, WO 02/061073, WO 02/31202, WO 01/44486, WO 01/07478, WO 01/05962, and WO 99/63103.

In a further embodiment, ungulates containing MACs are provided. MACs possess high mitotic stability, consistent and regulated gene expression, high cloning capacity, and non-immunogenicity. Mammalian chromosomes can be comprised of a continuous linear strand of DNA ranging in size from approximately 50 to 250 Mb. The DNA construct can further contain one or more sequences necessary for the DNA construct to multiply in yeast cells. The DNA construct can also contain a sequence encoding a selectable marker gene. The DNA construct can be capable of being maintained as a chromosome in a transformed cell with the DNA construct. MACs provide extra-genomic specific integration sites for introduction of genes encoding proteins of interest and permit megabase size DNA integration so that, for example, genes encoding an entire metabolic pathway, a very large gene [e.g., such as the cystic fibrosis (CF) gene (−600 kb)], or several genes [e.g., a series of antigens for preparation of a multivalent vaccine] can be stably introduced into a cell.

Mammalian artificial chromosomes [MACs] are provided. Also provided are artificial chromosomes for other higher eukaryotic species, such as insects and fish, produced using the MACS are provided herein. Methods for generating and isolating such chromosomes. Methods using the MACs to construct artificial chromosomes from other species, such as insect and fish species are also provided. The artificial chromosomes are fully functional stable chromosomes. Two types of artificial chromosomes are provided. One type, herein referred to as SATACs [satellite artificial chromosomes] are stable heterochromatic chromosomes, and the another type are minichromosomes based on amplification of euchromatin. As used herein, a formerly dicentric chromosome is a chromosome that is produced when a dicentric chromosome fragments and acquires new telomeres so that two chromosomes, each having one of the centromeres, are produced. Each of the fragments can be replicable chromosomes.

Also provided are artificial chromosomes for other higher eukaryotic species, such as insects and fish, produced using the MACS are provided herein. In one embodiment, SATACs [satellite artificial chromosomes] are provided. SATACs are stable heterochromatic chromosomes. In another embodiment, minichromosomes are provided wherein the minichromosomes are based on amplification of euchromatin.

In one embodiment, artificial chromosomes can be generated by culturing the cells with the dicentric chromosomes under conditions whereby the chromosome breaks to form a minichromosome and formerly dicentric chromosome. In one embodiment, the SATACs can be generated from the minichromosome fragment, see, for example, in U.S. Pat. No. 5,288,625. In another embodiment, the SATACs can be generated from the fragment of the formerly dicentric chromosome. The SATACs can be made up of repeating units of short satellite DNA and can be fully heterochromatic. In one embodiment, absent insertion of heterologous or foreign DNA, the SATACs do not contain genetic information. In other embodiments, SATACs of various sizes are provided that are formed by repeated culturing under selective conditions and subcloning of cells that contain chromosomes produced from the formerly dicentric chromosomes. These chromosomes can be based on repeating units 7.5 to 10 Mb in size, or megareplicons. These megareplicaonscan be tandem blocks of satellite DNA flanked by heterologous non-satellite DNA. Amplification can produce a tandem array of identical chromosome segments [each called an amplicon] that contain two inverted megareplicons bordered by heterologous [“foreign”] DNA. Repeated cell fusion, growth on selective medium and/or BrdU [5-bromodeoxyuridine] treatment or other genome destabilizing reagent or agent, such as ionizing radiation, including X-rays, and subcloning can result in cell lines that carry stable heterochromatic or partially heterochromatic chromosomes, including a 150-200 Mb “sausage” chromosome, a 500-1000 Mb gigachromosome, a stable 250-400 Mb megachromosome and various smaller stable chromosomes derived therefrom. These chromosomes are based on these repeating units and can include human immunoglobulin DNA that is expressed. (See also U.S. Pat. No. 6,743,967

In other embodiments, MACs can be provided, for example, as disclosed in U.S. Pat. Nos. 6,743,967, 6,682,729, 6,569,643, 6,558,902, 6,548,287, 6,410,722, 6,348,353, 6,297,029, 6,265,211, 6,207,648, 6,150,170, 6,150,160, 6,133,503, 6,077,697, 6,025,155, 5,997,881, 5,985,846, 5,981,225, 5,877,159, 5,851,760, and 5,721,118; PCT Publication Nos. WO 04/066945, WO 04/044129, WO 04/035729, WO 04/033668, WO 04/027075, WO 04/016791, WO 04/009788, WO 04/007750, WO 03/083054, WO 03/068910, WO 03/068909, WO 03/064613, WO 03/052050, WO 03/027315, WO 03/023029, WO 03/012126, WO 03/006610, WO 03/000921, WO 02/103032, WO 02/097059, WO 02/096923, WO 02/095003, WO 02/092615, WO 02/081710, WO 02/059330, WO 02/059296, WO 00/18941, WO 97/16533, and WO 96/40965.

In another aspect of the present invention, ungulates and ungulate cells containing HACs are provided. In a particular embodiment, one or more HACs with integrated human Ig DNA are used as a vector for introduction of human Ig genes into ungulates (such as pigs). In a particular embodiment, one or more HACs with integrated human Ig DNA are used to generate ungulates (for example, pigs) by nuclear transfer which express human Igs in response to immunization and which undergo affinity maturation.

Various approaches may be used to produce ungulates that express human antibodies (“human Ig”). These approaches include, for example, the insertion of a HAC containing both heavy and light chain Ig genes into an ungulate or the insertion of human B-cells or B-cell precursors into an ungulate during its fetal stage or after it is born (e.g., an immune deficient or immune suppressed ungulate) (see, for example, WO 01/35735, filed Nov. 17, 2000, US 02/08645, filed Mar. 20, 2002). In either case, both human antibody producing cells and ungulate antibody-producing B-cells may be present in the ungulate. In an ungulate containing a HAC, a single B-cell may produce an antibody that contains a combination of ungulate and human heavy and light chain proteins. In still other embodiments, the total size of the HAC is at least to approximately 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 Mb.

For example, HACs can be provided such as disclosed in U.S. Pat. Nos. 6,642,207, 6,590,089, 6,566,066, 6,524,799, 6,500,642, 6,485,910, 6,475,752, 6,458,561, 6,455,026, 6,448,041, 6,410,722, 6,358,523, 6,277,621, 6,265,211, 6,146,827, 6,143,566, 6,077,697, 6,025,155, 6,020,142, and 5,972,649; U.S. Pat. Application No. 2003/0037347; PCT Publication Nos. WO 04/050704, WO 04/044156, WO 04/031385, WO 04/016791, WO 03/101396, WO 03/097812, WO 03/093469, WO 03/091426, WO 03/057923, WO 03/057849, WO 03/027638, WO 03/020898, WO 02/092812, and WO 98/27200.

Additional examples of ACs into which human immunoglobulin sequences can be inserted for use in the invention include, for example, BACs (e.g., pBeloBAC11 or pBAC108L; see, e.g., Shizuya et al. (1992), Proc Natl Acad Sci USA 89(18):8794-8797; Wang et al. (1997), Biotechniques 23(6):992-994), bacteriophage PACs, YACs (see, e.g., Burke (1990), Genet Anal Tech Appl 7(5):94-99), and MACs (see, e.g., Vos (1997), Nat. Biotechnol. 15(12):1257-1259; Ascenzioni et al. (1997), Cancer Lett 118(2):135-142), such as HACs, see also, U.S. Pat. Nos. 6,743,967, 6,716,608, 6,692,954, 6,670,154, 6,642,207, 6,638,722, 6,573,090, 6,492,506, 6,348,353, 6,287,853, 6,277,621, 6,183,957, 6,156,953, 6,133,503, 6,090,584, 6,077,697, 6,025,155, 6,015,708, 5,981,175, 5,874,259, 5,721,118, and 5,270,201; European Patent Nos. 1 437 400, 1 234 024, 1 356 062, 0 959 134, 1 056 878, 0 986 648, 0 648 265, and 0 338 266; PCT Publication Nos. WO 04/013299, WO 01/07478, WO 00/06715, WO 99/43842, WO 99/27118, WO 98/55637, WO 94/00569, and WO 89/09219. Additional examples includes those AC provided in, for example, PCT Publication No. WO 02/076508, WO 03/093469, WO 02/097059; WO 02/096923; US Publication Nos US 2003/0113917 and US 2003/003435; and U.S. Pat. No. 6,025,155.

In other embodiments of the present invention, ACs transmitted through male gametogenesis in each generation. The AC can be integrating or non-integrating. In one embodiment, the AC can be transmitted through mitosis in substantially all dividing cells. In another embodiment, the AC can provide for position independent expression of a human immunogloulin nucleic acid sequence. In a particular embodiment, the AC can have a transmittal efficiency of at least 10% through each male and female gametogenesis. In one particular embodiment, the AC can be circular. In another particular embodiment, the non-integrating AC can be that deposited with the Belgian Coordinated Collections of Microorganisms—BCCM on Mar. 27, 2000 under accession number LMBP 5473 CB. In additional embodiments, methods for producing an AC are provided wherein a mitotically stable unit containing an exogenous nucleic acid transmitted through male gametogenesis is identified; and an entry site in the mitotically stable unit allows for the integration of human immunoglobulin genes into the unit.

In other embodiments, ACs are provided that include: a functional centromere, a selectable marker and/or a unique cloning site. Tin other embodiments, the AC can exhibit one or more of the following properties: it can segregate stably as an independent chromosome, immunoglobulin sequences can be inserted in a controlled way and can expressed from the AC, it can be efficiently transmitted through the male and female germline and/or the transgenic animals can bear the chromosome in greater than about 30, 40, 50, 60, 70, 80 or 90% of its cells.

In particular embodiments, the AC can be isolated from fibroblasts (such as any mammalian or human fibroblast) in which it was mitotically stable. After transfer of the AC into hamster cells, a lox (such as loxP) site and a selectable marker site can be inserted. In other embodiments, the AC can maintain mitotic stability, for example, showing a loss of less than about 5, 2, 1, 0.5 or 0.25 percent per mitosis in the absence of selection. See also, US 2003/0064509 and WO 01/77357.

Xenogenous Immunoglobulin Genes

In another aspect of the present invention, transgenic ungulates are provided that expresses a xenogenous immunoglobulin loci or fragment thereof, wherein the immunoglobulin can be expressed from an immunoglobulin locus that is integrated within an endogenous ungulate chromosome. In one embodiment, ungulate cells derived from the transgenic animals are provided. In one embodiment, the xenogenous immunoglobulin locus can be inherited by offspring. In another embodiment, the xenogenous immunoglobulin locus can be inherited through the male germ line by offspring. In still further embodiments, an artificial chromosome (AC) can contain the xenogenous immunoglobulin. In one embodiment, the AC can be a yeast AC or a mammalian AC. In a further embodiment, the xenogenous locus can be a human immunoglobulin locus or fragment thereof. In one embodiment, the human immunoglobulin locus can be human chromosome 14, human chromosome 2, and human chromosome 22 or fragments thereof. In another embodiment, the human immunoglobulin locus can include any fragment of a human immunoglobulin that can undergo rearrangement. In a further embodiment, the human immunoglobulin loci can include any fragment of a human immunoglobulin heavy chain and a human immunoglobulin light chain that can undergo rearrangement. In still further embodiment, the human immunoglobulin loci can include any human immunoglobulin locus or fragment thereof that can produce an antibody upon exposure to an antigen. In a particular embodiment, the exogenous human immunoglobulin can be expressed in B cells to produce xenogenous immunoglobulin in response to exposure to one or more antigens.

In other embodiments, the transgenic ungulate that lacks any expression of functional endogenous immunoglobulins can be further genetically modified to express an xenogenous immunoglobulin loci. In an alternative embodiment, porcine animals are provided that contain an xenogeous immunoglobulin locus. In one embodiment, the xenogeous immunoglobulin loci can be a heavy and/or light chain immunoglobulin or fragment thereof. In another embodiment, the xenogenous immunoglobulin loci can be a kappa chain locus or fragment thereof and/or a lambda chain locus or fragment thereof. In still further embodiments, an artificial chromosome (AC) can contain the xenogenous immunoglobulin. In one embodiment, the AC can be a yeast AC or a mammalian AC. In a further embodiment, the xenogenous locus can be a human immunoglobulin locus or fragment thereof. In one embodiment, the human immunoglobulin locus can be human chromosome 14, human chromosome 2, and human chromosome 22 or fragments thereof. In another embodiment, the human immunoglobulin locus can include any fragment of a human immunoglobulin that can undergo rearrangement. In a further embodiment, the human immunoglobulin loci can include any fragment of a human immunoglobulin heavy chain and a human immunoglobulin light chain that can undergo rearrangement. In still further embodiment, the human immunoglobulin loci can include any human immunoglobulin locus or fragment thereof that can produce an antibody upon exposure to an antigen. In a particular embodiment, the exogenous human immunoglobulin can be expressed in B cells to produce xenogenous immunoglobulin in response to exposure to one or more antigens.

In other embodiments, the transgenic ungulate that lacks any expression of functional endogenous immunoglobulins can be further genetically modified to express an xenogenous immunoglobulin loci. In an alternative embodiment, porcine animals are provided that contain an xenogeous immunoglobulin locus. In one embodiment, the xenogeous immunoglobulin loci can be a heavy and/or light chain immunoglobulin or fragment thereof. In another embodiment, the xenogenous immunoglobulin loci can be a kappa chain locus or fragment thereof and/or a lambda chain locus or fragment thereof. In still further embodiments, an artificial chromosome (AC) can contain the xenogenous immunoglobulin. In one embodiment, the AC can be a yeast AC or a mammalian AC. In a further embodiment, the xenogenous locus can be a human immunoglobulin locus or fragment thereof. In one embodiment, the human immunoglobulin locus can be human chromosome 14, human chromosome 2, and human chromosome 22 or fragments thereof. In another embodiment, the human immunoglobulin locus can include any fragment of a human immunoglobulin that can undergo rearrangement. In a further embodiment, the human immunoglobulin loci can include any fragment of a human immunoglobulin heavy chain and a human immunoglobulin light chain that can undergo rearrangement. In still further embodiment, the human immunoglobulin loci can include any human immunoglobulin locus or fragment thereof that can produce an antibody upon exposure to an antigen. In a particular embodiment, the exogenous human immunoglobulin can be expressed in B cells to produce xenogenous immunoglobulin in response to exposure to one or more antigens.

In another embodiment, porcine animals are provided that contain an xenogeous immunoglobulin locus. In one embodiment, the xenogeous immunoglobulin loci can be a heavy and/or light chain immunoglobulin or fragment thereof. In another embodiment, the xenogenous immunoglobulin loci can be a kappa chain locus or fragment thereof and/or a lambda chain locus or fragment thereof. In still further embodiments, an artificial chromosome (AC) can contain the xenogenous immunoglobulin. In one embodiment, the AC can be a yeast AC or a mammalian AC. In a further embodiment, the xenogenous locus can be a human immunoglobulin locus or fragment thereof. In one embodiment, the human immunoglobulin locus can be human chromosome 14, human chromosome 2, and human chromosome 22 or fragments thereof. In another embodiment, the human immunoglobulin locus can include any fragment of a human immunoglobulin that can undergo rearrangement. In a further embodiment, the human immunoglobulin loci can include any fragment of a human immunoglobulin heavy chain and a human immunoglobulin light chain that can undergo rearrangement. In still further embodiment, the human immunoglobulin loci can include any human immunoglobulin locus or fragment thereof that can produce an antibody upon exposure to an antigen. In a particular embodiment, the exogenous human immunoglobulin can be expressed in B cells to produce xenogenous immunoglobulin in response to exposure to one or more antigens.

