会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 12. 发明授权
    • 一种灌区稻田碳汇价值计算方法及系统
    • CN117153291B
    • 2024-01-02
    • CN202311421273.9
    • 2023-10-31
    • 水利部交通运输部国家能源局南京水利科学研究院
    • 时元智黄国情雷少华金秋和玉璞纪仁婧张杰铭
    • G16C20/30G16C20/70G06Q50/26
    • 本发明涉及环境监测与评价技术领域,公开一种灌区稻田碳汇价值计算方法及系统,包括对参考区域的二氧化碳和甲烷进行测量,得到二氧化碳实测数据和甲烷实测数据;根据参数信息和二氧化碳实测数据得到二氧化碳预测模型,根据参考区域的参数信息和甲烷实测数据得到的甲烷预测模型;将目标区域各个位置的参数信息分别带入二氧化碳预测模型和甲烷预测模型得到目标区域的二氧化碳数据和甲烷数据,将所述目标区域的甲烷数据乘以甲烷的全球增温潜势得到所述目标区域的甲烷数据的二氧化碳当量;根据二氧化碳数据和甲烷数据的二氧化碳当量计算目标区域的碳汇量。本申请提供的灌区稻田碳汇价值计算方法及系统,能够提高稻田碳汇价值的计算精度。(56)对比文件CN 115965102 A,2023.04.14CN 116189813 A,2023.05.30CN 116646918 A,2023.08.25CN 115170341 A,2022.10.11CN 116542537 A,2023.08.04CN 115656105 A,2023.01.31CN 115452822 A,2022.12.09CN 114088916 A,2022.02.25CN 115561197 A,2023.01.03CN 115474455 A,2022.12.16CN 115879630 A,2023.03.31CN 115545254 A,2022.12.30CN 113919448 A,2022.01.11KR 102502154 B1,2023.02.22WO 2023159739 A1,2023.08.31US 2023162441 A1,2023.05.25EP 4145365 A1,2023.03.08WO 2019046968 A1,2019.03.14US 2018136113 A1,2018.05.17WO 2021226976 A1,2021.11.18US 2018075546 A1,2018.03.15US 11585802 B1,2023.02.21WO 2023201552 A1,2023.10.26US 2020027096 A1,2020.01.23WO 2023064401 A1,2023.04.20WO 2020165701 A1,2020.08.20WO 2022126137 A1,2022.06.16WO 2013063648 A2,2013.05.10WO 2023165336 A1,2023.09.07WO 2022166939 A1,2022.08.11WO 2012002482 A1,2012.01.05WO 2009054738 A1,2009.04.30US 2022061236 A1,2022.03.03US 2023324291 A1,2023.10.12US 2023186173 A1,2023.06.15WO 2011064730 A1,2011.06.03WO 2023095039 A1,2023.06.01US 2023213337 A1,2023.07.06US 2019041811 A1,2019.02.07WO 2023087630 A1,2023.05.25US 2022374912 A1,2022.11.24US 2011027017 A1,2011.02.03KR 101361653 B1,2014.02.12蒲旖旎.“退养还湖”前后东太湖CO2和CH4通量的变化及影响因素《.中国博士学位论文全文数据库 工程科技I辑》.2023,(第1期),B027-10.Räsänen, Aleksi等.Predictingcatchment-scale methane fluxes withmulti-source remote sensing《.LandscapeEcology》.2021,第36卷1177-1195.
    • 14. 发明授权
    • 一种流域颗粒有机碳通量遥感监测方法
    • CN116908114B
    • 2023-12-01
    • CN202311146102.X
    • 2023-09-07
    • 水利部交通运输部国家能源局南京水利科学研究院中国科学院南京地理与湖泊研究所
    • 雷少华黄国情黄佳聪施坤谈晓珊金秋赵广举田鹏徐杰高辰源宫效然张荣耀
    • G01N21/25G06V20/13G06V20/10G06V10/762G06F30/28G01N21/47G06F113/08G06F119/14
    • 型,提高了流域颗粒有机碳通量的监测时效和精本发明公开了一种流域颗粒有机碳通量遥 度。感监测方法,属于流域颗粒有机碳通量监测技术领域,包括:利用遥感反射率分类方法,获取河流在不同水体光学类别下的表层颗粒有机碳浓度;建立不同水体光学类别下表层颗粒有机碳浓度和每一个水体层级颗粒有机碳浓度的递推模型;建立三维水动力模型;建立在不同水体光学类别下,基于三维水动力模型的流域颗粒有机碳通量遥感监测模型。本发明可以无需建立更多的卡口站,或在现有卡口站中安装流量和颗粒有机碳浓(56)对比文件李春川;王丽莎;唐洪杰;张海波.渤海中部海域颗粒有机碳季节性变化及碳库估算《.中国环境科学》.2020,第40卷(第05期),第2204-2213页.张发兵;胡维平;胡雄星;李芳;刘登国;刘必寅;夏凡.太湖湖泊水体碳循环模型研究《.水科学进展》.2008,第19卷(第02期),第171-178页.王亚琪;王繁;陈迤岳.海洋水体颗粒有机碳遥感反演研究进展《.杭州师范大学学报(自然科学版)》.2017,第16卷(第02期),第205-212页.刘少军 等.基于卫星遥感的南海真光层底颗粒有机碳输出通量时空特征研究《.海洋气象学报》.2022,第42卷(第1期),第32-38页.Zhihong Wang et al..Estimatingparticulate organic carbon flux in ahighly dynamic estuary using satellitedata and numerical modeling《.RemoteSensing of Environment》.2020,第252卷第1-18页.周博天 等.湖泊营养状态遥感评价及其表征参数反演算法研究进展《.遥感学报》.2022,第26卷(第1期),第77-91页.徐杰.湖泊颗粒有机碳浓度及其来源的遥感估算研究《.中国博士学位论文全文数据库 工程科技Ⅰ辑》.2022,(第3期),第B027-140页.吴慧 等.海南西部热带雨林次生林土壤易氧化有机碳分布特征及影响因素《.广东农业科学》.2022,第49卷(第6期),第74-80页.Zhao zhilong et al..A novelsemianalytical remote sensing retrievalstrategy and algorithm for particulateorganic carbon in inland waters based onbiogeochemical-optical mechanisms《.RemoteSensing of Environment》.2022,第280卷第1-14页.Ana Gabriela Bonelli et al..A newmethod to estimate the dissolved organiccarbon concentration from remote sensingin the global open ocean《.Remote Sensingof Environment》.2022,第281卷第1-16页.刘广州;胡嘉镗;李适宇.珠江口夏季海陆源有机碳的模拟研究――分布特征、贡献比重及其迁移转化过程《.中国环境科学》.2020,第40卷(第01期),第162-173页.袁华茂,吕晓霞,李学刚,李宁,孙云明,詹天荣,宋金明.自然粒度下渤海沉积物中有机碳的地球化学特征《.环境化学》.2003,第22卷(第02期),第115-120页.梁其椿;张玉超;薛坤;段洪涛;马荣华.巢湖藻类高斯垂向分布结构参数的遥感估算《.湖泊科学》.2017,第29卷(第03期),第546-557页.宋晓红;石学法;蔡德陵;王国庆;王江涛.三峡截流后长江口秋季TSM、POC和PN的分布特征.《海洋科学进展》.2007,第25卷(第02期),第168-177页.姜广甲;苏文;马荣华;段洪涛;蔡伟叙;黄楚光;阳杰;余威.富营养化水体颗粒有机碳浓度的遥感估算及动态变化特征《.红外与毫米波学报》.2015,第34卷(第02期),第203-210页.