会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 94. 发明授权
    • Heat pump apparatus
    • 热泵设备
    • US09557085B2
    • 2017-01-31
    • US13384680
    • 2010-01-15
    • Mamoru HamadaFumitake UnezakiYoshihiro TakahashiKengo TakahashiKazuki OkadaHirokazu MinamisakoShinichi Uchino
    • Mamoru HamadaFumitake UnezakiYoshihiro TakahashiKengo TakahashiKazuki OkadaHirokazu MinamisakoShinichi Uchino
    • F25D21/06F25B47/00F25B13/00F25B47/02F25B49/02F24F11/00
    • F25B47/025F24F11/41F25B13/00F25B49/02F25B2400/0411F25B2600/01F25B2600/021F25B2600/2501F25B2600/2513F25B2600/2521F25B2700/21151F25B2700/21163Y02B30/741
    • In a heat pump apparatus, it is aimed to enhance efficiency of a defrost operation by reducing a loss of heat radiation during the defrost operation and reducing a compressor input during the defrost operation. The heat pump apparatus includes a main refrigerant circuit in which a compressor, a first heat exchanger, an expansion mechanism, and a second heat exchanger are connected sequentially, and also includes a bypass circuit including an on-off valve and providing a connection by bypassing the expansion mechanism. The main refrigerant circuit includes a four-way valve that switches between a heating operation and the defrost operation by switching an order in which the refrigerant circulates through the main refrigerant circuit. The main refrigerant circuit also includes a first temperature detection unit and a second temperature detection unit. Based on values detected by these temperature detection units, a degree of superheat of the first heat exchanger during the defrost operation is computed. When the heating operation is switched to the defrost operation, the heat pump apparatus increases a circulation amount of the refrigerant circulating through the refrigerant circuit by opening the on-off valve, and also controls an operation frequency of the compressor such that the degree of superheat is at a predetermined target value.
    • 在热泵装置中,旨在通过减少除霜操作期间的热辐射损失来提高除霜操作的效率,并且在除霜操作期间减少压缩机输入。 热泵装置包括:主制冷剂回路,其中压缩机,第一热交换器,膨胀机构和第二热交换器依次连接,并且还包括旁通回路,旁路回路包括开关阀,并通过旁路提供连接 扩张机制。 主制冷剂回路包括四通阀,其通过切换制冷剂通过主制冷剂回路循环的顺序而在加热操作和除霜操作之间切换。 主制冷剂回路还包括第一温度检测单元和第二温度检测单元。 基于这些温度检测单元检测出的值,算出除霜运转时的第一热交换器的过热度。 当加热操作切换到除霜操作时,热泵装置通过打开开关阀来增加通过制冷剂回路循环的制冷剂的循环量,并且还控制压缩机的操作频率使得过热度 处于预定的目标值。
    • 95. 发明申请
    • MULTIPLE EVAPORATOR CONTROL USING PWM VALVE/COMPRESSOR
    • 使用PWM阀/压缩机的多个蒸发器控制
    • US20160282032A1
    • 2016-09-29
    • US15176295
    • 2016-06-08
    • WHIRLPOOL CORPORATION
    • ALBERTO REGIO GOMESRAFFAELE PAGANINI
    • F25D11/02F16K11/074F25B31/00F16K31/06F25B5/02F25B41/04
    • F25D11/022F16K11/0746F16K31/0603F25B5/02F25B41/043F25B2600/0252F25B2600/2511F25B2600/2521F25D11/006F25D23/065F25D2500/02Y02B40/32
    • A refrigeration system including a condenser; a (single) linear compressor that is activated and deactivated by a pulse width modulation switching device; a pulse width modulation refrigerant flow switch; at least two evaporators operably connected in parallel with one another with at least one evaporator associated with the refrigerator compartment that operates at a first refrigerant fluid pressure and with at least one other evaporator associated with the freezer compartment that operates at a second refrigerant fluid pressure; and a plurality of refrigerant fluid conduits operably connecting the condenser, the linear compressor and the evaporators into a refrigerant fluid flow circuit and such that the evaporators are capable of running simultaneously at different pressure levels and refrigerant flows from the evaporators, to the pulse width modulation refrigerant flow switch and through the pulse width modulation refrigerant flow switch.