Human immunoglobulin genes, such as the Ig heavy chain gene (human chromosome 414), Ig kappa chain gene (human chromosome #2) and/or the Ig lambda chain gene (chromosome #22) can be inserted into Acs, as described above. In a particular embodiment, any portion of the human heavy, kappa and/or lambda Ig genes can be inserted into ACs. In one embodiment, the nucleic acid can be at least 70, 80, 90, 95, or 99% identical to the corresponding region of a naturally-occurring nucleic acid from a human. In other embodiments, more than one class of human antibody is produced by the ungulate. In various embodiments, more than one different human Ig or antibody is produced by the ungulate. In one embodiment, an AC containing both a human Ig heavy chain gene and Ig light chain gene, such as an automatic human artificial chromosome (“AHAC,” a circular recombinant nucleic acid molecule that is converted to a linear human chromosome in vivo by an endogenously expressed restriction endonuclease) can be introduced. In one embodiment, the human heavy chain loci and the light chain loci are on different chromosome arms (i.e., on different side of the centromere). In one embodiments, the heavy chain can include the mu heavy chain, and the light chain can be a lambda or kappa light chain. The Ig genes can be introduced simultaneously or sequentially in one or more than one ACs.

In particular embodiments, the ungulate or ungulate cell expresses one or more nucleic acids encoding all or part of a human Ig gene which undergoes rearrangement and expresses more than one human Ig molecule, such as a human antibody protein. Thus, the nucleic acid encoding the human Ig chain or antibody is in its unrearranged form (that is, the nucleic acid has not undergone V(D)J recombination). In particular embodiments, all of the nucleic acid segments encoding a V gene segment of an antibody light chain can be separated from all of the nucleic acid segments encoding a J gene segment by one or more nucleotides. In a particular embodiment, all of the nucleic acid segments encoding a V gene segment of an antibody heavy chain can be separated from all of the nucleic acid segments encoding a D gene segment by one or more nucleotides, and/or all of the nucleic acid segments encoding a D gene segment of an antibody heavy chain are separated from all of the nucleic acid segments encoding a J gene segment by one or more nucleotides. Administration of an antigen to a transgenic ungulate containing an unrearranged human Ig gene is followed by the rearrangement of the nucleic acid segments in the human Ig gene locus and the production of human antibodies reactive with the antigen.

In one embodiment, the AC can express a portion or fragment of a human chromosome that contains an immunoglobulin gene. In one embodiment, the AC can express at least 300 or 1300 kb of the human light chain locus, such as described in Davies et al. 1993 Biotechnology 11:911-914.

In another embodiment, the AC can express a portion of human chromosome 22 that contains at least the λ light-chain locus, including Vλ gene segments, Jλ gene segments, and the single Cλ gene. In another embodiment, the AC can express at least one Vλ gene segment, at least one Jλ gene segment, and the Cλ gene. In other embodiment, ACs can contain portions of the lambda locus, such as described in Popov et al. J Exp Med. 1999 May 17; 189(10):1611-20.

In another embodiment, the AC can express a portion of human chromosome 2 that contains at least the κ light-chain locus, including Vκ gene segments, Jκ gene segments and the single Cκ gene. In another embodiment, the AC can express at least one Vκ gene segment, at least one Jκ gene segment and the Cκ gene. In other embodiments, AC containing portions of the kappa light chain locus can be those describe, for example, in Li et al. 2000 J Immunol 164: 812-824 and Li S Proc Natl Acad Sci USA. 1987 June; 84(12):4229-33. In another embodiment, AC containing approximately 1.3 Mb of human kappa locus are provided, such as described in Zou et al FASEB J. 1996 August; 10(10):1227-32.

In further embodiments, the AC can express a portion of human chromosome 14 that contains at least the human heavy-chain locus, including VH, DH, JH and CH gene segments. In another embodiment, the AC can express at least one VH gene segment, at least one DH gene segment, at least one JH gene segment and at least one at least one CH gene segment. In other embodiments, the AC can express at least 85 kb of the human heavy chain locus, such as described in Choi et al. 1993 Nat Gen 4:117-123 and/or Zou et al. 1996 PNAS 96: 14100-14105.

In other embodiments, the AC can express portions of both heavy and light chain loci, such as, at least 220, 170, 800 or 1020 kb, for example, as disclosed in Green et al. 1994 Nat Gen 7:13-22; Mendez et al 1995 Genomics 26: 294-307; Mendez et al. 1997 Nat Gen 15: 146-156; Green et al. 1998 J Exp Med 188: 483-495 and/or Fishwild et al. 1996 Nat Biotech 14: 845-851. In another embodiment, the AC can express megabase amounts of human immunoglobulin, such as described in Nicholson J Immunol. 1999 Dec. 15; 163(12):6898-906 and Popov Gene. 1996 Oct. 24; 177(1-2):195-201. In addition, in one particular embodiment, MACs derived from human chromosome #14 (comprising the Ig heavy chain gene), human chromosome #2 comprising the Ig kappa chain gene) and human chromosome #22 (comprising the Ig lambda chain gene) can be introduced simultaneously or successively, such as described in US Patent Publication No. 2004/0068760 to Robl et al. In another embodiments, the total size of the MAC is less than or equal to approximately 10, 9, 8, or 7 megabases.

In a particular embodiment, human Vh, human Dh, human Jh segments and human mu segments of human immunoglobulins in germline configuration can be inserted into an AC, such as a YAC, such that the Vh, Dh, Jh and mu DNA segments form a repertoire of immunoglobulins containing portions which correspond to the human DNA segments, for example, as described in U.S. Pat. No. 5,545,807 to the Babraham Instititute. Such ACs, after insertion into ungulate cells and generation of ungulates can produce heavy chain immunoglobulins. In one embodiment, these immunoglobulins can form functional heavy chain-light chain immunoglobulins. In another embodiment, these immunoglobulins can be expressed in an amount allowing for recovery from suitable cells or body fluids of the ungulate. Such immunoglobulins can be inserted into yeast artificial chromosome vectors, such as described by Burke, D T, Carle, G F and Olson, M V (1987) “Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors” Science, 236, 806-812, or by introduction of chromosome fragments (such as described by Richer, J and Lo, C W (1989) “Introduction of human DNA into mouse eggs by injection of dissected human chromosome fragments” Science 245, 175-177).

Additional information on specific ACs containing human immunoglobulin genes can be found in, for example, recent reviews by Giraldo & Montoliu (2001) Transgenic Research 10: 83-103 and Peterson (2003) Expert Reviews in Molecular Medicine 5: 1-25.

AC Transfer Methods

The human immunoglobulin genes can be first inserted into ACs and then the human-immunoglobulin-containing ACs can be inserted into the ungulate cells. Alternatively, the ACs can be transferred to an intermediary mammalian cell, such as a CHO cell, prior to insertion into the ungulate call. In one embodiment, the intermediary mammalian cell can also contain and AC and the first AC can be inserted into the AC of the mammalian cell. In particular, a YAC containing human immunoglobulin genes or fragments thereof in a yeast cell can be transferred to a mammalian cell that harbors an MAC. The YAC can be inserted into the MAC. The MAC can then be transferred to an ungulate cell. The human Ig genes can be inserted into ACs by homologous recombination. The resulting AC containing human Ig genes, can then be introduced into ungulate cells. One or more ungulate cells can be selected by techniques described herein or those known in the art, which contain an AC containing a human Ig.

Suitable hosts for introduction of the ACs are provided herein, which include but are not limited to any animal or plant, cell or tissue thereof, including, but not limited to: mammals, birds, reptiles, amphibians, insects, fish, arachnids, tobacco, tomato, wheat, monocots, dicots and algae. In one embodiment, the ACs can be condensed (Marschall et al Gene Ther. 1999 Sep.; 6(9):1634-7) by any reagent known in the art, including, but not limited to, spermine, spermidine, polyethylenimine, and/or polylysine prior to introduction into cells. The ACs can be introduced by cell fusion or microcell fusion or subsequent to isolation by any method known to those of skill in this art, including but not limited to: direct DNA transfer, electroporation, nuclear transfer, microcell fusion, cell fusion, spheroplast fusion, lipid-mediated transfer, lipofection, liposomes, microprojectile bombardment, microinjection, calcium phosphate precipitation and/or any other suitable method. Other methods for introducing DNA into cells, include nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells. Polycations, such as polybrene and polyornithine, may also be used. For various techniques for transforming mammalian cells, see e.g., Keown et al. Methods in Enzymology (1990) Vol. 185, pp. 527-537; and Mansour et al. (1988) Nature 336:348-352.

The ACs can be introduced by direct DNA transformation; microinjection in cells or embryos, protoplast regeneration for plants, electroporation, microprojectile gun and other such methods known to one skilled in the art (see, e.g., Weissbach et al. (1988) Methods for Plant Molecular Biology, Academic Press, N.Y., Section VIII, pp. 421-463; Grierson et al. (1988) Plant Molecular Biology, 2d Ed., Blackie, London, Ch. 7-9; see, also U.S. Pat. Nos. 5,491,075; 5,482,928; and 5,424,409; see, also, e.g., U.S. Pat. No. 5,470,708,).

In particular embodiments, one or more isolated YACs can be used that harbor human Ig genes. The isolated YACs can be condensed (Marschall et al Gene Ther. 1999 September; 6(9):1634-7) by any reagent known in the art, including, but not limited to spermine, spermidine, polyethylenimine, and/or polylysine. The condensed YACs can then be transferred to porcine cells by any method known in the art (for example, microinjection, electroporation, lipid mediated transfection, etc). Alternatively, the condensed YAC can be transferred to oocytes via sperm-mediated gene transfer or intracytoplasmic sperm injection (ICSI) mediated gene transfer. In one embodiment, spheroplast fusion can be used to transfer YACs that harbor human Ig genes to porcine cells.

In other embodiments of the invention, the AC containing the human Ig can be inserted into an adult, fetal, or embryonic ungulate cell. Additional examples of ungulate cells include undifferentiated cells, such as embryonic cells (e.g., embryonic stem cells), differentiated or somatic cells, such as epithelial cells, neural cells epidermal cells, keratinocytes, hematopoietic cells, melanocytes, chondrocytes, B-lymphocytes, T-lymphocytes, erythrocytes, macrophages, monocytes, fibroblasts, muscle cells, cells from the female reproductive system, such as a mammary gland, ovarian cumulus, granulosa, or oviductal cell, germ cells, placental cell, or cells derived from any organ, such as the bladder, brain, esophagus, fallopian tube, heart, intestines, gallbladder, kidney, liver, lung, ovaries, pancreas, prostate, spinal cord, spleen, stomach, testes, thymus, thyroid, trachea, ureter, urethra, and uterus or any other cell type described herein.

Site Specific Recombinase Mediated Transfer

In particular embodiments of the present invention, the transfer of ACs containing human immunoglobulin genes to porcine cells, such as those described herein or known in the art, can be accomplished via site specific recombinase mediated transfer. In one particular embodiment, the ACs can be transferred into porcine fibroblast cells. In another particular embodiment, the ACs can be YACs.

In other embodiments of the present invention, the circularized DNA, such as an AC, that contain the site specific recombinase target site can be transferred into a cell line that has a site specific recombinase target site within its genome. In one embodiment, the cell's site specific recombinase target site can be located within an exogenous chromosome. The exogenous chromosome can be an artificial chromosome that does not integrate into the host's endogenous genome. In one embodiment, the AC can be transferred via germ line transmission to offspring. In one particular embodiment, a YAC containing a human immunoglobulin gene or fragment thereof can be circularized via a site specific recombinase and then transferred into a host cell that contains a MAC, wherein the MAC contains a site specific recombinase site. This MAC that now contains human immunoglobulin loci or fragments thereof can then be fused with a porcine cell, such as, but not limited to, a fibroblast. The porcine cell can then be used for nuclear transfer.

In certain embodiments of the present invention, the ACs that contain human immunoglobulin genes or fragments thereof can be transferred to a mammalian cell, such as a CHO cell, prior to insertion into the ungulate call. In one embodiment, the intermediary mammalian cell can also contain and AC and the first AC can be inserted into the AC of the mammalian cell. In particular, a YAC containing human immunoglobulin genes or fragments thereof in a yeast cell can be transferred to a mammalian cell that harbors a MAC. The YAC can be inserted in the MAC. The MAC can then be transferred to an ungulate cell. In particular embodiments, the YAC harboring the human Ig genes or fragments thereof can contain site specific recombinase target sites. The YAC can first be circularized via application of the appropriate site specific recombinase and then inserted into a mammalian cell that contains its own site specific recombinase target site. Then, the site specific recombinase can be applied to integrate the YAC into the MAC in the intermediary mammalian cell. The site specific recombinase can be applied in cis or trans. In particular, the site specific recombinase can be applied in trans. In one embodiment, the site specific recombinase can be expressed via transfection of a site specific recombinase expression plasmid, such as a Cre expression plasmid. In addition, one telomere region of the YAC can also be retrofitted with a selectable marker, such as a selectable marker described herein or known in the art. The human Ig genes or fragments thereof within the MAC of the intermediary mammalian cell can then be transferred to an ungulate cell, such as a fibroblast.

Alternatively, the AC, such as a YAC, harboring the human Ig genes or fragments thereof can contain site specific recombinase target sites optionally located near each telomere. The YAC can first be circularized via application of the appropriate site specific recombinase and then inserted into an ungulate cell directly that contains its own site specific recombinase target site within it genome. Alternatively, the ungulate cell can harbor its own MAC, which contains a site specific recombinase target site. In this embodiment, the YAC can be inserted directly into the endogenous genome of the ungulate cell. In particular embodiments, the ungulate cell can be a fibroblast cell or any other suitable cell that can be used for nuclear transfer. See, for example, FIG. 7; Call et al., Hum Mol Genet. 2000 Jul. 22; 9(12):1745-51.

In other embodiments, methods to circularize at least 100 kb of DNA are provided wherein the DNA can then be integrated into a host genome via a site specific recombinase. In one embodiment, at least 100, 200, 300, 400, 500, 1000, 2000, 5000, 10,000 kb of DNA can be circularized. In another embodiment, at least 1000, 2000, 5000, 10,000, or 20,000 megabases of DNA can be circularized. In one embodiment, the circularization of the DNA can be accomplished by attaching site specific recombinase target sites at each end of the DNA sequence and then applying the site specific recombinase to result in circularization of the DNA. In one embodiment, the site specific recombinase target site can be lox. In another embodiment, the site specific recombinase target site can be Flt. In certain embodiments, the DNA can be an artificial chromosome, such as a YAC or any AC described herein or known in the art. In another embodiment, the AC can contain human immunoglobulin loci or fragments thereof.

In another preferred embodiment, the YAC can be converted to, or integrated within, an artificial mammalian chromosome. The mammalian artificial chromosome is either transferred to or harbored within a porcine cell. The artificial chromosome can be introduced within the porcine genome through any method known in the art including but not limited to direct injection of metaphase chromosomes, lipid mediated gene transfer, or microcell fusion.

Site-specific recombinases include enzymes or recombinases that recognize and bind to a short nucleic acid site or sequence-specific recombinase target site, i.e., a recombinase recognition site, and catalyze the recombination of nucleic acid in relation to these sites. These enzymes include recombinases, transposases and integrases. Examples of sequence-specific recombinase target sites include, but are not limited to, lox sites, att sites, dif sites and frt sites. Non-limiting examples of site-specific recombinases include, but are not limited to, bacteriophage P1 Cre recombinase, yeast FLP recombinase, Inti integrase, bacteriophage λ, phi 80, P22, P2, 186, and P4 recombinase, Tn3 resolvase, the Hin recombinase, and the Cin recombinase, E. coli xerC and xerD recombinases, Bacillus thuringiensis recombinase, TpnI and the β-lactamase transposons, and the immunoglobulin recombinases.

