会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 52. 发明申请
    • エアリフトポンプおよび水中堆積物の吸引方法
    • 空气抽吸泵和在水下沉降中获取的方法
    • WO2015190280A1
    • 2015-12-17
    • PCT/JP2015/065045
    • 2015-05-26
    • 国立大学法人神戸大学
    • 細川 茂雄
    • F04F1/18E02F3/88F04F1/20
    • E02F3/88F04F1/18F04F1/20
    • 【課題】 水中堆積物の吸引を効率良く行うことができるエアリフトポンプを提供する。 【解決手段】 水中に起立状態で設置される主管(10)および作動管(20)を有し、作動管(20)から主管(10)に作動流体を導入することにより、主管(10)の下部に形成された吸引口(12)から堆積物を水と共に吸引して、上方に搬送するエアリフトポンプ(1)であって、作動管(20)は、供給された液相の作動流体を外部の水と断熱した状態で下方に案内する断熱部(22)と、断熱部(22)を経た作動流体を外部の水との熱交換により加熱気化させて主管(10)に供給する熱交換部(24)とを備える。
    • [问题]提供能够有效地吸入水下沉积物的空气提升泵。 [解决方案]一种空气提升泵(1),其具有在水中竖立设置的主管(10)和工作管(20),使得当工作流体从工作管道(10)引入主管(10)时 20),与形成在主管(10)的底部的吸入口(12)一起从水中吸收沉淀物并向上运送。 所述工作管道(20)配备有:绝热部(22),其将所供给的液相工作流体向下引导,所述液相工作流体与外部水绝热; 以及热交换单元(24),其通过与外部水的热交换使已经通过所述绝热部(22)的工作流体热蒸发并将所述蒸发的工作流体供给到所述主管(10)。
    • 55. 发明公开
    • DEVICE AND METHOD FOR ENERGY WELL
    • VORRICHTUNG UND VERFAHRENFÜRENERGIEBOHRUNGEN
    • EP2452136A4
    • 2017-06-14
    • EP10797375
    • 2010-06-18
    • ENERGYBOOSTER AB
    • KHARSEH MOHAMADOSSIANSSON WILLY
    • F24J3/08F04F1/20
    • F04F1/20F24J3/082F24J3/086Y02E10/125Y02E10/16
    • Method for increasing efficiency during heating or cooling using an energy well (1) in the form of an elongated hole the bottom of which is arranged at a greater depth than its opening, where a cooling agent streams through the well (1) in a collector conduit (3) and is heat exchanged against the material surrounding the well (1). The invention is characterised in that a tube (301) runs down into the energy well (1) from above its opening and down along the energy well (1) towards its bottom, in that the end (303) of the tube (301) facing towards the bottom of the energy well (1) is open, in that liquid is supplied through the tube (301) so that the liquid thereby streams down and out into the energy well (1) through the open end (303) of the tube (301), in that gas bubbles (305) are supplied to the liquid streaming down through the tube (301), and in that the added gas bubbles (305) are so small so that they rise more slowly in the liquid than the velocity of the liquid at the supply point.
    • 1。一种用于在采用长孔形式的能量井(1)的加热或冷却期间提高效率的方法,所述能量井的底部布置在比其开口更深的深度处,其中冷却剂流过收集器中的井(1) 导管(3)并且与井(1)周围的材料进行热交换。 本发明的特征在于,管(301)的端部(303)从管道(301)的端部(303)沿着能量井(1)朝向其底部向下流入能量井(1) 面向能量井(1)的底部是打开的,因为液体通过管(301)供应,使得液体由此向下流出并通过第一能量井(1)的开口端(303) 其特征在于,气泡(305)被提供给通过管(301)向下流动的液体,并且添加的气泡(305)非常小,使得它们在液体中的上升速度比 供应点处液体的速度。
    • 56. 发明公开
    • DEVICE AND METHOD FOR ENERGY WELL
    • 装置和方法的能量好
    • EP2452136A1
    • 2012-05-16
    • EP10797375.2
    • 2010-06-18
    • EnergyBooster AB
    • KHARSEH, MohamadOSSIANSSON, Willy
    • F24J3/08F04F1/20
    • F04F1/20F24T10/13F24T10/30Y02E10/125Y02E10/16
    • Method for increasing efficiency during heating or cooling using an energy well (1) in the form of an elongated hole the bottom of which is arranged at a greater depth than its opening, where a cooling agent streams through the well (1) in a collector conduit (3) and is heat exchanged against the material surrounding the well (1). The invention is characterised in that a tube (301) runs down into the energy well (1) from above its opening and down along the energy well (1) towards its bottom, in that the end (303) of the tube (301) facing towards the bottom of the energy well (1) is open, in that liquid is supplied through the tube (301) so that the liquid thereby streams down and out into the energy well (1) through the open end (303) of the tube (301), in that gas bubbles (305) are supplied to the liquid streaming down through the tube (301), and in that the added gas bubbles (305) are so small so that they rise more slowly in the liquid than the velocity of the liquid at the supply point.
    • 1。一种用于在采用长孔形式的能量井(1)的加热或冷却期间提高效率的方法,所述能量井的底部布置在比其开口更深的深度处,其中冷却剂流过收集器中的井(1) 导管(3)并且与井(1)周围的材料进行热交换。 本发明的特征在于,管(301)的端部(303)从管道(301)的端部(303)沿着能量井(1)朝向其底部向下流入能量井(1) 面向能量井(1)的底部是打开的,因为液体通过管(301)供应,使得液体由此向下流出并通过第一能量井(1)的开口端(303) 其特征在于,气泡(305)被提供给通过管(301)向下流动的液体,并且添加的气泡(305)非常小,使得它们在液体中的上升速度比 供应点处液体的速度。