    • 一种包括冷凝器的制冷系统; 一个由脉冲宽度调制开关装置激活和去激活的(单个)线性压缩机; 脉宽调制制冷剂流量开关; 至少两个蒸发器,其可操作地彼此并联连接,其中至少一个蒸发器与所述冷藏室相关联,所述蒸发器在第一制冷剂流体压力下工作;以及至少一个其它蒸发器,其与在第二制冷剂流体压力下操作的冷冻室相连; 以及将冷凝器,线性压缩机和蒸发器可操作地连接到制冷剂流体流动回路中的多个制冷剂流体管道,并且使得蒸发器能够在不同的压力水平下同时运行并且制冷剂从蒸发器流动到脉冲宽度调制 制冷剂流量开关和脉宽调制制冷剂流量开关。
    • 97. 发明授权
    • Flow rate control system in refrigeration circuits, method for controlling a refrigeration system and a refrigeration system
    • 制冷回路中的流量控制系统,制冷系统的控制方法和制冷系统
    • US08627676B2
    • 2014-01-14
    • US12297671
    • 2007-04-17
    • Marcio Roberto ThiessenFabio Henrique Klein
    • Marcio Roberto ThiessenFabio Henrique Klein
    • F25B13/00F25B41/04G05D7/00
    • F25B41/06F25B2600/2521
    • The present invention relates to a flow rate control system in refrigeration circuits, to a method for controlling a refrigeration system and to a refrigeration system properly speaking, which may include, for example, from a domestic refrigerator to an air conditioning system. In particular, the present invention is directed to a solution for the loss of efficiency in the expansion valve (17), when the system load varies, making the expansion valve (17) operate below its nominal capacity and, therefore, at low efficiency. One of the ways to achieve the objectives of the present invention is through a flow rate control system in refrigeration circuits comprising a hermetic compressor fluidly connected to a closed circuit (20). The closed circuit (20) comprising a condenser (11), an evaporator (12) and a fluid expansion device (17), the closed circuit (20) being filled with a fluid, the fluid expansion device (17) having a nominal expansion capacity and being positioned between the evaporator (12) and the condenser (11), the hermetic compressor (10) promoting a fluid flow inside the closed circuit (20), the closed circuit (20) having a circuit nominal flow rate capacity. In addition, the system comprises a flow control valve (15) which is positioned between an outlet of the condenser (11) and an inlet of the fluid expansion device (17), the flow control valve (15) being modulated so that the fluid passing through the fluid expansion device (17) is always at nominal expansion capacity. A method for controlling a refrigeration system is also disclosed.
    • 本发明涉及制冷回路中的流量控制系统,适用于控制制冷系统和制冷系统的方法,其可以包括例如家用冰箱到空调系统。 特别地,本发明涉及当系统负载变化时膨胀阀(17)的效率损失的解决方案,使得膨胀阀(17)的运行低于标称容量,因此效率低。 实现本发明目的的方法之一是通过一种制冷回路中的流量控制系统,该系统包括流体连接到闭合回路(20)的封闭式压缩机。 所述闭合回路(20)包括冷凝器(11),蒸发器(12)和流体膨胀装置(17),所述闭合回路(20)填充有流体,所述流体膨胀装置(17)具有标称膨胀 并且定位在蒸发器(12)和冷凝器(11)之间,密封压缩机(10)促进封闭回路(20)内的流体流动,闭合回路(20)具有电路标称流量容量。 另外,该系统包括位于冷凝器(11)的出口和流体膨胀装置(17)的入口之间的流量控制阀(15),流量控制阀(15)被调制成使流体 通过流体膨胀装置(17)的总是处于额定膨胀容量。 还公开了一种用于控制制冷系统的方法。
    • 99. 发明授权
    • Refrigerant system unloading by-pass into evaporator inlet
    • 制冷剂系统卸载进入蒸发器入口
    • US08069683B2
    • 2011-12-06
    • US12159026
    • 2006-01-27
    • Alexander Lifson
    • Alexander Lifson
    • F25B49/00F25B1/10
    • F25B49/022F25B1/04F25B1/10F25B31/004F25B2400/0403F25B2400/0411F25B2600/0261F25B2600/0262F25B2600/2501F25B2600/2513F25B2600/2521F25B2700/21151
    • A refrigerant system has at least one unloader valve selectively communicating refrigerant between the compressor compression chambers and a point upstream of the evaporator. When the compressor is run in unloaded mode, partially compressed refrigerant is returned to a point upstream of the evaporator. In an unloaded mode, a higher refrigerant mass flow rate passes through the evaporator, as compared to prior art where the by-passed refrigerant was returned downstream of the evaporator. This increases system efficiency by more effectively returning oil which otherwise might be left in the evaporator back to the compressor. Also, the amount of refrigerant superheat entering the compressor in unloaded operation is reduced as compared to the prior art compressor systems, wherein the by-passed refrigerant is returned directly to the compressor suction line. Reduced refrigerant superheat increases system efficiency, improves motor performance and reduces compressor discharge temperature. Also, by moving the unloader line further away from the compressor, the compressor replacement is simplified as there is no connecting unloader line directly in front of the compressor.
    • 制冷剂系统具有至少一个卸载阀,其选择性地将压缩机压缩室之间的制冷剂和蒸发器上游的点连通。 当压缩机以卸载模式运行时,部分压缩的制冷剂返回到蒸发器上游的一个点。 在空载模式中,与现有技术相比,较高的制冷剂质量流量通过蒸发器,其中旁路制冷剂返回到蒸发器的下游。 这可以通过更有效地将返回的油返回到蒸发器中返回压缩机来提高系统效率。 此外,与现有技术的压缩机系统相比,在卸载操作中进入压缩机的制冷剂过热量减少,其中旁路制冷剂直接返回到压缩机吸入管线。 降低制冷剂过热度可提高系统效率,改善电机性能并降低压缩机排放温度。 此外,通过将卸载器线移动离开压缩机,压缩机更换被简化,因为在压缩机前面没有直接卸载线。