In one embodiment, the recombination site can be a lox site that is recognized by the Cre recombinase of bacteriophage P1. Lox sites refer to a nucleotide sequence at which the product of the cre gene of bacteriophage P1, the Cre recombinase, can catalyze a site-specific recombination event. A variety of lox sites are known in the art, including the naturally occurring loxP, loxB, loxL and loxR, as well as a number of mutant, or variant, lox sites, such as loxP511, loxP514, lox.DELTA.86, lox.DELTA.117, loxC2, loxP2, loxP3 and lox P23. Additional example of lox sites include, but are not limited to, loxB, loxL, loxR, loxP, loxP3, loxP23, loxΔ86, loxΔ117, loxP511, and loxC2.

In another embodiment, the recombination site is a recombination site that is recognized by a recombinases other than Cre. In one embodiment, the recombinase site can be the FRT sites recognized by FLP recombinase of the 2 pi plasmid of Saccharomyces cerevisiae. FRT sites refer to a nucleotide sequence at which the product of the FLP gene of the yeast 2 micron plasmid, FLP recombinase, can catalyze site-specific recombination. Additional examples of the non-Cre recombinases include, but are not limited to, site-specific recombinases include: att sites recognized by the Int recombinase of bacteriophage λ (e.g. att1, att2, att3, attP, attB, attL, and attR), the recombination sites recognized by the resolvase family, and the recombination site recognized by transposase of Bacillus thruingiensis.

IV. Production of Genetically Modified Animals

In additional aspects of the present invention, ungulates that contain the genetic modifications described herein can be produced by any method known to one skilled in the art. Such methods include, but are not limited to: nuclear transfer, intracytoplasmic sperm injection, modification of zygotes directly and sperm mediated gene transfer.

In another embodiment, a method to clone such animals, for example, pigs, includes: enucleating an oocyte, fusing the oocyte with a donor nucleus from a cell in which at least one allele of at least one immunoglobulin gene has been inactivated, and implanting the nuclear transfer-derived embryo into a surrogate mother.

Alternatively, a method is provided for producing viable animals that lack any expression of functional immunoglobulin by inactivating both alleles of the immunoglobulin gene in embryonic stem cells, which can then be used to produce offspring.

In another aspect, the present invention provides a method for producing viable animals, such as pigs, in which both alleles of the immunoglobulin gene have been rendered inactive. In one embodiment, the animals are produced by cloning using a donor nucleus from a cell in which both alleles of the immunoglobulin gene have been inactivated. In one embodiment, both alleles of the immunoglobulin gene are inactivated via a genetic targeting event.

Genetically altered animals that can be created by modifying zygotes directly. For mammals, the modified zygotes can be then introduced into the uterus of a pseudopregnant female capable of carrying the animal to term. For example, if whole animals lacking an immunoglobulin gene are desired, then embryonic stem cells derived from that animal can be targeted and later introduced into blastocysts for growing the modified cells into chimeric animals. For embryonic stem cells, either an embryonic stem cell line or freshly obtained stem cells can be used.

In a suitable embodiment of the invention, the totipotent cells are embryonic stem (ES) cells. The isolation of ES cells from blastocysts, the establishing of ES cell lines and their subsequent cultivation are carried out by conventional methods as described, for example, by Doetchmann et al., J. Embryol. Exp. Morph. 87:27-45 (1985); Li et al., Cell 69:915-926 (1992); Robertson, E. J. “Tetracarcinomas and Embryonic Stem Cells: A Practical Approach,” ed. E. J. Robertson, IRL Press, Oxford, England (1987); Wurst and Joyner, “Gene Targeting: A Practical Approach,” ed. A. L. Joyner, IRL Press, Oxford, England (1993); Hogen et al., “Manipulating the Mouse Embryo: A Laboratory Manual,” eds. Hogan, Beddington, Costantini and Lacy, Cold Spring Harbor Laboratory Press, New York (1994); and Wang et al., Nature 336:741-744 (1992). In another suitable embodiment of the invention, the totipotent cells are embryonic germ (EG) cells. Embryonic Germ cells are undifferentiated cells functionally equivalent to ES cells, that is they can be cultured and transfected in vitro, then contribute to somatic and germ cell lineages of a chimera (Stewart et al., Dev. Biol. 161:626-628 (1994)). EG cells are derived by culture of primordial germ cells, the progenitors of the gametes, with a combination of growth factors: leukemia inhibitory factor, steel factor and basic fibroblast growth factor (Matsui et al., Cell 70:841-847 (1992); Resnick et al., Nature 359:550-551 (1992)). The cultivation of EG cells can be carried out using methods described in the article by Donovan et al., “Transgenic Animals, Generation and Use,” Ed. L. M. Houdebine, Harwood Academic Publishers (1997), and in the original literature cited therein.

Tetraploid blastocysts for use in the invention may be obtained by natural zygote production and development, or by known methods by electrofusion of two-cell embryos and subsequently cultured as described, for example, by James et al., Genet. Res. Camb. 60:185-194 (1992); Nagy and Rossant, “Gene Targeting: A Practical Approach,” ed. A. L. Joyner, IRL Press, Oxford, England (1993); or by Kubiak and Tarkowski, Exp. Cell Res. 157:561-566 (1985).

The introduction of the ES cells or EG cells into the blastocysts can be carried out by any method known in the art. A suitable method for the purposes of the present invention is the microinjection method as described by Wang et al., EMBO J. 10:2437-2450 (1991).

Alternatively, by modified embryonic stem cells transgenic animals can be produced. The genetically modified embryonic stem cells can be injected into a blastocyst and then brought to term in a female host mammal in accordance with conventional techniques. Heterozygous progeny can then be screened for the presence of the alteration at the site of the target locus, using techniques such as PCR or Southern blotting. After mating with a wild-type host of the same species, the resulting chimeric progeny can then be cross-mated to achieve homozygous hosts.

After transforming embryonic stem cells with the targeting vector to alter the immunoglobulin gene, the cells can be plated onto a feeder layer in an appropriate medium, e.g., fetal bovine serum enhanced DMEM. Cells containing the construct can be detected by employing a selective medium, and after sufficient time for colonies to grow, colonies can be picked and analyzed for the occurrence of homologous recombination. Polymerase chain reaction can be used, with primers within and without the construct sequence but at the target locus. Those colonies which show homologous recombination can then be used for embryo manipulating and blastocyst injection. Blastocysts can be obtained from superovulated females. The embryonic stem cells can then be trypsinized and the modified cells added to a droplet containing the blastocysts. At least one of the modified embryonic stem cells can be injected into the blastocoel of the blastocyst. After injection, at least one of the blastocysts can be returned to each uterine horn of pseudopregnant females. Females are then allowed to go to term and the resulting litters screened for mutant cells having the construct. The blastocysts are selected for different parentage from the transformed ES cells. By providing for a different phenotype of the blastocyst and the ES cells, chimeric progeny can be readily detected, and then genotyping can be conducted to probe for the presence of the modified immunoglobulin gene.

In other embodiments, sperm mediated gene transfer can be used to produce the genetically modified ungulates described herein. The methods and compositions described herein to either eliminate expression of endogenous immunoglobulin genes or insert xenogenous immunoglobulin genes can be used to genetically modify the sperm cells via any technique described herein or known in the art. The genetically modified sperm can then be used to impregnate a female recipient via artificial insemination, intracytoplasmic sperm injection or any other known technique. In one embodiment, the sperm and/or sperm head can be incubated with the exogenous nucleic acid for a sufficient time period. Sufficient time periods include, for example, about 30 seconds to about 5 minutes, typically about 45 seconds to about 3 minutes, more typically about 1 minute to about 2 minutes. In particular embodiments, the expression of xenogenous, such as human, immunoglobulin genes in ungulates as described herein, can be accomplished via intracytoplasmic sperm injection.

The potential use of sperm cells as vectors for gene transfer was first suggested by Brackett et al., Proc., Natl. Acad. Sci. USA 68:353-357 (1971). This was followed by reports of the production of transgenic mice and pigs after in vitro fertilization of oocytes with sperm that had been incubated by naked DNA (see, for example, Lavitrano et al., Cell 57:717-723 (1989) and Gandolfi et al. Journal of Reproduction and Fertility Abstract Series 4, 10 (1989)), although other laboratories were not able to repeat these experiments (see, for example, Brinster et al. Cell 59:239-241 (1989) and Gavora et al., Canadian Journal of Animal Science 71:287-291 (1991)). Since then, there have been several reports of successful sperm mediated gene transfer in chicken (see, for example, Nakanishi and Iritani, Mol. Reprod. Dev. 36:258-261 (1993)); mice (see, for example, Maione, Mol. Reprod. Dev. 59:406 (1998)); and pigs (see, for example, Lavitrano et al. Transplant. Proc. 29:3508-3509 (1997); Lavitrano et al., Proc. Natl. Acad. Sci. USA 99:14230-5 (2002); Lavitrano et al., Mol. Reprod. Dev. 64-284-91 (2003)). Similar techniques are also described in U.S. Pat. No. 6,376,743; issued Apr. 23, 2002; U.S. Patent Publication Nos. 20010044937, published Nov. 22, 2001, and 20020108132, published Aug. 8, 2002.

In other embodiments, intracytoplasmic sperm injection can be used to produce the genetically modified ungulates described herein. This can be accomplished by co-inserting an exogenous nucleic acid and a sperm into the cytoplasm of an unfertilized oocyte to form a transgenic fertilized oocyte, and allowing the transgenic fertilized oocyte to develop into a transgenic embryo and, if desired, into a live offspring. The sperm can be a membrane-disrupted sperm head or a demembranated sperm head. The co-insertion step can include the substep of preincubating the sperm with the exogenous nucleic acid for a sufficient time period, for example, about 30 seconds to about 5 minutes, typically about 45 seconds to about 3 minutes, more typically about 1 minute to about 2 minutes. The co-insertion of the sperm and exogenous nucleic acid into the oocyte can be via microinjection. The exogenous nucleic acid mixed with the sperm can contain more than one transgene, to produce an embryo that is transgenic for more than one transgene as described herein. The intracytoplasmic sperm injection can be accomplished by any technique known in the art, see, for example, U.S. Pat. No. 6,376,743. In particular embodiments, the expression of xenogenous, such as human, immunoglobulin genes in ungulates as described herein, can be accomplished via intracytoplasmic sperm injection.

Any additional technique known in the art may be used to introduce the transgene into animals. Such techniques include, but are not limited to pronuclear microinjection (see, for example, Hoppe, P. C. and Wagner, T. E., 1989, U.S. Pat. No. 4,873,191); retrovirus mediated gene transfer into germ lines (see, for example, Van der Putten et al., 1985, Proc. Natl. Acad. Sci., USA 82:6148-6152); gene targeting in embryonic stem cells (see, for example, Thompson et al., 1989, Cell 56:313-321; Wheeler, M. B., 1994, WO 94/26884); electroporation of embryos (see, for example, Lo, 1983, Mol Cell. Biol. 3:1803-1814); cell gun; transfection; transduction; retroviral infection; adenoviral infection; adenoviral-associated infection; liposome-mediated gene transfer; naked DNA transfer; and sperm-mediated gene transfer (see, for example, Lavitrano et al., 1989, Cell 57:717-723); etc. For a review of such techniques, see, for example, Gordon, 1989, Transgenic Animals, Intl. Rev. Cytol. 115:171-229. In particular embodiments, the expression of xenogenous, such as human, immunoglobulin genes in ungulates as described herein, can be accomplished via these techniques.

Somatic Cell Nuclear Transfer to Produce Cloned, Transgenic Offspring

In a further aspect of the present invention, ungulate, such as porcine or bovine, cells lacking one allele, optionally both alleles of an ungulate heavy chain, kappa light chain and/or lambda light chain gene can be used as donor cells for nuclear transfer into recipient cells to produce cloned, transgenic animals. Alternatively, ungulate heavy chain, kappa light chain and/or lambda light chain gene knockouts can be created in embryonic stem cells, which are then used to produce offspring. Offspring lacking a single allele of a functional ungulate heavy chain, kappa light chain and/or lambda light chain gene produced according to the process, sequences and/or constructs described herein can be breed to further produce offspring lacking functionality in both alleles through mendelian type inheritance.

In another embodiment, the present invention provides a method for producing viable pigs that lack any expression of functional alpha-1,3-GT by breeding a male pig heterozygous for the alpha-1,3-GT gene with a female pig heterozygous for the alpha-1,3-GT gene. In one embodiment, the pigs are heterozygous due to the genetic modification of one allele of the alpha-1,3-GT gene to prevent expression of that allele. In another embodiment, the pigs are heterozygous due to the presence of a point mutation in one allele of the alpha-1,3-GT gene. In another embodiment, the point mutation can be a T-to-G point mutation at the second base of exon 9 of the alpha-1,3-GT gene. In one specific embodiment, a method to produce a porcine animal that lacks any expression of functional alpha-1,3-GT is provided wherein a male pig that contains a T-to-G point mutation at the second base of exon 9 of the alpha-1,3-GT gene is bred with a female pig that contains a T-to-G point mutation at the second base of exon 9 of the alpha-1,3-GT gene, or vise versa.

The present invention provides a method for cloning an animal, such as a pig, lacking a functional immunoglobulin gene via somatic cell nuclear transfer. In general, the animal can be produced by a nuclear transfer process comprising the following steps: obtaining desired differentiated cells to be used as a source of donor nuclei; obtaining oocytes from the animal; enucleating said oocytes; transferring the desired differentiated cell or cell nucleus into the enucleated oocyte, e.g., by fusion or injection, to form NT units; activating the resultant NT unit; and transferring said cultured NT unit to a host animal such that the NT unit develops into a fetus.

Nuclear transfer techniques or nuclear transplantation techniques are known in the art(Dai et al. Nature Biotechnology 20:251-255; Polejaeva et al Nature 407:86-90 (2000); Campbell et al, Theriogenology, 43:181 (1995); Collas et al, Mol. Report Dev., 38:264-267 (1994); Keefer et al, Biol. Reprod., 50:935-939 (1994); Sims et al, Proc. Natl. Acad. Sci., USA, 90:6143-6147 (1993); WO 94/26884; WO 94/24274, and WO 90/03432, U.S. Pat. Nos. 4,944,384 and 5,057,420).

A donor cell nucleus, which has been modified to alter the immunoglobulin gene, is transferred to a recipient oocyte. The use of this method is not restricted to a particular donor cell type. The donor cell can be as described herein, see also, for example, Wilmut et al Nature 385 810 (1997); Campbell et al Nature 380 64-66 (1996); Dai et al., Nature Biotechnology 20:251-255, 2002 or Cibelli et al Science 280 1256-1258 (1998). All cells of normal karyotype, including embryonic, fetal and adult somatic cells which can be used successfully in nuclear transfer can be employed. Fetal fibroblasts are a particularly useful class of donor cells. Generally suitable methods of nuclear transfer are described in Campbell et al Theriogenology 43 181 (1995), Dai et al. Nature Biotechnology 20:251-255, Polejaeva et al Nature 407:86-90 (2000), Collas et al Mol. Reprod. Dev. 38 264-267 (1994), Keefer et al Biol. Reprod. 50 935-939 (1994), Sims et al Proc. Nat'l. Acad. Sci. USA 90 6143-6147 (1993), WO-A-9426884, WO-A-9424274, WO-A-9807841, WO-A-9003432, U.S. Pat. No. 4,994,384 and U.S. Pat. No. 5,057,420. Differentiated or at least partially differentiated donor cells can also be used. Donor cells can also be, but do not have to be, in culture and can be quiescent. Nuclear donor cells which are quiescent are cells which can be induced to enter quiescence or exist in a quiescent state in vivo. Prior art methods have also used embryonic cell types in cloning procedures (Campbell et al (Nature, 380:64-68, 1996) and Stice et al (Biol. Reprod., 20 54:100-110, 1996).

Somatic nuclear donor cells may be obtained from a variety of different organs and tissues such as, but not limited to, skin, mesenchyme, lung, pancreas, heart, intestine, stomach, bladder, blood vessels, kidney, urethra, reproductive organs, and a disaggregated preparation of a whole or part of an embryo, fetus, or adult animal. In a suitable embodiment of the invention, nuclear donor cells are selected from the group consisting of epithelial cells, fibroblast cells, neural cells, keratinocytes, hematopoietic cells, melanocytes, chondrocytes, lymphocytes (B and T), macrophages, monocytes, mononuclear cells, cardiac muscle cells, other muscle cells, extended cells, cumulus cells, epidermal cells or endothelial cells. In another embodiment, the nuclear donor cell is an embryonic stem cell. In a particular embodiment, fibroblast cells can be used as donor cells.

In another embodiment of the invention, the nuclear donor cells of the invention are germ cells of an animal. Any germ cell of an animal species in the embryonic, fetal, or adult stage may be used as a nuclear donor cell. In a suitable embodiment, the nuclear donor cell is an embryonic germ cell.

Nuclear donor cells may be arrested in any phase of the cell cycle (G0, G1, G2, S, M) so as to ensure coordination with the acceptor cell. Any method known in the art may be used to manipulate the cell cycle phase. Methods to control the cell cycle phase include, but are not limited to, G0 quiescence induced by contact inhibition of cultured cells, G0 quiescence induced by removal of serum or other essential nutrient, G0 quiescence induced by senescence, G0 quiescence induced by addition of a specific growth factor; G0 or G1 quiescence induced by physical or chemical means such as heat shock, hyperbaric pressure or other treatment with a chemical, hormone, growth factor or other substance; S-phase control via treatment with a chemical agent which interferes with any point of the replication procedure; M-phase control via selection using fluorescence activated cell sorting, mitotic shake off, treatment with microtubule disrupting agents or any chemical which disrupts progression in mitosis (see also Freshney, R. I., “Culture of Animal Cells: A Manual of Basic Technique,” Alan R. Liss, Inc, New York (1983).

Methods for isolation of oocytes are well known in the art. Essentially, this can comprise isolating oocytes from the ovaries or reproductive tract of an animal. A readily available source of oocytes is slaughterhouse materials. For the combination of techniques such as genetic engineering, nuclear transfer and cloning, oocytes must generally be matured in vitro before these cells can be used as recipient cells for nuclear transfer, and before they can be fertilized by the sperm cell to develop into an embryo. This process generally requires collecting immature (prophase I) oocytes from mammalian ovaries, e.g., bovine ovaries obtained at a slaughterhouse, and maturing the oocytes in a maturation medium prior to fertilization or enucleation until the oocyte attains the metaphase II stage, which in the case of bovine oocytes generally occurs about 18-24 hours post-aspiration. This period of time is known as the “maturation period”. In certain embodiments, the oocyte is obtained from a gilt. A “gilt” is a female pig that has never had offspring. In other embodiments, the oocyte is obtained from a sow. A “sow” is a female pig that has previously produced offspring.

A metaphase II stage oocyte can be the recipient oocyte, at this stage it is believed that the oocyte can be or is sufficiently “activated” to treat the introduced nucleus as it does a fertilizing sperm. Metaphase II stage oocytes, which have been matured in vivo have been successfully used in nuclear transfer techniques. Essentially, mature metaphase II oocytes can be collected surgically from either non-superovulated or superovulated animal 35 to 48, or 39-41, hours past the onset of estrus or past the injection of human chorionic gonadotropin (hCG) or similar hormone. The oocyte can be placed in an appropriate medium, such as a hyaluronidase solution.

After a fixed time maturation period, which ranges from about 10 to 40 hours, about 16-18 hours, about 40-42 hours or about 39-41 hours, the oocytes can be enucleated. Prior to enucleation the oocytes can be removed and placed in appropriate medium, such as HECM containing 1 milligram per milliliter of hyaluronidase prior to removal of cumulus cells. The stripped oocytes can then be screened for polar bodies, and the selected metaphase II oocytes, as determined by the presence of polar bodies, are then used for nuclear transfer. Enucleation follows.

Enucleation can be performed by known methods, such as described in U.S. Pat. No. 4,994,384. For example, metaphase II oocytes can be placed in either HECM, optionally containing 7.5 micrograms per milliliter cytochalasin B, for immediate enucleation, or can be placed in a suitable medium, for example an embryo culture medium such as CR1aa, plus 10% estrus cow serum, and then enucleated later, such as not more than 24 hours later, or not more than 16-18 hours later.

Enucleation can be accomplished microsurgically using a micropipette to remove the polar body and the adjacent cytoplasm. The oocytes can then be screened to identify those of which have been successfully enucleated. One way to screen the oocytes is to stain the oocytes with 1 microgram per milliliter 33342 Hoechst dye in HECM, and then view the oocytes under ultraviolet irradiation for less than 10 seconds. The oocytes that have been successfully enucleated can then be placed in a suitable culture medium, for example, CR1aa plus 10% serum.

A single mammalian cell of the same species as the enucleated oocyte can then be transferred into the perivitelline space of the enucleated oocyte used to produce the NT unit. The mammalian cell and the enucleated oocyte can be used to produce NT units according to methods known in the art. For example, the cells can be fused by electrofusion. Electrofusion is accomplished by providing a pulse of electricity that is sufficient to cause a transient breakdown of the plasma membrane. This breakdown of the plasma membrane is very short because the membrane reforms rapidly. Thus, if two adjacent membranes are induced to breakdown and upon reformation the lipid bilayers intermingle, small channels can open between the two cells. Due to the thermodynamic instability of such a small opening, it enlarges until the two cells become one. See, for example, U.S. Pat. No. 4,997,384 by Prather et al. A variety of electrofusion media can be used including, for example, sucrose, mannitol, sorbitol and phosphate buffered solution. Fusion can also be accomplished using Sendai virus as a fusogenic agent (Graham, Wister Inot. Symp. Monogr., 9, 19, 1969). Also, the nucleus can be injected directly into the oocyte rather than using electroporation fusion. See, for example, Collas and Barnes, Mol. Reprod. Dev., 38:264-267 (1994). After fusion, the resultant fused NT units are then placed in a suitable medium until activation, for example, CR1aa medium. Typically activation can be effected shortly thereafter, for example less than 24 hours later, or about 4-9 hours later, or optimally 1-2 hours after fusion. In a particular embodiment, activation occurs at least one hour post fusion and at 40-41 hours post maturation.

The NT unit can be activated by known methods. Such methods include, for example, culturing the NT unit at sub-physiological temperature, in essence by applying a cold, or actually cool temperature shock to the NT unit. This can be most conveniently done by culturing the NT unit at room temperature, which is cold relative to the physiological temperature conditions to which embryos are normally exposed. Alternatively, activation can be achieved by application of known activation agents. For example, penetration of oocytes by sperm during fertilization has been shown to activate prefusion oocytes to yield greater numbers of viable pregnancies and multiple genetically identical calves after nuclear transfer. Also, treatments such as electrical and chemical shock can be used to activate NT embryos after fusion. See, for example, U.S. Pat. No. 5,496,720, to Susko-Parrish et al. Fusion and activation can be induced by application of an AC pulse of 5 V for 5 s followed by two DC pulses of 1.5 kV/cm for 60 μs each using an ECM2001 Electrocell Manipulator (BTX Inc., San Diego, Calif.). Additionally, activation can be effected by simultaneously or sequentially by increasing levels of divalent cations in the oocyte, and reducing phosphorylation of cellular proteins in the oocyte. This can generally be effected by introducing divalent cations into the oocyte cytoplasm, e.g., magnesium, strontium, barium or calcium, e.g., in the form of an ionophore. Other methods of increasing divalent cation levels include the use of electric shock, treatment with ethanol and treatment with caged chelators. Phosphorylation can be reduced by known methods, for example, by the addition of kinase inhibitors, e.g., serine-threonine kinase inhibitors, such as 6-dimethyl-aminopurine, staurosporine, 2-aminopurine, and sphingosine. Alternatively, phosphorylation of cellular proteins can be inhibited by introduction of a phosphatase into the oocyte, e.g., phosphatase 2A and phosphatase 2B.

The activated NT units, or “fused embryos”, can then be cultured in a suitable in vitro culture medium until the generation of cell colonies. Culture media suitable for culturing and maturation of embryos are well known in the art. Examples of known media, which can be used for embryo culture and maintenance, include Ham's F-10+10% fetal calf serum (FCS), Tissue Culture Medium-199 (TCM-199)+10% fetal calf serum, Tyrodes-Albumin-Lactate-Pyruvate (TALP), Dulbecco's Phosphate Buffered Saline (PBS), Eagle's and Whitten's media, and, in one specific example, the activated NT units can be cultured in NCSU-23 medium for about 1-4 h at approximately 38.6° C. in a humidified atmosphere of 5% CO2.

Afterward, the cultured NT unit or units can be washed and then placed in a suitable media contained in well plates which can contain a suitable confluent feeder layer. Suitable feeder layers include, by way of example, fibroblasts and epithelial cells. The NT units are cultured on the feeder layer until the NT units reach a size suitable for transferring to a recipient female, or for obtaining cells which can be used to produce cell colonies. These NT units can be cultured until at least about 2 to 400 cells, about 4 to 128 cells, or at least about 50 cells.

Activated NT units can then be transferred (embryo transfers), zero(0)-144 hours post activation, to the oviduct of an female pigs. In one embodiment, the female pigs can be an estrus-synchronized recipient gilt. Crossbred gilts (large white/Duroc/Landrace) (280-400 lbs) can be used. The gilts can be synchronized as recipient animals by oral administration of 18-20 mg Regu-Mate (Altrenogest, Hoechst, Warren, N.J.) mixed into the feed. Regu-Mate can be fed for 14 consecutive days. One thousand units of Human Chorionic Gonadotropin (hCG, Intervet America, Millsboro, Del.) can then be administered i.m. about 105 h after the last Regu-Mate treatment. Embryo transfers can then be performed about 22-26 h after the hCG injection. In one embodiment, the pregnancy can be brought to term and result in the birth of live offspring. In another embodiment, the pregnancy can be terminated early and embryonic cells can be harvested.

Breeding for Desired Homozygous Knockout Animals

In another aspect, the present invention provides a method for producing viable animals that lack any expression of a functional immunoglobulin gene is provided by breeding a male heterozygous for the immunoglobulin gene with a female heterozygous for the immunoglobulin gene. In one embodiment, the animals are heterozygous due to the genetic modification of one allele of the immunoglobulin gene to prevent expression of that allele. In another embodiment, the animals are heterozygous due to the presence of a point mutation in one allele of the alpha-immunoglobulin gene. In further embodiments, such heterozygous knockouts can be bred with an ungulate that expresses xenogenous immunoglobulin, such as human. In one embodiment, a animal can be obtained by breeding a transgenic ungulate that lacks expression of at least one allele of an endogenous immunoglobulin wherein the immunoglobulin is selected from the group consisting of heavy chain, kappa light chain and lambda light chain or any combination thereof with an ungulate that expresses an xenogenous immunoglobulin. In another embodiment, a animal can be obtained by breeding a transgenic ungulate that lacks expression of one allele of heavy chain, kappa light chain and lambda light chain with an ungulate that expresses an xenogenous, such as human, immunoglobulin. In a further embodiment, an animal can be obtained by breeding a transgenic ungulate that lacks expression of one allele of heavy chain, kappa light chain and lambda light chain and expresses an xenogenous, such as human, immunoglobulin with another transgenic ungulate that lacks expression of one allele of heavy chain, kappa light chain and lambda light chain with an ungulate and expresses an xenogenous, such as human, immunoglobulin to produce a homozygous transgenic ungulate that lacks expression of both alleles of heavy chain, kappa light chain and lambda light chain and expresses an xenogenous, such as human, immunoglobulin. Methods to produce such animals are also provided.

In one embodiment, sexually mature animals produced from nuclear transfer from donor cells that carrying a homozygous knockout in the immunoglobulin gene, can be bred and their offspring tested for the homozygous knockout. These homozygous knockout animals can then be bred to produce more animals.

In another embodiment, oocytes from a sexually mature homozygous knockout animal can be in vitro fertilized using wild type sperm from two genetically diverse pig lines and the embryos implanted into suitable surrogates. Offspring from these matings can be tested for the presence of the knockout, for example, they can be tested by cDNA sequencing, and/or PCR. Then, at sexual maturity, animals from each of these litters can be mated. In certain methods according to this aspect of the invention, pregnancies can be terminated early so that fetal fibroblasts can be isolated and further characterized phenotypically and/or genotypically. Fibroblasts that lack expression of the immunoglobulin gene can then be used for nuclear transfer according to the methods described herein to produce multiple pregnancies and offspring carrying the desired homozygous knockout.

Additional Genetic Modifications

In other embodiments, animals or cells lacking expression of functional immunoglobulin, produced according to the process, sequences and/or constructs described herein, can contain additional genetic modifications to eliminate the expression of xenoantigens. The additional genetic modifications can be made by further genetically modifying cells obtained from the transgenic cells and animals described herein or by breeding the animals described herein with animals that have been further genetically modified. Such animals can be modified to eliminate the expression of at least one allele of the alpha-1,3-galactosyltransferase gene, the CMP-Neu5Ac hydroxylase gene (see, for example, U.S. Ser. No. 10/863,116), the iGb3 synthase gene (see, for example, U.S. Patent Application 60/517,524), and/or the Forssman synthase gene (see, for example, U.S. Patent Application 60/568,922). In additional embodiments, the animals discloses herein can also contain genetic modifications to express fucosyltransferase, sialyltransferase and/or any member of the family of glucosyltransferases. To achieve these additional genetic modifications, in one embodiment, cells can be modified to contain multiple genetic modifications. In other embodiments, animals can be bred together to achieve multiple genetic modifications. In one specific embodiment, animals, such as pigs, lacking expression of functional immunoglobulin, produced according to the process, sequences and/or constructs described herein, can be bred with animals, such as pigs, lacking expression of alpha-1,3-galactosyl transferase (for example, as described in WO 04/028243).

In another embodiment, the expression of additional genes responsible for xenograft rejection can be eliminated or reduced. Such genes include, but are not limited to the CMP-NEUAc Hydroxylase Gene, the isoGloboside 3 Synthase gene, and the Forssman synthase gene. In addition, genes or cDNA encoding complement related proteins, which are responsible for the suppression of complement mediated lysis can also be expressed in the animals and tissues of the present invention. Such genes include, but are not limited to CD59, DAF, MCP and CD46 (see, for example, WO 99/53042; Chen et al. Xenotransplantation, Volume 6 Issue 3 Page 194-August 1999, which describes pigs that express CD59/DAF transgenes; Costa C et al, Xenotransplantation. 2002 January; 9(1):45-57, which describes transgenic pigs that express human CD59 and H-transferase; Zhao L et al.; Diamond L E et al. Transplantation. 2001 Jan. 15; 71(1):132-42, which describes a human CD46 transgenic pigs.

Additional modifications can include expression of tissue factor pathway inhibitor (TFPI), heparin, antithrombin, hirudin, TFPI, tick anticoagulant peptide, or a snake venom factor, such as described in WO 98/42850 and U.S. Pat. No. 6,423,316, entitled “Anticoagulant fusion protein anchored to cell membrane”; or compounds, such as antibodies, which down-regulate the expression of a cell adhesion molecule by the cells, such as described in WO 00/31126, entitled “Suppression of xenograft rejection by down regulation of a cell adhesion molecules” and compounds in which co-stimulation by signal 2 is prevented, such as by administration to the organ recipient of a soluble form of CTLA-4 from the xenogeneic donor organism, for example as described in WO 99/57266, entitled “Immunosuppression by blocking T cell co-stimulation signal 2 (B7/CD28 interaction)”.

In one embodiment, the animals or cells lacking expression of functional immunoglobulin, produced according to the present invention, can be further modified to transgenically express a cytoxic T-lymphocyte associated protein 4-immunoglobin (CTLA4). The animals or cells can be modified to express CTLA4 peptide or a biologically active fragment (e.g., extracellular domain, truncated form of the peptide in which at least the transmembrane domain has been removed) or derivative thereof. The peptide may be, e.g., human or porcine. The CTLA4 peptide can be mutated. Mutated peptides may have higher affinity than wildtype for porcine and/or human B7 molecules. In one specific embodiment, the mutated CTLA4 can be CTLA4 (Glu104, Tyr29). The CTLA4 peptide can be modified such that it is expressed intracellularly. Other modifications of the CTLA4 peptide include addition of a golgi retention signal to the N or C terminus. The golgi retention signal may be, e.g., the sequence KDEL. The CTLA4 peptide can be fused to a peptide dimerization domain or an immunoglobulin (Ig) molecule. The CTLA4 fusion peptides can include a linker sequence that can join the two peptides.

Certain aspects of the invention are described in greater detail in the non-limiting Examples that follow.

EXAMPLES

Example 1

Porcine Heavy Chain Targeting and Generation of Porcine Animals that Lack Expression of Heavy Chain

A portion of the porcine Ig heavy-chain locus was isolated from a 3× redundant porcine BAC library. In general, BAC libraries can be generated by fragmenting pig total genomic DNA, which can then be used to derive a BAC library representing at least three times the genome of the whole animal. BACs that contain porcine heavy chain immunoglobulin can then be selected through hybridization of probes selective for porcine heavy chain immunoglobulin as described herein.

Sequence from a clone (Seq ID 1) was used to generate a primer complementary to a portion of the J-region (the primer is represented by Seq ID No. 2). Separately, a primer was designed that was complementary to a portion of Ig heavy-chain mu constant region (the primer is represented by Seq ID No. 3). These primers were used to amplify a fragment of porcine Ig heavy-chain (represented by Seq ID No. 4) that led the functional joining region (J-region) and sufficient flanking region to design and build a targeting vector. To maintain this fragment and subclones of this fragment in a native state, the E. coli (Stable 2, Invitrogen cat #1026-019) that harbored these fragments was maintained at 30° C. Regions of Seq. ID No. 4 were subcloned and used to assemble a targeting vector as shown in Seq. ID No. 5. This vector was transfected into porcine fetal fibroblasts that were subsequently subjected to selection with G418. Resulting colonies were screened by PCR to detect potential targeting events (Seq ID No. 6 and Seq ID No. 7, 5′ screen primers; and Seq ID No. 8 and Seq ID No. 9, 3′ screen primers). See FIG. 1 for a schematic illustrating the targeting. Targeting was confirmed by southern blotting. Piglets were generated by nuclear transfer using the targeted fetal fibroblasts as nuclear donors.

Nuclear Transfer.

The targeted fetal fibroblasts were used as nuclear donor cells. Nuclear transfer was performed by methods that are well known in the art (see, e.g., Dai et al., Nature Biotechnology 20: 251-255, 2002; and Polejaeva et al., Nature 407:86-90, 2000).

Enucleation of in vitro-matured oocytes (BoMed, Madison, Wis.; TransOva Genetics, Sioux City, Iowa) was begun between 40 and 42 hours post-maturation as described in Polejaeva, I. A., et al. (Nature 407, 86-90 (2000)). For enucleation, we incubated the oocytes in calcium-free phosphate-buffered NCSU-23 medium containing 5 μg ml−1 cytochalasin B (Sigma) and 7.5 μg ml−1 Hoechst 33342 (Sigma) at 38° C. for 20 min. A small amount of cytoplasm from directly beneath the first polar body was then aspirated using an 18 μM glass pipette (Humagen, Charlottesville, Va.). We exposed the aspirated karyoplast to ultraviolet light to confirm the presence of a metaphase plate.

For nuclear transfer, a single fibroblast cell was placed under the zona pellucida in contact with each enucleated oocyte. Fusion and activation were induced by application of an AC pulse of 5 V for 5 s followed by two DC pulses of 1.5 kV/cm for 60 μs each using an ECM2001 Electrocell Manipulator (BTX Inc., San Diego, Calif.). Fused embryos were cultured in NCSU-23 medium for 1-4 h at 38.6° C. in a humidified atmosphere of 5% CO2, and then transferred to the oviduct of an estrus-synchronized recipient gilt. Crossbred gilts (large white/Duroc/landrace) (280-400 lbs) were synchronized as recipients by oral administration of 18-20 mg Regu-Mate (Altrenogest, Hoechst, Warren, N.J.) mixed into their feed. Regu-Mate was fed for 14 consecutive days. Human chorionic gonadotropin (hCG, 1,000 units; Intervet America, Millsboro, Del.) was administered intra-muscularly 105 h after the last Regu-Mate treatment. Embryo transfers were done 22-26 h after the hCG injection.

Nuclear transfer produced 18 healthy piglets from four litters. These animals have one functional wild-type Ig heavy-chain locus and one disrupted Ig heavy chain locus.

Seq ID 2: primer from

ggccagacttcctcggaacagctca

Butler subclone to

amplify J to C heavy-

chain (637Xba5′)

Seq ID 3: primer for C

ttccaggagaaggtgacggagct

to amplify J to C

heavychain (JM1L)

Seq ID 6: heavychain 5′

tctagaagacgctggagagaggccag

primer for 5′ screen

(HCKOXba5′2)

Seq ID 7: heavychain 3′

taaagcgcatgctccagactgcctt

primer for 5′ screen

(5′arm5′)

Seq ID 8: heavychain 5′

catcgccttctatcgccttctt

primer for 3′ screen

(NEO4425)

Seq ID 9: heavychain 3′

Aagtacttgccgcctctcagga

primer for 3′ screen

(650 + CA)

Southern blot analysis of cell and pig tissue samples. Cells or tissue samples were lysed overnight at 60° C. in lysis buffer (10mM Tris, pH 7.5, 10 mM EDTA, 10 mM NaCl, 0.5% (w/v) Sarcosyl, 1 mg/ml proteinase K) and the DNA precipitated with ethanol. The DNA was then digested with NcoI or XbaI, depending on the probe to be used, and separated on a 1% agarose gel. After electrophoresis, the DNA was transferred to a nylon membrane and probed with digoxigenin-labeled probe (SEQ ID No 41 for NcoI digest, SEQ ID No 40 for XbaI digest). Bands were detected using a chemiluminescent substrate system (Roche Molecular Biochemicals).

Probes for Heavy Chain Southern:

HC J Probe (used with Xba I digest)

(Seq ID No 40)

CTCTGCACTCACTACCGCCGGACGCGCACTGCCGTGCTGCCCATGGACCA

CGCTGGGGAGGGGTGAGCGGACAGCACGTTAGGAAGTGTGTGTGTGCGCG

TGGGTGCAAGTCGAGCCAAGGCCAAGATCCAGGGGCTGGGCCCTGTGCCC

AGAGGAGAATGGCAGGTGGAGTGTAGCTGGATTGAAAGGTGGCCTGAAGG

GTGGGGCATCCTGTTTGGAGGCTCACTCTCAGCCCCAGGGTCTCTGGTTC

CTGCCGGGGTGGGGGGCGCAAGGTGCCTACCACACCCTGCTAGCCCCTCG

TCCAGTCCCGGGCCTGCCTCTTCACCACGGAAGAGGATAAGCCAGGCTGC

AGGCTTCATGTGCGCCGTGGAGAACCCAGTTCGGCCCTTGGAGG

HC Mu Probe (used with NcoI digest)

(Seq ID No 41)

GGCTGAAGTCTGAGGCCTGGCAGATGAGCTTGGACGTGCGCTGGGGAGTA

CTGGAGAAGGACTCCCGGGTGGGGACGAAGATGTTCAAGACGGGGGGCTG

CTCCTCTACGACTGCAGGCAGGAACGGGGCGTCACTGTGCCGGCGGCACC

CGGCCCCGCCCCCGCCACAGCCACAGGGGGAGCCCAGCTCACCTGGCCCA

GAGATGGACACGGACTTGGTGCCACTGGGGTGCTGGACCTCGCACACCAG

GAAGGCCTCTGGGTCCTGGGGGATGCTCACAGAGGGTAGGAGCACCCGGG

AGGAGGCCAAGTACTTGCCGCCTCTCAGGACGG

Example 2

Porcine Kappa Light Chain Targeting and Generation of Porcine Lacking Expression of Kappa Light Chain

A portion of the porcine Ig kappa-chain locus was isolated from a 3× redundant porcine BAC library. In general, BAC libraries can be generated by fragmenting pig total genomic DNA, which can then be used to derive a BAC library representing at least three times the genome of the whole animal. BACs that contain porcine kappa chain immunoglobulin can then be selected through hybridization of probes selective for porcine kappa chain immunoglobulin as described herein.

A fragment of porcine Ig light-chain kappa was amplified using a primer complementary to a portion of the J-region (the primer is represented by Seq ID No. 10) and a primer complementary to a region of kappa C-region (represented by Seq ID No.11). The resulting amplimer was cloned into a plasmid vector and maintained in Stable2 cells at 30° C. (Seq ID No. 12). See FIG. 2 for a schematic illustration.

Separately, a fragment of porcine Ig light-chain kappa was amplified using a primer complementary to a portion of the C-region (Seq ID No. 13) and a primer complementary to a region of the kappa enhancer region (Seq ID No. 14). The resulting amplimer was fragmented by restriction enzymes and DNA fragments that were produced were cloned, maintained in Stable2 cells at 30 degrees C. and sequenced. As a result of this sequencing, two non-overlapping contigs were assembled (Seq ID No. 15, 5′ portion of amplimer; and Seq ID No. 16, 3′ portion of amplimer). Sequence from the downstream contig (Seq ID No. 16) was used to design a set of primers (Seq ID No. 17 and Seq ID No. 18) that were used to amplify a contiguous fragment near the enhancer (Seq ID No. 19). A subclone of each Seq ID No. 12 and Seq ID No. 19 were used to build a targeting vector (Seq ID No. 20). This vector was transfected into porcine fetal fibroblasts that were subsequently subjected to selection with G418. Resulting colonies were screened by PCR to detect potential targeting events (Seq ID No. 21 and Seq ID No. 22, 5′ screen primers; and Seq ID No. 23 and Seq Id No 43, 3′ screen primers, and Seq ID No. 24 and Seq Id No 24, endogenous screen primers). Targeting was confirmed by southern blotting. Southern blot strategy design was facilitated by cloning additional kappa sequence, it corresponds to the template for germline kappa transcript (Seq ID No. 25). Fetal pigs were generated by nuclear transfer.

Nuclear Transfer.

The targeted fetal fibroblasts were used as nuclear donor cells. Nuclear transfer was performed by methods that are well known in the art (see, e.g., Dai et al., Nature Biotechnology 20: 251-255, 2002; and Polejaeva et al., Nature 407:86-90, 2000).

Oocytes were collected 46-54 h after the hCG injection by reverse flush of the oviducts using pre-warmed Dulbecco's phosphate buffered saline (PBS) containing bovine serum albumin (BSA; 4 g−1) (as described in Polejaeva, I. A., et al. (Nature 407, 86-90 (2000)). Enucleation of in vitro-matured oocytes (BoMed, Madison, Wis.) was begun between 40 and 42 hours post-maturation as described in Polejaeva, I. A., et al. (Nature 407, 86-90 (2000)). Recovered oocytes were washed in PBS containing 4 gl−1 BSA at 38° C., and transferred to calcium-free phosphate-buffered NCSU-23 medium at 38° C. for transport to the laboratory. For enucleation, we incubated the oocytes in calcium-free phosphate-buffered NCSU-23 medium containing 5 μg ml−1 cytochalasin B (Sigma) and 7.5 μg ml−1 Hoechst 33342 (Sigma) at 38° C. for 20 min. A small amount of cytoplasm from directly beneath the first polar body was then aspirated using an 18 μM glass pipette (Humagen, Charlottesville, Va.). We exposed the aspirated karyoplast to ultraviolet light to confirm the presence of a metaphase plate.

For nuclear transfer, a single fibroblast cell was placed under the zona pellucida in contact with each enucleated oocyte. Fusion and activation were induced by application of an AC pulse of 5 V for 5 s followed by two DC pulses of 1.5 kV/cm for 60 μs each using an ECM2001 Electrocell Manipulator (BTX Inc., San Diego, Calif.). Fused embryos were cultured in NCSU-23 medium for 1-4 h at 38.6° C. in a humidified atmosphere of 5% CO2, and then transferred to the oviduct of an estrus-synchronized recipient gilt. Crossbred gilts (large white/Duroc/landrace) (280-400 lbs) were synchronized as recipients by oral administration of 18-20 mg Regu-Mate (Altrenogest, Hoechst, Warren, N.J.) mixed into their feed. Regu-Mate was fed for 14 consecutive days. Human chorionic gonadotropin (hCG, 1,000 units; Intervet America, Millsboro, Del.) was administered intra-muscularly 105 h after the last Regu-Mate treatment. Embryo transfers were done 22-26 h after the hCG injection.

Nuclear transfer using kappa targeted cells produced 33 healthy pigs from 5 litters. These pigs have one functional wild-type allele of porcine Ig light-chain kappa and one disrupted Ig light-chain kappa allele.

Seq ID 10: kappa J to C

caaggaqaccaagctggaactc

5′ primer (kjc5′1)

Seq ID 11: kappa J to C

tgatcaagcacaccacagagacag

3′ primer (kjc3′2)

Seq ID 13: 5′ primer for

gatgccaagccatccgtcttcatc

Kappa C to E (porKCS1)

Seq ID 14: 3′ primer for

tgaccaaagcagtgtgacggttgc

Kappa C to E (porKCA1)

Seq ID 17: kappa 5′

ggatcaaacacgcatcctcatggac

primer for amplification

of enhancer region

(K3′arm1S)

Seq ID 18: kappa 3′

ggtgattggggcatggttgagg

primer for amplification

of enhancer region

(K3′arm1A)

Seq ID 21: kappa screen,

cgaacccctgtgtatatagtt

5′ primer, 5′

(kappa5armS)

Seq ID 22: kappa screen,

gagatgaggaagaggagaaca

3′ primer, 5,

(kappaNeoA)

Seq ID 23: kappa screen,

gcattgtctgagtaggtgtcatt

5′ primer, 3′

(kappaNeoS)

Seq ID 24: kappa screen,

cgcttcttgcagggaacacgat

3′ primer, 5′

(kappa5armProbe3′)

Seq ID No 43, Kappa

GTCTTTGGTTTTTGCTGAGGGTT

screen, 3′ primer

(kappa3armA2)



Southern blot analysis of cell and pig tissue samples. Cells or tissue samples were lysed overnight at 60° C. in lysis buffer (10mM Tris, pH 7.5, 10 mM EDTA, 10 mM NaCl, 0.5% (w/v) Sarcosyl, 1 mg/ml proteinase K) and the DNA precipitated with ethanol. The DNA was then digested with SacI and separated on a 1% agarose gel. After electrophoresis, the DNA was transferred to a nylon membrane and probed with digoxigenin-labeled probe (SEQ ID No 42). Bands were detected using a chemiluminescent substrate system (Roche Molecular Biochemicals).

Probe for Kappa Southern:

Kappa5ArmProbe 5′/3′

(SEQ ID No 42)

gaagtgaagccagccagttcctcctgggcaggtggccaaaattacagttg

acccctcctggtctggctgaaccttgccccatatggtgacagccatctgg

ccagggcccaggtctccctctgaagcctttgggaggagagggagagtggc

tggcccgatcacagatgcggaaggggctgactcctcaaccggggtgcaga

ctctgcagggtgggtctgggcccaacacacccaaagcacgcccaggaagg

aaaggcagcttggtatcactgcccagagctaggagaggcaccgggaaaat

gatctgtccaagacccgttcttgcttctaaactccgagggggtcagatga

agtggttttgtttcttggcctgaagcatcgtgttccctgcaagaagcgg

Example 3

Characterization of the Porcine Lambda Gene Locus

To disrupt or disable porcine lambda, a targeting strategy has been devised that allows for the removal or disruption of the region of the lambda locus that includes a concatamer of J to C expression cassettes. BAC clones that contain portions of the porcine genome can be generated. A portion of the porcine Ig lambda-chain locus was isolated from a 3× redundant porcine BAC library. In general, BAC libraries can be generated by fragmenting pig total genomic DNA, which can then be used to derive a BAC library representing at least three times the genome of the whole animal. BACs that contain porcine lambda chain immunoglobulin can then be selected through hybridization of probes selective for porcine lambda chain immunoglobulin as described herein.

BAC clones containing a lambda J-C flanking region (see FIG. 3), can be independently fragmented and subcloned into a plasmid vector. Individual subdlones have been screened by PCR for the presence of a portion of the J to C intron. We have cloned several of these cassettes by amplifying from one C region to the next C region. This amplification was accomplished by using primers that are oriented to allow divergent extension within any one C region (Seq ID 26 and Seq ID 27). To obtain successful amplification, the extended products converge with extended products originated from adjacent C regions (as opposed to the same C region). This strategy produces primarily amplimers that extend from one C to the adjacent C. However, some amplimers are the result of amplification across the adjacent C and into the next C which lies beyond the adjacent C. These multi-gene amplimers contain a portion of a C, both the J and C region of the next J-C unit, the J region of the third J-C unit, and a portion of the C region of the third J-C unit. Seq ID 28 is one such amplimer and represents sequence that must be removed or disrupted.

Other porcine lambda sequences that have been cloned include: Seq ID No. 32, which includes 5′ flanking sequence to the first lambda J/C unit of the porcine lambda light chain genomic sequence; Seq ID No. 33, which includes 3′ flanking sequence to the J/C cluster region of the porcine lambda light chain genomic sequence, from approximately 200 base pairs downstream of lambda J/C; Seq ID No. 34, which includes 3′ flanking sequence to the J/C cluster region of the porcine lambda light chain genomic sequence, approximately 11.8 Kb downstream of the J/C cluster region, near the enhancer; Seq ID No. 35, which includes approximately 12 Kb downstream of lambda, including the enhancer region; Seq ID No. 36, which includes approximately 17.6 Kb downstream of lambda; Seq ID No. 37, which includes approximately 19.1 Kb downstream of lambda; Seq ID No. 38, which includes approximately 21.3 Kb downstream of lambda; and Seq ID No. 39, which includes approximately 27 Kb downstream of lambda.

Seq ID 26: 5′primer for

ccttcctcctgcacctgtcaac

lambda C to C amplimer

(lamC5′)

Seq ID 27: 3′ primer for

tagacacaccagggtggccttg

lambda C to C amplimer

(lamC3′)

Example 4

Production of Targeting Vectors for the Lambda Gene

Following a first targeting strategy, shown in FIG. 4, a vector is designed and built with one targeting arm that is homologous to a region upstream of J1 (i.e., the first J/C unit or sequence) and the other arm homologous to a region that is downstream of the last C (i.e., the last J/C unit or sequence) This targeting vector utilizes a selectable marker (SM).

Seq ID No. 48 represents one example of a vector used in the first targeting strategy. Seq ID No. 48 is a lambda light chain knockout vector which includes both 5′ and 3′ homology arms and Neo resistance factor.

Seq ID

GCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTT

No. 48

TCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGC

TCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCA

GGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGA

CCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGA

AGCGTGGCGCTTTCTCAATGCTCACGCTGTAGGTATCTCAGTTC

GGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCC

CCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTT

GAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGC

CACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTA

CAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGG

ACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGG

AAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTG

GTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGA

AAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTC

TGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCA

TGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAA

AAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTG

GTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAG

CGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTC

GTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAG

TGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATT

TATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGT

GGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTG

CCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCA

ACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCG

TTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCG

AGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCT

TCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTA

TCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCAT

GCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCA

AGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGC

CCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTT

AAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGALAACTCT

CAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACT

CGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGT

TTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGG

GAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTT

TTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAG

CGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGG

TTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCAAACAG

CTATGACCATGGCGGCCGCgtcgacAGGGTGTGGCCAAATACAG

CATGGAGTAGCCATCATAAGGAATCTTACACAAGCCTCCAAAAT

TGTGTTTCTGAAATTGGGTTTAAAGTACGTTTGCATTTTAAAAA

GCCTGCCAGAAAATACAGAAAAATGTCTGTGATATGTCTCTGGC

TGATAGGATTTTGCTTAGTTTTAATTTTGGCTTTATAATTTTCT

ATAGTTATGAAAATGTTCACAAGAAGATATATTTCATTTTAGCT

TCTAAAATAATTATAACACAGAAGTAATTTGTGCTTTAAAAAAA

TATTCAACACAGAAGTATATAAAGTALAAATTGAGGAGTTCCCA

TCGTGGCTCAGTGATTAACAAACCCAACTAGTATCCATGAGGAT

ATGGATTTGATCCCTGGCCTTGCTCAGTGGGTTGAGGATCCAGT

GTTGCTGTGAGCTGTGGTGTAGGTTGCAGACACAGCACTCTGGC

GTTGCTGTGACTCTGGCGTAGGCCGGCAGCTACAGCTCCATTTG

GACCCTTAGCCTGGGAACCTCCATATGCCTGAGATACGGCCCTA

AAAAGTCAAAAGCCAAAAAAATAGTAAAAATTGAGTGTTTCTAC

TTACCACCCCTGCCCACATCTTATGCTAAAACCCGTTCTCCAGA

GACAAACATCGTCAGGTGGGTCTATATATTTCCAGCCCTCCTCC

TGTGTGTGTATGTCCGTAAAACACACACACACACACACACACGC

ACACACACACACACGTATCTAATTAGCATTGGTATTAGTTTTTC

AAAAGGGAGGTCATGCTCTACCTTTTAGGCGGCAAATAGATTAT

TTAAACAAATCTGTTGACATTTTCTATATCAACCCATAAGATCT

CCCATGTTCTTGGAAAGGCTTTGTAAGACATCAACATCTGGGTA

AACCAGCATGGTTTTTAGGGGGTTGTGTGGATTTTTTTCATATT

TTTTAGGGCACACCTGCAGCATATGGAGGTTCCCAGGCTAGGGG

TTGAATCAGAGCTGTAGCTGCCGGCCTACACCACAGCCACAGCA

ACGCCAGATCCTTAACCCACTGAGAAAGGCCAGGGATTGAACCT

GCATCCTCATGGATGCTGGTCAGATTTATTTCTGCTGAGCCACA

ACAGGAACTCCCTGAACCAGAATGCTTTTAACCATTCCACTTTG

CATGGACATTTAGATTGTTTCCATTTAAAAATACAAATTACAAG

GAGTTCCCGTCGTGGCTCAGTGGTAACGAATTGGACTAGGAACC

ATGAGGTTTCGGGTTCGATCCCTGGCCTTGCTCGGTGGGTTAAG

GATCCAGCATTGATGTGAGATATGGTGTAGGTCGCAGACGTGGC

TCGGATCCCACGTTGCTGTGGCTCTGGCGTAGGCCGGCAACAAC

AGCTCCGATTCGACCCCTAGCCTGGGAACCTCCATGTGCCACAG

GAGCAGCCCTAGAAAAGGCAAAAAGACAAAAAAATAAAAAATTA

AAATGAAAAAATAAAATAAAAATACAAATTACAAGAGACGGCTA

CAAGGAAATCCCCAAGTGTGTGCAAATGCCATATATGTATAAAA

TGTACTAGTGTCTCCTCGCGGGAAAGTTGCCTAAAAGTGGGTTG

GCTGGACAGAGAGGACAGGCTTTGACATTCTCATAGGTAGTAGC

AATGGGCTTCTCAAAATGCTGTTCCAGTTTACACTCACCATAGC

AAATGACAGTGCCTCTTCCTCTCCACCCTTGCCAATAATGTGAC

AGGTGGATCTTTTTCTATTTTGTGTATCTGACAAGCAAAAAATG

AGAACAGGAGTTCCTGTCGTGGTGCAGTGGAGACAAATCTGACT

AGGAACCATGAAATTTCGGGTTCAATCCCTGGCCTCACTCAGTA

GGTAAAGGATCCAGGGTTGCAGTGAGCTGTGGGGTAGGTCGCAG

ACACAGTGCAAATTTGGCCCTGTTGTGGCTGTGGTGTAGGCCGG

CAGCTATAGCTCCAATTGGACCCCTAGCCTGGGAACCTCCTTAT

GCCGTGGGTGAGGCCCTAAAAAAAAGAGTGCAAAAAAAAAAAAT

AAGAACAAAAATGATCATCGTTTAATTCTTTATTTGATCATTGG

TGAAACTTATTTTCCTTTTATATTTTTATTGACTGATTTTATTT

CTCCTATGAATTTACCGGTCATAGTTTTGCCTGGGTGTTTTTAC

TCCGGTTTTAGTTTTGGTTGGTTGTATTTTCTTAGAGAGCTATA

GAAACTCTTCATCTATTTGGAATAGTAATTCCTCATTAAGTATT

TGTGCTGCAAAAAATTTTCCCTGATCTGTTTTATGCTTTTGTTT

GTGGGGTCTTTCACGAGAAAGCCTTTTTAGTTTTTACACCTCAG

CTTGGTTGTTTTTCTTGATTGTGTCTGTAATCTGCGGCCAACAT

AGGAAACACATTTTTACTTTAGTGTTTTTTTCCTATTTTCTTCA

AGTACGTCCATTGTTTTGGTGTCTGATTTTACTTTGCCTGGGGT

TTGTTTTTGTGTGGCAGGAATATAAACTTATGTATTTTCCAAAT

GGAGAGCCAATGGTTGTATATTTGTTGAATTCAAATGCAACTTT

ATCAAACACCAAATCATCGATTTATCACAACTCTTCTCTGGTTT

ATTGATCTAATGATCAATTCCTGTTCCACGCTGTTTTAATTATT

TTAGCTTTGTGGATTTTGGTGCCTGGTAGAGAACAAAGCCTCCA

TTATTTTCATTCAAAATAGTCCCGTCTATTATCTGCCATTGTTG

TAGTATTAGACTTTAAAATCAATTTACTGATTTTCAAAAGTTAT

TCCTTTGGTGATGTGGAATACTTTATACTTCATAAGGTACATGG

ATTCATTTGTGGGGAATTGATGTCTTTGCTATTGTGGCCATTTG

TCAAGTTGTGTAATATTTTACCCATGCCAACTTTGCATATTGTA

TGTGAGTTTATTCCCAGGGTTTTTAATAGGATGTTTATTGAAGT

TGTCAGTGTTTCCACAATTTCATCGCCTCAGTGCTTACTGTTTG

CATAAAAGGAAACCTACTCACTTTTGCCTATTGCTCTTGTATTC

AATCATTTTAGTTAACTCTTGTGTTAATTTTGAGAGTTTTTCAG

CTGACTGTCTGGGGTTTTCTTTAATAGACTAGCCCTTTGTCTGT

AAAGAATAATTTTATCGAATTTTTCTTAACACTCACACTCTCCC

CACCCCCACCCCCGCTCATCTCCTTTCATTGGGTCAAATCTGTA

GAATACAATAAAAGTAAGAGTGGGAACCTTAGCCTTTAAGTCGA

TTTTGCCTTTAAATGTGAATGTTGCTATGTTTCGGGACATTCTC

TTTATCAAGTTGCGGATGTTTCCTTAGATAATTAACTTAATAAA

AGACTGGATGTTTGCTTTCTTCAAATCAGAATTGTGTTGAATTT

ATATTGCTATTCTGTTTAATTTTGTTTCAAAAAATTTACATGCA

CACCTTAAAGATAACCATGACCAAATAGTCCTCCTGCTGAGAGA

AAATGTTGGCCCCAATGCCACAGGTTACCTCCCGACTCAGATAA

ACTACAATGGGAGATAAAATCAGATTTGGCAAAGCCTGTGGATT

CTTGCCATAACTCTCAGAGCATGACTTGGGTGTTTTTTCCTTTT

CTAAGTATTTTAATGGTATTTTTGTGTTACAATAGGAAATCTAG

GACACAGAGAGTGATTCAATGAGGGGAACGCATTCTGGGATGAC

TCTAGGCCTCTGGTTTGGGGAGAGCTCTATTGAAGTAAAGACAA

TGAGAGGAAGCAAGTTTGCAGGGAACTGTGAGGAATTTAGATGG

GGAATGTTGGGTTTGAGGTTTCTATAGGGCACGCAAGCAGAGAT

GCACTCAGGAGGAAGAAGGAGCATAAATCTAGAGGCAAAAAGAG

AGGTCAGGACTGGAAATAGAGATGCGAGACACCAGGGTGGCAGT

CAGAGAGCACAGTGTGGGTCAGAAGACAGTGGAAGAACACAAGG

GACAGAGAGGGATCTCCAACTTCACTGGGATGAGGGCCTTGTTG

GCCTTGACCTGAGAGATTTCCAGGAGTTGAGGGTGGGAAGGAGc

cgcggTCTAGGAAGCTTTCTAGGGTACCTCTAGGGATCCGAACA

ATGGAAGTCCGAGCTCATCGCTAATAACTTCGTATAGCATACAT

TATACGAAGTTATATTCGATGCGGCCGCAAGGGGTTCGCGTCAG

CGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCA

GAGCAGagatccCGGCGCGCCCTACCGGGTAGGGGAGGCGCTTT

TCCCAAGGCAGTCTGGAGCATGCGCTTTAGCAGCCCCGCTGGGC

ACTTGGCGCTACACAAGTGGCCTCTGGCCTCGCACACATTCCAC

ATCCACCGGTAGGCGCCAACCGGCTCCGTTCTTTGGTGGCCCCT

TCGCGCCACCTTCTACTCCTCCCCTAGTCAGGAAGTTCCCCCCC

GCCCCGCAGCTCGCGTCGTGCAGGACGTGACAAATGGAAGTAGC

ACGTCTCACTAGTCTCGTGCAGATGGACAGCACCGCTGAGCAAT

GGAAGCGGGTAGGCCTTTGGGGCAGCGGCCAATAGCAGCTTTGG

CTCCTTCGCTTTCTGGGCTCAGAGGCTGGGAAGGGGTGGGTCCG

GGGGCGGGCTCAGGGGCGGGCTCAGGGGCGGGGCGGGCGCCCGA

AGGTCCTCCGGAAGCCCGGCATTCTGCACGCTTCAAAAGCGCAC

GTCTGCCGCGCTGTTCTCCTCTTCCTCATCTCCGGGCCTTTCGA

CCTGCAGCCAATATGGGATCGGCCATTGAACAAGATGGATTGCA

CGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATG

ACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTC

CGGCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGA

CCTGTCCGGTGCCCTGAATGAACTGCAGGACGAGGCAGCGCGGC

TATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCAGCTGTGCTC

GACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGCGA

AGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCG

AGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACG

CTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCG

CATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCAATC

AGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAA

CTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGAGGATCT

CGTCGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGG

AAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGT

GTGGCGGATCGCTATCAGGACATAGCGTTGGCTACCCGTGATAT

TGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGC

TTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTAT

CGCCTTCTTGACGAGTTCTTCTGAGGGGATCAATTCtctagtGA

ACAATGGAAGTCCGAGCTCATCGCTAATAACTTCGTATAGCATA

CATTATACGAAGTTATATTCGATGCGGCCGCAAGGGGTTCGCGT

CAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCA

TCAGAGCAGtctagaGCTCGCTGATCAGCCTCGACTGTGCCTTC

TAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCT

TGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAAT

GAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCT

GGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAG

ACAATAGCAGGCATGCTGGGGATGCGGTGGGCTCTATGGCTTCT

GAGGCGGAAAGAACCAGCTGGGGGCGCGCCCctcgagGGGAAGG

TATCTCCCAGGAAACTGGCCAGGACACATTGGTCCTCCGCCCTC

CCCTTCCTCCCACTCCTCCTCCAGACAGGACTGTGCCCACCCCC

TGCCACCTTTCTGGCCAGAACTGTCCATGGCAGGTGACCTTCAC

ATGAGCCCTTCCTCCCTGCCTGCCCTAGTGGGACCCTCCATACC

TCCCCCTGGACCCCGTTGTCCTTTCTTTCCAGTGTGGCCCTGAG

CATAACTGATGCCATCATGGGCTGCTGACCCACCCGGGACTGTG

TTGTGCAGTGAGTCACTTCTCTGTCATCAGGGCTTTGTAATTGA

TAGATAGTGTTTCATCATCATTAGGACCGGGTGGCCTCTATGCT

CTGTTAGTCTCCAAACACTGATGAAAACCTTCGTTGGCATAGTC

CCAGCTTCCTGTTGCCCATCCATAAATCTTGACTTAGGGATGCA

CATCCTGTCTCCAAGCAACCACCCCTCCCCTAGGCTAACTATAA

AACTGTCCCAATGGCCCTTGTGTGGTGCAGAGTTCATGCTTCCA

GATCATTTCTCTGCTAGATCCATATCTCACCTTGTAAGTCATCC

TATAATAAACTGATCCATTGATTATTTGCTTCTGTTTTTTCCAT

CTCAAAACAGCTTCTCAGTTCAGTTCGAATTTTTTATTCCCTCC

ATCCACCCATACTTTCCTCAGCCTGGGGAACCCTTGCCCCCAGT

CCCATGCCCTTCCTCCCTCTCTGCCCAGCTCAGCACCTGCCCAC

CCTCACCCTTCCTGTCACTCCCTAGGACTGGACCATCCACTGGG

GCCAGGACACTCCAGCAGCCTTGGCTTCATGGGCTCTGAAATCC

ATGGCCCATCTCTATTCCTCACTGGATGGCAGGTTCAGAGATGT

GAAAGGTCTAGGAGGAAGCCAGGAAGGAAACTGTTGCATGAAAG

GCCGGCCTGATGGTTCAGTACTTAAATAATATGAGCTCTGAGCT

CCCCAGGAACCAAAGCATGGAGGGAGTATGTGCCTCAGAATCTC

TCTGAGATTCAGCAAAGCCTTTGCTAGAGGGAAAATAGTGGCTC

AACCTTGAGGGCCAGCATCTTGCACCACAGTTAAAAGTGGGTAT

TTGTTTTACCTGAGGCCTCAGCATTATGGGAACCGGGCTCTGAC

ACAAACACAGGTGCAGCCCGGCAGCCTCAGAACACAGCAACGAC

CACAAGCTGGGACAGCTGCCCCTGAACGGGGAGTCCACCATGCT

TCTGTCTCGGGTACCACCAGGTCACCATCCCTGGGGGAGGTAGT

TCCATAGCAGTAGTCCCCTGATTTCGCCCCTCGGGCGTGTAGCC

AGGCAAGCTCCTGCCTCTGGACCCAGGGTGGACCCTTGCTCCCC

ACTACCCTGCACATGCCAGACAGTCAAGACCACTCCCACCTCTG

TCTGAGGCCCCCTTGGGTGTCCCAGGGCCCCCGAGCTGTCCTCT

ACTCATGGTTCTTCCACCTGGGTACAAAAGAGGCGAGGGACACT

TTTCTCAGGTTTGCGGCTCAGAAAGGTACCTTCCTAGGGTTTGT

CCACTGGGAGTCACCTCCCTTGCATCTCAATGTCAGTGGGGAAA

ACTGGGTCCCATGGGGGGATTAGTGCCACTGTGAGGCCCCTGAA

GTCTGGGGCCTCTAGACACTATGATGATGAGGGATGTGGTGAAA

AACCCCACCCCAGCCCTTCTTGCCGGGACCCTGGGCTGTGGCTC

CCCCATTGCACTTGGGGTCAGAGGGGTGGATGGTGGCTATGGTC

AGGCATGTTTCCCATGAGCTGGGGGCACCCTGGGTGACTTTCTC

CTGTGAATCCTGAATTAGCAGCTATAACAAATTGCCCAAACTCT

TAGGCTTAAAACAACACACATTTATTCCTCTGGGTCCCAGGGTC

AGAAGTCCAAAATGAGTCCTATAGGCTAAATTTGAGGTGTCTCT

GGGTTGAGCTCCTCCTGGAAGCCTTTTCCAGCCTCTAGAGTCCC

AAGTCCTTGGCTCTGGGCCCCTCCCTCAAGCTTCAAAGCCACAG

AAGCTTCTAATCTCTCTCCCTTCCCCTCTGACCTCTGCTCCCAT

CCTCATACCCTGTCCCCTCACTCTGACCCTCCTGCCTCCCTCTT

TCCCTTATAAAGACCCTGCATGGGGCCACGGAGATAATCCAGGG

TAATCGCCCCTCTTCCAGCCCTTAACTCCATCCCATCTGCAAAA

TCCCTGTCACCCCATAATGGACCTACagatctCCTAGAGTTAAC

ACTGGCCGTCGTTTTACCGGTCCGTAGTCAGGTTTAGTTCGTCC

GGCGGCGCCAGAAATCCGCGCGGTGGTTTTTGGGGGTCGGGGGT

GTTTGGCAGCCACAGACGCCCGGTGTTCGTGTCGCGCCAGTACA

TGCGGTCCATGCCCAGGCCATCCAAAAACCATGGGTCTGTCTGC

TCAGTCCAGTCGTGGACTGACCCCACGCAACGCCCAAAATAATA

ACCCCCACGAACCATAAACCATTCCCCATGGGGGACCCCGTCCC

TAACCCACGGGGCCCGTGGCTATGGCAGGCCTGCCGCCCGACGT

TGGCTGCGAGCCCTGGGCCTTCACCCGAACTTGGGGGGTGGGGT

GGGGAAAAGGAAGAAACGCGGGCGTATTGGCCCCAATGGGGTCT

CGGTGGGGTATCGACAGAGTGCCAGCCCTGGGACCGAACCCCGC

GTTTATGAACAAACGACCCAACACCCGTGCGTTTTATTCTGTCT

TTTTATTGCCGACATAGCGCGGGTTCCTTCCGGTATTGTCTCCT

TCCGTGTTTCAGTTAGCCTCCCCCATCTCCCGTGCAAACGTGCG

CGCCAGGTCGCAGATCGTCGGTATGGAGCCTGGGGTGGTGACGT

GGGTCTGGATCATCCCGGAGGTAAGTTGCAGCAGGGCGTCCCGG

CAGCCGGCGGGCGATTGGTCGTAATCCAGGATAAAGACGTGCAT

GGGACGGAGGCGTTTGGCCAAGACGTCCAAGGCCCAGGCAAACA

CGTTGTACAGGTCGCCGTTGGGGGCCAGCAACTCGGGGGCCCGA

AACAGGGTAAATAACGTGTCCCCGATATGGGGTCGTGGGCCCGC

GTTGCTCTGGGGCTCGGCACCCTGGGGCGGCACGGCCGTCCCCG

AAAGCTGTCCCCAATCCTCCCGCCACGACCCGCCGCCCTGCAGA

TACCGCACCGTATTGGCAAGCAGCCCGTAAACGCGGCGAATCGC

GGTCAGCATAGCCAGGTCAAGCCGCTCGCCGGGGCGCTGGCGTT

TGGCCAGGCGGTCGATGTGTCTGTCCTCCGGAAGGGCCCCCAAC

ACGATGTTTGTGCCGGGCAAGGTCGGCGGGATGAGGGCCACGAA

CGCCAGCACGGCCTGGGGGGTCATGCTGCCCATAAGGTATCGCG

CGGCCGGGTAGCACAGGAGGGCGGCGATGGGATGGCGGTCGAAG

ATGAGGGTGAGGGCCGGGGGCGGGGCATGTGAGCTCCCAGCCTC

CCCCCCGATATGAGGAGCCAGAACGGCGTCGGTCACGGTATAAG

GCATGCCCATTGTTATCTGGGCGCTTGTCATTACCACCGCCGCG

TCCCCGGCCGATATCTCACCCTGGTCAAGGCGGTGTTGTGTGGT

GTAGATGTTCGCGATTGTCTCGGAAGCCCCCAGCACCCGCCAGT

AAGTCATCGGCTCGGGTACGTAGACGATATCGTCGCGCGAACCC

AGGGCCACCAGCAGTTGCGTGGTGGTGGTTTTCCCCATCCCGTG

GGGACCGTCTATATAAACCCGCAGTAGCGTGGGcATTTTCTGCT

CCGGGCGGACTTCCGTGGCTTCTTGCTGCCGGCGAGGGCGCAAC

GCCGTACGTCGGTTGCTATGGCCGCGAGAACGCGCAGCCTGGTC

GAACGCAGACGCGTGCTGATGGCCGGGGTACGAAGCCATACGCG

CTTCTACAAGGCGCTGGCCGAAGAGGTGCGGGAGTTTCACGCCA

CCAAGATGTGCGGCACGCTGTTGACGCTGTTAAGCGGGTCGCTG

CAGGGTCGCTCGGTGTTCGAGGCCACACGCGTCACCTTAATATG

CGAAGTGGACCTGGGACCGCGCCGCCCCGACTGCATCTGCGTGT

TCCAATTCGCCAATGACAAGACGCTGGGCGGGGTTTGCTCGACA

TTGGGTGGAAACATTCCAGGCCTGGGTGGAGAGGCTTTTTGCTT

CCTCTTGCAAAACCACACTGCTCGACATTGGGTGGAAACATTCC

AGGCCTGGGTGGAGAGGCTTTTTGCTTCCTCTTGAAAACCACAC

TGCTCGACTCTACGGTCCG



Seq ID No. 49 is a lambda light chain 5′ arm sequence

Seq ID

AGGGTGTGGCCAAATACAGCATGGAGTAGCCATCATAAGGAATC

No. 49

TTACACAAGCCTCCAAAATTGTGTTTCTGAAATTGGGTTTAAAG

TACGTTTGCATTTTAAAAAGCCTGCCAGAAAATACAGAAAAATG

TCTGTGATATGTCTCTGGCTGATAGGATTTTGCTTAGTTTTAAT

TTTGGCTTTATAATTTTCTATAGTTATGAAAATGTTCACAAGAA

GATATATTTCATTTTAGCTTCTAAAATAATTATAACACAGAAGT

AATTTGTGCTTTAAAAAAATATTCAACACAGAAGTATATAAAGT

AAAAATTGAGGAGTTCCCATCGTGGCTCAGTGATTAACAAACCC

AACTAGTATCCATGAGGATATGGATTTGATCCCTGGCCTTGCTC

AGTGGGTTGAGGATCCAGTGTTGCTGTGAGCTGTGGTGTAGGTT

GCAGACACAGCACTCTGGCGTTGCTGTGACTCTGGCGTAGGCCG

GCAGCTACAGCTCCATTTGGACCCTTAGCCTGGGAACCTCCATA

TGCCTGAGATACGGCCCTAAAAAGTCAAAAGCCAAAAAAATAGT

AAAAATTGAGTGTTTCTACTTACCACCCCTGCCCACATCTTATG

CTAAAACCCGTTCTCCAGAGACAAACATCGTCAGGTGGGTCTAT

ATATTTCCAGCCCTCCTCCTGTGTGTGTATGTCCGTAAAACACA

CACACACACACACACACGCACACACACACACACGTATCTAATTA

GCATTGGTATTAGTTTTTCAAAAGGGAGGTCATGCTCTACCTTT

TAGGCGGCAAATAGATTATTTAAACAAATCTGTTGACATTTTCT

ATATCAACCCATAAGATCTCCCATGTTCTTGGAAAGGCTTTGTA

AGACATCAACATCTGGGTAAACCAGCATGGTTTTTAGGGGGTTG

TGTGGATTTTTTTCATATTTTTTAGGGCACACCTGCAGCATATG

GAGGTTCCCAGGCTAGGGGTTGAATCAGAGCTGTAGCTGCCGGC

CTACACCACAGCCACAGCAACGCCAGATCCTTAACCCACTGAGA

AAGGCCAGGGATTGAACCTGCATCCTCATGGATGCTGGTCAGAT

TTATTTCTGCTGAGCCACAACAGGAACTCCCTGAACCAGAATGC

TTTTAACCATTCCACTTTGCATGGACATTTAGATTGTTTCCATT

TAAAAATACAAATTACAAGGAGTTCCCGTCGTGGCTCAGTGGTA

ACGAATTGGACTAGGAACCATGAGGTTTCGGGTTCGATCCCTGG

CCTTGCTCGGTGGGTTAAGGATCCAGCATTGATGTGAGATATGG

TGTAGGTCGCAGACGTGGCTCGGATCCCACGTTGCTGTGGCTCT

GGCGTAGGCCGGCAACAACAGCTCCGATTCGACCCCTAGCCTGG

GAACCTCCATGTGCCACAGGAGCAGCCCTAGAAAAGGCAAAAAG

ACAAAAAAATAAAAAATTAAAATGAAAAAATAAAATAAAAATAC

AAATTACAAGAGACGGCTACAAGGAAATCCCCAAGTGTGTGCAA

ATGCCATATATGTATAAAATGTACTAGTGTCTCCTCGCGGGAAA

GTTGCCTAAAAGTGGGTTGGCTGGACAGAGAGGACAGGCTTTGA

CATTCTCATAGGTAGTAGCAATGGGCTTCTCAAAATGCTGTTCC

AGTTTACACTCACCATAGCAAATGACAGTGCCTCTTCCTCTCCA

CCCTTGCCAATAATGTGACAGGTGGATCTTTTTCTATTTTGTGT

ATCTGACAAGCAAAAAATGAGAACAGGAGTTCCTGTCGTGGTGC

AGTGGAGACAAATCTGACTAGGAACCATGAAATTTCGGGTTCAA

TCCCTGGCCTCACTCAGTAGGTAAAGGATCCAGGGTTGCAGTGA

GCTGTGGGGTAGGTCGCAGACACAGTGCAAATTTGGCCCTGTTG

TGGCTGTGGTGTAGGCCGGCAGCTATAGCTCCAATTGGACCCCT

AGCCTGGGAACCTCCTTATGCCGTGGGTGAGGCCCTAAAAAAAA

GAGTGCAAAAAAAAAAAATAAGAACAAAAATGATCATCGTTTAA

TTCTTTATTTGATCATTGGTGAAACTTATTTTCCTTTTATATTT

TTATTGACTGATTTTATTTCTCCTATGAATTTACCGGTCATAGT

TTTGCCTGGGTGTTTTTACTCCGGTTTTAGTTTTGGTTGGTTGT

ATTTTCTTAGAGAGCTATAGAAACTCTTCATCTATTTGGAATAG

TAATTCCTCATTAAGTATTTGTGCTGCAAAAAATTTTCCCTGAT

CTGTTTTATGCTTTTGTTTGTGGGGTCTTTCACGAGAAAGCCTT

TTTAGTTTTTACACCTCAGCTTGGTTGTTTTTCTTGATTGTGTC

TGTAATCTGCGGCCAACATAGGAAACACATTTTTACTTTAGTGT

TTTTTTCCTATTTTCTTCAAGTACGTCCATTGTTTTGGTGTCTG

ATTTTACTTTGCCTGGGGTTTGTTTTTGTGTGGCAGGAATATAA

ACTTATGTATTTTCCAAATGGAGAGCCAATGGTTGTATATTTGT

TGAATTCAAATGCAACTTTATCAAACACCAAATCATCGATTTAT

CACAACTCTTCTCTGGTTTATTGATCTAATGATCAATTCCTGTT

CCACGCTGTTTTAATTATTTTAGCTTTGTGGATTTTGGTGCCTG

GTAGAGAACAAAGCCTCCATTATTTTCATTCAAAATAGTCCCGT

CTATTATCTGCCATTGTTGTAGTATTAGACTTTAAAATCAATTT

ACTGATTTTCAAAAGTTATTCCTTTGGTGATGTGGAATACTTTA

TACTTCATAAGGTACATGGATTCATTTGTGGGGAATTGATGTCT

TTGCTATTGTGGCCATTTGTCAAGTTGTGTAATATTTTACCCAT

GCCAACTTTGCATATTGTATGTGAGTTTATTCCCAGGGTTTTTA

ATAGGATGTTTATTGAAGTTGTCAGTGTTTCCACAATTTCATCG

CCTCAGTGCTTACTGTTTGCATAAAAGGAAACCTACTCACTTTT

GCCTATTGCTCTTGTATTCAATCATTTTAGTTAACTCTTGTGTT

AATTTTGAGAGTTTTTCAGCTGACTGTCTGGGGTTTTCTTTAAT

AGACTAGCCCTTTGTCTGTAAAGAATAATTTTATCGAATTTTTC

TTAACACTCACACTCTCCCCACCCCCACCCCCGCTGATCTCCTT

TCATTGGGTCAAATCTGTAGAATACAATAAAAGTAAGAGTGGGA

ACCTTAGCCTTTAAGTCGATTTTGCCTTTAAATGTGAATGTTGC

TATGTTTCGGGACATTCTCTTTATCAAGTTGCGGATGTTTCCTT

AGATAATTAACTTAATAAAAGACTGGATGTTTGCTTTCTTCAAA

TCAGAATTGTGTTGAATTTATATTGCTATTCTGTTTAATTTTGT

TTCAAAAAATTTACATGCACACCTTAAAGATAACCATGACCAAA

TAGTCCTCCTGCTGAGAGAAAATGTTGGCCCCAATGCCACAGGT

TACCTCCCGACTCAGATAAACTACAATGGGAGATAAAATCAGAT

TTGGCAAAGCCTGTGGATTCTTGCCATAACTCTCAGAGCATGAC

TTGGGTGTTTTTTCCTTTTCTAAGTATTTTAATGGTATTTTTGT

GTTACAATAGGAAATCTAGGACACAGAGAGTGATTCAATGAGGG

GAACGCATTCTGGGATGACTCTAGGCCTCTGGTTTGGGGAGAGC

TCTATTGAAGTAAAGACAATGAGAGGAAGCAAGTTTGCAGGGAA

CTGTGAGGAATTTAGATGGGGAATGTTGGGTTTGAGGTTTCTAT

AGGGCACGCAAGCAGAGATGCACTCAGGAGGAAGAAGGAGCATA

AATCTAGAGGCAAAAAGAGAGGTCAGGACTGGAAATAGAGATGC

GAGACACCAGGGTGGCAGTCAGAGAGCACAGTGTGGGTCAGAAG

ACAGTGGAAGAACACAAGGGACAGAGAGGGATCTCCAACTTCAC

TGGGATGAGGGCCTTGTTGGCCTTGACCTGAGAGATTTCCAGGA

GTTGAGGGTGGGAAGGAG



Seq. ID No. 50 is a lambda 3′ arm sequence

Seq. ID

GGGAAGGTATCTCCCAGGAAACTGGCCAGGACACATTGGTCC

No. 50

TCCGCCCTCCCCTTCCTCCCACTCCTCCTCCAGACAGGACTG

TGCCCACCCCCTGCCACCTTTCTGGCCAGAACTGTCCATGGC

AGGTGACCTTCACATGAGCCCTTCCTCCCTGCCTGCCCTAGT

GGGACCCTCCATACCTCCCCCTGGACCCCGTTGTCCTTTCTT

TCCAGTGTGGCCCTGAGCATAACTGATGCCATCATGGGCTGC

TGACCCACCCGGGACTGTGTTGTGCAGTGAGTCACTTCTCTG

TCATCAGGGCTTTGTAATTGATAGATAGTGTTTCATCATCAT

TAGGACCGGGTGGCCTCTATGCTCTGTTAGTCTCCAAACACT

GATGAAAACCTTCGTTGGCATAGTCCCAGCTTCCTGTTGCCC

ATCCATAAATCTTGACTTAGGGATGCACATCCTGTCTCCAAG

CAACCACCCCTCCCCTAGGCTAACTATAAAACTGTCCCAATG

GCCCTTGTGTGGTGCAGAGTTCATGCTTCCAGATCATTTCTC

TGCTAGATCCATATCTCACCTTGTAAGTCATCCTATAATAAA

CTGATCCATTGATTATTTGCTTCTGTTTTTTCCATCTCAAAA

CAGCTTCTCAGTTCAGTTCGAATTTTTTATTCCCTCCATCCA

CCCATACTTTCCTCAGCCTGGGGAACCCTTGCCCCCAGTCCC

ATGCCCTTCCTCCCTCTCTGCCCAGCTCAGCACCTGCCCACC

CTCACCCTTCCTGTCACTCCCTAGGACTGGACCATCCACTGG

GGCCAGGACACTCCAGCAGCCTTGGCTTCATGGGCTCTGAAA

TCCATGGCCCATCTCTATTCCTCACTGGATGGCAGGTTCAGA

GATGTGAAAGGTCTAGGAGGAAGCCAGGAAGGAAACTGTTGC

ATGAAAGGCCGGCCTGATGGTTCAGTACTTAAATAATATGAG

CTCTGAGCTCCCCAGGAACCAAAGCATGGAGGGAGTATGTGC

CTCAGAATCTCTCTGAGATTCAGCAAAGCCTTTGCTAGAGGG

AAAATAGTGGCTCAACCTTGAGGGCCAGCATCTTGCACCACA

GTTAAAAGTGGGTATTTGTTTTACCTGAGGCCTCAGCATTAT

GGGAACCGGGCTCTGACACAAACACAGGTGCAGCCCGGCAGC

CTCAGAACACAGCAACGACCACAAGCTGGGACAGCTGCCCCT

GAACGGGGAGTCCACCATGCTTCTGTCTCGGGTACCACCAGG

TCACCATCCCTGGGGGAGGTAGTTCCATAGCAGTAGTCCCCT

GATTTCGCCCCTCGGGCGTGTAGCCAGGCAAGCTCCTGCCTC

TGGACCCAGGGTGGACCCTTGCTCCCCACTACCCTGCACATG

CCAGACAGTCAAGACCACTCCCACCTCTGTCTGAGGCCCCCT

TGGGTGTCCCAGGGCCCCCGAGCTGTCCTCTACTCATGGTTC

TTCCACCTGGGTACAAAAGAGGCGAGGGACACTTTTCTCAGG

TTTGCGGCTCAGAAAGGTACCTTCCTAGGGTTTGTCCACTGG

GAGTCACCTCCCTTGCATCTCAATGTCAGTGGGGAAAACTGG

GTCCCATGGGGGGATTAGTGCCACTGTGAGGCCCCTGAAGTC

TGGGGCCTCTAGACACTATGATGATGAGGGATGTGGTGAAAA

ACCCCACCCCAGCCCTTCTTGCCGGGACCCTGGGCTGTGGCT

CCCCCATTGCACTTGGGGTCAGAGGGGTGGATGGTGGCTATG

GTCAGGCATGTTTCCCATGAGCTGGGGGCACCCTGGGTGACT

TTCTCCTGTGAATCCTGAATTAGCAGCTATAACAAATTGCCC

AAACTCTTAGGCTTAAAACAACACACATTTATTCCTCTGGGT

CCCAGGGTCAGAAGTCCAAAATGAGTCCTATAGGCTAAATTT

GAGGTGTCTCTGGGTTGAGCTCCTCCTGGAAGCCTTTTCCAG

CCTCTAGAGTCCCAAGTCCTTGGCTCTGGGCCCCTCCCTCAA

GCTTCAAAGCCACAGAAGCTTCTAATCTCTCTCCCTTCCCCT

CTGACCTCTGCTCCCATCCTCATACCCTGTCCCCTCACTCTG

ACCCTCCTGCCTCCCTCTTTCCCTTATAAAGACCCTGCATGG

GGCCACGGAGATAATCCAGGGTAATCGCCCCTCTTCCAGCCC

TTAACTCCATCCCATCTGCAAAATCCCTGTCACCCCATAATG

GACCTAC

In a second strategy, the targeting strategy utilizes a vector pair. One targeting vector is designed to target upstream of J1. See FIG. 5. This targeting vector utilizes a selectable marker that can be selected for or against. Any combination of positive and negative selectable markers described herein or known in the art can be used. A fusion gene composed of the coding region of Herpes simplex thymidine kinase (TK) and the Tn5 aminoglycoside phosphotransferase (Neo resistance) genes is used. This fusion gene is flanked by recognition sites for any site specific recombinase (SSRRS) described herein or known in the art, such as lox sites. Upon isolation of targeted cells through the use of G418 selection, Cre is supplied in trans to delete the marker gene (See FIG. 5). Cells that have deleted the marker gene are selected by addition of any drug known in the art that can be metabolized by TK into a toxic product, such as ganciclovir. The resulting genotype is then targeted with a second vector. The second targeting vector (FIG. 6) is designed to target downstream of last C and uses a positive/negative selection system that is flanked on only one side by a specific recombination site (lox). The recombination site is placed distally in relation to the first targeting event. Upon isolation of the targeted genotype, Cre is again supplied in trans to mediate deletion from recombination site provided in the first targeting event to the recombination site delivered in the second targeting event. The entire J to C cluster region will be removed. The appropriate genotype is again selected by administration of ganciclovir.

Two vector pairs, i.e., lambda targeting constructs, were designed and built to target the first and last J/C regions and to include site-specific recombination sites. The first vector pair was composed of Seq ID No. 44 (step 1 vector) and Seq ID No. 45 (step 2 vector). The second vector pair was composed of Seq ID No. 46 (step 2 vector) and Seq ID No. 47 (step 1 vector).

Overview of Seq ID No. 44 (upstream vector, step 1, double lox):

Feature Map

CDS (3 total)

    • NEO (+STOP) CDS

      • Start: 3311 End: 4114 (Complementary)

    • TK CDS (from VEC1198)

      • Start: 4118 End: 5251 (Complementary)

    • AP(R)

      • Start: 11732 End: 12589 (Complementary)
      • bla gene-Ap(r) determinant

Enhancer (1 total)

    • CMV Enhancer

      • Start: 5779 End: 6199 (Complementary)

Misc. Binding Site (2 total)

    • Left Homology Arm

      • Start: 238 End: 2978

    • Right Homology Arm

      • Start: 6269 End: 10600

Misc. Feature (5 total)

    • loxP-1

      • Start: 3006 End: 3039

    • HSVTK-polyA

      • Start: 3046 End: 3304 (Complementary)

    • loxP-2

      • Start: 6212 End: 6245

Promoter Eukaryotic (1 total)

    • Mus-PGK Promoter (correct)

      • Start: 5264 End: 5772 (Complementary)

Replication Origin (2 total)

    • Replication Origin

      • Start: 10921 End: 11509 (Complementary)



        Overview of Seq ID No. 45 (Downstream vector, step 2, single lox

Feature Map

CDS (3 total)

    • NEO (+STOP) CDS

      • Start: 3115 End: 3918 (Complementary)

    • TK CDS (from VEC1198)

      • Start: 3922 End: 5055 (Complementary)

    • AP(R)

      • Start: 11322 End: 12179 (Complementary)
      • bla gene-Ap(r) determinant

Enhancer (1 total)

    • CMV Enhancer

      • Start: 5583 End: 6003 (Complementary)

Misc. Binding Site (2 total)

    • Left Homology Arm

      • Start: 222 End: 2774

    • Right Homology Arm

      • Start: 6112 End: 10226

Misc. Feature (4 total)

    • HSVTK-polyA

      • Start: 2850 End: 3108 (Complementary)

    • loxP-2

      • Start: 6016 End: 6049

Promoter Eukaryotic (1 total)

    • Mus-PGK Promoter (correct)

      • Start: 5068 End: 5576 (Complementary)

Replication Origin (2 total)

    • ORI

      • Start: 10511 End: 10511
      • RNaseH cleavage point

    • Replication Origin

      • Start: 10511 End: 11099 (Complementary)



        Overview of Seq ID No. 46 (upstream vector alternative, step 2, single lox)

Feature Map

CDS (3 total)

    • NEO (+STOP) CDS

      • Start: 3311 End: 4114 (Complementary)

    • TK CDS (from VEC1198)

      • Start: 4118 End: 5251 (Complementary)

    • AP(R)

      • Start: 11698 End: 12555 (Complementary)
      • bla gene-Ap(r) determinant

Enhancer (1 total)

    • CMV Enhancer

      • Start: 5779 End: 6199 (Complementary)

Misc. Binding Site (2 total)

    • Left Homology Arm

      • Start: 238 End: 2978

    • Right Homology Arm

      • Start: 6235 End: 10566

Misc. Feature (4 total)

    • loxP-1

      • Start: 3006 End: 3039

    • HSVTK-polyA

      • Start: 3046 End: 3304 (Complementary)

Promoter Eukaryotic (1 total)

    • Mus-PGK Promoter (correct)

      • Start: 5264 End: 5772 (Complementary)

Replication Origin (2 total)

    • ORI

      • Start: 10887 End: 10887
      • RNaseH cleavage point

    • Replication Origin

      • Start: 10887 End: 11475 (Complementary)



        Overview of Seq ID No. 47 (Downstream vector alternative, step 1, double lox)

Feature Map

CDS (3 total)

    • NEO (+STOP) CDS

      • Start: 3149 End: 3952 (Complementary)

    • TK CDS (from VEC1198)

      • Start: 3956 End: 5089 (Complementary)

    • AP(R)

      • Start: 11356 End: 12213 (Complementary)
      • bla gene-Ap(r) determinant

Enhancer (1 total)

    • CMV Enhancer

      • Start: 5617 End: 6037 (Complementary)

Misc. Binding Site (2 total)

    • Left Homology Arm

      • Start: 222 End: 2774

    • Right Homology Arm

      • Start: 6146 End: 10260

Misc. Feature (5 total)

    • loxP-1

      • Start: 2844 End: 2877

    • HSVTK-polyA

      • Start: 2884 End: 3142 (Complementary)

    • loxP-2

      • Start: 6050 End: 6083

Promoter Eukaryotic (1 total)

    • Mus-PGK Promoter (correct)

      • Start: 5102 End: 5610 (Complementary)

Replication Origin (2 total)

    • Replication Origin

      • Start: 10545 End: 11133 (Complementary)

The first vector pair is used to produce cells in which the entire J/cluster region is deleted.

The second vector pair is used to produce cells in which the entire J/C cluster region is deleted.

Example 5

Crossbreeding of Heavy Chain Single Knockout with Kappa Single Knockout Pigs

To produce pigs that have both one disrupted Ig heavy chain locus and one disrupted Ig light-chain kappa allele, single knockout animals were crossbred. The first pregnancy yielded four fetuses, two of which screened positive by both PCR and Southern for both heavy-chain and kappa targeting events (see examples 1 and 2 for primers). Fetal fibroblasts were isolated, expanded and frozen. A second pregnancy resulting from the mating of a kappa single knockout with a heavy chain single knockout produced four healthy piglets.

Fetal fibroblast cells that contain a heavy chain single knockout and a kappa chain single knockout will be used for further targeting. Such cells will be used to target the lambda locus via the methods and compositions described herein. The resulting offspring will be heterozygous knockouts for heavy chain, kappa chain and lambda chain. These animals will be further crossed with animals containing the human Ig genes as described herein and then crossbred with other single Ig knockout animals to produce porcine Ig double knockout animals with human Ig replacement genes.

This invention has been described with reference to its preferred embodiments. Variations and modifications of the invention, will be obvious to those skilled in the art from the foregoing detailed description of the invention.